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Abstract  26 

Background 27 

The mortality of COVID-19 disease is very high among males or elderly or individuals having 28 

comorbidities with obesity, cardiovascular diseases, lung infections, hypertension, and/or 29 

diabetes. Our study characterizes SARS-CoV-2 infected patients' metagenomic features with or 30 

without type 2 diabetes to identify the microbial interactions associated with its fatal 31 

consequences.  32 

Method 33 

This study compared the baseline nasopharyngeal microbiome of SARS-CoV-2 infected diabetic 34 

and non-diabetic patients with controls adjusted with age and gender. The mNGS were 35 

performed using Ion GeneStudio S5 Series and the data were analyzed by the Vegan-package in 36 

R. 37 

Results 38 

All three groups possessed significant bacterial diversity and dissimilarity indexes (p<0.05). 39 

Spearman’s correlation coefficient network analysis illustrated 183 significant positive 40 

correlations and 13 negative correlations of pathogenic bacteria (r=0.6-1.0, p<0.05), and 109 41 

positive correlations among normal-flora and probiotic bacteria (r>0.6, p<0.05). The SARS-42 

CoV-2 diabetic group exhibited a significant increase of pathogens (p<0.05) and opportunistic 43 

pathogens (p<0.05) with a simultaneous decrease of normal-flora (p<0.05). The molecular 44 

docking analysis of Salivaricin, KLD4 (alpha), and enterocin produced by several enriched 45 

probiotic strains presented strong binding affinity with Shiga toxin, outer membrane proteins 46 

(ompA, omp33) or hemolysin.  47 

Conclusion 48 

The dysbiosis of the bacterial community might be linked with severe consequences of COVID-49 

19 infected diabetic patients, although few probiotic strains inhibited numerous pathogens in the 50 

same pathological niches. This study suggested that the promotion of normal-flora and probiotics 51 

through dietary changes and reduction of excessive pro-inflammatory states by preventing 52 

pathogenic environment might lead to a better outcome for those co-morbid patients. 53 
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Introduction: 54 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiological root of the 55 

COVID-19 pandemic, which has affected over 83 million people worldwide in 2020 1. The virus 56 

expresses itself with highly variable severity, ranging from no outward symptoms to severe 57 

respiratory distress 2.  One of the most common questions in the scientific community, why some 58 

patients are asymptomatic and others (especially co-morbid patient) have fatal consequences, 59 

remains largely unknown. The mortality rate of COVID-19 is very high among males or elderly 60 

or individuals having comorbidity with obesity, cardiovascular diseases, lung infections, 61 

hypertension, and/or diabetes. The SARS-CoV-2 mortality was 50% in males and 43% in 62 

females among ICU patients in Lombardy, Italy 3. The incidence of mortality is 12.2/1000 63 

among male ICU patients than 9.9/1000 among female ICU patients per day in that city. SARS-64 

CoV-2 infected diabetic patients' mortality is 7.8% compared to 2.7% in non-comorbid patients 65 

in China 4. In Italy, 29.8% of the SARS-CoV-2 infected diabetic patients died in May 2020. The 66 

study found that the risk factors of death increased by 3.2 times from SARS-CoV-2 infection 67 

when associated with diabetes 5. Considering the transmission rate of this infection and that over 68 

463 million people are already afflicted with hyperglycemia 6, adequate research into 69 

management of SARS-CoV-2 infection in diabetic patients is required for public safety. Almost 70 

2 million people died in 2020 so far, and the outcome of this pandemic can be far more 71 

disastrous than that. The genetic sequences of SARS-CoV-2 is largely analyzed. As of 31st of 72 

December 2020, a total of 254,153 whole-genome sequences of SARS-CoV-2 have been 73 

performed 7; however, the pathogenicity, carriage information, and the interactions with 74 

commensals or opportunistic bacteria of this virus are still unclear. What’s more, the 75 

development of respiratory coinfections is reported to be associated with COVID-19 disease 76 

severity and fatality in many cases 8, 9, 10. 77 

Metagenomic analysis is popularly used to understand the diversity and pathogenesis of 78 

microbial populations in a group of subjects. However, metagenomics based on next-generation 79 

sequencing (mNGS) is rarely applied to the clinical samples of SARS-CoV-2 4, 11, 12. This 80 

technology can be used to uncover all microbiome interacting in the same pathological niche 81 

which leads to ultimate pathophysiological conditions. The present study aims to perform meta-82 

transcriptomic and in-depth bioanalysis to characterize SARS-CoV-2 diabetic and non-diabetic 83 
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patients compared with controls to identify the microbial interaction associated with the fatal 84 

consequences.  85 
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Methods:  86 

Patients 87 

Seven SARS-CoV-2 positive samples and four SARS-CoV-2 negative controls were included in 88 

this study. All positive cases were selected from the continuous surveillance at the Genome 89 

Center, Jashore University of Science and Technology covering four districts of Bangladesh, 90 

Jashore, Jhenaidah, Magura, and Narail authorized by the Directorate General of Health 91 

Services, Bangladesh, for the screening of COVID-19. Among those seven positive cases, three 92 

patients had a history of type 2 diabetes with two reported deaths. Four age and sex-matched 93 

subjects were included in this study, as healthy (N=2) controls and unknown etiology controls 94 

(N=2), confirmed as SARS-CoV-2 negative by rt-PCR. Both healthy controls have no history of 95 

fever or other illness or uptake of antibiotics in the last six months. Among them, one has type 2 96 

diabetes mellitus and the other does not have any chronic health complications. The unknown 97 

etiology controls were SARS-CoV-2 negative, of these, one has hypertension, renal malfunction 98 

and died. Three of those four had SARS-CoV-2 antibody-negative tested by All Check COVID-99 

19 IgG/IgM antibody assay kit (CALTH Inc., Republic of Korea) except the deceased patient. 100 

Metagenomic NGS sequencing 101 

Total nucleic acids were extracted from 300 µL of nasopharyngeal samples and eluted with 60 102 

µL sterile RNase-free water using a commercial kit (Zymo total nucleic acid, USA). Total NA 103 

concentration was assayed by Qubit RNA HS Assay Kit (Thermo Fisher Scientific, USA) with 104 

Qubit 4 Fluorometer. The extracts were enriched and processed for library preparation using kit 105 

Ion Total RNA-Seq Kit v2.0 (Thermo Fisher Scientific, USA) according to the manufacturer’s 106 

instructions with a minor modification. In brief, RNA fragmentation was performed using RNase 107 

III treatment for 3 minutes at 37°C following the magnetic bead cleanup to optimize the library 108 

size at about 200 bp. After adapter ligation of each sample, cDNA was prepared and Ion 109 

Xpress™ RNA-Seq Barcode BC primers (Thermo Fisher Scientific, USA) were added. The 110 

amplification of the barcoded cDNA was extended to18 cycles instead of 16 due to low 111 

concentration nucleic acid in the samples. The final concentrations of the libraries were diluted 112 

into 200 picomolar (pM) instead of 100 pM as suggested in the manufacturer’s protocol. One 113 

extraction control with sterile water and 11 unknown samples were used for the library 114 

preparation. In three mNGS run, four equimolar libraries were pooled for the preparation of 115 
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template-positive Ion Sphere™ Particles (ISPs) using the Ion 520™ & Ion 530™ Kit – OT2 116 

(Thermo Fisher Scientific, USA) on the Ion One Touch™ 2 System (Thermo Fisher Scientific, 117 

USA). Template-positive ISPs were enriched on Ion One Touch™ ES system (Thermo Fisher 118 

Scientific, USA). The enriched template-positive ISPs and control ISPs were loaded in Ion 119 

520/530™ chip and sequenced with the next-generation sequencing in the Ion S5TM systems 120 

(Thermo Fisher Scientific, USA).  The data outputs were analyzed using the automated, 121 

streamlined Torrent Suite software (v5.10.0). The primary baseline data were obtained after 122 

removing duplicated reads, the average quality scores below Q20, low-quality 3-end reads and 123 

adapter sequences. 124 

The CGView Server (http://stothard.afns.ualberta.ca/cgview_server/) was used to construct the 125 

circular ring of SARS-CoV-2 genome comparison using the blastn 13 and SARS-CoV-2 isolate 126 

Wuhan-Hu-1 (NC_045512.2) was used as a reference. Average nucleotide identity (ANI) was 127 

calculated using jSpecies 14 to compare the SARS-CoV-2 genome with the reference genome.  128 

Bioinformatics processing and taxonomic assignment  129 

The Binary Alignment Map (bam) files were transferred to FASTQ format through SAMtools 15 130 

followed by filtering through BBDuk 16, 17 (with options ftm = 5, k = 21, mink = 6, minlen = 30, 131 

ktrim = r, qtrim = rl, trimq = 20,  overwrite = true) to remove all low-quality sequences. On 132 

average, 1.34 million reads per sample (maximum=3.18 million, minimum=0.45 million) passed 133 

the quality control step (Supplementary Data 1). The host sequences from the trimmed files were 134 

removed by aligning to the human genome (hg38) by using Burrows-Wheeler Aligner (BWA) 18 135 

and SAMtools 15. The taxonomic assignment has been done by Kraken2 19 with NCBI RefSeq 136 

Release 201 database (Bacterial, Viral, Archaeal, and Fungal). Less than 100 hits were not 137 

considered for bacteria and fungus, and less than 10 hits were not considered for virus and archea 138 

for analysis. Data normalization was performed by previously described methods by multiplying 139 

the mean with the proportion 20. 140 

Statistical analyses 141 

The alpha diversity of microbial communities among different groups were compared by 142 

calculating the Shannon and Simpson 1-D diversity indexes, Observed, and the Chao-1 richness 143 

index using the “Vegan” package in R. The non-parametric test Kruskal-Wallis rank-sum test 144 

was used to evaluate alpha diversity and the pairwise Wilcoxon rank-sum test was used to assess 145 
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pairwise comparison in different groups. Beta-diversity (PCoA) was determined using the Bray–146 

Curtis dissimilarity index, using permutational multivariate analysis of variance 147 

(PERMANOVA), to estimate a p-value for differences among the study groups. Phyloseq and 148 

vegan packages were employed for those statistical analyses 21. Spearman’s correlation 149 

coefficient and significance tests were calculated using the R package Hmisc. A correlation 150 

network was constructed and visualized with Gephi (ver. 0.9.2). A quantitative analysis of 151 

comparative RNA-seq data using shrinkage estimators for dispersion and fold change was 152 

employed for differential bacterial species with a statistical significance (q-value) <0.01 and 153 

absolute value of log2 (Fold Change) > 3 using DESeq2 (v4.0). The Benjamini-Hochberg 154 

correction was used to obtain FDR adjusted p-values (q-values) for multiple hypothesis testing 155 

22. 156 

 157 

Determination of protein structures and their binding affinity 158 

The SWISS-MODEL homology modeling webtool and I-TASSER were utilized for generating 159 

the three-dimensional (3D) structures of the extracellular toxin protein of the probiotics or outer 160 

membrane protein of the pathogen found in our study.  We employed CPORT to find out the 161 

active and passive protein-protein interface residues of the proteins and peptides. The molecular 162 

docking of the bacteriocin and virulent protein of the pathogens were performed using the 163 

HADDOCK (v2.4) to evaluate the interaction. The binding affinity of the twenty-four docked 164 

complexes was predicted using the PRODIGY. 165 

Ethical Approval 166 

Ethical approval to conduct this metagenomic study was granted by the Ethical Review 167 

Committee of the Jashore University of Science and Technology (ERC no: 168 

ERC/FBST/JUST/2020-41).  Informed consent was taken from all the COVID-19 positive 169 

patients and healthy volunteers.  170 
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Results: 171 

All 11 study subjects were divided into three groups, the control group (N=4), SARS-CoV-2 172 

positive group without any history of comorbidity (N=4) and SARS-CoV-2 positive diabetic 173 

group. There was no significant difference in age and BMI index in all groups (p-value 0.20 And 174 

0.49 respectively). The detailed patient demography with symptoms, severity, and outcomes 175 

were described in detail in supplementary table s1. 176 

SARS-CoV-2 RNA quantification and genomic data analysis 177 

Metagenomic sequence data analysis retrieved three complete (GISAID Accession ID: 178 

EPI_ISL_746318, EPI_ISL_746319 and EPI_ISL_746323) and one partially complete genome 179 

sequences of SARS-CoV-2 out of 7 positive samples. Their phylogenetic GISAID clades were 180 

GH (Spike D614G, N S194L, NS3 Q57H, NSP2 S263F, NSP3 P74L, NSP12 P323L), G (Spike 181 

D614G, N G204R, N R203K, NS3 Q57H, NSP2 I120F, NSP12 P323L, NSP15 R138C) and GR 182 

(Spike D614G, E N66B, N G204R, N R203K, NS3 D210B, NS3 P42L, NS6 E55G, NSP2 I120F, 183 

NSP3 D1121B, NSP12 N209B, NSP12 P323L, NSP13 L428F). The partial and complete 184 

sequences of SARS-CoV-2 were plotted and visualized in a circular ring (Figure s1). The 185 

complete genomes were aligned with the reference genome of SARS-CoV-2 isolate Wuhan-Hu-186 

1 (NC_045512.2) and the aligned nucleotide was found 86%, 99% and 98% with the reference 187 

genome. 188 

In all seven SARS-CoV-2 positive samples, the average RNA copies were 231,375 among 189 

outpatients, 198 among ICU patients and 2,600 among departed patients. No significant 190 

relationship was found between the RNA copies and the severity of the disease (Data not 191 

shown).  192 

Microbial diversity and dissimilarity index 193 

The comprehensive assessment of microbial population on the host traits using α-diversity-based 194 

association analysis found diverse microbial populations in all three groups of samples, however, 195 

they were statistically nonsignificant. The microbial diversity of the control, SARS-CoV-2 non-196 

diabetic and SARS-CoV-2 diabetic groups were non-significant in Shannon (p=0.18), Simpson 197 

(p=0.23), Observed (p=0.15) or Chao (p=0.19) (Figure s2). Visualization of community 198 

compositions was observed by the Principal Coordinates analysis of Bray-Curtis indicated a 199 

significant dissimilarity index in those groups [ PERMANOVA: Pseudo-F =1.77, p= 0.047). The 200 
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control group and SARS-CoV-2 non-diabetic group tended to take a position in the middle of the 201 

plot, unlike the SARS-CoV-2 diabetic group. Data from a deceased patient in this co-morbid 202 

group was even more scattered. The number of taxonomic units (species) in the control, SARS-203 

CoV-2 non-diabetic and diabetic group were 134, 120, and 162, respectively. More than 14% 204 

were shared by all three groups and more than 18% were overlapped between SARS-CoV-2 205 

positive diabetes and non-diabetes group (Figure s3).  206 

Bacterial diversity and dissimilarity index 207 

The bacterial populations on the host traits were also assessed by α-diversity-based association 208 

analysis among the three groups and the Shannon diversity index exhibited significant bacterial 209 

diversity (p=0.05). However, Simpson (p=0.09), Observed (p=0.18) or Chao (p=0.18) diversity 210 

index differ insignificantly (Figure 1). The Principal Coordinates analysis of Bray-Curtis index 211 

PERMANOVA analysis found significant (PERMANOVA: Pseudo-F=2.012, p=0.02) 212 

dissimilarities in bacterial species among those groups.  213 

At phyla level, Firmicutes were the most abundant in all three groups following Bacteroidetes 214 

and Proteobacteria. Fusobacteria were abundant only in the control group (Figure s4). This study 215 

identified 207 bacterial species among all cases, of which 22 were pathogens, 30 were 216 

opportunistic pathogens, 20 were normal-flora, 8 were probiotic and 127 were commensals. The 217 

two-way ANOVA analysis found that 41% (9/22) of the pathogens, 47% (14/30) of the 218 

opportunistic pathogens, 20% (4/20) of the normal-flora, 25% (2/8) of the probiotics and 20% 219 

(25/127) of the commensals were differing significantly between the groups (Table s2). 220 

Abundance of pathogens, opportunistic pathogens, normal-flora and probiotics 221 

The most abundant species were Clostridium botulinum, Bacillus cereus, Prevotella 222 

melaninogenica, Escherechia coli, Staphylococcus aureus, Prevotella oris, Proteus mirabilis, 223 

Pasteurella multocida, Lacrimispora sphenoides, Tennerella forsythia, Salmonella enterica and 224 

Alkalihalobacillus pseudofirmus present in all groups. The SARS-CoV-2 positive diabetic group 225 

consisted of 41 pathogens/opportunistic pathogens (Figure 2A and 2B). Of which, Acinetobacter 226 

nosocomialis, Shigella flexneri, Bordetella pertussis, Dialister pneumosintes, Sterptococcus 227 

orlis, E. fergusonia, Achoromobacter sp. Selenomonas sp., Cutibacterium acnes, 228 

Dolosigranulum pigrum, Pseudomonas aeruginosa and Stenotrophomonas maltophilia were 229 

present solely in that group. Furthermore, K. pneumoniae, E. coliO157:H7, Yersinia pestis, 230 
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Porphyromonas and Enterobacter were present in both SARS-CoV-2 positive diabetic and non-231 

diabetic groups. In contrast to that, Neisseria meningitidis, Haemophillus pittmaniae and 232 

Streptococcus parasanguinis were present only in the control group. Moreover, 12 out of 20 233 

species of normal-flora were solely found in the control group, although they were absent in both 234 

SARS-CoV-2 positive diabetic and non-diabetic group. Only three species of normal-flora were 235 

common in all groups and four species of normal-flora were present in both the control and the 236 

SARS-CoV-2 positive diabetic group, the rest was found only in the SARS-CoV-2 diabetic 237 

group (Figure 2C). All known probiotic species of Streptococcus, Lactobacillus, Enterococcus or 238 

Bifidobacterium were absent in the control group. 239 

The DESeq2 RNA sequence data analysis illustrated the difference of bacterial species between 240 

the groups (Figure 2D, 2E and 2F). Several pathogen, opportunistic pathogens and normal-flora 241 

differ significantly SARS-CoV-2 diabetic and non-diabetic group compared to control 242 

(Benjamini-Hochberg corrected p < 0.05) (Figure 2D, 2E). 243 

Networking of bacteria  244 

Spearman’s correlation coefficients analyses illustrated 183 significant positive correlations with 245 

r range of 0.6 to 1 (P < 0.05) among all pathogen and opportunistic pathogen. Pseudomonas 246 

aeruginosa positively associated with 14 other pathogenic bacteria including Dialister 247 

pneumosintes, E. coli O157:H7, Prevotella intermedia, Acinetobacter nosocomialis and 248 

synergistically correlated with Clostridium botulinum. D. pneumosintes was positively associated 249 

with 12 other pathogenic bacteria. The increasing abundance of Tennerella forsythia in SARS-250 

CoV-2 diabetic group compared to control was also associated with 11 other pathogenic bacteria. 251 

K. pneumoniae was positively associated with Yersinia pestis, E. coli O157:H7, Enterobacter 252 

sp., S. enterica, Streptococcus oralis. H. parainfluenzae, was positively associated with H. 253 

pittmaniae, N. meningitidis, Alloprevotella sp. and Tennerella sp. A total of 13 significant 254 

negative correlations (P < 0.05) were observed associated with C. botulinum ranging from -0.67- 255 

to -0.77 correlation (r) value.  256 

Correlation analysis (P < 0.05) with probiotics and normal-flora were found to have 109 positive 257 

correlations with r > 0.6. Control group featured with a cluster of 15 normal-flora, mostly of 258 

Leptotrichia and Bacteroides, positively associated with each other. In SARS-CoV-2 diabetic 259 
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group, 6 of normal flora and 6 probiotics were showing significant positive associations (Figure 260 

3B). 261 

Probiotic’s bacteriocins vs pathogen’s outer membrane or toxins 262 

The structure of Salvaricin G32, KLD4 (alpha), Lactacin F, Thermophylin and Lactocin F were 263 

generated as released by the specific probiotic bacteria identified in this study (Figure 4). The 264 

structure of Enterocin produced by Enterococcus faecium and pathogenic proteins were available 265 

in the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, 266 

http://rcsb.org) 23. All bacteriocins released by those probiotics and pathogenic proteins were 267 

showing variable strength of binding affinities (Table 1). The more negative the score the 268 

stronger the bond. The KLD4 (alpha) of Ligilactobacillus salivarius shows higher binding or 269 

neutralizing capacity against Outer membrane protein, Omp33 of A. baumanii, Shiga toxin of E. 270 

coli O157:H7, Hemolysin of the P. intermedia. Lactacin F of Lactobacillus johnsonii showed the 271 

highest binding affinity against the outer membrane protein A of K. pneumoniae. 272 
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Discussion: 273 

SARS-CoV-2 virus infected over 83 million people including 1.8 million deaths globally in 274 

2020. The infections caused by this virus affected mostly people with old age, obesity, type 2 275 

diabetes, hypertension and cardiovascular diseases, especially among males 24. Microbiome 276 

analysis of co-morbid patients is thus imperative to understanding the influence of microbiota on 277 

immune processes in SARS-CoV-2 infections 25. Our study compared the baseline 278 

nasopharyngeal microbiome of SARS-CoV-2 infected diabetic and non-diabetic patients with 279 

controls adjusted with age and gender. The SARS-CoV-2 genome identified among the study 280 

enrolled patients belonged to G, GR and GH phylogenetic clades. These three clades cover more 281 

than 85% of the strains worldwide 26. Our study also analyzed various alpha (α) and beta (β) 282 

diversity indexes to observe metagenomic variations in all samples. α-diversity provides the 283 

effect of disparity in species to understand microbial communities and diversities on a host. The 284 

α-diversity profile for bacteria in our study indicated that the control, SARS-CoV-2 diabetic, and 285 

non-diabetic groups have a significant exponential Shannon diversity index (p=0.05). β-diversity 286 

provides the index of variation in species composition among different habitats. The β-diversity 287 

bray matrix PERMANOVA analysis in this study indicated significant dissimilarities of all 288 

microbial communities (p=0.04) and bacterial inhabitants (p=0.02) in all three groups. 289 

Firmicutes, Bacteroidetes and Proteobacteria were found abundantly in all three groups. 290 

However, Fusobacteria were highly abundant in the control group and Actinobacteria were 291 

highly abundant in SARS-CoV-2 diabetic group (Figure s4). The dominance of Firmicutes in 292 

diabetic patients were also described in other studies 27, 28. 293 

The bacterial species in SARS-CoV-2 diabetic and non-diabetic groups were pathogens enriched 294 

compared to control (Figure 2A); however, the SARS-CoV-2 diabetic group was enriched with 295 

opportunistic pathogens compared to others (Figure 2B). In this study, the SARS-CoV-2 diabetic 296 

group consisted of 18 (82%) pathogens, 23 (77%) opportunistic pathogens, 8 (40%) normal-flora 297 

and 6 (75%) probiotics compared to the control group which consisted 12 (55%) pathogens, 14 298 

(47%) opportunistic pathogens, 19 (95%) normal-flora and no (0%) probiotic. SARS-CoV-2 299 

non-diabetic group contained 14 (64%) pathogens, 10 (33%) opportunistic pathogens, 3 (15%) 300 

normal-flora and 3 (38%) probiotics. The Kruskal-Wallis significance test of variance 301 

demonstrated that the SARS-CoV-2 diabetic patients possess a significantly increased species of 302 

pathogens (p<0.05) and opportunistic pathogens (p<0.05) compared to the control and SARS-303 
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CoV-2 non-diabetic group. The taxonomic unit (species) of pathogenic bacteria (both pathogens 304 

and opportunistic pathogens) in this study were 41 in SARS-CoV-2 diabetic group compared to 305 

26 in the control and 24 in SARS-CoV-2 non-diabetic group (Figure 2A, 2B). A similar finding 306 

was reported in a comparative cross-sectional study by 9 which demonstrated that the SARS-307 

CoV-2 infected ICU patients harbored more pathogenic bacteria and viruses. Another recent 308 

study 29 also reported a significantly higher abundance of opportunistic pathogens in SARS-309 

CoV-2 infected patients, such as Streptococcus, Rothia, Veillonella, and Actinomyces; and a 310 

lower relative abundance of beneficial symbionts compared with healthy human. In our study, 311 

the controls were enriched with numerous species of normal-flora compared to both SARS-CoV-312 

2 positive groups (Figure 2C). The control group contained 19 species of normal-flora which was 313 

reduced to 8 in SARS-CoV-2 diabetic group and only 3 in SARS-CoV-2 non-diabetic group. A 314 

group of researchers reported that the specific intestinal microbiota of COVID-19 patients 30 315 

could suppress the SARS-CoV-2 attachment. The severe patients might have featured dysbiosis 316 

and the normal microbiota has been replaced with pathogenic bacteria 31. Hyperglycemia, 317 

inflammation and severe oxidative stress in a patient’s physique may alter the oral microbiome 318 

32. Other evidence also suggested an association of dysbiosis of the normal microbiota due to 319 

diabetes 33, 34. Moreover, studies on SARS viral epidemic demonstrated that co-infection was one 320 

of the major complications in prolonged hospitalization and mechanical ventilation. Pathogenic 321 

bacteria like E. faecalis, K. pneumonia, A. baumannii, and Stenotrophomonas maltophilia 322 

inhabited inside the oral cavity can also cause nosocomial infections 35. Several studies found 323 

that opportunistic pathogens were the most common cause of secondary infections in viral 324 

epidemic 36, 37. Pathogenic bacteria like Legionella pneumophila 38,  N. meningitidis, Moraxella 325 

catarrhalis 39 were known to be associated with influenza co-infection.  Porphyromonas 326 

gingivalis, also found in our study, was an important cause of periodontitis 40. The use of 327 

antibiotic to prevent secondary infections may also lead to the loss of normal-flora and probiotics 328 

causing dysbiosis in patients with COVID-19. 329 

One interesting finding in our study was the absence of H. pneumoniae, N. meningitidis, S. 330 

parasanguinis and H. pittmaniae in the SARS-CoV-2 diabetic groups, unlike other pathogenic 331 

bacteria (Figure 2A). However, those bacteria significantly enriched the control groups in our 332 

study which was also evident by Qin et al 34 and his research team. Another interesting feature in 333 

our study was the significant reduction of normal-flora in both SARS-CoV-2 patient groups such 334 
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as Leptotrichia, Bacteroides, Fusobacterium, Chorynebacterium and Bernesiella spp., indicating 335 

the imbalance of microbiota (Figure 2D-2F). Moore et al 41 also found a significant reduction of 336 

Fusobacterium periodonticum in the nasopharynx during SARS-CoV-2 infections. Those 337 

bacterial flora found in the oral cavity may inhibit pathogenic bacteria by producing 338 

antimicrobial substances such as bacteriocins, lactic acid and hydrogen peroxide which might 339 

create a hostile condition for the pathogenic bacteria 30. The presence of probiotic species with 340 

several pathogens and opportunistic pathogens in the SARS-CoV-2 diabetic group revealed that 341 

those probiotics might assist the host by inhibiting those pathogenic bacteria. Our docking 342 

analysis provided an evidence of this hypothesis. The binding affinities indicate the bacteriocins 343 

from these probiotic bacteria had a strong binding affinity with the pathogenic toxins or outer 344 

membrane proteins suggesting that they have the capacity to inhibit the pathogens (Table 1).  345 

The correlation coefficient network analysis in this study found significant positive associations 346 

(N=183) and few negative associations (N=13) among the pathogenic bacteria in SARS-CoV-2 347 

infected diabetic patients. The notable associations were observed in SARS-CoV-2 diabetic 348 

group with 32 species of pathogenic bacteria (both pathogens and opportunistic pathogens) 349 

compared to 11 species in SARS-CoV-2 non-diabetic and 8 species in control group (Figure 3A). 350 

This analysis indicated various patterns of pathogenic networks in theSARS-CoV-2 diabetic 351 

group especially among enteric pathogens, nosocomial bacteria and other opportunistic 352 

pathogens. However, this analysis found no correlation in the most abundant species between the 353 

control group and SARS-CoV-2 positive non-diabetic patients. 354 

The co-occurrences of network among the probiotic and normal-flora identified several 355 

significant positive associations (N= 109) but no synergistic correlations. There was a separate 356 

cluster of 15 normal-flora in the control group with 90 significant positive associations which 357 

were absent in SARS-CoV-2 positive diabetic and non-diabetic groups (Figure 3B). The 358 

decrease of normal-flora in the later groups indicated that they were outnumbered by the 359 

pathogenic species mentioned above. The increase of pathogenic environment results in a non-360 

productive busy immune response in the host which ultimately suppresses the adaptive immune 361 

response against SARS-CoV-2. Nevertheless, increased species of probiotic strains (N=6) in the 362 

SARS-CoV-2 diabetic group compared to the control group (N=0) and SARS-CoV-2 non-363 

diabetic group (N=3) indicated an inadequate resistance against highly abundant pathogenic 364 
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bacteria. Another study 42 demonstrated that immunomodulatory probiotics, Rothia 365 

mucilaginosa, K. oxytoca, Enterobacter kobei, Bacillus cereus, Faecalibacterium prausnitzii etc. 366 

were enriched at COVID-19 positive patients.  Our study had a limitation that the microbiome 367 

analyses was performed with small number of individuals studied. In developing countries, this 368 

limitation is quite common because of paradoxical situations; doubled price of metagenome 369 

reagents in developing countries, extended delivery time with  short period of expiry, and 370 

unavailability of reagents during the peak times of COVID-19 infections. Therefore, there are 371 

very few data reported from those regions where the highest number of patients are having 372 

comorbidity. However, our preliminary observations and hypothesis were supported by 373 

appropriate statistical methods and the results are compared with suitable controls. 374 

 375 

Conclusions 376 

The SARS-CoV-2 positive diabetic patients were possessed by significantly increased 377 

pathogenic species compared to the control and SARS-CoV-2 non-diabetic group. In both 378 

groups, the normal-flora strains were replaced by numerous pathogenic bacterial species which 379 

might correlate the severity and outcome of complications. Patients within the SARS-CoV-2 380 

positive non-diabetic group exhibited significantly increased opportunistic pathogens compared 381 

to the control. Those dysbiosis suppressed the adaptive immune response against SARS-CoV-2 382 

because of induced immune response against those pathogenic bacteria. Presence of few 383 

probiotic species among the SARS-CoV-2 diabetic patients indicated that those probiotics were 384 

inhibiting the pathogens as observed in our study. However, the numbers might not be 385 

competitive enough to provide successful protection as seen within deceased patients. One 386 

approach for maintaining a healthy microbiome in SARS-CoV-2 diabetic patients might include 387 

promoting probiotics and normal-flora by dietary changes and reducing pro-inflammatory states. 388 

Relocation of the microbial balance with normal-flora and sufficient probiotics may prevent 389 

pathogenic environments and excessive inflammations that might enhance the adaptive immune 390 

response, leading to better outcomes for the SARS-CoV-2 diabetic patients. 391 

 392 

 393 
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Table 1: Binding affinity energy of Bacteriocins from probiotic bacteria with toxins or outer 396 

membrane protein of pathogens. 397 

 

Bacteriocins 

Outer membrane 

Protein A 

Klebsiella pneumoniae 

Outer membrane 

protein Omp33 

Acinetobacter baumanii 

Shiga toxin 

E. coli 

O157:H7 

Hemolysin 

Prevotella 

intermedia 

Salivaricin G32:  

Streptococcus salivarius 

-10.4 -12.9 -9.8 -9.6 

KLD4(alpha):  

Ligilactobacillus salivarius 

-6.5 -14.7 -14.4 -10.1 

LactacinF:  

Lactobacillus johnsonii 

-12.1 -11.1 -8.4 -8.1 

Thermophylin:  

Streptococcus thermophilus 

-9.2 -12.9 -9.7 -6.5 

Lactocin 705: 

Latilactobacillus 

-8.5 -12.8 -10.2 -8.2 

Enterocin:  

Enterococcus faecium 

-9.7 -13.0 -10.9 -9.3 

  398 
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Figure 1: Bacterial α-diversity-based association analysis by (A) Shannon diversity index, (B) 536 

Simpson diversity index, (C) observed, and (D) Chao. (E) Principal coordinate analysis by Bray-537 

Curtis dissimilarity index among healthy, recovered and deceased patients. 538 

Figure 2: Comparison of bacterial species with relative abundance among the groups of cases. 539 

(A) Presence of known pathogenic species with the relative intensity of bacterial genome. (B) 540 

Presence of opportunistic pathogen among different groups with relative abundances. (C) The 541 

relative abundance of normal-flora and known probiotic species (red highlights). (D) The 542 

significant difference of bacterial species and phyla by DESeq2 analysis with log2fold changes 543 

between control and SARS-CoV-2 diabetic group (p<0.05) (E) The significant difference of 544 

bacterial species by DESeq2 analysis with log2fold changes between control and SARS-CoV-2 545 

non-diabetic group (p<0.05) (F) The significant difference of bacterial species by DESeq2 546 

analysis with log2fold changes between SARS-CoV-2 diabetic group and SARS-CoV-2 non-547 

diabetic group (p<0.05).  548 

Figure 3: (A) The network analysis showing the co-occurrence patterns of pathogen 549 

opportunistic pathogen. Positive spearman correlation represents (r > 0.6) with significant (P < 550 

0.05) correlation and negative Spearman correlation (r) range -0.67- from -0.77with significant 551 
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(P < 0.05) correlation. The node size is proportional to the mean abundance of the species. 552 

(B)The network analysis showing the co-occurrence patterns of probiotics and normal-flora. 553 

Positive spearman correlation represents (r > 0.6) with significant (P < 0.05) correlation and no 554 

negative correlation was found here. The node size is proportional to the mean abundance of the 555 

species. 556 

Table 1: Binding affinity energy of Bacteriocins from probiotic bacteria with toxins or outer 557 

membrane protein of pathogens. 558 

 

 

Bacteriocin 

Outer membrane 

Protein A 

Klebsiella 

pneumoniae 

Outer membrane 

protein Omp33 

Acinetobacter 

baumanii 

Shiga toxin 

E.coli 

O157:H7 

Hemolysin 

Prevotella 

intermedia 

Salivaricin G32_Streptococcus 

salivarius 

 -10.4 -12.9 -9.8 -9.6 

KLD4 (alpha)_Ligilactobacillus 

salivarius 

-6.5 -14.7 -14.4 -10.1 

LactacinF_Lactobacillus 

johnsonii 

-12.1 -11.1 -8.4 -8.1 

Thermophylin Streptococcus 

thermophilus 

-9.2 -12.9 -9.7 -6.5 

Lactocin 705_ bacteriocin 

[Latilactobacillus] 

-8.5 -12.8  

-10.2 

 

-8.2 

Enterocin _Enterococcus 

faecium 

-9.7 -13.0 -10.9 -9.3 

 559 

Figure 4: Putative three-dimensional structure of Salvaricin G32, KLD4 (alpha), Lactacin F, 560 

Thermophylin and Lactocin F produced by specified probiotic bacteria. The structures were 561 

generated using I-TASSER. 562 
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