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Abstract

Elementary vectors are fundamental objects in polyhedral geometry. In
metabolic pathway analysis, elementary vectors range from elementary flux
modes (of the flux cone) and elementary flux vectors (of a flux polyhedron)
via elementary conversion modes (of the conversion cone) to minimal cut
sets (of a dual polyhedron) in computational strain design.

To better understand cellular phenotypes with optimal (or suboptimal)
growth rate, we introduce and analyze classes of elementary vectors for
models of cellular growth. Growth modes (GMs) only depend on stoi-
chiometry, but not on growth rate or concentrations; they are elements of
the growth cone. Elementary growth modes (EGMs) are conformally non-
decomposable GMs; unlike elementary flux modes, they are not support-
minimal, in general. Most importantly, every GM can be written as a con-
formal sum of EGMs. Growth vectors (GVs) and elementary growth vectors
(EGVs) also depend on growth rate, concentrations, and linear constraints;
they are elements of a growth polyhedron. Again, every GV can be written
as a conformal sum of EGVs. To relate the new concepts to other branches
of theory, we define autocatalytic GMs and the corresponding (minimal)
autocatalytic sets of reactions.

As a case study, we consider whole cell models (simple kinetic models of
self-fabrication). First, we use EGMs to derive an upper bound for growth
rate that only depends on enzyme kinetics. Next, we study growth rate
maximization (via control parameters for ribosome kinetics). In particu-
lar, we analyze growth states (GSs) and elementary growth states (EGSs)
as introduced in [de Groot et al, 2020]. Unlike EGMs, EGSs depend on
(metabolite) concentrations and growth rate. Most importantly, (i) we
show that EGSs are support-minimal, (ii) we give a simple proof for the
fact that maximum growth rate is attained at an EGS, and (iii) we show
that, at every optimal EGS, the ribosome capacity constraint is active.
Finally, we determine the dependence of EGSs on growth rate, and we
study the relation between EGSs and minimal autocatalytic sets, EGMs,
and elementary flux modes. Along the way, we point out (and resolve)
mathematical issues in [de Groot et al, 2020].
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1 Introduction

Cell proliferation involves cell growth and cell division. In more abstract terms,
cellular self-fabrication involves cellular self-maintenance, including processes
such as signaling, transport, metabolism, and gene regulation, and cellular self-
replication, including macromolecular synthesis and cell cycle. Indeed, during
one cycle, a cell self-fabricates all its constituents (metabolites, enzymes, lipids,
DNA, . . . ); it grows. By cell division, this leads to growth on the population
level (microbial growth) or the tissue level (multicellular development).

The processes contributing to cellular growth can be summarized in a stoichio-
metric matrix N with rows corresponding to constituents (molecular species)
and columns corresponding to processes (chemical reactions). In the determin-
istic setting, one has the dynamical system dX

dt = N V (X) for the copy num-
bers X of molecules (extensive variables), as determined by N and the reaction
rates V (X). After introducing concentrations x (intensive variables), one obtains
dx
dt = Nv(x) − µx, cf. [12]. The second term represents “dilution by growth”,
where growth rate µ is given (as a function of x) by a linear constraint arising
from dry weight or cell volume. The dynamical systems apply to individual cells
or, as averages, to cell populations. Steady state for the intensive variables, that
is, x(t) = const or Nv(x) = µx, corresponds to balanced growth for the extensive
variables, that is, X(t) = X(0) eµt. On the population level, one has dn

dt = µn
for the copy number n of cells, cf. [9, 22].

Particular models of cellular growth as well as model classes can be categorized
by several dimensions: (i) the set of cellular processes modeled explicitly, (ii) the
model structure – from detailed (elementary reaction steps as one extreme) to
coarse-grained (one reaction for every process as another extreme), (iii) dynamic
vs. steady-state, and (iv) kinetic (with nonlinear dependence v(x) of reaction
rates on concentrations) vs. constraint-based (with linear constraints in x and v).
For a recent review on mathematical models of cellular growth, see e.g. [6].

Traditional growth models often involve an approximative “biomass reaction”,
which specifies macromolecular synthesis in terms of precursors. In terms of cate-
gories (i) and (ii), such models consider metabolism in detail and macromolecular
synthesis as a coarse-grained process (the biomass reaction). In terms of (iii) and
(iv), they often assume steady state and are constraint-based. In detail, con-
centrations x are fixed, and steady-state reaction rates (fluxes) v are considered
as independent variables. The stoichiometric matrix has rows corresponding to
metabolites and columns corresponding to metabolic reactions and the biomass
reaction. Further, there are irreversibility constraints. Altogether, one considers
Nv = 0 and vI ≥ 0, defining the flux cone (mathematically, a linear subspace
with nonnegativity constraints, that is, an s-cone [19]).

Metabolic pathway analysis aims to identify biologically meaningful routes in a
metabolic network, in particular, minimal routes. The (biologically and math-
ematically) fundamental abstractions of minimal metabolic pathways are ele-
mentary flux modes (EFMs) [24, 25]. Formally, EFMs are the support-minimal
vectors of the flux cone. Most importantly, every element of the flux cone can
be written as a conformal sum of EFMs (a sum without cancellations) [19]. In
convex analysis, elementary vectors (of linear subspaces) have been introduced 25
years before their use in metabolic pathway analysis [23]. Recently, the concept
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of elementary vectors and the corresponding conformal sum theorems have been
extended from linear subspaces to polyhedral cones and polyhedra [19]. Indeed,
elementary vectors form unique sets of conformal generators for linear subspaces,
polyhedral cones, and polyhedra.

Given the flux cone, flux balance analysis (FBA) adds linear constraints (e.g. flux
bounds) and maximizes (biomass) flux [8]. Altogether, FBA considers a linear
program on Nv = 0, vI ≥ 0, and e.g. vlb ≤ v ≤ vub, defining a flux polyhedron.
Its elementary vectors are called elementary flux vectors (EFVs) [27] and are
not support-minimal, in general. As a consequence, maximum flux is attained
at EFVs. In other words, EFVs are the missing link between EFM analysis,
describing all (stoichiometrically) feasible solutions, and FBA, identifying optimal
solutions [16]. Interestingly, in kinetic models (without flux bounds and with one
enzyme capacity constraint), maximum flux is attained at EFMs [20, 29].

Finally, two more classes of elementary vectors have been introduced in metabolic
pathway analysis: elementary conversion modes (ECMs) of the conversion cone
(the projection of the flux cone onto the exchange reactions) [28] and minimal
cut sets (MCSs) of a dual polyhedron (minimal sets of gene knockouts) [2]. By
using ECMs, EFMs need not be enumerated (which is computationally infeasi-
ble for genome-scale metabolic models [30]) in order to determine all minimal
conversions of substrates into products, and by using MCSs, EFMs need not
be enumerated in order to determine all minimal interventions in computational
strain design.

Recently, more refined models of cellular growth have been studied, where in-
dividual synthesis reactions for macromolecules replace the traditional biomass
reaction. In the category of constraint-based models, prominent examples are
resource balance analysis (RBA) [11] and metabolism and macromolecular ex-
pression (ME) models [17]. In particular, RBA considers linear capacity con-
straints: given the concentration of a catalyst, kinetics implies an upper bound
for the flux of the corresponding catalytic reaction. (E.g. for the flux v of a
metabolic reaction catalyzed by enzyme E, one has v ≤ kcatxE.) In addition,
ME models consider the genotype-phenotype map of macromolecular synthesis in
detail (and the resulting inequality constraints for the fluxes involved). Finally,
in the category of kinetic models, whole cell models (also known as self-replicator
or self-fabrication models) aim to give a complete picture of cellular processes,
however, on a coarse-grained level [5, 18]. In fact, such models often are hybrid
(kinetic and constraint-based), involving control parameters for optimization and
the corresponding constraints.

In this work, we introduce and analyze classes of elementary vectors for general
models of cellular growth: Elementary growth modes (EGMs) are elementary
vectors of the growth cone; they only depend on stoichiometry and hence apply
to general growth models (kinetic or constraint-based). Elementary growth vec-
tors are elementary vectors of a growth polyhedron; they also depend on growth
rate, concentrations, and fluxes and hence apply to constraint-based models.
Unlike EFMs (but like ECMs), EGMs are elementary vectors of a general poly-
hedral cone, and like EFVs, EGVs are elementary vectors of a polyhedron. To
demonstrate the relevance of the new concepts, we relate them to the theory of
autocatalytic sets.

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432769doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432769
http://creativecommons.org/licenses/by-nc-nd/4.0/


As a case study, we consider whole cell models (simple kinetic models of self-
fabrication). To characterize cellular phenotypes with maximum growth rate, we
use elementary growth states (EGSs) as introduced in [5]. Unlike EGMs, EGSs
are not defined for general growth models and also depend on concentrations and
growth rate. Still, every EGS can be written as a conformal sum of EGMs. We
obtain several new results on EGSs (and hence on growth rate maximization)
and simple proofs of existing results.

Outline and main results. In Section 2, we provide new results on elemen-
tary vectors in polyhedral geometry, cf. Propositions 1 and 2. In Section 3, we
introduce elementary growth modes and vectors for kinetic and constraint-based
models of cellular growth, we provide the corresponding conformal sum theo-
rems, cf. Theorems 9, 15 and Corollary 10, we define minimal autocatalytic sets
of reactions, and we illustrate all new concepts in models of a minimal network,
cf. Examples 13 and 16. In Section 4, we consider simple kinetic models of
self-fabrication and related constraint-based models, we instantiate general def-
initions and results, and we derive an upper bound for growth rate that only
depends on enzyme kinetics (and the set of active enzymes), cf. Theorem 21.
In Section 5, we study growth rate maximization (via control parameters for
ribosome kinetics). In particular, we analyze elementary growth states (EGSs) as
introduced in [5]. Most importantly, we show that (i) EGSs are support-minimal,
(ii) maximum growth rate is attained at an EGS, and (iii), at every optimal EGS,
the ribosome capacity constraint is active, cf. Theorem 28, Proposition 29, The-
orem 30, and Corollary 31. Moreover, we find that (E)GSs correspond to (mini-
mal) autocatalytic sets, cf. Proposition 33, and we illustrate the relation between
EGSs and EGMs in models of small networks, cf. Examples 34, 35, and 36. Un-
der the assumption of proportional synthesis, we determine the dependence of
EGSs on growth rate, cf. Theorem 37, and we study the relation between EGSs
and elementary flux modes, cf. Theorems 38 and 39. Finally, in Section 6, we
discuss the terminology of elementary vectors in metabolic pathway analysis.

In Supplement A, we summarize definitions and results on elementary vectors in
polyhedral geometry. In Supplement B, we provide a minimal derivation of the
dynamic model of cellular growth. Finally, in Supplement C, we list mathematical
issues in [5].

Mathematical notation. We denote the positive real numbers by R> and the
nonnegative real numbers by R≥. For x ∈ Rn, we write x > 0 if x ∈ Rn>, x ≥ 0
if x ∈ Rn≥, and we denote its support by supp(x) = {i | xi 6= 0}. Recall that
a nonzero vector x ∈ X ⊆ Rn is support-minimal if, for all nonzero x′ ∈ X,
supp(x′) ⊆ supp(x) implies supp(x′) = supp(x). For x ∈ Rn, we define its sign
vector sign(x) ∈ {−, 0,+}n by applying the sign function component-wise, that
is, sign(x)i = sign(xi) for i = 1, . . . , n. The relations 0 < − and 0 < + on
{−, 0,+} induce a partial order on {−, 0,+}n: for X,Y ∈ {−, 0,+}n, we write
X ≤ Y if the inequality holds component-wise. For x, y ∈ Rn, we denote the
component-wise product by x ◦ y ∈ Rn, that is, (x ◦ y)i = xiyi. For n ∈ N, we
write [n] = {1, . . . , n}. For x ∈ Rn and index set I ⊂ [n], we write xI ∈ RI for
the corresponding subvector. For A ∈ Rm×n and index sets I ⊂ [m], J ∈ [n], we
write AI,J ∈ RI×J for the corresponding submatrix; if I = [m], we just write
A∗,J ∈ Rm×J .
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2 Elementary vectors

For the objects of polyhedral geometry (subspaces, cones, polyhedra), there is no
unique minimal set of generators, in general. However, elementary vectors (EVs)
form unique sets of conformal generators [19, Section 3.4]. For linear subspaces
and s-cones (arising from linear subspaces and nonnegativity constraints), ele-
mentary vectors are the support-minimal (SM) vectors; for general cones, they
are the conformally non-decomposable (cND) vectors; and for general polyhedra,
they are the convex-conformally non-decomposable (ccND) vectors plus the cND
vectors of the recession cone [19].

In Supplement A, we summarize basic definitions and results for s-cones, gen-
eral polyhedral cones, and polyhedra; cf. Theorems 43, 44, and 45. Below, we
provide new results on special polyhedra (arising from affine subspaces and non-
negativity constraints). In fact, Propositions 1 and 2 will be crucial in the study
of elementary growth states; we state them here to complete the mathematical
preliminaries before introducing growth models.

2.1 Special polyhedra

Recall the definitions of linear and affine subspaces: In a linear subspace S ∈ Rn,
we have that x, y ∈ S and λ, µ ∈ R imply λx + µy ∈ S. In an affine subspace
T ∈ Rn, we have that x, y ∈ T and λ ∈ R imply λx + (1 − λ)y ∈ T . We call an
affine subspace genuine if it is not also a linear subspace.

Proposition 1. Let T ⊆ Rn be a genuine affine subspace. If two SM vectors
have the same support, then they are identical.

Proof. Let e, e′ ∈ T be distinct SM vectors that have the same support. Since T is
not a linear subspace, they are not scalar multiples. Consider x = λe+(1−λ)e′ ∈
T with λ ∈ R. Indeed, choose λ such that xi = λei + (1 − λ)e′i = 0 for some
i ∈ supp(e) (with ei 6= e′i). That is, supp(x) ⊂ supp(e), and e is not SM, a
contradiction.

The corresponding result for linear subspaces/s-cones is Corollary 42 in Supple-
ment A.1.

Proposition 2. Let T ⊆ Rn be a genuine affine subspace and O ⊆ Rn be a
closed orthant. The vertices of the polyhedron P = T ∩O are its SM vectors.

Proof. It suffices to show the statement in the notationally simplest case O = Rn≥.
(Then, x ∈ O is equivalent to x ≥ 0.)

(VE ⇒ SM). Assume x ∈ P is not SM, that is, there exists x1 ∈ P with
supp(x1) ⊂ supp(x), and consider x2 = λx + (1 − λ)x1 ∈ T . Clearly, there
exists λ > 1 such that x2 ≥ 0 (that is, x2 ∈ O) and hence x2 ∈ P . Now,
x = (1 − 1

λ )x1 + 1
λx

2 = (1 − λ′)x1 + λ′x2 with 0 < λ′ < 1, that is, x is not a
vertex.

(SM ⇒ VE). Assume x ∈ P is not a vertex, that is, there exist x1, x2 ∈ P
with x1 6= x2 and 0 < λ < 1 such that x = λx1 + (1 − λ)x2. If supp(x1) =
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supp(x2) = supp(x), consider x′ = λ′x1 + (1− λ′)x2 ∈ T . Clearly, there exists a
largest λ′ > 1 such that x′ ≥ 0 (that is, x′ ∈ O) and hence x′ ∈ P . For this λ,
supp(x′) ⊂ supp(x), that is, x is not SM.

3 Growth models

Notation. We denote fundamental objects and quantities as follows:

Mol set of molecular species
Rxn set of chemical reactions

N ∈ RMol×Rxn stoichiometric matrix (unit: 1)
ρ ∈ RMol

> molar masses (unit: g/mol)

x ∈ RMol
≥ concentrations (unit: mol/g)

v(x) ∈ RRxn reaction rates (unit: mol/g/s)

In Supplement B, we provide a minimal derivation of the dynamic model of
cellular growth.

A dynamic growth model is given by a dynamical system (involving chemical
reactions and growth) and a linear constraint representing dry weight (or, alter-
natively, cell volume):

dx

dt
= Nv(x)− µx (1a)

and
ρTx = 1. (1b)

In particular, growth rate is given by

µ = ρTNv. (2)

Note. At steady state, system (1a) and (2) is equivalent to system (1). However,
if (2) is used as a definition of µ in (1a), then the mathematical treatment often
becomes less transparent.

Remark 3 (Conservation laws). In a growth model, there can be no conservation
laws. In mathematical terms, kerNT ∩ RMol

≥ = {0}.

To see this, assume cTN = 0 with 0 6= c ≥ 0, for example, assume c1 = c2 = 1

and ci = 0, otherwise. Then, d(cTx)
dt = d(x1+x2)

dt = −µ(x1 + x2) ≤ 0, and µ > 0
implies x1 = x2 = 0 at steady state.

Remark 4 (Dependent concentrations). Even if there are no conservation rela-
tions, there can be dependent concentrations. (However, biochemically, this is a
degenerate case.) In mathematical terms, kerNT 6= {0}.
To illustrate this, assume cTN = 0 with 0 6= c, for example, assume c1 = 1,

c2 = −1, and ci = 0, otherwise. Then, d(cTx)
dt = d(x1−x2)

dt = −µ(x1 − x2), and
µ > 0 implies x1 = x2 at steady state.
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In the following, we assume that all dependent variables have been eliminated.
In particular, kerNT = {0}, that is, imN = RMol.

Elementary vectors

At steady state,
Nv = µx ≥ 0.

Further, vI ≥ 0, where I ⊆ Rxn denotes the set of irreversible reactions.

Note. In general, all reactions are reversible, but in a given setting, reactions
may have a given direction, as determined by thermodynamics.

Definition 5. Growth modes (GMs) for the dynamic growth model (1) are ele-
ments of the growth cone

Cg =
{
v ∈ RRxn | Nv ≥ 0, vI ≥ 0

}
.

A GM v ∈ Cg has an associated growth rate µ(v) = ρTNv ≥ 0 and, if µ(v) > 0,
an associated concentration vector x(v) = Nv/µ(v) ∈ RMol

≥ .

Elementary growth modes (EGMs) are conformally non-decomposable GMs.

Note. GMs only depend on stoichiometry; in particular, they do not depend on
concentrations or growth rate. (But they have an associated growth rate and an
associated concentration vector.)

Note. The growth cone Cg is a general polyhedral cone (not an s-cone like the
flux cone); its elementary vectors are conformally non-decomposable (but not
support-minimal, in general); see e.g. Example 13.

Remark 6 (Computation). For the computation of EGMs, the system of in-
equalities defining Cg is transformed to a system of equalities by the introduction
of slack variables, and SM vectors of the resulting higher-dimensional s-cone are
computed by (variants of) the double description method, see e.g. [16].

The definition of GMs immediately implies the scale invariance of associated
concentrations.

Proposition 7. For a GM v ∈ Cg with associated concentration x(v) and λ > 0,
it holds that x(λv) = x(v).

Further, the assumption kerNT ∩ RMol
≥ = {0} (no conservation laws) allows to

characterize zero growth.

Proposition 8. For a GM v ∈ Cg, Nv = 0 is equivalent to µ(v) = 0.

GMs v with µ(v) = 0 (“zero growth modes”) are flux modes (FMs), that is,
elements of the flux cone

Cf =
{
v ∈ RRxn | Nv = 0, vI ≥ 0

}
.

(In general, this is not the flux cone arising from traditional growth models,
involving an approximate “biomass reaction”.) EGMs v with µ(v) = 0 are el-
ementary flux modes (EFMs), that is, SM elements of Cf . They are not SM
elements of Cg, in general; see e.g. Example 13.
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Finally, we apply the general theory of elementary vectors and state the main
result of this section.

Theorem 9. Every nonzero GM is a conformal sum of EGMs.

Proof. By Theorem 44 in Supplement A.2: The growth cone Cg is a general poly-
hedral cone, and its elementary vectors are the conformally non-decomposable
vectors, that is, the EGMs.

In fact, we can be more specific.

Corollary 10. Let v be a nonzero GM with associated growth rate µ(v) =: µ.
Then, there exist (possibly empty) finite sets E0 and Eµ of EGMs with associated
growth rates 0 and µ, respectively, such that

v =
∑
e∈E0

e+
∑
e∈Eµ

λe e with sign(e) ≤ sign(v),

λe ≥ 0, and
∑
e∈Eµ λe = 1. Moreover, if µ > 0, then x(v) =

∑
e∈Eµ λe x(e).

Proof. By Theorem 9, there exist (possibly empty) finite sets E0 and E> of
EGMs (with associated growth rates 0 and >0, respectively) such that

v =
∑
e∈E0

e+
∑
e∈E>

e with sign(e) ≤ sign(v).

In particular, µ = µ(v) =
∑
e∈E> µ(e). Now,

∑
e∈E>

e =
∑
e∈E>

µ(e)

µ

µ

µ(e)
e =

∑
e′∈Eµ

λe′ e
′,

where e′ = µ
µ(e) e with µ(e′) = µ and λe′ = µ(e)

µ with
∑
e′∈Eµ λe′ = 1.

Finally, if µ > 0, then x(v) = Nv/µ =
∑
e∈Eµ λeNe/µ =

∑
e∈Eµ λe x(e).

Note. In Corollary 10, we actually fix growth rate which turns the growth
cone into a polyhedron. Hence, the result is also an instance of Theorem 45 in
Supplement A.3.

Autocatalysis

Cellular growth is autocatalytic in the sense that the cell fabricates itself (thereby
exchanging substrates/products with the environment). One needs to distinguish
this notion of “network autocatalysis” from “autocatalytic subnetworks” (tech-
nically: autocatalytic cycles/cores) [3, 4].

A main requirement for network autocatalysis is the existence of a growth mode
where all species involved in active reactions have nonzero associated concentra-
tions.

Definition 11. A GM v ∈ Cg is strict if, for every r ∈ supp(v) ⊆ Rxn and
s ∈ Mol, Nsr 6= 0 implies (Nv)s > 0.
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Clearly, in the overall reaction corresponding to a strict GM, all species appear
on the product side, in particular, with a larger stoichiometric coefficient than
on the educt side. If a species appears also on the educt side, then it is formally
autocatalytic (cf. [1]), and one may call the GM itself autocatalytic. In fact,
there are several competing notions of autocatalytic species and subnetworks like
formally/exclusively autocatalytic and autocatalytic cycles/cores (cf. [1, 3, 4]).
Before we state possible definitions for network autocatalysis, we distinguish two
modeling approaches.

• Detailed models (without individual catalytic reactions)

In this approach, catalysis occurs on the level of (small) subnetworks. In
particular, individual reactions are not catalytic. For example, a simple
catalytic mechanism (involving enzyme E, substrate S, and product P) is
given by E + S↔ ES↔ EP↔ E + P.

• Coarse-grained models (with individual catalytic reactions)

In this approach, catalysis occurs on the level of individual reactions. For
example, the catalytic mechanism above is written as E + S ↔ E + P or

S
E↔ P. Due to coarse-graining, catalysis cannot be identified from the sto-

ichiometric matrix. Hence, for every catalytic reaction, the corresponding
catalyst is specified explicitly.

For detailed models, one may call a GM v ∈ Cg autocatalytic if (i) it is strict
and (ii) it contains an autocatalytic species or subnetwork. For example, one
may require the existence of a formally/exclusively autocatalytic species or a
catalytic/autocatalytic subnetwork. Formal definitions and their comparison are
subject of future work. In this work, all examples (and the case study in Sections 4
and 5) are specified as coarse-grained models. For coarse-grained models, we
give a formal definition of network autocatalysis.

Definition 12. For coarse-grained models, a GM v ∈ Cg is basically catalytic
(BC) if there is a catalytic reaction r ∈ supp(v). Further, a GM v ∈ Cg is
catalytically closed (CC) if, for every catalytic reaction r ∈ supp(v), it holds that
(Nv)c > 0 for the corresponding catalyst c ∈ Mol. Finally, a GM v ∈ Cg is
autocatalytic (AC) if it is strict, BC, and CC.

A subset of reactions S ⊆ Rxn is autocatalytic (AC) if there exists an autocatalytic
GM v ∈ Cg with S = supp(v). A nonempty subset of reactions is minimally
autocatalytic (MAC) if it is AC and inclusion-minimal.

Note. A closure condition is also crucial in classical definitions of “reflexive
autocatalysis” [13, 15, 26] and “chemical organizations” [7, 10, 14]. (For detailed
models, a closure condition is not required. In that approach, closure is implied
by strictness.)

Note. One may define an elementary autocatalytic GM as an autocatalytic
GM with minimal support. However, the definition of autocatalysis goes beyond
polyhedral geometry, and hence the term elementary (vector) is not appropriate.
See also the discussion of terminology in Section 6.

Clearly, network autocatalysis as in Definition 12 implies formal autocatalysis for
all catalytic species.
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Example 13. Consider the following “minimal network”, involving precursor P,
“enzyme” E, and ribosome R:

0 P

E

R

R

R
E

“Metabolism” (the production of the precursor P) is catalyzed by the enzyme E,
and the synthesis of E and R is catalyzed by the ribosome R. The corresponding
stoichiometric matrix amounts to

N =


E→ →E →R

P 1 −1 −1
E 0 1 0
R 0 0 1

.
Further, ρ = (ρP, ρE, ρR)T = ρP (1, 1, 1)T , by mass conservation. (Normalized)
EGMs with associated growth rates and mass fractions are given by

e1 = u

1
0
0

 , e2 = u

1
1
0

 , e3 = u

1
0
1

 ,

µ(e1) = u ρP, µ(e2) = u ρP, µ(e3) = u ρP,

ρ ◦ x(e1) =

1
0
0

 , ρ ◦ x(e2) =

0
1
0

 , ρ ◦ x(e3) =

0
0
1

 .

To obtain correct units, we introduced the factor u = 1 mol/g/s.

In a (biologically meaningful) kinetic model of the minimal network, all steady-
state reaction rates (fluxes) and all (associated) concentrations are nonzero. How-
ever, in all EGMs, at least one flux is zero, and only one concentration is nonzero.
By definition, EGMs only depend on stoichiometry and hence do not reflect (con-
straints arising from) kinetics. Still, every flux vector of a kinetic model can be
written as a conformal sum of EGMs. See also Examples 16 and 34, where
the minimal network is studied in the contexts of constraint-based and kinetic
models, respectively.

All EGMs involve catalytic reactions, and hence they are BC. However, for all
EGMs, at least one active catalyst has zero (associated) concentration, and hence
no EGM is CC. Still, every convex combination v = λ1 e

1 + λ2 e
2 + λ3 e

3 of
EGMs with λ1 ≥ 0, λ2, λ3 > 0, λ1 + λ2 + λ3 = 1 (and hence µ(v) = u ρP) has
nonzero catalyst concentrations, and hence v is CC. If further λ1 > 0, then also
the precursor concentration is nonzero, that is, v is strict and ultimately AC.
Clearly, S = supp(v) = Rxn (the set of all reactions) is the unique (M)AC set of
reactions.
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3.1 Constraint-based models

For many systems, kinetic models are not yet available, and constraint-based
models are used. Steady-state reaction rates (fluxes) v are considered as indepen-
dent variables, that is, the non-linear dependence of the kinetics on the concentra-
tions x is neglected. Most importantly, catalytic processes (in the kinetic model)
imply linear capacity constraints for x and v, and additional constraints can be
formulated for processes that are not catalytic (in the given model), e.g. lower
bounds for concentrations or fluxes. Most compactly, the linear constraints can
be can be written as

Ax+Bv ≥ b

with A ∈ Rm×Mol, B ∈ Rm×Rxn, and b ∈ Rm.

Altogether, constraint-based growth models involve steady-state (with irreversibil-
ity), dry weight, and additional linear constraints,

Nv = µx ≥ 0 (with vI ≥ 0),

ρTx = 1,

Ax+Bv ≥ b.
(3)

Note. For given growth rate µ ≥ 0, one may consider the polyhedron

P (µ) =
{

(x, v) ∈ RMol × RRxn |Nv = µx, vI ≥ 0,

ρTx = 1,

Ax+Bv ≥ b } .

However, for µ > 0 and given fluxes v, the concentration vector x = Nv/µ is not
an independent variable.

Elementary vectors

Definition 14. Let µ > 0. Growth vectors (GVs) for the constraint-based growth
model (3) are elements of the growth polyhedron

Pg(µ) =
{
v ∈ RRxn |Nv ≥ 0, vI ≥ 0,

ρTNv = µ,

(AN + µB) v ≥ µ b } .

A GV v ∈ Pg(µ) has an associated concentration vector x(v) = Nv/µ ∈ RMol
≥ .

Elementary growth vectors (EGVs) are convex-conformally non-decomposable
GVs and conformally non-decomposable elements of the recession cone

R =
{
v ∈ RRxn | Nv = 0, vI ≥ 0, Bv ≥ 0

}
.

Again, we can apply the general theory of elementary vectors and state our main
result.
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Theorem 15. Let v be a GV for growth rate µ > 0. Then, there exist finite sets
E0 ⊆ R and Eµ ⊆ Pg(µ) of EGVs such that

v =
∑
e∈E0

e+
∑
e∈Eµ

λe e with sign(e) ≤ sign(v),

λe ≥ 0, and
∑
e∈Eµ λe = 1. Moreover, x(v) =

∑
e∈Eµ λe x(e).

Proof. By Theorem 45 in Supplement A.3: The growth polyhedron Pg(µ) is a
general polyhedron, and its elementary vectors are the convex-conformally non-
decomposable vectors and the conformally non-decomposable vectors of its re-
cession cone.

Note. Every GV is also a GM, and hence every nonzero GV is also a conformal
sum of EGMs.

Example 16. Consider the “minimal network” introduced in Example 13 to-
gether with the kinetics

vP := v0→P(x) = κ(xP)xE,

vE := vP→E(x) = τE(xP)αE(xP)xR,

vR := vP→R(x) = τR(xP)αR(xP)xR,

where αE+αR ≤ 1 due to limited ribosome capacity. The reaction rates are given
by particular kinetic functions (depending on the precursor concentration xP)
times the concentrations of the catalyzing molecules (enzyme and ribosome con-
centrations, xE and xR, respectively).

Now, κ(xP) ≤ kcat and τE(xP) ≤ ktl
E , τR(xP) ≤ ktl

R , (plus αE + αR ≤ 1) imply the
capacity constraints

vP
kcat

≤ xE,
vE
ktl
E

+
vR
ktl
R

≤ xR.

At steady state, Nv = µx, that is,1 −1 −1
0 1 0
0 0 1

vPvE
vR

 = µ

xPxE
xR

 .

In particular, xE = vE/µ, xR = vR/µ, and the capacity constraints can be rewrit-
ten in terms of fluxes,

− µ

kcat
vP + vE ≥ 0,

− µ

ktl
E

vE +

(
1− µ

ktl
R

)
vR ≥ 0.

(4)

The resulting growth polyhedron amounts to

Pg(µ) = {v ∈ R{P,E,R} |Nv ≥ 0, v ≥ 0,

ρP vP = µ,

and (4)}.
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1
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1
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EGV e
2
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2
1

μ μmax

1

2

1

ρi xi
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3

Figure 1: Mass fractions as functions of growth rate for the EGVs e1, e2, e3

of the minimal network. Black/blue/red lines show mass fractions of percur-
sor P/enzyme E/ribosome R.

For a quantitative analysis, we set kcat

ktlR
= 2,

ktlE
ktlR

= 1, introduce µ̂ = µ
ktlR

, and find

µ̂ ≤ µ̂max = 2
3 . The EGVs and the associated mass fractions are given by

e1 =
µ

ρP

 1
µ̂
2
µ̂2

2(1−µ̂)

 , e2 =
µ

ρP

 1
1 − µ̂
µ̂

 , e3 =
µ

ρP

 1
µ̂
2

1 − µ̂
2

 ,

ρ ◦ x(e1) =

1− µ̂
2
− µ̂2

2(1−µ̂)
µ̂
2
µ̂2

2(1−µ̂)

 , ρ ◦ x(e2) =

 0
1 − µ̂
µ̂

 , ρ ◦ x(e3) =

 0
µ̂
2

1 − µ̂
2

 .

For illustration, the associated mass fractions are shown as functions of growth
rate in Figure 1.

The defining difference between the EGVs concerns the (in)activity of the in-
equality constraints xP ≥ 0, xE ≥ vP

kcat , and xR ≥ vE
ktlE

+ vR
ktlR

. For µ < µmax, all

EGVs have one inactive constraint,

e1 : xP > 0, e2 : xE >
vP
kcat

, e3 : xR >
vE
ktl
E

+
vR
ktl
R

.

For µ = µmax, all EGVs are identical, e1 = e2 = e3, and all inequality constraints
are active, xP = 0, xE = vP

kcat , and xR = vE
ktlE

+ vR
ktlR

. The associated mass fractions

are given by ρ ◦ x = (0, 1− µ̂max, µ̂max)
T

= (0, 1
3 ,

2
3 )T .

For all EGVs, all fluxes are nonzero. For µ < µmax, also all concentrations are
nonzero for e1, whereas xP = 0 and xE, xR > 0 for e2 and e3. Obviously, the
capacity constraints do not fully reflect kinetics.

All EGVs are BC (since they involve catalytic reactions) and CC (since the active
catalysts have nonzero concentrations). If µ < µmax, then e1 also has nonzero
precursor concentration, that is, e1 is strict and ultimately AC. As stated in
Example 13, S = supp(e1) = Rxn is the unique (M)AC set of reactions.
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4 Simple kinetic models of self-fabrication

Simple kinetic models of self-fabrication as studied in [5, 18] consider metabolism
as well as enzyme and ribosome synthesis. In such models, one distinguishes the
set of metabolites Met and the set of (catalytic) macromolecules Mac (namely,
enzymes and the ribosome). Correspondingly, one considers the set of metabolic
reactions Rmet (one reaction per enzyme) and the set of synthesis reactions Rsyn
(one reaction per macromolecule). To summarize, the sets of molecules Mol and
reactions Rxn are given by

Mol = Met ∪Mac with Mac = Enz ∪ {rib},
and Rxn = Rmet ∪ Rsyn.

The dynamic growth model (1) for the concentrations x ∈ RMol
≥ takes the form

d

dt

(
xMet

xMac

)
=

(
M −S
0 I

)(
vRmet(x)
vRsyn(x)

)
− µ

(
xMet

xMac

)
(5a)

with the dry weight constraint

ρTMet xMet + ρTMac xMac = 1. (5b)

Thereby, we write M ∈ RMet×Rmet for the stoichiometric matrix of metabolism
(without a “biomass reaction”) and S ∈ RMet×Rsyn for the stoichiometric matrix of
synthesis, specifying the stoichiometric coefficients of the metabolites (precursors,
cofactors, . . . ) in the synthesis reactions (for enzymes and ribosome). Further,
we write vRmet(x) ∈ RRmet for the rates of the metabolic reactions and vRsyn(x) ∈
RRsyn
≥ for the synthesis rates; that is, vRsyn(x) ≥ 0.

Remark 17. Following Remark 4, we assume kerMT = {0}, that is, imM =
RMet in the following. Further, we assume that S has nonnegative/nonpositive
rows, and every column has at least one positive entry.

In simplified notation, the dynamic growth model (5) takes the form:

d

dt

(
x
c

)
=

(
M −S
0 I

)(
v(x, c)
w(x, c)

)
− µ

(
x
c

)
(6a)

with
ρTx x+ ρTc c = 1. (6b)

By abuse of the symbols x and v, we write x = xMet (for the metabolite con-
centrations), v = vRmet (for the metabolic reactions), and ρx = ρMet (for the
molar masses of the metabolites). Analogously, we write c = xMac (for the
enzyme/ribosome concentrations), w = vRsyn (for the synthesis reactions), and
ρc = ρMac (for the molar masses of enzymes/ribosome).
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Elementary vectors

At steady state,

Mv − Sw = µx ≥ 0, (7a)

w = µ c ≥ 0. (7b)

Further, vĪ ≥ 0, where Ī ⊆ Rmet denotes the set of irreversible metabolic reac-
tions. (Implicitly, all synthesis reactions Rsyn are assumed to be irreversible.)

In the following, we identify Rmet with Enz (the metabolic reactions with the cat-
alyzing enzymes) and Rsyn with Mac (the synthesis reactions with the synthesized
macromolecules).

We instantiate Definition 5 and Theorem 9.

Definition 18. Growth modes (GMs) for the dynamic growth model (6) are
elements of the growth cone

C̄g =
{

(v, w) ∈ REnz × RMac |Mv − Sw ≥ 0, vĪ ≥ 0, w ≥ 0
}
.

A GM (v, w) ∈ C̄g has an associated growth rate µ(v, w) = ρTx (Mv− Sw) + ρTc w
and, if µ(v, w) > 0, associated concentration vectors x(v, w) = (Mv−Sw)/µ(v, w)
and c(v, w) = w/µ(v, w).

Elementary growth modes (EGMs) are the conformally non-decomposable vectors
of C̄g.

Theorem 19. Every nonzero GM (v, w) ∈ C̄g is a conformal sum of EGMs.

The properties of the matrix S imply the following result.

Proposition 20. Let (v, w) ∈ C̄g be a GM. If Mv = 0, then w = 0.

Below, we use Theorem 19 and Proposition 20 to derive an upper bound for
growth rate that only depends on enzyme kinetics.

Enzyme kinetics

Often, one considers enzyme kinetics of the form

v(x, c) = κ(x) ◦ cEnz with − kcat,− ≤ κ(x) ≤ kcat,+. (8)

The rate of the metabolic reaction catalyzed by enzyme i ∈ Enz is given by
vi(x, ci) = κi(x) ci, that is, by a particular kinetics times the enzyme concentra-
tion.

Enzyme kinetics alone (without specifying ribosome kinetics) implies an upper
bound for growth rate (which depends on the set of active enzymes).

Theorem 21. Assume steady state (7) and let enzyme kinetics v(x, c) be given
by (8). Then, for every x, there is an upper bound for µ, depending on supp(v).
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Proof. By assumption, Mv−Sw = µx, w = µ c, vĪ ≥ 0, and v(x, c) = κ(x)◦cEnz.
Obviously, (v, w) is a GM. By Theorem 19, (v, w) is a conformal sum of EGMs.
That is, there exists a set E of representative EGMs e = (ve, we) conforming to
(v, w) (with one representative EGM on each ray of EGMs) such that

(v, w) =
∑
e∈E

λe (ve, we) with λe ≥ 0.

Let s = supp(v). If i ∈ s, then vi/κi = ci = wi/µ, that is, µ = wi/(vi/κi), and
further

µ =

∑
i∈s wi∑

i∈s vi/κi
,

since r = a/b = c/d implies r = (a+ c)/(b+ d). Using the conformal sum,

µ =

∑
i∈s
∑
e∈E λe w

e
i∑

i∈s
∑
e∈E λe v

e
i /κi

=

∑
e∈E λe

∑
i∈s w

e
i∑

e∈E λe
∑
i∈s v

e
i /κi

=

∑
e∈E λe be∑
e∈E λe ae

with ae =
∑
i∈s v

e
i /κi ≥ 0 and be =

∑
i∈s w

e
i ≥ 0.

By Proposition 20, ve = 0 implies we = 0. Equivalently, ae = 0 implies be = 0,
that is, be > 0 implies ae > 0. Hence, µ as a ratio of linear functions (in the
variables λe) is bounded. In fact,

µ ≤ max
e∈E : ae>0

be
ae
.

Ribosome kinetics (with control parameters)

Often, one considers ribosome kinetics of the form

w(x, c) = τ(x) ◦ α · crib with τ(x) ≤ ktl, (9a)

involving the control parameters α ∈ RMac
≥ with∑

i∈Mac

αi ≤ ᾱ ≤ 1. (9b)

The rate of the synthesis reaction for macromolecule i ∈ Mac = Enz ∪ {rib} is
given by wi(x, c) = τi(x)αi cr, that is by a particular kinetics times a fraction of
the ribosome concentration. Most importantly, the control parameters (ribosome
fractions) α are used to study growth rate maximization in Section 5.

Steady state (7), enzyme kinetics (8), and ribosome kinetics (9a) imply basic
results regarding the case µ = 0.
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Proposition 22. Let x ∈ RMet
≥ be nonzero. The following statements hold:

• µ = 0 =⇒ w = 0 =⇒ Mv = 0.

• crib = 0 =⇒ w = 0 =⇒ µ = 0 ∨ cEnz = 0.
cEnz = 0 =⇒ v = 0 ∧ wEnz = 0 =⇒ wrib = 0 =⇒ µ = 0.

Hence, crib = 0 =⇒ µ = 0.

Conversely, µ = 0 =⇒ crib = 0 does not hold if τ(x) ◦α = 0 (a degenerate case).
In the following, we often assume µ > 0 (and hence crib, wrib, τrib, αrib > 0).

4.1 Related constraint-based models

In the rest of this section, we specify a constraint-based model corresponding to
the simple kinetic model of self-fabrication.

First, enzyme kinetics (8) implies the capacity constraints

−kcat,− ◦ cEnz ≤ v ≤ kcat,+ ◦ cEnz,

which can be written as

cEnz + diag(kcat,−)−1 v ≥ 0,

cEnz − diag(kcat,+)−1 v ≥ 0.

Second, ribosome kinetics (9a) and the capacity constraint (9b) imply∑
i∈Mac

wi
ktl
i

≤ crib,

that is,
crib − ((ktl)−1)Tw ≥ 0.

Altogether,0 I 0
0 I 0
0 0 1

 x
cEnz
crib

+

 diag(kcat,−)−1 0
−diag(kcat,+)−1 0

0 −((ktl)−1)T

(v
w

)
≥ 0, (10)

which is of the general form A
(
x
c

)
+ B

(
v
w

)
≥ b. Here, the metabolite concentra-

tions x do not contribute to the constraints, and the right-hand side b is zero.

In general, constraint-based growth models (3) involve steady state (with ir-
reversibility), dry weight, and additional linear constraints. Here, the model
involves steady state (7) (with irreversibility vĪ ≥ 0), dry weight (6b), and the
additional linear constraints (10).

After eliminating enzyme/ribosome concentrations c via steady state (7b), that
is, c = w/µ, the additional constraints only involve the reaction rates (fluxes) v
and w,

wEnz + µdiag(kcat,−)−1 v ≥ 0,

wEnz − µdiag(kcat,+)−1 v ≥ 0,

wrib − µ ((ktl)−1)Tw ≥ 0.

(11)
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By Definition 14, the growth polyhedron for the constraint-based model is given
by

P̄g(µ) =
{

(v, w) ∈ REnz × RMac |Mv − Sw ≥ 0, vĪ ≥ 0, w ≥ 0,

ρTxMv = µ,

and (11) } ,

and GVs and EGVs are defined accordingly.

5 Growth rate maximization

We consider the simple kinetic model of self-fabrication and study the problem of
growth rate maximization. In fact, we maximize growth rate at steady state (7)
and for given enzyme kinetics (8), ribosome kinetics (9a) with ribosome capac-
ity (9b), and dry weight (6b).

Thereby, we further simplify notation and introduce the abbreviations E = Enz
and r = rib and hence Mac = E ∪ {r}.

Problem 23.

max
x≥0,c≥0,
v;w,α≥0,
µ>0

µ

s.t. Mv − Sw = µx, (mss)

w = µ c, (ess/rss)

v = κ(x) ◦ cE, (ek)

w = τ(x) ◦ α · cr, (rk)

ρTx x+ ρTc c = 1, (dw)∑
i∈E∪{r}

αi ≤ ᾱ. (rc)

Legend. mss/ess/rss = metabolite/enzyme/ribosome steady state, ek/rk = en-
zyme/ribosome kinetics, dw = dry weight, rc = ribosome capacity

Remark 24. We write x ≥ 0 in the optimization problem. In fact, we assume
x ∈ D, where D is a compact (bounded and closed) set. As a consequence, the
maximum is attained.

In the following, we eliminate the enzyme/ribosome concentrations c and the
fluxes v, w as independent optimization variables. That is, we only keep the con-
trol parameters (ribosome fractions) α as well as the metabolite concentrations x
and growth rate µ.

Enzyme/ribosome steady state (7b) and ribosome kinetics (9a) imply

µ c = w = τ ◦ α · cr,
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that is,

µ cE = τE ◦ αE · cr,
µ = τr αr,

which yields cE in terms of αE (and x, µ).

Now, dry weight (6b) implies

ρTx x+ ρTc (τ ◦ α) cr/µ = 1,

that is,
(ρc ◦ τ)Tα · cr = µ

(
1− ρTx x

)
,

which yields cr in terms of α (and x, µ).

As a consequence, all enzyme concentrations, all fluxes, and also growth rate are
multiples of the ribosome concentration cr,

v = κ ◦ cE = κ ◦ τE ◦ αE · cr/µ,
w = τ ◦ α · cr,

µ =
(ρc ◦ τ)Tα

1− ρTx x
cr,

and we divide metabolite steady state by cr > 0. Altogether, we formulate growth
rate maximization in terms of α (and x, µ).

Problem 25 (in terms of α).

max
x≥0,µ>0,
α≥0

µ

s.t. Mv̂ − Sŵ = µ̂ x, (mss)

µ = τr(x)αr, (rss, rk)∑
i∈E∪{r}

αi ≤ ᾱ, (rc)

where v̂ = κ(x) ◦ τE(x) ◦ αE/µ, (ess, ek, rk)

ŵ = τ(x) ◦ α, (rk)

µ̂ =
(ρc ◦ τ(x))Tα

1− ρTx x
. (ess/rss, rk, dw)

Legend. Labels denote the dependence of the equations/inequalities on the
original constraints in Problem 23.

Note. The last three equations are not constraints, but definitions of v̂, ŵ, µ̂ in
terms of α (and x, µ).

Elementary vectors

We follow the definition in [5], but write it in a more transparent way which
allows to recognize the origin of the constraints and the resulting affine subspace
at the same time.

19

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432769doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432769
http://creativecommons.org/licenses/by-nc-nd/4.0/


Definition 26. Let µ > 0. Growth states (GSs) for Problem 25 are elements of
the polyhedron

P̄ (x, µ) = {α ≥ 0 |Mv̂ − Sŵ = µ̂ x and τr(x)αr = µ, where

v̂ = κ(x) ◦ τE(x) ◦ αE/µ,

ŵ = τ(x) ◦ α,

µ̂ =
(ρc ◦ τ(x))Tα

1− ρTx x
} .

Elementary growth states (EGSs) are the vertices of P̄ .

Note. P̄ (x, µ) is the intersection of an affine subspace with the nonnegative
orthant and hence unbounded, in general; that is, P̄ is a polyhedron; see also
Example 35. The elementary vectors of a polyhedron are its convex-conformally
non-decomposable (ccND) vectors and the conformally non-decomposable vectors
of its recession cone; see Supplement A.3. We define EGSs as ccND vectors which
agree with the vertices due to nonnegativity.

By the definition of EGSs (as vertices of a polyhedron), we have the following
(necessarily conformal) sum theorem.

Proposition 27. For given polyhedron P̄ (x, µ), every convex combination of
EGSs is a GS, but not vice versa, in general.

By Theorem 21, for every x, there is an upper bound for µ, depending on supp(v).
(And ribosome capacity further limits growth rate.) Clearly, P̄ (x, µ) is empty for
µ above the global upper bound. Moreover, different EGSs have different upper
bounds, in general, and the number of vertices of P̄ (x, µ) depends on µ; see also
Example 36.

The following result is stated (with an incorrect proof) in [5]. We give a sim-
ple proof which uses a polyhedral geometry argument and does not require the
implicit function theorem (IFT).

Theorem 28. The maximum of Problem 25 is attained at an EGS.

Proof. Let Hrc = {α |
∑
i∈E∪{r} αi ≤ ᾱ} be the halfspace given by ribosome

capacity. For given x and µ, in particular, for their optimal values, the set of
feasible α is given by the polytope P = P̄ (x, µ) ∩Hrc. If P 6= ∅ (as for optimal
x and µ), then at least one vertex of P is a vertex of P̄ , that is, an EGS.

Note. Let x and µ be optimal. By the proof above, the maximum is attained
at every EGS α ∈ P̄ (x, µ) that fulfills

∑
i∈E∪{r} αi ≤ ᾱ.

Next, we show that EGSs (vertices of P̄ (x, µ)) are support-minimal, a crucial
result that is missing in [5].

Proposition 29. EGSs are the support-minimal vectors of the polyhedron P̄ (x, µ).

Proof. The polyhedron P̄ (x, µ) is given by the linear equations Mv̂ − Sŵ = µ̂ x
(homogeneous in α), the inhomogeneous equation τr(x)αr = µ, and nonnegativ-
ity α ≥ 0, that is, it is the intersection of a genuine affine subspace with the
nonnegative orthant. By Proposition 2, the vertices of P̄ are its support-minimal
vectors.
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Using Proposition 29, we show that EGSs with the same support also exist in a
neighbourhood (of x and µ).

Theorem 30. Let α ∈ P̄ (x, µ) be an EGS with s = supp(x). Then, there exists
an open neighborhood U ⊂ Rs> × R> of (xs, µ) such that, for all (ξ, µ′) ∈ U , α
can be continuously extended to an EGS α′ ∈ P̄ (x′, µ′) with supp(x′) = s, x′s = ξ,
and supp(α′) = supp(α).

Proof. Altogether, the polyhedron P̄ (x, µ) is given by inhomogeneous linear equa-
tions

A(x, µ)α = b(x, µ) (12)

and α ≥ 0, that is, it is the intersection of a genuine affine subspace with the non-
negative orthant. By Proposition 29, the EGS α ∈ P̄ (x, µ) is support-minimal.
By Proposition 1, α is the unique solution of (12) with support S = supp(α).
Hence, there is an invertible square submatrix AR,S(x, µ) of A (with |R| = |S|)
and a subvector bR(x, µ) of b such that the subvector αS > 0 of α fulfills

F (x, µ, αS) = AR,S(x, µ)αS − bR(x, µ) = 0.

Clearly, ∂F
∂αS

= AR,S(x, µ) is invertible.

Now, consider xs, the nonzero part of x. By the IFT, there exists an open
neighborhood U ⊂ Rs> × R> of (xs, µ) such that, for all (ξ, µ′) ∈ U , αS can be
continuously extended to α′S > 0. With x′ ∈ RMet

≥ given by supp(x′) = s and

x′s = ξ, the EGS α can be continuously extended to the EGS α′ ∈ P̄ (x′, µ′) with
supp(α′) = S.

A weaker (and incorrect) version of Theorem 30 is stated in [5]. In fact, it has
an unnecessary assumption on the support of α, and it lacks an assumption on
the support of x.

Finally, using Theorem 30, we can further characterize optimal solutions (of
growth rate maximization).

Corollary 31. At every optimal EGS of Problem 25, the ribosome capacity con-
straint is active.

Proof. Let α ∈ P̄ (x, µ) be an EGS for maximum µ (and corresponding optimal x).
By Theorem 30, there is µ′ > µ such that α can be continuously extended to an
EGS α′ ∈ P̄ (x, µ′) with supp(α′) = supp(α). Now, assume

∑
i∈E∪{r} αi < ᾱ. By

continuity (of α as a function of µ), also
∑
i∈E∪{r} α

′
i < ᾱ. Hence, (x, µ′, α′) is a

feasible solution of Problem 25 which contradicts the maximality of µ.

In the main text of [5], it is (incorrectly) claimed that, at maximum growth rate,
the ribosome capacity constraint need not be active (but some ribosome fraction
may become zero).

5.1 EGSs and minimal autocatalytic sets

By Definitions 26 and 18, every GS has a corresponding GM.
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Proposition 32. Let α ∈ P̄ (x, µ) be a GS, and let v = κ ◦ τE ◦ αE · cr/µ and

w = τ ◦α · cr with cr = µ
1−ρTx x

(ρc◦τ)Tα
be the corresponding (metabolic and synthesis)

fluxes. Then, (v, w) is a GM with associated growth rate µ(v, w) = µ.

Moreover, by Definition 12, the GM corresponding to a GS is autocatalytic.
Thereby, we make the (biochemically meaningful) assumption on (enzyme and
ribosome) kinetics that, if a species s is consumed in a reaction r (short: s→ 0),
then vr > 0 implies xs > 0.

Proposition 33. Let α ∈ P̄ (x, µ) be a GS, and let (v, w) be the corresponding
GM. Then, (v, w) is AC, and hence supp(v, w) is an AC subset of reactions.

Proof. First, we show that (v, w) is strict. Assume that i ∈ supp(v) ⊆ E and
Msi 6= 0 for some species s ∈ Met. The terms Msi′vi′ and −Ssj′wj′ in the
sum (Mv − Sw)s ≥ 0 can be positive, negative, or zero, and there is a positive
term. If there is a negative term, then there is a reaction that consumes s and
hence xs > 0. In any case, (Mv − Sw)s = µxs > 0. Alternatively, assume
that j ∈ supp(w) ⊆ E ∪ {r}. Regarding species s ∈ Met, the proof is analogous.
Regarding species s ∈ E ∪ {r}, obviously Isj 6= 0 if and only if s = j and hence
(Iw)s = wj > 0.

Since all reactions are catalytic, (v, w) is BC. It remains to show that (v, w) is
CC. Assume that i ∈ supp(v) ⊆ E. Then, τi, αi, cr > 0 and hence (Iw)i = wi > 0.
Finally, τr, αr > 0 (by the definition of P̄ ) and hence (Iw)r = wr > 0.

We have shown that GSs correspond to autocatalytic (AC) sets of reactions. One
may conjecture that EGSs correspond to minimal autocatalytic (MAC) sets of re-
actions. However, the formalization of this statement is beyond the scope of this
work. Recall that the definition of EGSs depends on enzyme and ribosome kinet-
ics (with control parameters), that is, ultimately on metabolite concentrations,
whereas the definition of MAC sets of reactions only depends on stoichiometry.

5.2 EGSs and EGMs

In three examples, we determine the EGSs and write them as conformal sums of
EGMs.

First, we consider the minimal network studied in Examples 13 and 16, and then
we extend it in two different ways: we assume that “metabolism” consists of
(i) two anti-parallel pathways or (ii) two parallel (alternative) pathways. Thereby,
we demonstrate two properties of the polyhedron of growth states (GSs): (i) it
can be unbounded, and (ii) the number of its vertices (EGSs) can change with
growth rate.

As in Examples 13 and 16, we use E to denote an individual enzyme (whereas
E = Enz is used as an abbreviation for the set of all enzymes in all other parts of
Section 5) and R to denote the ribosome (instead of r = rib).
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Example 34. Consider the minimal network studied in Examples 13 and 16:

0 P

E

R

R

R
E

The corresponding matrices of metabolism and synthesis amount to

(
M −S

)
=

( E→ →E →R

P 1 | −1 −1
)
.

Further, ρx = ρP =: ρ and ρc = (ρE, ρR)T = ρ (1, 1)T , by mass conservation.
Analogously, we assume τ(x) = (τE(x), τR(x))T = τ̄(x) (1, 1)T .

(Normalized) EGMs are given by1
0
0

 , and

1
1
0

 ,

1
0
1

 ,

multiplied by a factor u = 1 mol/g/s. All EGMs have associated growth rate µ =
u ρ. By Definition 18, the first EGM has associated concentrations x = xP = 1
and c = (cE, cR)T = 0, and the other two have x = 0 and c 6= 0.

Let α ∈ P̄ (x, µ) be a GS, and let

v̂ = v/cR = κ ◦ τE ◦ αE/µ = κ τ̄ αE/µ ∈ RP,

ŵ = w/cR = τ ◦ α = τ̄ α ∈ R{E,R},

µ̂ = µ/cR =
(ρc ◦ τ(x))Tα

1− ρTx x
=
ρ τ̄ (αE + αR)

1− ρ x
> 0.

By Definition 26, Mv̂ − Sŵ = µ̂ x and τR αR = µ. Explicitly,

καE

µ
− αE − αR =

ρ x (αE + αR)

1− ρ x
and τ̄ αR = µ,

which has the unique solution

αE =
µ2

τ̄ (κ (1− ρ x)− µ)
and αR =

µ

τ̄
,

thereby assuming κ(x), τ̄(x) > 0. That is, in the minimal network, there is a
unique GS and hence a unique EGS. Moreover,

µ < µub(x) = κ(x) (1− ρ x).

In fact, the ribosome capacity constraint αE + αR ≤ 1 (which is not part of
Definition 26) further limits growth rate,

µ ≤ µmax(x) =
µub(x) τ̄(x)

µub(x) + τ̄(x)
< µub(x).
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1

2
1
μ μmax

1

2

1

ρ {xP,cE,cR}
EGS

Figure 2: Mass fractions as functions of growth rate for the unique EGS of the
minimal network (for fixed precursor concentration). Black/blue/red lines show
mass fractions of percursor P/enzyme E/ribosome R.

By Proposition 32, the dimensionless vector 1
τ̄ (v̂, ŵ) is the corresponding (scaled)

GM, and further, by Theorem 19, it is a conformal sum of (scaled) EGMs,

1

τ̄

(
v̂
ŵ

)
=

καE

µ

αE

αR

 = ρ x (αE+αR)
1−ρ x

1
0
0

+ αE

1
1
0

+ αR

1
0
1

 .

The corresponding mass fractions are given by

ρ

 x
cE
cR

 =

 ρ x
(1− ρ x) αE

αE+αR

(1− ρ x) αR

αE+αR

 .

For a quantitative analysis, we fix x = xP; in particular, we set κ(x)
τ̄(x) = 2, ρ x = 1

10

and find µub = 9
5 τ̄ and µmax = 9

14 τ̄ . The resulting mass fractions are shown as
functions of growth rate in Figure 2. Interestingly, they are linear. For µ = µmax,
ρ (x, cE, cR)T = ( 1

10 ,
9
28 ,

81
140 )T . Compare with Figure 1 and recall that EGVs do

not depend on the precursor concentration xP, but have an associated xP.

By Proposition 33, the GM (v, w) corresponding to the unique (E)GS is AC.
As stated in Example 13, S = supp(v, w) = Rxn is the unique (M)AC set of
reactions.

Example 35. “Metabolism” (the production and consumption of the precur-
sor P) is catalyzed by the “enzymes” E1 and E2, respectively, and the synthesis
of E1, E2, and R is catalyzed by the ribosome R:

0 P

E1

E2

R

R

R

R

E1

E2

The corresponding matrices of metabolism and synthesis amount to

(
M −S

)
=

( E1→ E2→ →E1 →E2 →R

P 1 −1 | −1 −1 −1
)
.
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Further, ρx = ρP =: ρ and ρc = (ρE1 , ρE2 , ρR)T = ρ (1, 1, 1)T , by mass conserva-
tion. Analogously, we assume τ(x) = (τE1

(x), τE2
(x), τR(x))T = τ̄(x) (1, 1, 1)T .

(Normalized) EGMs are given by
1
0
0
0
0

 ,


1
0
1
0
0

 ,


1
0
0
1
0

 ,


1
0
0
0
1

 , and


1
1
0
0
0

 ,

multiplied by a factor u = 1 mol/g/s. All EGMs except the last one have
associated growth rate µ = u ρ, and the last one has µ = 0. By Definition 18, the
first EGM has associated concentrations x = 1 and c = 0, and the second group
of EGMs has x = 0 and c 6= 0.

There is only one EGS α ∈ P̄ (x, µ), and it has αE2 = 0. This reduces the
problem to the minimal network (with E = E1), and the unique solution is given

by αE1 = µ2

τ̄ (κE1
(1−ρ x)−µ) and αR = µ

τ̄ .

By Proposition 33, the GM (v, w) corresponding to the unique EGS is AC. In

fact, S = supp(v, w) = {E1→,→E1,→R} is the unique MAC set of reactions.

In general, a GS α ∈ P̄ (x, µ) is given by

κE1
αE1

µ − κE2
αE2

µ − αE1
− αE2

− αR =
ρ x (αE1

+αE2
+αR)

1−ρ x and τ̄ αR = µ,

and the corresponding (scaled) GM can be specified as a conformal sum of (scaled)
EGMs,

1

τ̄

(
v̂
ŵ

)
=


κE1αE1

µ
κE2αE2

µ

αE1
αE2
αR

 =
ρ x (αE1

+αE2
+αR)

1−ρ x


1
0
0
0
0

+ αE1


1
0
1
0
0

+ αE2


1
0
0
1
0

+ αR


1
0
0
0
1

+ β


1
1
0
0
0


with αR = µ

τ̄ and β ≥ 0. Clearly, for the unique EGS, αE2
= β = 0, and for

unbounded GSs, β =
κE2

αE2

µ →∞.

Example 36 (Alternative pathways). “Metabolism” (the production of the pre-
cursor P) is catalyzed alternatively by the “enzymes” E1 and E2, and the synthesis
of E1, E2, and R is catalyzed by the ribosome R:

0 P

E1

E2

R

R

R

R

E1

E2

The corresponding matrices of metabolism and synthesis amount to

(
M −S

)
=

( E1→ E2→ →E1 →E2 →R

P 1 1 | −1 −1 −1
)
.
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Further, ρx = ρP =: ρ and ρc = (ρE1 , ρE2 , ρR)T = ρ (1, 1, 1)T , by mass conserva-
tion. Analogously, we assume τ(x) = (τE1

(x), τE2
(x), τR(x))T = τ̄(x) (1, 1, 1)T .

(Normalized) EGMs are given by
1
0
0
0
0

 ,


0
1
0
0
0

 ,


1
0
1
0
0

 ,


1
0
0
1
0

 ,


1
0
0
0
1

 , and


0
1
1
0
0

 ,


0
1
0
1
0

 ,


0
1
0
0
1

 ,

multiplied by a factor u = 1 mol/g/s. All EGMs have associated growth rate µ =
u ρ. By Definition 18, the first group has associated concentrations x = xP = 1
and c = (cE1

, cE2
, cR)T = 0 and the other two groups have x = 0 and c 6= 0.

Let α ∈ P̄ (x, µ) be the EGS with αE2
= 0. This reduces the problem to the

minimal network (with E = E1), and the unique solution is given by αE1
=

µ2

τ̄ (κE1
(1−ρ x)−µ) and αR = µ

τ̄ . Moreover, µ < µub,1(x) = κE1
(x) (1− ρ x).

Analogously, µ < µub,2(x) = κE2(x) (1−ρ x) for the EGS α with αE1 = 0. Hence,
depending on µ (and x), there are either two, one, or zero EGSs.

By Proposition 33, the GMs (v, w) corresponding to the EGS α with αE2 = 0

is AC. In fact, S = supp(v, w) = {E1→,→ E1,→ R} is a MAC set of reactions.

Analogously, S = {E2→,→E2,→R} is a MAC set of reactions.

Proportional synthesis

The final results of this work concern the dependence of EGSs on growth rate
and the relation between EGSs and EFMs.

For simplicity, we assume that the reaction vectors of the synthesis reactions
(for enzymes and ribosome) are proportional. Let si ∈ RMet be the column of
S ∈ RMet×(E∪{r}) corresponding to i ∈ E ∪ {r} (and note that ρc,i = ρTx s

i). Now,
let i∗ ∈ E be a representative enzyme with corresponding column s := si

∗
and

molar mass ρ := ρc,i∗ . Then,

si =
ρc,i
ρc,i∗

si
∗

=
ρc,i
ρ
s.

In matrix notation,

S =
1

ρ
s ρTc ,

involving a dyadic product. At steady state (7),

Sw = µSc =
µ

ρ
(ρTc c) s =

µ

ρ

(
1− ρTx x

)
s (13a)

and further
Mv = Sw + µx =

µ

ρ

((
1− ρTx x

)
s+ ρ x

)
=
µ

ρ
n (13b)

with the dimensionless vector

n =
(
1− ρTx x

)
s+ ρ x. (13c)

Note. The vector n summarizes the effects of both synthesis reactions and
dilution by growth.
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5.3 EGSs and growth rate

Under the assumption of proportional synthesis, growth states (GSs) are elements
of the (simplified) polyhedron

P̄ (x, µ) = {α ≥ 0 |Mv̂ =
µ̂

ρ
n and τr(x)αr = µ, where

v̂ = κ(x) ◦ τE(x) ◦ αE/µ,

µ̂ =
(ρc ◦ τ(x))Tα

1− ρTx x
} ,

and elementary growth states (EGSs) are the vertices of P̄ . For fixed x, the
dependence of EGSs on µ can be stated explicitly.

Theorem 37. Assume proportional synthesis, and let α∗ ∈ P̄ (x, µ∗) be an EGS.
Then, for every EGS α ∈ P̄ (x, µ) with supp(α) = supp(α∗), it holds that

αE =
(1− ε∗)

(
µ
µ∗

)2

1− ε∗ µµ∗
α∗E and αr =

µ

µ∗
α∗r

with

0 < ε∗(x) =
(ρc,E ◦ τE(x))Tα∗E
(ρc ◦ τ(x))Tα∗

< 1.

In particular, µ < µub(x) = µ∗

ε∗(x) . The aggregated mass fractions of metabolites,

enzymes, and ribosome are given by ρTx x
ρTc,E cE
ρc,r cr

 =

 ρTx x
(1− ρTx x) ε∗ µµ∗

(1− ρTx x) (1− ε∗ µµ∗ )

 .

Proof. The definition of P̄ (x, µ) implies τr(x)α∗r = µ∗, τr(x)αr = µ, and hence
αr = γ α∗r with γ = µ

µ∗ . Analogously, assume αE = β α∗E with β > 0. Then,

v̂ = β
γ v̂
∗,

(ρc ◦ τ(x))Tα = (ρc,E ◦ τE(x))TαE + ρc,r τr(x)αr

= β (ρc,E ◦ τE(x))Tα∗E + γ ρc,r τr(x)α∗r

= (β ε∗ + γ (1− ε∗)) (ρc ◦ τ(x))Tα∗,

and hence also µ̂ = (β ε∗ + γ (1− ε∗)) µ̂∗. Now, consider Mv̂∗ = µ̂∗

ρ n and Mv̂ =
µ̂
ρ n. In the transition from µ∗ to µ, the left- and right-hand sides scale with β

γ

and β ε∗ + γ (1 − ε∗), respectively. Hence, the assumption above is consistent if
β
γ = β ε∗ + γ (1− ε∗), that is, β = (1−ε∗) γ2

1−ε∗γ .

To determine the mass fractions, observe that

ρc,E ◦ cE = ρc,E ◦ τE(x) ◦ αE ·
1

µ̂

scales with β
β ε∗+γ (1−ε∗) = γ. Clearly, ρTc,E c

∗
E + ρc,r c

∗
r = 1 − ρTx x, and finally,

ρTc,E c
∗
E

ρTc,E c
∗
E+ρc,r c∗r

=
(ρc,E◦τE(x))Tα∗E
(ρc◦τ(x))Tα∗

= ε∗.
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Note. All control parameters (ribosome fractions) scale with the same nonlinear
factor (as a function of growth rate), whereas ribosome synthesis scales linearly.
Interestingly, enzyme mass fractions scale linearly (and hence also ribosome mass
fraction). See also Figure 2 for the EGS of the minimal network.

5.4 EGSs and EFMs

Under the assumption of proportional synthesis, we introduce a “biomass re-
action” bm with reaction vector nbm = −n and reaction rate vbm = µ

ρ (unit:

mol/g/s) corresponding to growth rate µ (unit: 1/s).

Note. For the definition of reaction rate, a scaling factor (unit: g/mol) is re-
quired; for simplicity, we choose the molar mass ρ of the representative protein.

At steady state, Mv = µ
ρ n, cf. Equation (13b), that is,

(
M −n

)( v
vbm

)
= 0.

Indeed,
(
M −n

)
∈ RMet×(E∪{bm}) is the stoichiometric matrix of traditional

growth models, that is, the stoichiometric matrix of metabolism extended by the
biomass reaction vector.

Flux modes (FMs) are elements of the corresponding flux cone

C̄(x) = {(v, vbm) ∈ RE∪{bm} |Mv − vbm n = 0, vĪ ≥ 0},

and elementary flux modes (EFMs) are the support-minimal vectors of C̄. The
flux cone is an s-cone, and by Theorem 43 in Supplement A.1, every FM is a
conformal sum of EFMs.

We characterize when the FM corresponding to an EGS is an EFM itself.

Theorem 38. Assume proportional synthesis, and let α ∈ P̄ (x, µ) be an EGS
with s = supp(αE). Further, let v ∈ RE be the corresponding metabolic fluxes and
vbm = µ/ρ. Then, (v, vbm) ∈ C̄(x) is an EFM if and only if M∗,s has rank |s|.

Proof. By assumption, M∗,svs−vbm n = 0. By Proposition 41 in Supplement A.1,
(v, vbm) is an EFM if and only if ker

(
M∗,s −n

)
is one-dimensional. Equivalently,

kerM∗,s = {0}, that is, M∗,s has rank |s|.

Alternatively, we introduce a biomass reaction that considers only the synthesis
reactions, but not dilution by growth. Indeed, Sw = µ

ρ n
′ with n′ =

(
1− ρTx x

)
s,

cf. Equation (13a), and we define vbm = µ
ρ and nbm = −n′.

At steady state, Mv − Sw = µx, cf. Equation (7), that is,

(
M −n′

)( v
vbm

)
= µx,

and the corresponding flux cone is given by

C̄ ′(x) = {(v, vbm) ∈ RE∪{bm} |Mv − vbm n′ = 0, vĪ ≥ 0}.
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In traditional growth models, this definition of the flux cone arises from the
assumption Mv ≈ Sw, that is, µx � |Mv|, |Sw| (with absolute values taken
component-wise). This assumption has been made in FBA models, but is not
always justified (in particular, if (Sw)i = 0 and hence (Mv)i = µxi).

Again, we characterize when the FM corresponding to an EGS is an EFM itself.

Theorem 39. Assume proportional synthesis, and let α ∈ P̄ (x, µ) be an EGS
with s = supp(αE). Further, let v ∈ RE be the corresponding metabolic fluxes and
vbm = µ/ρ. Then, the following statements are equivalent:

(i) v = v1 + v2, where (v1, vbm) ∈ C̄ ′(x) is an EFM and Mv2 = µx.

(ii) M∗,s has rank |s|.

Proof. See Theorem 38.

Remark 40. In Theorem 39, both fluxes are proportional to growth rate, Mv1 =
µ
ρ n
′ and Mv2 = µx. If the contribution of metabolites to dry weight is negligible,

then the vector v2 can be seen as a perturbation of the EFM v1. Indeed, ρTx x� 1
implies µ ≈ ρTxMv1 � ρTxMv2.

6 Terminology

Elementary flux modes (EFMs) are defined as support-minimal vectors of the flux
cone, for general (growth or non-growth) models, not just for traditional growth
models (involving an approximative biomass reaction). In particular, EFMs only
depend on stoichiometry. Similarly, elementary flux vectors (EFVs) are defined
for general models with additional linear constraints.

In this work, we consider general growth models, and we define elementary growth
modes (EGMs) as conformally non-decomposable vectors of the growth cone.
Importantly, EGMs only depend on stoichiometry. Similarly, we introduce ele-
mentary growth vectors (EGVs) for general growth models with additional linear
constraints (such as FBA and ME models).

For simple kinetic models of self-fabrication (with control parameters), elemen-
tary growth states (EGSs) were introduced as vertices of a polyhedron (in the
space of ribosome fractions) in [5]. In this work, we have shown that EGSs are
support-minimal. Hence, it makes sense to give a name to the supports of EGSs.
Unfortunately, these sets were called “elementary growth modes (EGMs)” in [5],
without defining “growth modes (GMs)”. For several reasons, this terminology
is not appropriate: Unlike EFMs, (i) “EGMs” are not defined for general growth
models, but just for simple kinetic models of self-fabrication, (ii) “EGMs” do not
depend on stoichiometry only, but also on growth rate and concentrations, in par-
ticular, on enzyme and ribosome kinetics, and (iii) “EGMs” are not elementary
(vectors) in the sense of polyhedral geometry, but supports (sets). In this work,
we have shown that supports of (E)GSs correspond to (minimal) autocatalytic
sets of reactions, defined for coarse-grained (but otherwise general) growth mod-
els. In a follow-up paper, we elaborate on the relation between detailed growth
models and autocatalysis.
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Supplementary material

A Elementary vectors

Below, we summarize basic definitions and results for s-cones, general polyhedral
cones, and polyhedra.

A.1 S-cones

Given a linear subspace S ⊆ Rn and an index set I ⊆ [n], an s-cone (special
cone, subspace cone) is given by C(S, I) = {x ∈ Rn | x ∈ S, xI ≥ 0}. Note that
a linear subspace is an s-cone, S = C(S, ∅).
Before we state the fundamental result for s-cones, we give an alternative defini-
tion of SM vectors, in order to demonstrate the underlying proof techniques.

Proposition 41. Let C(S, I) be an s-cone. A nonzero vector x ∈ C(S, I) with
s = supp(x) is SM if and only if the linear subspace Ss = {x ∈ S | supp(x) ⊆ s}
has dimension one.

Proof. Obviously, x ∈ Ss. (⇐) If dimSs = 1, then every element of Ss is a
scalar multiple of x, and hence x is SM. (⇒) If x is SM, assume dimSs > 1.
Then, there exists x′ ∈ Ss (not necessarily x′ ∈ C(S, I)) which is not a scalar
multiple of x. Consider x∗ = x − λx′ with λ ∈ R. Note that x∗ 6= 0. Indeed,
choose λ such that sign(x∗) ≤ sign(x) (no sign change of x∗ relative to x) and
x∗i = xi − λx′i = 0 for some i ∈ Ss. Then, x∗I ≥ 0 and supp(x∗) ⊂ supp(x). To
summarize, 0 6= x∗ ∈ C(S, I), and x is not SM, a contradiction.

Corollary 42. Let C(S, I) be an s-cone. If two SM vectors have the same
support, then they are scalar multiples.

A vector x ∈ C(S, I) is elementary if it is SM. (For linear subspaces, the definition
of elementary vectors (EVs) as SM vectors was given in [23].)

The following result is fundamental. See [19, Theorem 3] based on [23, Theo-
rem 1].

Theorem 43. Let C(S, I) be an s-cone. Every nonzero vector x ∈ C(S, I) is a
conformal sum of EVs. That is, there exists a finite set E of EVs such that

x =
∑
e∈E

e with sign(e) ≤ sign(x).

The set E can be chosen such that |E| ≤ dim(S) and |E| ≤ | supp(x)|.

A.2 General polyhedral cones

Let C be a polyhedral cone, that is, C = {x ∈ Rn | Ax ≥ 0} for some A ∈ Rm×n.
A nonzero vector x ∈ C is conformally non-decomposable (cND) if, for all nonzero
x1, x2 ∈ C with sign(x1), sign(x2) ≤ sign(x), the decomposition x = x1 + x2

implies x1 = λx2 with λ > 0. A vector x ∈ C is elementary if it is cND.
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By defining EVs as cND vectors (instead of SM vectors), Theorem 43 can be
extended to general polyhedral cones. See [19, Theorem 8].

Theorem 44. Let C = {x ∈ Rn | Ax ≥ 0} be a polyhedral cone. Every nonzero
vector x ∈ C is a conformal sum of EVs. That is, there exists a finite set E of
EVs such that

x =
∑
e∈E

e with sign(e) ≤ sign(x).

The set E can be chosen such that |E| ≤ dim(C) and |E| ≤ | supp(x)|+| supp(Ax)|.

A.3 Polyhedra

Let P be a polyhedron, that is, P = {x ∈ Rn | Ax ≥ b} for some A ∈ Rm×n and
b ∈ Rm. A vector x ∈ P is convex-conformally non-decomposable (ccND) if for all
x1, x2 ∈ P with sign(x1), sign(x2) ≤ sign(x) and 0 < λ < 1, the decomposition
x = λx1 + (1− λ)x2 implies x1 = x2.

Let R = {x ∈ Rn | Ax ≥ 0} be the recession cone of P . A vector e ∈ P ∪ R is
elementary (an EV of P ) if e ∈ P is ccND or e ∈ R is cND.

Ultimately, Theorem 43 can be extended to general polyhedral cones. See [19,
Theorem 13].

Theorem 45. Let P = {x | Ax ≥ b} be a polyhedron and R = {x | Ax ≥ 0} its
recession cone. Every vector x ∈ P is a conformal sum of EVs. That is, there
exist finite sets E0 ⊆ R and E1 ⊆ P of EVs such that

x =
∑
e∈E0

e+
∑
e∈E1

λee with sign(e) ≤ sign(x),

λe ≥ 0, and
∑
e∈E1

λe = 1. (Hence, |E1| ≥ 1.)

The set E = E0 ∪ E1 can be chosen such that |E| ≤ dim(P ) + 1 and |E| ≤
| supp(x)|+ | supp(Ax)|+ 1.

B A minimal derivation
of the dynamic growth model

We denote fundamental objects and quantities as follows:

Mol set of molecular species
Rxn set of chemical reactions

N ∈ RMol×Rxn stoichiometric matrix (unit: 1)
X ∈ RMol

≥ amounts of substance (unit: mol)

R(X) ∈ RRxn reaction rates (extensive) (unit: mol/s)
ρ ∈ RMol

> molar masses (unit: g/mol)

The chemical reactions induce the dynamical system

dX

dt
= NR. (14)
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We define dry weight (correctly: dry mass),

M =
∑
i

ρiXi = ρTX, (unit: g) (15a)

the intensive quantities

x =
X

M
∈ RMol

≥ , (unit: mol/g) (15b)

v =
R

M
∈ RRxn, (unit: mol/g/s) (15c)

and growth rate

µ =
1

M

dM

dt
. (unit: 1/s) (15d)

Note. We use mass instead of volume to define the “concentrations” x, the
(intensive) reaction rates v, and growth rate µ. Thereby, we avoid discussions
about “molecular volume”, osmotic pressure, etc. at this point. Moreover, in
practice, cellular composition is often given in the unit mol/g (dry weight).

Finally, we recall the chain rule (of differentiation),

d

dt

X

M
=

1

M

dX

dt
− X

M2

dM

dt
.

Now, Equations (14), (15), and the chain rule yield the dynamic model of growth.

dx

dt
= Nv(x)− µx

and
ρTx = 1.

Note. The derivation even holds for unbalanced growth.

C Mathematical issues in [de Groot et al, 2020]

The paper [5] is inspirational from the modeling perspective. Unfortunately, the
mathematical treatment is not rigorous. In particular, Definition 1 is flawed,
and a crucial intermediate result (regarding the support minimality of EGSs,
cf. Proposition 29 in this work) is missing. As a consequence, almost every
statement and/or its proof is imprecise or incomplete.

Incorrect statements

• Definition 1: Px,µ is not a polytope, in general, but a polyhedron.

• Theorem 1: As a consequence of Definition 1, not every element of Px,µ is
a convex combination its vertices (EGSs), in general.

• Theorem 3: A condition on the support of x0 is missing. Obviously, if
(x0)i = 0 for some i, then there is no neighbourhood of (x0, µ0) such that
the EGS α can be continuously extended.
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Moreover, the statement has an unnecessary assumption, namely, that the
support of the EGS equals its feasible basis.

• Theorem 5: As another consequence of Definition 1, even if the polyhedron
Px,µ intersects the polyhedron Pcons determined by more than one inequal-
ity constraint, the polytope PEGSs generated by the vertices (EGSs) of Px,µ
does not intersect Pcons, in general. Hence, feasible solutions (in particular,
optimal solutions) are not sums of EGSs, in general.

• Theorem 6: The statement requires the assumption that PD has full rank.
Under the assumption that (PD − φ) has full rank, row reduction applied

to (PD − φ) does not yield (I −φ̂)

Moreover, certain dimensions do not match. On the one hand, D ⊆
{1, . . . n + 1} with |D| = m + 1 is a feasible basis (of B ∈ R(m+1)×(n+1)).
On the other hand, P ∈ Rm×n is the stoichiometric matrix. Hence, PD is
ill-defined.

Finally, the notation O(µ) is misleading. In the sum v = V + O(µ), also
the “biomass flux mode” V is O(µ).

• Theorems 7 and 8 are based on the incorrect Theorem 6.

Incorrect proof

• Theorem 4: Theorem 3 is used without checking the (unnecessary) assump-
tion that the support of the EGS equals its feasible basis.

Moreover, the proof is too complicated, in particular, the implicit function
theorem is not needed.
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