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Abstract

Statistical analysis of microbial genomic data within epidemiological cohort studies holds
the promise to assess the influence of environmental exposures on both the host and the host-
associated microbiome. The observational character of prospective cohort data and the intricate
characteristics of microbiome data make it, however, challenging to discover causal associations
between environment and microbiome. Here, we introduce a causal inference framework based
on the Rubin Causal Model that can help scientists to investigate such environment-host mi-
crobiome relationships, to capitalize on existing, possibly powerful, test statistics, and test
plausible sharp null hypotheses. Using data from the German KORA cohort study, we illus-
trate our framework by designing two hypothetical randomized experiments with interventions
of (i) air pollution reduction and (ii) smoking prevention. We study the effects of these in-
terventions on the human gut microbiome by testing shifts in microbial diversity, changes in
individual microbial abundances, and microbial network wiring between groups of matched
subjects via randomization-based inference. In the smoking prevention scenario, we identify a
small interconnected group of taxa worth further scrutiny, including Christensenellaceae and
Ruminococcaceae genera, that have been previously associated with blood metabolite changes.
These findings demonstrate that our framework may uncover potentially causal links between
environmental exposure and the gut microbiome from observational data. We anticipate the
present statistical framework to be a good starting point for further discoveries on the role of
the gut microbiome in environmental health.
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Introduction

The human microbiome plays a pivotal role in maintaining a healthy physiology via multiple inter-
actions with the host. The gut microbiome, for instance, provides important metabolic capabilities
for food digestion [1, 2] and regulates immune homeostasis [3]. Although dietary interventions [4],
pathogen infections [5], and antibiotics use [6] can trigger rapid changes of gut microbial composi-
tions and can lead to dysbiotic disruptions of host-microbiome interactions, the long-term impact of
environmental exposures on the human gut microbiome remains poorly understood. In this paper,
we provide a causal inference framework for assessing such epidemiological questions and analyze a
prospective cohort with collected microbiome data. Recent technological advances, through culture-
independent analyses, have facilitated a surge in observational studies of the human microbiome
[7–9]. A common method to catalog microbial constituents is high-throughput amplicon sequencing
[10], allowing the acquisition of gut microbiome survey data for large prospective cohort studies. Im-
portant examples include the Human Microbiome Project [11], the British TwinsUK study [12], the
Dutch LifeLines-DEEP [13] and Rotterdam Studies [14], the Chinese Guangdong Gut Microbiome
Project [15], the American Gut Project [16], and the German KORA study [17].

Thus far, these and other studies have linked alterations in gut microbial compositions to several
common diseases, including rheumatoid arthritis, colorectal cancer, obesity, inflammatory bowel
disease (IBD), and diabetes [18]. Although environmental exposures such as particulate matter
(PM) [19] and smoking [20] are also related to these diseases, an understanding of environment-gut
microbiome relationships and their implications for disease mechanisms has remained elusive. Here,
we examine such environment-gut microbiome relationships within a causal inference framework
[21] combined with state-of-the-art statistical methods for amplicon sequence variant (ASV) data
[22]. We illustrate our analysis framework using data from the German KORA study [17] and focus
on two inhaled environmental exposures previously hypothesized to be linked with gastrointestinal
diseases and the gut microbiome: (i) particulate matter (PM) with diameter smaller or equal to 2.5
µm (PM2.5) and (ii) cigarette smoking.

Air pollution exposure has been found to be associated with gastrointestinal diseases, such as
appendicitis [23], inflammatory bowel disease [24], abdominal pain [25], and metabolic disorders [26].
Current research suggests that air pollution may impact the gut microbiome which, in turn, acts as
a “mediator” of the association between air pollution and metabolic disorders such as obesity and
type 2 diabetes [27–29]. These studies found associations between nitric oxide, nitrogen dioxyde
[27], PM [28], and ozone [30] exposures and the gut microbiome. Several potential pathways explain
how particles affect human health. The gut is exposed to PM through mucociliary clearance, i.e.,
the self-cleaning mechanism of the bronchi, inducing inhaled PM to be cleared from the lungs to
the gut, and oral route exposure, when food and water is contaminated by PM [31, 32]. Results
from murine studies of the effect of PM on the gut [33–37] suggest that exposure to PM changes the
microbial composition and increases gut permeability, leading to higher systemic inflammation due
to the unrestrained influx of microbial products from the gut into the systemic circulation [38].

Cigarette smoking, on the other hand, is an example of an inhaled exposure that has been shown
to influence the susceptibility of diseases such as IBD, colorectal cancer, and systemic diseases [20,
39, 40]. Animal studies suggest that cigarette smoke may mediate its effects through alterations of
intestinal microbiota [41]. In humans, shifts in the gut microbiome composition and diversity were
observed after smoking cessation. These shifts were similar to previously observed shifts in obese
vs. lean patients, suggesting a potential microbial link between the metabolic function of the gut
and smoking cessation [42]. Comparison of the gut microbiome composition of smokers and never-
smokers led to similar observations [43]. So far, the underlying mechanisms of the effect of smoking
on not only gut-related, but also autoimmune diseases have not been established. It has been
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hypothesizes that the gut microbiome may be the missing link between smoking and autoimmune
diseases [20].

Figure 1: The four stages of the causal inference framework [21] adapted to the exploration of
environment-gut microbiome relationships. Stage 1: Formulation of a plausible hypothetical inter-
vention (e.g., decreasing inhaled environmental exposures) to examine its impacts on the gut micro-
biome. Stage 2: Construct a hypothetical paired-randomized experiment in which the environmental
intervention been implemented randomly. Stage 3: Choose powerful test statistics comparing the
gut microbiome had the subjects been hypothetically randomized to the environmental intervention
vs. not and test the sharp null hypotheses of no effect of the intervention at different aggregation
levels of the data. Stage 4: Interpretation of the statistical analyses and recommendations for future
studies or implementation of the intervention.

Central to the present study is the investigation of the causal question: Does reducing inhaled
environmental exposures alter the human gut microbiome? As summarized in Figure 1, we an-
swer this question using the following four-stage analysis framework: (i) conceptualize hypothetical
environmental interventions that could have resulted in the observed data at hand, (ii) design our
non-randomized data, so that the unconfoundedness assumption can be assumed, (iii) choose power-
ful, state-of-the-art test statistics from the literature to compare human gut microbiome at different
levels of taxonomic granularity between subjects assigned to the interventions vs. not, and (iv) in-
terpret the implications of the results for recommending further studies or the studied hypothetical
intervention. The Methods section elaborates on each of these steps. An essential ingredient in
stage (iii) of our framework is the use of a randomization-based hypothesis testing with powerful
test statistics comparing subjects under an intervention vs. not [44, 45]. We do not attempt to
provide an estimate of (and uncertainty around) an estimand to avoid relying on assumptions such
as the additivity of the treatment effects, asymptotic arguments, or an imputation model, which
may be the case when drawing Neymanian (i.e., distribution-based) or Bayesian inferences.

3

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.02.24.432662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432662
http://creativecommons.org/licenses/by-nc/4.0/


The present causal inference framework relies on ideas developed in the 70s [46–49] and the Rubin
Causal Model (RCM) [50, 51] to analyze observational data by reconstructing the ideal conditions of
randomized experiments, the “gold standard” to draw objective causal inferences on the effects of an
intervention [52]. A formidable statistical challenge is, however, to define and test these intervention
effects for high-dimensional taxonomically-structured microbiome relative abundance data. Here,
we adapted and advanced several state-of-the-art approaches from the statistical literature tailored
to amplicon data, ranging from tests for α-diversity in networked communities [53, 54], Microbiome
Regression-based Kernel Association Tests (MiRKAT) for β-diversity to randomization-based dif-
ferential compositional mean tests [55]. We also applied and analyzed individual taxon differential
abundance tests with taxonomic rank-dependent reference selection [56] and sparse composition-
ally robust taxon-taxon network estimation schemes [57] with novel differential edge tests [58], thus
covering a comprehensive list of archetypical microbiome data analysis tasks.

Our framework complements recent causal inference approaches for microbiome data such as
mediation methods [59, 60], graphical models [61], and Mendelian randomization [62, 63] to analyze
observational gut microbiome data. In these studies, the target for interventions is the microbiome
and the understanding of its effects on diseases, i.e., the microbiome is treated as the exposure and
diseases as outcomes. Here, we are interested in examining the effects of environmental exposures
(interventions) on the gut microbiome (“the” outcome), when only non-randomized data are avail-
able. To the best of our knowledge, no other observational study interested in environmental effects
on the gut microbiome addressed their research question using causal inference methods.

In the following, we detail the characteristics of the KORA FF4 study population and highlight
potential effects of the hypothetical interventions, air pollution reduction and smoking prevention,
on the gut microbiome. In particular, we characterize potential effects in terms of changes in
overall microbial diversity, taxon-level abundances, and microbial associations. In the smoking
prevention analysis, we identified taxa, including Ruminococcaceae (UCG-005, UCG-003, UCG-
002) and Christensenellaceae R-7-group, that are part of a stable sub-community in the microbial
association networks and have been found to contribute to circulating blood metabolites in the
LifeLines-Deep cohort [64]. The statistical workflow reproducing the present results is available at
https://github.com/AliceSommer/Pipeline_Microbiome. A tutorial applying the workflow on
the publicly available American Gut Project data [16, 65] is available at https://github.com/

AliceSommer/Causal_Microbiome_Tutorial.

Results

To illustrate our causal inference framework, we first conceptualize two hypothetical environmental
interventions that potentially influence the gut microbiome: (i) an air pollution reduction, and
(ii) a smoking prevention intervention. Second, for each intervention, we construct a hypothetical
matched-pair randomized experiment, aiming at satisfying the “unconfoundedness” assumption (see
Methods section). Third, we analyze the “unconfounded”/“as-if randomized” data subset with
randomization-based inference to test sharp null hypotheses of no effect of the interventions for each
unit at different taxonomic levels of the microbial ASV data. The results presented subsequently
correspond to the third stage of the framework. Fourth, causal conclusions are developed in the
Discussion section. Following the American Statistical Association statement [66, 67], we avoid
using the “0.05 threshold” and only describe the Fisherian p-values.
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Characteristics of study population

Our study is based on data from the KORA FF4 study cohort [17]. Because we performed a design
stage before analyzing the data we have two study populations, one per hypothetical experiment,
which are subsets of the entire cohort (see Design stage in the Methods section). In the air pollution
reduction experiment, we analyze 99 matched pairs of subjects living in highly (PM2.5 ≥ 13.0 µg/m3)
and less (PM2.5 ≤ 10.3 µg/m3) polluted areas with similar background characteristics distributions
(Table 1 and Supplementary Figures 2-4 and 8). The thresholds for the air pollution experiment
intervention are based on 90th and 10th percentiles of the PM2.5 distribution. We focus on the
PM2.5 pollutant, originating mainly from traffic emissions and fossil fuel combustion, for its known
penetrating effects into the lung and potential implication for the gut microbiome [27]. In the
smoking prevention experiment, we analyze 271 matched pairs of smokers and never-smokers (with
background characteristics distributions presented in Table 1 and Supplementary Figures 5-7 and
9).

Air pollution (PM2.5) Smoking
≥ 13.0 µg/m3 ≤ 10.3 µg/m3 Smoker Never-Smoker

Mean St. d. Mean St. d. Mean St. d. Mean St. d.

Age 60.6 12.4 60.3 12.4 54.2 9.4 54.4 9.6
Body Mass Index 27.0 4.3 27.0 3.8 26.7 4.4 26.7 4.2
Alcohol intake (g/day) 11.3 14.1 11.5 13.9 13.0 15.6 11.6 14.3
Years of education 11.9 2.6 11.7 2.8 11.7 2.3 11.8 2.2

N % N % N % N %
Sex F 130 24.0 130 24.0 41 20.7 41 20.7

M 141 26.0 141 26.0 58 29.3 58 29.3
Smoking Ex-S. 27 13.6 27 13.6 - - - -

Never-S. 62 31.3 62 31.3 - - - -
Smoker 10 5.1 10 5.1 - - - -

Diabetes No 95 48.0 95 48.0 264 48.7 264 48.7
Yes 4 2.0 4 2.0 7 1.3 7 1.3

Phys. Activity No 36 18.2 36 18.2 125 23.1 125 23.1
Yes 63 31.8 63 31.8 146 26.9 146 26.9

Table 1: Baseline characteristics of the study population in the air pollution reduction (left table) and
smoking prevention experiments (right table). Continuous variables: mean and standard deviation
(St. d.). Categorical variables: number of samples per category (N) and proportion of category (%).

Statistical analysis of microbial diversity

A common first step in microbiome data analysis is estimating and assessing microbial diversity. We
begin by investigating the potentially causal effects of the interventions on within-subject diversity
(α−diversity) and between-subject variation (β−diversity), respectively.

Within-subject diversity

Gut bacterial richness and Shannon diversity were estimated on the ASV level with the breakaway
[68] and DivNet [54] method, respectively. Comparisons of the distributions of these estimated
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variables between subject under the intervention vs. not in both hypothetical experiments are shown
by boxplots in Figure 2. The small approximate Fisherian p-values based on 10,000 permutations
of the intervention assignment give us ground for rejecting the null hypotheses of no effect of an air
pollution reduction (p-valueap,richness ≈ 0.0008, p-valueap,α−div. ≈ 0.0388) and smoking prevention
(p-values,richness ≈ 0.1518, p-values,α−div. ≈ 0.0497) on the diversity of the human gut microbiome.
On average, lower diversity was observed in the subjects living in polluted areas or smokers compared
to participants living in less polluted areas or non-smokers. This diversity difference motivates the
more in-depth analyses of the gut microbiome composition presented subsequently.

Figure 2: Richness and α-diversity. Boxplots (with median), values of the test-statistics from the
betta regression [53], and one-sided randomization-based p-values for 10,000 permutations of the
intervention assignment following a matched-pair design. (A) Boxplots of the richness. (B) Boxplots
of the α-diversity.

Between-subject variation

To estimate β-diversity indices, we calculated UniFrac, Aitchison, Jaccard, and Gower dissimilar-
ities between all possible pairs of subjects. The results are shown in Table 2. To alleviate the
problem of choosing the best dissimilarity metric for β−diversity estimation, we follow the Micro-
biome Regression-based Kernel Association Test (MiRKAT) of Zhao et al. [69] suggesting to compute
several metrics and then adjust for multiple comparisons. The adjusted p-values are small, which
suggests to reject the sharp null hypotheses of no effect of the intervention on between-subject
variation in both experiments.

Air pollution Smoking
distance test-statistic p-value p-valueadj test-statistic p-value p-valueadj
UniFrac 12.1 0.0199 0.0506 61.5 0.0024 0.0070

Aitchison 82596.0 0.1096 0.2466 356921.5 0.0001 0.0003
Jaccard 19.4 0.0884 0.2043 84.5 0.0001 0.0003
Gower 0.2 0.0089 0.0250 0.1 0.0485 0.1204

Table 2: β-diversity. Microbiome Regression-based Kernel Association Test (MiRKAT), unadjusted
and adjusted one-sided randomization-based p-values for 10,000 permutations of the intervention
assignment following a matched-pair design.
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Analysis of microbial compositions

We next investigated whether shifts in microbial compositions as a whole or differences in specific
microbial taxa were observable in the hypothetical experiments. We illustrate this by designing and
analyzing sharp null hypotheses for global compositional means and differential genus abundances.

Compositional mean differences

Testing whether two study groups have the same microbiome composition can be viewed as a two-
sample testing problem for high-dimensional compositional mean equivalence. We tested sharp null
hypotheses using a test statistic developed particularly for that purpose by Cao et al. [55]. Table
3 summarizes the results for each taxonomic level. We reject the sharp null hypotheses of gut
microbiome composition equivalence for the smoking prevention experiment. At nearly all levels
of taxonomic aggregation of the data, the p-values are low, except for the ASV-level. In the air
pollution reduction experiment, the p-values at the Species and Genus-level are also fairly low.

ASV Species Genus Family Order Class Phylum

Air Pollution
nb. of taxa (p) 4,370 414 252 74 44 29 15
test statistic 12.8 12.9 11.9 8.8 8.4 8.4 8.1
p-value 0.1451 0.0722 0.0733 0.1521 0.1161 0.1021 0.0591

Smoking
nb. of taxa (p) 7,409 479 271 81 48 31 16
test statistic 13.0 14.5 13.3 11.6 8.6 9.4 10.4
p-value 0.1607 0.0302 0.0384 0.0279 0.0859 0.0440 0.0135

Table 3: Compositional equivalence test. Test statistic for high-dimensional data suggested by [55]
and one-sided randomization-based p-values for 10,000 permutations of the intervention assignment
following a matched-pair design.

Differential taxon abundances

For compositional microbiome data, identifying sets of potentially “differentially abundant taxa”
relates to testing sharp null hypotheses of no difference in abundance of individual taxa with respect
to a reference set. We conducted such an analysis on the genus level for all genera present in at least
5% of the samples. This prevalence threshold was guided by the amount of information preserved
when performing filtering, i.e., microbial abundance and the number of taxa observed per sample (see
Supplementary Figures 14-17). We applied the Differential abundance testing for compositional data
(DACOMP) approach [56] and used two-sided tests since we lack prior knowledge on the direction of
the abundance changes. Figure 3 highlights the key DACOMP results for both experiments. In the
air pollution reduction experiment, we reject the sharp null hypothesis of no differential abundance
only for the Marvinbryantia genus (p-valueadj. = 0.0120) (Supplementary Table 2). We do not reject
the sharp null hypothesis of no effect of smoking prevention for eleven genera (see Figure 3 and
Supplementary Table 3). Five belong to the Ruminococcaceae family: Ruminococcaceae-UCG-002,
Ruminococcaceae-UCG-003, Ruminococcaceae-UCG-005, Ruminococcus-1, and Ruminococcaceae-
NK4A214-group, three to the Lachnospiraceae family: Lachnospira, Lachnospiraceae-NK4A136-
group, and Coprococcus-1, one to the Christensenellaceae family: Christensenellaceae-R-7-group,
and two to the Mollicutes class, which belong to the NB1-n and Mollicutes-RF9 order.
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Figure 3: Differential abundance. For each genus, adjusted two-sided randomization-based p-values
for 10,000 permutations of the smoking prevention intervention assignment following a matched-
pair design. Genera with no tip point belong to the set of reference taxa. Black circled tip point:
differentially abundant genus (Marvinbryantia) in the air pollution reduction experiment.

Microbial network analysis

To gain high-level insights into changes in the organizational structure of the underlying microbial gut
ecosystem, we next calculated sparse genus-genus association networks for each exposure level and
hypothetical experiment and highlight the results of our randomization-based differential association
testing.

Genus-genus association networks

We used the Sparse InversE Covariance estimation for Ecological ASsociation Inference (SPIEC-
EASI) framework [57] to infer genus-genus associations in our two hypothetical experiments. We
used the glasso mode of SPIEC-EASI with default parameters (see Methods for details). Figure 4A
shows the overall structure of the learned sparse association networks for the smoking prevention
experiment (smokers (left panel) and non-smokers (right panel), respectively). Each network pos-
sesses a single large connected component consisting of 30-40 mostly Firmicutes genera (highlighted
area in Figure 4A). These connected components also included the majority of the previously iden-
tified potentially differentially abundant genera, including Ruminococcaceae (UCG-005, UCG-002),
Ruminococcus-1, and Christensenellaceae-R-7-group (see Figure 4B for a detailed view of the con-
nectivity pattern). The genus-genus associations networks derived from the air pollution reduction
experiment showed similar overall topological features containing one large connected component of

8

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.02.24.432662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432662
http://creativecommons.org/licenses/by-nc/4.0/


60 genera, including Ruminococcaceae (UCG-005, UCG-003, UCG-002) and Christensenellaceae-R-
7-group among others (see also Supplementary Figure 18).

Figure 4: Genus-genus associations of smokers and never-smokers (n = 271, p = 140). (A) Visual-
ization of the between genera partial correlations estimated with the SPIEC-EASI method. Edges
thickness is proportional to partial correlation, and color to direction: red: negative partial corre-
lation, green: positive partial correlation. Node size is proportional to the centered log ratio of the
genus abundances, and color is according to phyla. Triangle shaped nodes are differentially abun-
dant (see Figure 3). (B) Zoom in largest connected component and differential associations (bold
genera).

Differential genus-genus associations

To identify potentially differential network associations in the intervention experiments, we coupled
the SPIEC-EASI network estimation procedure with permutations of the intervention assignment,
available in the NetCoMi R package [58] (see also Methods for details). For each hypothetical
experiment, we list the five genus-genus associations with smallest adjusted two-sided randomization-
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based p-values in Table 4 and highlight these associations in Figure 4B. In the air pollution reduction
experiment, we reject the sharp null hypothesis of no differential association for two edges: the
Succinivibrio/Slackia edge (p-valueadj. ≈ 0.0661), and the Ruminiclostridium/Cloacibacillus edge
(p-valueadj. ≈ 0.1063) (see Table 4 and Supplementary Figure 18).

Air pollution
Genus-genus associations (- : disappearance after intervention) p-valueadj
Succinivibrio/Slackia (-) 0.0661
Ruminiclostridium/Cloacibacillus (-) 0.1063
Cloacibacillus/Lachnospiraceae-FCS020-group 0.2795
Megasphaera/Alistipes 0.4147
Bacteroidales (Genus: unknown)/Prevotella-2 0.4753
Smoking
Genus-genus associations (- : disappearance after intervention) p-valueadj
Christensenellaceae-R-7/Ruminiclostridium-6 (-) 0.1585
Ruminococcaceae-UCG-010/Ruminiclostridium-6 (-) 0.1585
Ruminococcaceae-UCG-014/Flavonifractor 0.2031
Clostridiales-vadinBB60/Ruminiclostridium-6 0.2376
Ruminococcaceae-UCG-013/Faecalibacterium 0.2492

Table 4: Differential associations of genera. Smallest five adjusted two-sided randomization-based
p-values for 10,000 permutations of the intervention assignment following a matched-pair design.

In the smoking prevention experiment, we also reject the sharp null hypothesis of no differential
association for two edges: the Ruminiclostridium-6/Ruminococcaceae-UCG-010 edge (p-valueadj.
≈ 0.1585), and the Ruminiclostridium-6/Christensenellaceae-R-7-group edge (p-valueadj. ≈ 0.1585)
(see Table 4). The genera that participate in these potentially differential associations are also
highlighted in Figure 4B.

Exploring associations between genera and lipid metabolites

The gut microbiome is a substantial driver of circulating lipid levels, and prior work has shown
[64, 70, 71] that the relative abundance of several microbial families, including Christensenellaceae,
Ruminococcaceae, and the Tenericutes phylum were negatively correlated with triglyceride and
positively associated with high-density lipoproteins (HDL) cholesterol. Since our analysis identified a
small interconnected group of genera, including Christensenellaceae and Ruminococcaceae, for whom
we rejected the no differential abundance hypothesis, we performed an exploratory data analysis to
investigate taxa-serum lipid measurements associations. Four lipids were measured in blood serum
samples of our study population from the KORA cohort: total, HDL, and LDL, cholesterol, as
well as triglyceride levels. Figure 5A shows the correlation between these lipids and the genera we
discovered in our hypothetical experiments. Tendencies similar to those reported in previous studies
can be observed in our data.
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Figure 5: (A) Lipid metabolites correlation with selected genera from the smoking prevention ex-
periment (green). (B) Scatterplots of high-density lipoprotein (HDL) cholesterol and triglycerides
vs. centered log-ratio transformed relative abundances of the genera Ruminococcaceae-UCG-005
and Christensenellaceae-R-7-group.

For instance, in the smoking prevention dataset, we observed a positive correlation of Chris-
tensenellaceae R-7-group and Ruminococcaceae (UCG-005) genus abundances (under centered log-
ratio transformation) with HDL cholesterol and negative correlation with triglyceride levels, respec-
tively (see Figure 5B). Similar correlation patterns were also found for the other genera for whom
we rejected the no differential abundance hypothesis (see second and forth column in Figure 5A).
Our findings were also in line with recently reported correlation results in Vojinovic et al. [64] using
the Dutch LifeLines-DEEP cohort [13] and the Rotterdam Study [14].

Discussion

Due to the interdisciplinary (epidemiology, microbiome research, and statistics) nature of this paper
we first discuss the results presented above, then elaborate on the statistical framework we used for
our analyses and suggest statistical and epidemiological extensions of our work.

In the air pollution (PM2.5) reduction hypothetical experiment, we reject the sharp null hy-
potheses of no richness, α-diversity, and high-dimensional mean differences. We also reject the no
differential abundance hypothesis for the Marvinbryantia genus, and the no differential association
hypothesis between: the Succinivibrio and Slackia genera, as well as the Ruminiclostridium and
Cloacibacillus genera. Experiments exposing mice to PM2.5 resulted in mixed findings concerning
difference in microbial richness and diversity. This might be due to regional differences in the chem-
ical composition of PM2.5 as well as differences in the duration of exposure [29]. Thus far, only one
human study estimated associations between PM2.5 exposure and the gut microbiome, and investi-
gated the pathway of diabetes induction associated with PM exposure [28]. One of their key findings
was that PM2.5 exposure reduced α-diversity (measured by Chao1 and Shannon indices), which is

11

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.02.24.432662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432662
http://creativecommons.org/licenses/by-nc/4.0/


consistent with our observations.
In the smoking prevention hypothetical experiment, we rejected the sharp null hypotheses of no

richness, no α-diversity, no β-diversity, and no high-dimensional mean differences. We also rejected
the no differential abundance hypothesis for eleven genera (five of the Ruminococcaceae family,
three of the Lachnospiraceae family, one of the Christensenellaceae family, and two of the Molli-
cutes class), and the no differential association hypothesis between the Ruminiclostridium-6 and
Ruminococcaceae-UCG-010 genera, and between the Ruminiclostridium-6 and Christensenellaceae
R-7-group genera. Interestingly, the associations of Ruminococcaceae-UCG-010 and Christensenel-
laceae R-7-group with Ruminiclostridium-6 were also found to be worth further scrutiny. Their
positive associations in the genus-genus network of smokers was absent in the genus-genus network
of the never-smokers. The one study comparing the gut microbiome of smokers (n = 203) and
never-smokers (n = 288) with similar sample size has a men-only study population [43]. They did
not find any differences in α-diversity (measured with the Shannon index), whereas we conclude that
α-diversity analyses are worth further scrutiny. Lee et al.’s PERMANOVA analyses for β-diversity
differences, measured with Jaccard and weighted UniFrac distances, suggested differences. We reject
the sharp null hypothesis at the between-subject differences analysis level. In their analysis of bac-
terial (phylum) composition, smokers had an increased proportion of Bacteroidetes with decreased
Firmicutes and Proteobacteria compared with never-smokers. When we compare these phyla, we
do not depict the same differences (see Supplementary Figure 18). Also, our compositional differ-
ence analyses do not result in the same set of differentially abundant genera than reported by Lee
et al. [43]. These conflicting findings could be due to the fact that their study was done on Korean
men only. Nonetheless, it shows that there is a lack of knowledge on the effects of smoking on the
human gut microbiome and that additional scientific investigations are necessary to make causal
conclusions.

Throughout the extensive statistical analyses presented in this paper, we have tested sharp null
hypotheses of no effect of an intervention on a wide range of gut microbiome outcomes, ranging from
high-level microbial diversity estimates to differential genus-genus associations. To do so, we have
performed randomization-based inference based on 10,000 permutations. This mode of inference
has been motivated by two reasons: (i) it is difficult to postulate a joint model for the potential
outcomes, and thereby provide an estimate of (and uncertainty around) a causal estimand, and (ii)
it has been shown that using the actual randomization procedure that led to the observed data
helps to report valid Fisher-exact p-values as opposed to p-values relying on approximating null
randomization distributions [45]. As an example, in our mean difference analyses, we found slight
differences between the null randomization distribution of the test-statistic when approximated by
permuting the intervention assignment vector and when drawn from the approximating asymptotic
distribution (see Supplementary Figures 10 and 11).

An important component of our randomization-based procedure is that the permutations of the
intervention assignment vector conserves the matched-pair design of the hypothetical randomized
experiment. This strategy has been advocated by Rubin [72] in the context of randomized trials,
and more recently by Bind & Rubin [45] in the context of hypothetical randomized experiments,
because assumptions on the underlying distribution of the data are not required. Only few R
packages were built to perform randomization-based inference while conserving the design of the
intervention assignment. Therefore, for every analysis in our study, we imported a matrix of 10,000
unique randomized intervention assignments to calculate our p-values (see https://github.com/

AliceSommer/Causal_Microbiome_Tutorial for a reproducible example on the American Gut Data
[16, 65]). Nonetheless, the DACOMP and NetCoMi R packages provide flexible functions enabling the
calculation of randomization-based p-values for our study design to test sharp null hypotheses of no
difference in taxa abundance and associations, respectively. We advocate for more development of
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such user-friendly software functions permitting flexibility and accountability of the design stage of
observational studies. P-value adjustments for multiple comparison also follow a fully randomization-
based procedure, while preserving the design of the experiment. The method has proven to be more
powerful while maintaining the family-wise error rate [73].

Notice that when presenting our results, we never accepted alternative hypotheses but only
rejected sharp nulls when unadjusted and adjusted p-values were small, i.e., indicating the hypothe-
ses warrants further scrutiny [67]. In the field of microbiome data analysis, the terms differential
abundance and associations are frequently used. Researchers report “differential abundant” and
“differentially associated” sets of taxa after testing sharp null hypotheses of no effect of an interven-
tion. This terminology implicitly implies acceptance of the alternative hypotheses. However, when
testing sharp null hypotheses we assess the amount of evidence against them in the observed data,
which does not prove the alternative hypothesis to be true.

During the design stage, the outcome variable was ignored and only pre-exposure covariates
were considered. The chosen balanced data is a sub-sample of units that can be used to estimate
the effects of an intervention. Omitting the outcome data until the analysis avoids “model cherry-
picking”, because the effect of the intervention is estimated once, after a successful design stage.
Nonetheless, at the design stage, we can only consider the observed pre-exposure variables but
the assignment mechanism could depend on unobserved pre-exposure variables. In gut microbiome
studies, diet is often an unobserved confounder. For example, in this study, dietary intake data was
collected for only 1,469/2,033 (i.e., 72%) participants. We verified balance in dietary intake for our
balanced data subset (see Supplementary Figures 8 and 9). Because of the lack of information, there
could still be imbalances in diet and/or other unobserved covariates. In such cases, Rosenbaum [74]
has recommended to consider sensitivity analyses of how the Fisher-exact p-value would change,
had the intervention assignment been plausibly different (see also Bind & Rubin [45]). Subject-
matter knowledge on air pollution exposure or smoking assessment should guide the plausible range
of “sensitivity” p-values and the reason why they could deviate from the p-value calculated based
on the assumed hypothetical intervention assignment. This idea provides material for an extension
of the framework presented in this study.

The framework suggested in this paper facilitates a more transparent interpretation of results
than standard approaches. First, interpretation is only valid within the range of the background
covariates of the study population in the respective hypothetical experiment (see their detailed char-
acteristics in Table 1 and Supplementary Figures 2-9). The data do not provide direct information
for the “unmatched” units. Also, the assumed assignment mechanism and underlying assumptions
have to be clearly stated to obtain meaningful p-values. Standard approaches usually make strong
assumptions (e.g., linearity), whose discussions are often neglected. Modeling the observed data and
solely adjusting for confounders by including them in a regression, without a design stage, can be
unreliable, especially when the pre-exposure covariates distributions of the control and intervention
units are not similar. For instance, Cochran & Rubin [46], Heckman et al. [75], and Rubin [76]
have shown that regression models can estimate biased treatment effects when the true relationship
between the covariates and the outcome is not modeled accurately.

In contrast to other studies interested in the effect of air pollution exposures on health outcomes,
this study does not provide any estimation of an exposure-response curve. Instead, we examine the
effect of interventions and provide results that can directly contribute to policy recommendations.
Until now, relationships between inhaled environmental exposures and the human gut microbiome
were not examined with causal inference methods, so a first step to make advances in the field is
to test, whether air pollution and smoking have no effect on the units of our study. If so, a natural
next step would be to work with a dataset adequate for balancing covariates along different doses
of the exposure such as suggested in [77] and estimate a causal dose-response in order to protect
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populations at risk.
In the smoking prevention experiment, the subset of genera retained at the differential abundance

analysis step was linked to the serum markers triglycerides and high-density lipoprotein in previous
studies [64, 70, 71]. In our data, we observe correlations between these genera and metabolites in the
same direction than previously found by Vojinovic et al. [64] (see Figure 5). Serum triglycerides and
high-density lipoprotein play a role in metabolic syndrome and associations between smoking and
metabolic syndrome have also been found previously [78]. Therefore, we suggest further investigation
on the pathway of cigarette smoke impacting the gut, which in turn has effects on circulating
metabolites (and metabolic syndrome). A logical next step would be to apply our framework to
other cohorts with similar amplicon data preprocessing and available pre-exposure covariates such
as the the Dutch LifeLines-DEEP [13] and Rotterdam Studies [14], and observe whether our results
replicate.

Methods

The German KORA FF4 cohort study

The data come from the German KORA FF4 cohort study, which involves participants aged 25 to 74
years old living in the city of Augsburg [17]. The participants were subject to health questionnaires
and follow-up examinations. During the study, stool samples were collected and the gut microbiota
data for 2,033 participants were obtained with 16S rRNA gene sequencing. For each participant
we have their long-term exposure to air pollution (particulate matter). The long-term exposure
variables come from the ULTRA III study, in which air pollutants were monitored several times a
year at 20 locations within the Augsburg region. From this data, annual averages of air pollutants
were calculated using land-use regression models. The models explain the spatial variation of the
pollutants with predictor variables derived from geographic information systems (GIS). To obtain
the long-term air pollution values for each participant, land-use regression models were applied to
their residential address. Moreover, to elucidate relationships between health outcomes and diet,
dietary intake data were collected for 1,469 participants of the KORA FF4 cohort. Dietary intake
was derived using a method combining information from a food frequency questionnaire (FFQ) and
repeated 24-h food lists [79]. In brief, the usual food intake (in gram/day) was calculated as the
product of the probability of consumption of a food on a given day and the average amount of a
food consumed on a consumption day.

Gut microbiome data sequencing and preprocessing

DNA Extraction, 16S rRNA Gene Amplification, and Amplicon Sequencing. Fecal DNA extrac-
tion was isolated by following the protocol of [80]. The samples were profiled by high-throughput
amplicon sequencing with dual-index barcoding using the Illumina MiSeq platform. Based on a
study providing guidelines for selecting primer pairs [81], the V3-V4 region of the gene encoding 16S
ribosomal RNA was amplified using the primers 341-forward (CCTACGGGNGGCWGCAG; bacte-
rial domain specific) and 785-reverse (GACTACHVGGGTATCTAATCC; bacterial domain specific).
Amplification was undertaken using the Phusian High-Fidelity DNA Polymerase Hotstart as per
manufacturer’s instructions. The PCR libraries are then barcoded using a dual-index system. Fol-
lowing a round of purification with AMPure XP beads (Beckman Coulter), libraries were quantified
and pooled to 2nM. The libraries were sequenced on an Illumina MiSeq (2 x 250 bp), using facilities
provided by the Ziel NGS-Core Facility of the Technical University Muenchen (TUM).
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Bioinformatics. The demultiplexed, per-sample, primer-free amplicon reads were processed by
the DADA2 workflow [22, 82] to infer sequence variants, remove chimeras, and assign taxonomies
with the Silva v128 database [83] using the naive Bayesian classifier method [84] until the genus-
level assignment and the exact matching method [85] for species-level assignment. We opted for
the high-resolution DADA2 method to infer sequence variants without any fixed threshold, thereby
resolving variants that differ by as little as one nucleotide. Amplicon sequence variants (ASVs) do
not impose the arbitrary dissimilarity thresholds that define OTUs. They provide consistent labels
because they represent a biological reality that exists outside the data being analyzed: the DNA
sequence of the assayed organism, thus they remain consistent into the indefinite future [22]. The
multiple genome alignment for the phylogenetic tree was built with the DECIPHER R package enabling
a profile-to-profile method aligns a sequence set by merging profiles along a guide tree until all the
input sequences are aligned [86]. The multiple genome alignment was used to construct the de novo
phylogenetic tree using phangorn R package. We first construct a neighbor-joining tree [87], and
then fit a maximum likelihood tree using the neighbor-joining tree as a starting point. After 16s
rRNA sequencing the 2,033 stool samples from the KORA cohort and processing the sequences with
the DADA2 pipeline, we observe 15,801 ASVs (see Supplementary Figure 1 and Table 1).

Causal inference framework

The four stages of the causal framework [21] that we use to construct hypothetical randomized
experiments to study the environment-microbiome relationship are the following:

1. Conceptual : Formulation of a plausible hypothetical intervention (e.g., decreasing air pollution
levels) to examine its impacts on the gut microbiome.

2. Design: Reconstruct the hypothetical randomized experiment had the environmental inter-
vention been implemented randomly.

3. Analysis: Choose valid and powerful test statistics comparing the gut microbiome had the
subjects been hypothetically randomized to the environmental intervention vs. not and test
the sharp null hypotheses of no effect of the intervention at different aggregation levels of the
data.

4. Summary : Interpretation of the statistical analyses and recommendations for future studies
and interventions.

Conceptual stage: formulation of the hypothetical randomized experiment
in terms of potential outcomes

To understand whether environmental interventions have an effect on the human gut microbiome,
the objective is to reconstruct a hypothetical experiment that mimics a controlled randomized exper-
iment [52], in which an environmental intervention could be believed to have been randomized. Let
Wi be the indicator of the assignment for subject i (i = 1, ..., N) to an environmental intervention
vs. none, where:

Wi =

{
1 if i is under the intervention,
0 if i is not.

(1)

The composition of a human gut microbiome can be expressed as a B-dimensional vector of the
microbial abundance. We define Y bi as the real abundance (count) of the bth bacterium, b = 1, ..., B
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for subject i. We define the potential outcomes of subject i as Y bi (1), the bth bacterium abundance
(count) had subject i been randomized to the environmental intervention (Wi = 1), and Y bi (0), had
subject i not been randomized to the intervention (Wi = 0). Table 5 shows the potential outcomes
for the N subjects.

Bacteria 1 2 ... B
Subjects Wi = 0 Wi = 1 Wi = 0 Wi = 1 Wi = 0 Wi = 1

1 Y 1
1 (0) Y 1

1 (1) Y 2
1 (0) Y 2

1 (1) ... ... Y B1 (0) Y B1 (1)
2 Y 1

2 (0) Y 1
2 (1) Y 2

2 (0) Y 2
2 (1) ... ... Y B2 (0) Y B2 (1)

... ... ... ... ... ... ... ... ...
N Y 1

N (0) Y 1
N (1) Y 2

N (0) Y 2
N (1) ... ... Y BN (0) Y BN (1)

Table 5: Potential outcomes for the subjects of the hypothetical experiment

Only one of the two potential outcomes can actually be observed for each subject: this is why
Rubin characterizes causal inference as a missing data problem [51], where the observed outcome of
subject-i and bacteria-b can be expressed as a function of both potential outcomes:

Y b,obsi = WiY
b
i (1) + (1−Wi)Y

b
i (0) (2)

Observed outcomes measurement

The human gut microbiome can be composed of trillions of bacteria. However, due to technology
limitations, the exact abundance and number of all species present in a human subject cannot be
measured. To tackle this limitation, we opted for the processing of Amplicon Sequence Variants
(ASVs) from our sequencing data to approximate the true gut microbiome composition of our study
population [22, 82]. ASVs refer to individual DNA sequences recovered from a high-throughput
marker gene analysis, the 16S rRNA gene in our case. Therefore, in this study the observed outcome
under investigation is a N ×A matrix, for a = 1, ..., A ASVs, an approximation of the N ×B matrix
described above. This limitation adds another layer of missing data, i.e., we are missing the true gut
microbial composition of each subject. We define the ASV counts we measured for each subject-i
as Ca,obsi , which corresponds to Y b∈A,obsi plus some measurement error.

Design stage: reconstruction of the conceptualized hypothetical experi-
ment

To assess causality, randomized experiments have long been regarded as the “gold standard”. We
are interested in the effect of environmental interventions that are often unpractical or ethical to
assign randomly to humans within an experiment [21]. Therefore, we resort to a design stage [88]
with a matched-sampling strategy to construct two hypothetical randomized experiments to assess
the effects of an intervention on the changes in gut microbiome composition. The aim of our pair-
matching strategy is to achieve balance in background covariates distributions as it is expected, on
average, in randomized experiments. This strategy attempts to create exchangeable groups as if the
exposure was randomly assigned to each participant, to guaranty exposure assignment is not, on
average, confounded by the measured background covariates.

Our pair-matching strategy aims to remove individual-specific confounding (e.g., years of age,
sex, unit of BMI). Briefly, subject i under W obs

i = 1 with pre-exposure covariates Xi is matched to
subject i?, under W obs

i? = 0 only if Xi? is “similar” to Xi. For each unit, the vector of covariates is
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given by Xi = (X
(1)
i , ..., X

(k)
i ). In order to ensure covariate balance, we only allow a treated unit to

be matched with a control unit if the component-wise distances between their covariate vectors are
less than some pre-specified thresholds δ1, ..., δk. For any pair of covariate vectors Xi and Xi? , we
define the difference between them as

∆(Xi, Xi?) =

{
0 if |X(k)

i −X(k)
i? | < δk for k = 1, ...K,

+∞ otherwise

This constrained pair matching can be achieved using a maximum bipartite matching [89] on
a graph such that: (i) there is one node per unit, partitioned into intervention nodes and control
nodes, (ii) the edges are pairs of treated and control nodes with covariates Xi and Xi? , and (iii) an
edge exists if and only if ∆(Xi, Xi?) < +∞. By construction, using a maximum bipartite matching
algorithm on this graph as implemented in the igraph R package produces the largest set of matched

pairs that satisfy the unit-specific proximity constraints set by our thresholds. Let NE =
∑N
i=1Wi

be the number of subjects under the environmental intervention and NC =
∑N
i=1 1−Wi the number

of control subjects, after matching.
After excluding the participants of the cohort that take antibiotics and had a cancer of the

digestive organ, the pre-matched data set consists of 1,967 participants. At this stage, the objective
to create balanced data subsets for which the plausibility of the ”unconfoundedness” assumption
is based on a diagnostic of our choice. We choose the thresholds according to the covariates pre-
matching distributions diagnostic plots (see Supplementary Figures 2-7). The thresholds are: the
absolute differences between the amount of alcohol consumption is less than δ1 = 25 g/day, between
the body-mass-index is less than δ2 = 4 kg/m2, between age is less than δ3 = 5 years, the diabetes
status (diabetic, non-diabetic) is identical, i.e., δ4 = 0, and so are sex (male, female), i.e., δ5 = 0,
and physical activity (active, inactive), i.e., δ6 = 0. Additionally, in the air pollution reduction
experiment: the smoking status (smoker, ex-smoker, never-smoker) is identical, i.e., δ7 = 0, and in
the smoking cessation experiment: the absolute difference between years of education is less than
δ7 = 3 years.

After matching, we obtain two subsets of the data that can be analyzed as coming from two
pair-randomized experiments: (i) an air pollution (ap) reduction hypothetical experiment (Nap =
198), and (ii) a smoking prevention hypothetical experiment (Ns = 542); both data sets exhibit no
evidence against covariate imbalance (see Table 2 and Supplementary Figures 2-7).

Air pollution Smoking
NC NE NC NE

Matching PM2.5 ≥ 13.0 µg/m3 PM2.5 ≤ 10.3 µg/m3 Smoker Never smoker
Before 206 193 302 908
After 99 99 271 271

Table 6: Before and after matching number of units. The thresholds for the air pollution experiment
are based on 90th and 10th percentiles of the PM2.5 distribution.

It is well known that diet has an influence on the microbiome and more studies on the gut
should include dietary intake data in their analysis [90, 91]. In our study, we only have access to
dietary intake data for a portion of our samples, therefore we look at balance diagnostics in usual
nutrient intake after matching in order to maintain a large data set before matching. Supplementary
Figures 8 and 9 show that after matching, our intervention and control units (in both hypothetical
experiment) do not exhibit imbalance with respect to the following food items: potatoes/roots,
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vegetables, legumes, fruits/nuts, dairy products, cereal products, meat, fish, egg products, fat, and
sugar.

Statistical analysis stage: randomization-based inference

To compare the gut microbiome of subjects under the environmental intervention to control subjects,
we choose to not rely on asymptotic arguments, but instead take a Fisherian perspective (i.e.,
randomization-based inference) [44, 92]. We test sharp null hypotheses (H0) of no effect of the
intervention for any unit by choosing test statistics that account for the complex microbiome data
structure, including the additional “layer” of missing data. The ASV-count data has a challenging
structure because: (i) it is high-dimensional, (ii) some ASVs have low prevalence, (iii) the ASVs
are strongly correlated, and (iv) it is compositional. ASV-count data is said to be “compositional”
because between units comparison of ASV counts might not be informative due to the limited
sequencing depth of the machine and the total number of sequenced reads varies from unit to unit
(i.e., they have no common denominator) [93].

In randomization-based inference the goal is to construct the null randomization distribution of a
test statistic assuming H0, T , by computing the values of the test statistic for all possible intervention
assignments. Because the number of assignments is very large, we calculate an approximating
p-value using Niter iterations, i.e., the proportion of computed test statistics that are as large
or larger than the observed test statistic: 1

Niter

∑Niter

l=1 1|Tl|≥|T obs|, where 1|Tl|≥|T obs| = 1 when

|Tl| ≥ |T obs|, and 0 otherwise. A small p-value shows that the observed test statistic is a rare
event when the null hypothesis is true, which indicates the results are worth further scrutiny [67].
In the following subsections, we describe the null hypotheses we test and the test statistics we
use to draw randomization-based inferences with Niter = 10,000 possible intervention assignments
following a matched-pair design. This means that the permutations of the intervention assignment
vectors needed to calculate the Fisher p-values follow the design of our hypothetical experiments.
When units have varying probabilities of being treated, the analysis of experiments, even when
hypothetical, should reflect their design [52, 88].

analysis level data transformation test statistic
richness breakaway [68] betta regression coefficient [53]

α-diversity DivNet [54] betta regression coefficient [53]
β-diversity pairwise distance matrices MiRKAT score statistic [69]

high-dimensional means centered log ratios mean abundance difference [55]
abundance normalization by ratio [56] LogFold mean difference
correlation association matrices [57] differential associations [58]

Table 7: Data transformation and choice of test statistics.

Diversity analyses

Within Subjects Diversity.
One of the challenges of analyzing ASV-count data is working around the low prevalence of some

ASVs that are due to the limited sequencing depth of the machine and the fact that some ASVs
are not shared in the entire population (see Supplementary Figure 1). Therefore, before directly
testing within-subject diversity differences with so called “plug-in” estimates, it has been recently
suggested to start with estimating the diversity with statistical models [53]. We will follow this
idea by estimating richness with the breakaway method [68] and estimating the Shannon index for
α-diversity with the DivNet method [54].
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Richness. The sharp null hypothesis of no effect of the intervention on the richness can be
written as: H0,R :

∑B
b=1 1Y b

i (0)>0 =
∑B
b=1 1Y b

i (1)>0. To estimate the richness of subject i (i.e., the

number of bacteria present in subject i), we will estimate the total richness in subject i, observed and
unobserved, by Bi with the breakaway model [68]. Let fi,1, fi,2, ... denote the number of bacteria
observed once, twice, and so on, in a subject i, and let fi,0 denote the number of unobserved bacteria,
so that Bi = fi,0 + fi,1 + fi,2 + .... The idea behind the breakaway method is that for each subject
i, it predicts the number of unobserved bacteria, fi,0, with a nonlinear regression model to, in turn,
provide an estimate of Bi.

α-diversity. The sharp null hypothesis of no effect of the intervention on α-diversity can be
written as: H0,α :

∑B
b=1 Y

b
i (0) =

∑B
b=1 Y

b
i (1). To have estimates for indices of the α-diversity of

subject i (i.e., its total microbial abundance) and their variance, we use the DivNet method, because
it accounts for the co-occurrence patterns (i.e., ecological networks) of bacteria in the microbial

community [54]. Let Zbi = Y bi /
∑B
b=1 Y

b
i ∈ [0, 1] denote the unknown relative abundance of bacteria

b in subject i, noting that
∑B
b=1 Z

b
i = 1. As a reminder, Ca,obsi denotes the number of times bacteria a

was observed in the stool sample of subject i in our data. One of the most common α-diversity indices
is the Shannon entropy [94], which is defined as: αi,Shannon = −

∑B
b=1 Z

b
i log(Zbi ). This index

captures information about both the species richness (i.e., number of species) and relative abundances
of the species: as the number of species in the population increases, so does the Shannon index, and as
the relative abundances diverge from a uniform distribution and become more unequal, the Shannon
index decreases. In the ecological literature, researchers mostly use the following maximum likelihood

estimate of αi,Shannon (often referred to as a “plug-in” estimate): −
∑A
a=1

Ca
i∑A

a=1 C
a
i

log
(

Ca
i∑A

a=1 C
a
i

)
.

It has been proven that this estimate is negatively biased [95]. Therefore, various corrections have
been proposed and are detailed in [54]. However, most of the suggested estimates are only functions
of the ASV count vectors Cai and do not utilize the full ASV count data matrix C and the co-
occurrence pattern, i.e., ecological network, of the ASVs. Willis & Martin [54] showed that these
networks can have substantial effects on estimates of diversity and proposed an approach, called
DivNet, to estimating diversity in the presence of an ecological network. DivNet estimates are based
on log-ratio transformations by fixing a “baseline” taxon for comparison, which are modeled by a
multivariate normal distribution to incorporate the co-occurrence structure between the taxa as the
covariance matrix. The main advantage of DivNet method is the use of information shared across
all samples to obtain more precise and accurate estimates.

Choice of test statistic. The test statistic we use to test H0,B and H0,α are the coefficient
of the intervention indicator estimated by the regression suggested by [53]. Using the coefficient of
a model as the test statistic of a Fisher test was introduced in the 70s [96]. At this stage, to achieve
larger bias reductions, frequentist regression models can be used to remove residual confounding
that was not accounted for, during the design stage [46, 47].

Willis et al. [53] suggest to test changes in richness (Bi) and α-diversity (α̂i) with a hierarchical
regression model, assuming that richness is a function of: the intervention indicator Wi, random
variation that is not attributed to the covariates, and the standard error previously estimated with
breakaway or DivNet (because not every bacteria in each subject was observed so we cannot not
know the true richness or α-diversity for any i). The regression models are built with the betta

function available in the breakaway R package [53, 68].

Between Subjects Diversity.
β-diversity. Distance-based analysis is a popular approach for evaluating the association

between an exposure and microbiome diversity. The pairwise distances, dii? , for high-dimensional
data we consider are the: UniFrac (unweighted) distance [97], Jaccard index, Aitchison distance
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[98] (i.e, euclidean distance on centered log-ratio transformed data), and Gower distance [99] (on
centered log-ratio transformed data). We choose the unweighted paired UniFrac, because it is a
proper distance metric as opposed to the generalized UniFrac. The same applies to the Jaccard
distance as opposed to the commonly used Bray-Curtis. The sharp null hypothesis of no effect of
the intervention on β-diversity can be written as: H0,β : dii?(0) = dii?(1).

Choice of test statistic. Despite the popularity of distance-based approaches, they suffer
from technical challenges, especially in selecting the best distance. Therefore, we use the suggested
microbiome regression-based kernel association test (MiRKAT) [69] that uses a kernel regression and
a standard variance-component score test statistic [100]. To consider different distance measures,
the optimal MiRKAT: tests H0,β for each individual kernel, obtains the p-value for each of the tests,
and then adjust for multiple comparison with a p-value with an omnibus test. Instead, we will use
a fully randomization-based multiple comparison adjustment method detailed subsequently.

Multiple comparison adjustments. We will follow the fully randomization-based proce-
dure for multiple comparisons adjustments suggested by [73], which is directly motivated by the
intervention assignment actually used in the experiment. In our case a hypothetical matched pair
experiment. Both the unadjusted and adjusted p-values in the procedure are randomization-based,
so do not require any assumptions about the underlying distribution of the data. The adjusted
p-values are calculated following Step 1-4:

1. Calculate unadjusted p-values for the observed test statistic as explained previously. For each
hypothesis h, h = 1, ..,H, record the Th,iterβ = (T 1,1

β , ..., TH,Niter

β ), where iter = 1, ..., Niter.

2. For each h and each Th,iterβ , calculate an unadjusted randomization-based p-value. For each
iteration iter, record the minimum p-value of the H p-values.

3. The repetitions of Step 2 capture the joint randomization distribution of the test statistics and
thus, of the unadjusted p-values.

4. To calculate the adjusted p-values for the observed test statistics, take the proportion of
“minimum p-values” (recorded in Step 2) that are less than or equal to the unadjusted p-value
calculated in Step 1.

Step 2-3. essentially represent a translation of the multiple test statistics into p-values sharing a
common 0-1 scale.

Composition analyses

Compositional equivalence.
The compositionality problem means that: a change in abundance (i.e., sequenced counts) of

a taxon in a sample induces a change in sequenced counts across all taxa. This problem, among
others, leads to many false positive discoveries when comparing taxon abundances between groups.
Moreover, because the components of a composition must sum to unity, directly applying standard
multivariate statistical methods intended for unconstrained data to compositional data may result
in inappropriate and misleading inferences [98]. Therefore, we impose a centered log-ratio transfor-
mation of the compositions before testing the null hypothesis of no difference in average microbial
abundance as suggested by [55].

For the measured microbiome data C, the centered log-ratio matrices L = (Li, ..., LN ) are de-

fined by Lai = log
( Ca

i

g(Ci)

)
, where g(Ci) = (

∏A
a=1 C

a
i )1/a denotes the geometric mean of the vector

Ci = (C1
i , ..., C

A
i ). The sharp null hypothesis of no microbiome composition difference between the

subjects under the intervention vs. not can be written as H0,M: for each subject i, Li(0) = Li(1).
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Choice of test statistic. The scale invariant test statistic suggested by [55] for testing H0,M

is based on the differences L̄a,obsE −L̄a,obsC , where L̄a,obsE = 1/NE
∑
i:Wi=1 L

a
i is the sample mean of the

centered log ratios for subjects under the intervention. Because microbiome data are often sparse
(i.e., only a small number of taxa may have different mean abundance), the following test statistic is

considered: TM = NENC

NE+NC
max

1≤a≤A
(L̄a,obs

E −L̄a,obs
C )2

γ̂aa
, where γ̂aa are the pooled-sample centered log-ratio

variances.

Differential abundance
Morton et al. recommended to choose reference frames for testing changes in individual bacteria

abundance with compositional data [101]. Accordingly, a DACOMP (i.e., differential abundance
testing for compositional data) approach has been developed [56]. It is a data-adaptive approach
that: 1) identifies a subset of non-differentially abundant (reference) ASVs (R) in a testing dataset,
and 2) tests the null of no differential abundance (DA) of the other ASVs (a) “normalized-by-ratio”
in a training dataset. First, a bacteria enters the set R = (r1, ..., rF ) if it has low variance (<
2) and high prevalence (> 90%) (see Supplementary Figures 12 and 13). For the analyses at the
ASV level, we chose the variance to be < 3 and the prevalence to be > 40% as thresholds in order
the have at least one reference per subject. Second, using the suggested “normalization-by-ratio”
approach, the null hypothesis to be tested for ASV a is that ASV a is not differentially abundant:

H
(a/∈R)
0,DA :

Ca
i (0)

Ca
i (0)+

∑R
f=1 C

rf
i (0)

=
Ca

i (1)

Ca
i (1)+

∑R
f=1 C

rf
i (1)

,

Choice of test statistic. To test this sharp null hypothesis, we use the LogFold change avail-
able in the dacomp package with the Compute.resample.test function. This function is useful
to perform randomization-based inference for differential abundance testing, because it enables to
directly incorporate a matrix of hypothetically randomized intervention assignments, which is an

appealing feature when researchers work with particular designs. Because we are testing H
(a/∈R)
0,DA

||A||−||R|| times at all taxonomic rank levels, we adjust for multiple tests with the method described
in the β-diversity analysis section [73].

Partial correlation structure
For our matched intervention and control subjects, we predicted microbial association networks

using the Sparse InversE Covariance estimation for Ecological ASsociation Inference (SPIEC-EASI)

framework [57] that uses 1) centered log-ratio transformations of the observed ASV counts, Ca,obsi ,
to perform 2) Sparse Inverse Covariance selection (with the graphical lasso method [102]), and finally
3) pick a model based on edge stability (with the StARS method [103]) to obtain a sparse inverse
covariance matrix. The non-zero entries of this matrix are proportional to the negative partial
correlations among the taxa and form the edge set in an undirected weighted graph G = (V,E).
Here, the vertex (or node) set V = v1, ..., vp represents the p genera and the edge set E ⊂ V ×V the
possible associations among them. The null hypotheses of no effect of the environmental intervention
on the observed genera network associations can be expressed as: H0,N : E(0) = E(1).

Choice of test statistic. We compare the intervention and control networks with test statistics
for the difference in genera associations individually. To generate sampling distributions of the test
statistics under H0,N, the intervention and control labels are reassigned 10,000 times to the samples
while the matched pair structure is kept. The SPIEC-EASI framework is then re-applied to each
permuted data set. This procedure is implemented with the Network Construction and Comparison
for Microbiome Data, NetCoMi, R package [58]. To adjust for multiple differential association tests,
we use the method described in the β-diversity and differential abundance analyses section [73].
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Summary stage: interpretation of the results

If the null hypothesis of no difference in the gut microbiome between the matched groups of treated
and control units is rejected, that difference warrants further scrutiny to assess whether it can
be attributed to the different treatments, assuming the assignment “unconfoundness” assumption
holds. We can then report that the gut microbiome composition was or was not altered by the
introduction of the environmental intervention. It is important to note that interpretation should
be restricted to units that remain in the finite sample after matching (see their detailed characteristics
in Supplementary Figures 2-9). The data do not provide direct information for “unmatched” units.
Cautiousness regarding extrapolation to units with covariate values beyond values observed in the
balanced subset of the data is necessary.

Supplementary materials

The following are available online.
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The KORA cohort data discussed in the paper is available upon request via the kora.passt portal:
https://epi.helmholtz-muenchen.de. The code for analysis and visualisation of the data are ac-
cessible on the following GitHub public repository: https://github.com/AliceSommer/Pipeline_
Microbiome. A tutorial to get acquainted with the framework and an open source data is ac-
cessible on the following GitHub public repository: https://github.com/AliceSommer/Causal_

Microbiome_Tutorial.
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