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Abstract

Diffusion tensor imaging (DTI) aims to non-invasively characterize the anatomy and integrity of the
brain’s white matter fibers. To establish individual-specific precision approaches for DTI, we defined
its reliability and accuracy as a function of data quantity and analysis method, using both simulations
and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individ-
ual). DTI methods that allow for crossing fibers (BedpostX [BPX], Q-Ball Imaging [QBI]) estimated
excess fibers when insufficient data was present and when the data did not match the model priors.
To reduce such overfitting, we developed a novel crossing-fiber diffusion imaging method, Bayesian
Multi-tensor Model-selection (BaMM), that is designed for high-quality repeated sampling data sets.
BaMM was robust to overfitting, showing high reliability and the relatively best crossing-fiber accuracy
with increasing amounts of diffusion data. Thus, the choice of diffusion imaging analysis method is
important for the success of individual-specific diffusion imaging. Importantly, for potential clinical
applications of individual-specific precision DTI, such as deep brain stimulation (DBS), other forms of
neuromodulation or neurosurgical planning, the data quantities required to achieve DTI reliability are
lower than for functional MRI measures.

1. INTRODUCTION:

Brain function is critically dependent on white
matter tracts for inter-lobe communication [1].
Studies of white matter tracts connecting dis-
tant regions of the brain have greatly advanced

our understanding of systems-level brain organi-
zation [2]. Damage to white matter via dysmyeli-
nation, demyelination, stroke, or trauma, is a key
feature of many neurological disorders [3–6].

Diffusion tensor imaging (DTI) is an MRI tech-
nique that provides information about water dif-
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fusion, which that can in turn be used to probe
white matter organization. DTI entails acquisi-
tion of multiple diffusion weighted images (DWI),
each of which is sensitized to water diffusion in a
particular direction. At least six orthogonally ori-
ented DWIs are required to estimate a single dif-
fusion tensor representing the orientation of white
matter fibers at a given location in the brain [7–
9]. Several shape and orientation characteristics
may be extracted from the estimated diffusion
tensor: fractional anisotropy (FA), radial diffusiv-
ity (RD), axial diffusivity (AD), mean diffusivity
(MD), and orientation angles in terms of polar
coordinates θ and φ. While a model describing a
single tensor is theoretically adequate for simple
fiber pathways, the single-tensor model has well
recognized limitations for describing the complex,
often interleaved orientation of multiple crossing
fiber pathways in the human brain. By contrast,
more complex models potentially can account for
multiple diffusion compartments and thus resolve
crossing fibers [10–15].

Early DTI studies acquired the minimum re-
quirement of six orthogonal DWIs for comput-
ing a single diffusion tensor [9]. With improve-
ments in MRI hardware and software and the
demand for more complex DTI models, acquisi-
tion schemes have increased in complexity. Clini-
cal DTI studies typically acquire 12-30 DWIs per
patient, while research studies typically acquire
30-60 DWIs per participant [16]. Recent large,
multi-site studies such as the Human Connectome
Project (HCP, [17]) and the Adolescent Brain
Cognitive Development (ABCD, [18]) study, col-
lected 297 and 103 DWIs per participant, respec-
tively. Collecting even more data per individ-
ual, through repeated sampling has been infor-
mative for functional MRI (precision functional
mapping [PFM]) [19–21]. PFM has revealed in-
dividual variants in functional network architec-
ture that went undetected with typical amounts
of data per subject [22–25] By analogy, inten-
sive acquisition of DWIs in individuals could be
similarly fruitful in the study of structural brain
connectivity. Earlier studies have examined re-
liability and accuracy in diffusion imaging stud-
ies using less than 60 diffusion directions [26, 27],

by comparing mean FA [16, 28, 29], reliability of
tract-averaged FA [30, 31], and capacity to resolve
crossing-fiber models [32, 33]. However, it is un-
clear what degree of within-individual reliability
could be achieved by collecting much larger quan-
tities of DTI data.

Therefore, we acquired repeated DTI scans
over multiple sessions. Three individuals were
scanned on multiple days and we acquired 9 -
14 complete DWI datasets per individual using
the ABCD study sequence [18]. This sequence in-
cludes 103 DWIs (7 B0; 4 b-value shells; ~6.5 min-
utes). These repeated sampling data were used to
study how DTI data quantity and analysis meth-
ods impact reliability and accuracy. We pseudo-
randomly sampled DWI encodings in a manner
that maintained approximately constant angular
coverage (see Methods for details, and validation
in Figure S1), to systematically evaluate reliabil-
ity using varying number of spatially distributed
DWI. While earlier work had suggested 30 spa-
tially distributed DWIs could be sufficient to esti-
mate a diffusion tensor [27], more complex models
had not been similarly tested.

Three crossing-fiber models were compared:
Bayesian Multi-Tensor Model-selection (BaMM),
the novel method we developed, FSL’s BedpostX
(BPX) [10, 11, 34], and Constant Solid Angle Q-
ball Imaging (QBI; [12, 35]. As a control, we also
tested two single-tensor estimation methods: lin-
ear least squares (LLS) and single-tensor Bayesian
(STB) [7, 8, 36]. Pertinent model estimation dif-
ferences may be summarized as follows: BaMM
and BPX both use a partial volume models as-
suming a variable number of radially symmet-
ric fiber compartments. BaMM incorporates a
model selection approach to estimate the number
of fiber compartments. BPX uses automatic rel-
evance determination (ARD) to down-weight un-
necessary fiber compartments. QBI estimates the
diffusion orientation distribution function (ODF)
in terms of spherical harmonics. We assessed dif-
fusion model estimation accuracy and reliability
as a function of data quantity in both real and
simulated data.
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2. METHODS

2.1. Voxelwise Parameter Estimation
We evaluated five parameter estimation meth-

ods: two methods (Bayesian Multi-Tensor Model-
Selection [BaMM] and FSL’s BedpostX [BPX])
used the ball and sticks model [10]; the third
crossing fiber method (Constant Solid Angle
Q-Ball Imaging [QBI]) used spherical harmon-
ics [35]; and two methods (Linear Least Squares
[LLS] and Single Tensor Bayesian [STB]) used the
classic single tensor model [7].

2.1.1. Bayesian Multi-Tensor Model-Selection
(BaMM) modeling Ball and Sticks

We developed a Bayesian model selection al-
gorithm followed by parameter estimation of the
winning model [36]. BaMM evaluated three com-
peting models derived from the ball and sticks
model (zero, one, or two fibers in Eq. 1).
Model selection and parameter estimation used
a Markov-Chain Monte Carlo (MCMC), with
Metropolis-Hastings sampling, and simulated an-
nealing procedure. The model selection penalty
was scaled based on the input data size.

2.1.2. FSL’s BedpostX [BPX]):
The ball and stick model, developed by

FSL [10], is an alternative to the single diffu-
sion tensor model [10, 11]. This model is a
multi-compartment model, in which the first
compartment models the diffusion of free water
as isotropic (ball), and the rest of the k com-
partments model diffusion along several axial
fiber directions with zero diffusion in the radial
direction (sticks). The predicted diffusion signal
is:

µi = S0[(1− Σkfk )exp(−bid)+

Σkfkexp(−bid(gTi xk )2 )] (1)

where i indexes encoding direction and k indexes
compartment. S0 is the signal with no diffusion
weighting and µi is the signal with a diffusion gra-
dient applied along the unit vector gi with b-value

bi on diffusion signal d. The fk are volume frac-
tions for each fiber compartment. Each fiber com-
partment is modeled as a stick-like tensor oriented
along xk. We employed FSL’s BedpostX 6.0.0 to
evaluate BPX [34]. The Bayesian parameter es-
timation approach uses Automatic Relevance De-
termination (ARD) to down weight unnecessary
fibers. BPX estimates angles θ and φ but not FA,
MD, AD, or RD. Angles θ and φ are estimated for
every direction (indeed by k). We ran BedpostX
using the default settings unless noted otherwise:
2 fibers, weight = 1, and burn in = 1000.

2.1.3. Constant Solid Angle Q-Ball Imaging
(QBI)

Q-ball imaging is a widely used reconstruction
scheme that estimates the orientation distribution
function (ODF) through a spherical tomographic
inversion [12]. The original Q-ball imaging im-
proved the ODF estimation by considering the
constant solid angle (CSA; [35]. E.g., QBI uses
spherical deconvolution to estimate the underly-
ing fiber distribution. For ease of comparison to
the other methods (LLS, STB, BPX, and BaMM),
we estimated the angle of the peaks given by
the ODF surface generated by QBI (Figure 1B).
Peaks were selecting based on a normalized ODF
probability greater than 0.3 and with a matching
antipodal peak defined as two peaks having an
absolute value dot product greater than 0.99.

2.1.4. Linear Least Squares (LLS)
The LLS method solves an overdetermined sys-

tem of linear equations by single value decom-
position [7, 37]. The solution yields a diffu-
sion tensor D, which can be decomposed into
eigenvalues (λ1, λ2, λ3, Figure 1A) and eigenvec-
tors (ν1, ν2, ν3). Derived quantities are fractional
anisotropy (FA), radial diffusivity (RD), axial dif-
fusivity (AD), mean diffusivity (MD). In addition,
the orientation of the principal axis of diffusion
can be characterized in terms of polar angles rel-
ative to the Z-axis (θ) and azimuthal rotation in
the XY plane (φ, Figure 1A [10].

2.1.5. Single Tensor Bayesian Estimation (STB)
The single tensor Bayesian method estimates

the posterior probability of the set of parameters,
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Figure 1: Estimated Tensor and Angles (A) For LLS
and STB, the tensor describing Brownian diffusion of wa-
ter was calculated. Three eigenvalues are used to describe
the tensor shape. From the largest eigenvector, two an-
gles are estimated to describe the tensor orientation in
3D space. For BaMM and BPX, a stick corresponding
to eigenvector-1 is estimated and its angles reported. (B)
CSA-QBI reports fifteen spherical harmonic values, from
which a 3D surface is estimated. The surface is colored
by the ODF. The surface/ODF peaks are extracted (black
line) and angles ϕ and θ estimated to match in A.

ωi = (θ, φ, λ1, λ2, λ3, S0) in voxel j, given the sin-
gle tensor model M with relevant background in-
formation I:

P (ωj|Mj, I) ∝ P (Mj|ωj, I)P (ωj|I) (2)

The background information I is given as several
priors that reflect biological constraints: λ1, λ2, λ3
are limited to between 0 and 3 mm2/s, the bio-
logical range of diffusion in white matter, and θ, φ
are limited between 0 and π owing to the direc-
tional symmetry of the diffusion tensor. In STB,
the model M is the diffusion signal, µi, (see be-
low) and tensor, D, defined above. To estimate
the model parameters, we used standard Monte
Carlo Markov Chain methods [36].

2.2. Simulated Data:
Simulated data were generated using the Gaus-

sian tensor model [7, 8]:

µi = S0

(
exp

(
−bi • xiRx

′
i

)]
(3)

where S0 is the signal with no diffusion weighting,
µi is the signal with a diffusion gradient applied
along the vector xi with b-value bi, and R is the
diffusion tensor. S0, was fixed at 1000; bi and
xi matched twelve acquisitions of the ABCD se-
quence [18]. Three cases were simulated:

2.2.1. Single Tensor:
The first test case simulates highly organized

white matter with a single principal direction, as
would be expected to be found in the mid-sagittal
part of the corpus callosum. R was defined to
have an anisotropy of 0.86, with angles θ and φ
set to 1.8 and 2.8 radians, respectively. Rician
noise was added to emulate a signal to noise ratio
(SNR) of 30, 50, and 100 [38], to create three data
sets at varying SNR.

2.2.2. Two Crossing Tensors:
The second test case simulates two highly or-

ganized, crossing white matter tracts. The simu-
lations were generated as two highly anisotropic
tensors, R1 and R2. A range of possibilities was
explored by varying the SNR, tensor fraction, FA,
and crossing angle of the tensors. Values were
varied as follows: SNR = 30, 50, 100; tensor frac-
tion equal weighting, 60%:40%, 70%:30%; FA =
0.6:0.6, 0.6:0.8, 0.8:0.8; crossing angle = 30, 60,
90.

2.2.3. Three Crossing Tensors:
The final test case simulates three highly orga-

nized, crossing white matter tracts. The simula-
tions were generated as three highly anisotropic
tensors, R1, R2, and R3. A range of possi-
bilities was explored by varying the SNR, ten-
sor fraction, FA, and crossing angle of the ten-
sors. Values were varied as follows: SNR
= 30, 50, 100; tensor fraction equal weight-
ing, 40%:34%:26%, 53%:34%:13%; FA = 0.6:0.6,
0.7:0.7:0.7, 0.8:0.8:0.8; crossing angle = 30, 60, 90.

2.3. Repeatedly Sampled Individual-Specific
Data:

2.3.1. Participants and Study Design
Three individuals who participated in a study

of the effects of arm immobilization functional
connectivity contributed data [25]. Participants
(25yoF, 27yoM, 35yoM) were scanned daily for
two weeks prior to an experimental intervention
(unilateral arm casting). Data acquired during
and after the casting period are not analyzed in
this paper. The Washington University School
of Medicine Institutional Review Board provided
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experimental oversight. Participants provided in-
formed consent for all aspects of the study and
were paid for their participation.

2.3.2. MR Image Acquisition
Single-shot echo planar diffusion-weighted MRI

was acquired on a Siemens 3T Prisma using a 64-
channel head coil. Sequence parameters were: 75
contiguous axial slices, isotropic (2x2x2 mm^3)
resolution, TR/TE 3500/83 ms, four shells (b-
values 0.25, 0.5, 1.0, and 1.5 ms/mm2). This se-
quence includes 103 volumes and 96 encoding di-
rections. Acquisition time per scan was 6.5 min.
Total DWI scans (distributed across scanning ses-
sions) for the three subjects were 9, 12, and 14,
resulting in a total of 864, 1140, and 168 total
encoding directions, respectively.

2.3.3. DWI Processing
We applied FSL’s Eddy current correction and

top-up [39, 40] to each DWI acquisition. Each
participant’s DWI was registered to their struc-
tural data. During eddy correction, FSL calcu-
lated total movement of each DWI relative to the
first volume. We excluded volumes with frame-
wise displacement greater than 0.5 mm [41]. The
mean and standard deviation of displacement in
millimeters relative to the prior volume for each
subject were: 0.24 and 0.13 for subject 1; 0.29 and
0.19 for subject 2; and 0.38 and 0.23 for subject 3.
Diffusion tensor maps were computed using FSL’s
tool DTIFIT [42].

2.3.4. Creation of Reliability Curves Using Per-
mutation Resampling

Model estimation with permutation subsam-
pling was used to quantitatively estimate mod-
eled parameter variability. This approach was
used for both simulated data and real human
data. All available DWI volumes were concate-
nated. Subsamples covered the shell surface ap-
proximately evenly (Figure 2A). Solid angle sec-
tors were defined by dividing the shell into sixteen
bidirectional groups (Figure 2B). The XY-plane
was divided into four quadrants and polar angle
(θ) was divided into four intervals equating ar-
clength. For each permutation, we ensured that

Figure 2: B-Vector selection Subjects were scanned ev-
ery day for two weeks, with 96 unique B-vector directions
acquired each scan. A) All 1152 B-Vectors from the daily
scans plotted on a single sphere. B) B-Vectors were sub-
divided by their position on the sphere into 16 groups of
equal surface area, 4 of which are shown. Encodings were
pseudo-randomly selected from the 16 groups to obtain
approximately uniform angular sampling over the sphere.

all sixteen solid angle sectors were approximately
evenly sampled.

For all parameter estimation methods (BaMM,
BPX, QBI, LLS, STB), we compared the
estimation of modeled diffusion parameters
(FA, AD, RD, AD, MD, θ, φ} over the range
N = 10 up to all available data, in approxi-
mately logarithmically spaced increments. DWI
volumes were quasi-randomly selected accord-
ing to the above-described scheme. These steps
were repeated over 1000 permutations at each
subsampling size. For single tensor shape dif-
fusion parameters (FA, AD, RD, MD}, the
parameter estimate variability was defined as

eN = 〈(xi − χT )2 〉1/2/χT (4)

Where xi represents a parameter estimate
(FA, AD, RD, AD, MD} obtained from an
individual permutation, χT is the “true” value
obtained using all available data or the ground
truth in simulations, and the bracket denotes
mean over permutations. −

eN was plotted as a
function of sample size (N), creating reliability
curves for each parameter. Since diffusion is
estimated as a bipolar tensor that is symmetric
around the origin, the error estimation for angles
θ, φ was modified accordingly to account for
modulus pi.
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2.3.5. Mean Error Threshold Whole Brain Maps
To generate a voxel-wise heatmap visualizing

the threshold sample size N needed to reach a
mean error less than 5% for each voxel, we con-
ducted the permutation testing described above
on every voxel of the brain using the LLS method.
The mean error was calculated for each voxel at
each value of N . A heatmap was created for each
diffusion metric, such that voxels are colored by
the number of measurements needed to reach a
mean error < 5%, where a lower value of N is
shown in cool colors, and a larger N is in warm
colors. If the voxel never reached a mean error <
5% at a sample size of 1000, the voxel is colored
in red.

3. RESULTS

3.1. Single Tensor Simulations: BaMM Detects a
Single Fiber More Accurately Than BPX or
QBI

Brain anatomy shows that some regions of the
brain, such as the corpus callosum, have a sin-
gle dominant fiber direction. Thus, we first eval-
uated the DTI methods with simulated single
tensor fiber data. To test the accuracy and re-
liability of diffusion metrics, we used permuta-
tion subsampling of the simulated diffusion data
to estimate parameter variability for all cross-
ing fiber methods (BaMM [Bayesian Multi-tensor
Model-selection], BPX [BedpostX], QBI [Q-Ball
Imaging]) and single tensor methods (LLS [Linear
Least Squares], STB [Single Tensor Bayesian]).
We plotted the estimated radian value of the an-
gles (φ, θ) to highlight the number of fibers es-
timated at each DWI sample size. Open circles
represent the results of individual permutations
and are colored according to the number of fibers
estimated (Figure 3).

Multiple SNR values were tested to track SNR’s
effect on reliability and accuracy. The forward-
modeled parameter space for simulated single ten-
sors was: SNR 50 (Figure 3), 30, and 100 (Figure
S2 for BaMM, BPX, and QBI, and S3 for LLS and
STB). Initially, default settings were used for all
modeling schemes: BaMM and QBI up to three

fibers; BPX two fibers (for same analyses using
BPX with other settings see Figure S4).

BaMM accurately estimated the orientation of
the single forward modeled principal eigenvector,
even with limited quantities of data (> 20 DWI
samples; blue/sky blue symbols Figure 3A-B, S2).
However, BPX generally falsely estimated two
fibers (68.8% of permutations at DWI = 10, at
least 90% of permutations at DWI > 120), even
when given large quantities of data (Figure 3A-
B, S2). At DWI < 200, the angle of the sec-
ond fiber was broadly distributed over the inter-
val 0 to π (green/olive symbols Figure 3A-B). At
DWI > 400, BPX continued to estimate two fibers
separated by a small angle, the mean of which
closely approximated the single modeled princi-
pal eigenvector. When the max number of fibers
was increased to 3 (default 2), BPX falsely esti-
mated three fibers in the majority of permutations
(39.0% of permutations at DWI = 10, linearly in-
creasing to 88.4% of permutations at DWI = 1000;
Figure S4).

QBI estimated one, two or three fibers given
different numbers of DWI. At < 90 DWI, QBI
was most likely to estimate three fibers that were
broadly distributed over the interval 0 to π, and
also frequently estimated two or one or two fibers
(at 10 DWI, 90% of permutations estimated three
fibers, 10% estimated two. By 80 DWI, 47%,
42%, and 11% of permutations estimated three,
two, and one fiber respectively). Unlike BPX,
QBI consistently and accurately estimated a sin-
gle fiber at higher DWI quantities (300 DWI: 12%,
31%, and 57% of permutations estimated three,
two, and one fiber, respectively. Over 90% of per-
mutations estimated a single fiber at > 460 DWI.

Mean measurement error was calculated rela-
tive to the forward-modeled angle or shape met-
ric, to quantify the accuracy of each method as
a function of the number of diffusion measure-
ments (Figure 3C, Eq. 4). Log error is plotted
by color according to the most frequently esti-
mated number of fibers at each subsampling size.
For BaMM, (Figure 3C), error linearly decreased
with increasing subsampling size. In contrast, for
BPX a linear decrease of error with increasing
subsampling measurements was only detected for
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the secondary fiber (green/olive) but not the pri-
mary fiber (red/pink). QBI’s error decreased with
increasing subsampling sizes only for the primary
fiber, while the second and third fiber had very
high errors.

We also evaluated the accuracy of the single
tensor methods LLS and STB on simulated single
tensor data. As expected and similar to BaMM,
LLS and STB estimation of FA, AD, RD, MD,
and angles φ and θ improved with increasing num-
ber of diffusion measurements (Figure S3).

3.2. Two Tensor Simulations: BaMM Is Overfit-
ting Robust

Next, we simulated two crossing fibers, as com-
monly detected in deep white matter, e.g., within
the crossing of the superior longitudinal fasciculus
and uncinate (Figures 4, S5-8). We explored the
following forward-modeled parameter space: fiber
crossing angle (30◦, 60◦, 90◦), relative weight of
fiber compartments (50/50, 60/40, 70/30), SNR
(30, 50, 100), and FA of tensors (0.6/0.6, 0.6/0.8,
0.8/0.8). The parameter space was chosen to ex-
plore fiber orientation, relative size of fiber com-
partments, SNR, and the respective FA of the
fiber compartments. Figure 4 shows the results
of 90◦ crossing angle, 60/40 relative weight, SNR
50, and FA of 0.8/0.8. Results corresponding to
the full parameter space are reported in the Sup-
plemental Figures (Figures S5-7, BaMM, BPX,
and QBI respectively). Results were consistent
across the parameter space, with slight variations
in subsampling size needed to reach specific error
thresholds. The single tensor models tested (LLS
and STB), estimated the two crossing fibers as a
weighted average and the single tensor’s principal
eigenvector reflects this inaccurate shape assump-
tion (Figure S8). Again, default settings were
used for all modeling schemes: BaMM and QBI
up to three fibers; BPX two fibers (for same anal-
yses of BPX using other settings see Figure S9).

BaMM consistently and correctly estimated
two fibers for > 30 DWI (red/pink and green/olive
symbols Figure 4A-B, full parameter space in Fig-
ure S5). In contrast, BPX estimated two fibers
at all but the smallest subsampling size (DWI =
10; Figure 4A-B, S6) when using default settings.

When we increased BPX’s maximum allowable
number of fibers to 3 (Figure S9), BPX frequently
estimated three fibers for all DWI subsampling’s
and the angle error increased in all three fibers
when excess fibers were estimated.

Similar to the single tensor data, QBI incor-
rectly estimated three fiber directions at DWI <
150 (Figure 4A-B, S7). Even though two fiber
directions were most commonly found at higher
sampling density, some permutations still demon-
strated three fiber directions at all subsampling
sizes (62% at 100 DWI, 44% at 300 DWI, 33% at
500 DWI, 14% at 800 DWI).

3.3. Three Tensor Simulations: Accurate Esti-
mates Achieved with Fewest DWIs using
BaMM

The final simulated data we evaluated was of
three crossing tensors, potentially observed in
crowded areas of deep white matter, such as the
corticospinal tract in the internal capsule. We ex-
plored the following forward-modeled parameter
space similar to two-crossing tensors: fiber cross-
ing angle (30◦, 60◦, 90◦), relative weight of fiber
compartments (33/33/33, 26/34/40, 13/34/53),
SNR (30, 50, 100), and FA of tensors (0.6/0.6/0.6,
0.7/0.7/0.7, 0.8/0.8/0.8). Figure 5 shows the
results of 90◦ crossing angle, 40/34/26 relative
weight, SNR 50, and FA of 0.8/0.8/0.8. Results
corresponding to the full parameter space are re-
ported in the Supplemental Figures (Figures S10-
12, BaMM, BPX, and QBI respectively). Re-
sults were consistent across most of the parameter
space. All methods showed the lowest accuracy
for the narrowest crossing fiber angle (30◦).

BaMM consistently estimated three fiber com-
partments with sufficient data (DWI > 200, Fig-
ure 5A-B, S10). We increased BPX’s max possi-
ble fibers to 3 to match the simulated data, and
then BPX estimated three fiber compartments at
all subsampling sizes (Figure 5A-B, S11). As
with prior modeling, BaMM and BPX correctly
determined there were three fiber compartments
and accurately estimated φ and θ for the three
fibers with increasing sampling density. QBI most
frequently estimated three fiber directions at all
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Figure 3: Accuracy of DTI Measures: Simulated Single Tensor (A) ϕ angle estimations by Bayesian Multi-tensor
Model-selection (BaMM), BedpostX (BPX), and constant solid angle Q-Ball Imaging (QBI). Open circles represent the
results obtained by repeated permutation sampling. Same color legend for all data panels. Permutations that resulted in
a single fiber direction are plotted in blue (ϕ). Permutations that resulted in two fibers are plotted in red (ϕ) and green
(ϕ). Permutations that resulted in three fibers are plotted in purple (ϕ), orange (ϕ), teal (ϕ). (B) θ angle estimations.
Permutations are plotted in sky blue (θ) for one fiber, pink (θ) and olive (θ) for two fibers, and lilac (θ), salmon (θ),
cyan (θ) for three fibers. (C) Error estimation for BaMM, BPX, and QBI. Mean error at each subsampling size was
calculated, then plotted on a log scale. The same colors as in (A/B) are used and indicate the most frequent number of
fibers estimated at each subsampling size.
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Figure 4: Accuracy of DTI Measures: Simulated Two Crossing Tensors The tensors were oriented such that
they were perpendicular to each other. The first tensor had larger weighting equal to 60% of the signal. Rician noise was
added for an SNR = 50. (A) ϕ angle estimations by Bayesian Multi-tensor Model-selection (BaMM), BedpostX (BPX),
and constant solid angle Q-Ball Imaging (QBI). Open circles represent the results obtained by repeated permutation
sampling. Same color legend for all data panels. Permutations that resulted in a single fiber direction are plotted in
blue (ϕ). Permutations that resulted in two fibers are plotted in red (ϕ) and green (ϕ). Permutations that resulted in
three fibers are plotted in purple (ϕ), orange (ϕ), teal (ϕ). (B) θ angle estimations. Permutations are plotted in sky
blue (θ) for one fiber, pink (θ) and olive (θ) for two fibers, and lilac (θ), salmon (θ), cyan (θ) for three fibers. (C) Error
estimation for BaMM, BPX, and QBI. Mean error at each subsampling size was calculated, then plotted on a log scale.
The same colors as in (A/B) are used and indicate the most frequent number of fibers estimated at each subsampling
size.
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sampling densities, yet often estimated one or two
fibers < 500 DWI (Figure 5A, S12).

For the three tensor simulations, BaMM and
BPX log errors decreased almost linearly with
an increase in the number of diffusion measure-
ments (Figure 5C). QBI approached the expected
relationship between log error and sample size
once three fiber directions were consistently es-
timated (>500 DWI), yet still had higher error
than BaMM and BPX at the largest subsampling
sizes.

3.4. Whole Brain Reliability Mapping Reveals
Very High Data Requirements in Gray Mat-
ter

To test reliability of diffusion metrics in hu-
man data (highly sampled, individual-specific),
we used permutation subsampling of all available
data to estimate whole-brain parameter variabil-
ity (FA, RD, AD, MD, φ, θ), using the Linear
Least Squares (LLS) method. LLS was used be-
cause none of the other methods were computa-
tionally tractable for whole brain analyses of this
type, and whole brain reliability maps were de-
sired to help identify anatomically defined regions
of interest (ROI’s) (Figures 3-5). Figure 6 (and
S13) shows the number of DWIs required to reach
a mean error (RMSE) < 5% at each voxel. Error
is now reported as the deviation from the mean
when using the full sample (Eq. 4) rather than
relative to the ground truth as in the prior simu-
lations. AD, RD, and MD had less measurement
error than FA and the angles φ and θ across most
of the brain. In parts of the corpus callosum, only
20 DWIs were required for an FA RMSE < 5%.
For most deep white matter voxels (e.g., corti-
cospinal tracts, frontal crossing tracts), about 100
DWI samples were sufficient for an FA RMSE <
5%. In comparison, gray matter voxels required
300-500 measurements to reach an FA RMSE <
5%.

3.5. Corpus Callosum: Only BaMM Estimates
Single Fiber < 600 DWIs

To examine individual-specific diffusion metric
reliability with highly sampled data, across meth-
ods, several regions of interest (ROIs) were se-

lected based on the whole-brain, voxel-wise LLS
reliability maps (Figure 6) and prior anatomical
knowledge. Figure 7 shows diffusion estimates in
a voxel of the corpus callosum exemplifying highly
anisotropic diffusion (Figure 7A; MNI: -1, 22, 9;
Subject 2. This ROI in Subject 2 with BPX max
3 fibers in Figure S14. Subjects 1 and 3 in Figures
S15-16 and S17, respectively): this ROI was cho-
sen because it is strongly expected to contain only
a single white matter fiber direction. Reliability
curves for LLS and STB angles are shown in Fig-
ure 7B. As in the simulated single tensor data,
these single tensor estimation methods showed
low error rates (now reflecting reliability rather
than accuracy), even for low DWI numbers.

Figure 7C-D shows the angle estimation results
of the three more complex models: BaMM, BPX,
and QBI. BaMM estimated only a single fiber
in the corpus callosum, regardless of the number
of DWIs in the subsample, with angles φ and θ
closely matching the results observed with single
tensor methods (see Figure 3, S3).

In contrast, BPX consistently estimated two
fibers in the corpus callosum across all numbers
of DWIs (unless otherwise specified, BPX results
used default settings of max two fibers. BPX
with max 3 fibers for this ROI in Figure S14).
The principal fiber (red/pink) generally matched
the orientation obtained with the other estimation
methods (BaMM, QBI). At low sampling den-
sity, the angle of the second fiber estimated by
BPX was broadly distributed over the interval 0
to π (green/olive). For DWI counts > 400, BPX
continued to estimate two fibers, the average of
which matched the orientation found by BaMM
and QBI.

Similar to the simulated data, QBI estimated
three fibers for subsamples with < 200 DWI, two
fibers < 400 DWI, and a single fiber for > 400
DWI. For subsamples with < 200 DWI, QBI was
most likely to estimate three fibers that were
broadly distributed over the interval 0 to π, and
also frequently estimated one or two fibers. Un-
like BPX, QBI did consistently and accurately
estimate one fiber for > 400 DWI. The exist-
ing anatomical priors about the corpus callosum
would suggest a single primary diffusion direction,
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Figure 5: Accuracy of DTI Measures in Simulated Three Crossing Tensor Data The tensors were oriented such
that they were perpendicular to each other. The first tensor had larger weighting equal to 40% of the signal, the second
tensor was 34%, and the smallest tensor was 26%. Rician noise was added for an SNR = 50. (A) ϕ angle estimations
by Bayesian Multi-tensor Model-selection (BaMM), BedpostX (BPX), and constant solid angle Q-Ball Imaging (QBI).
Open circles represent the results obtained by repeated permutation sampling. Same color legend for all data panels.
Permutations that resulted in a single fiber direction are plotted in blue (ϕ). Permutations that resulted in two fibers
are plotted in red (ϕ) and green (ϕ). Permutations that resulted in three fibers are plotted in purple (ϕ), orange (ϕ),
teal (ϕ). (B) θ angle estimations. Permutations are plotted in sky blue (θ) for one fiber, pink (θ) and olive (θ) for two
fibers, and lilac (θ), salmon (θ), cyan (θ) for three fibers. (C) Error estimation for BaMM, BPX, and QBI. Mean error
at each subsampling size was calculated, then plotted on a log scale. The same colors as in (A/B) are used and indicate
the most frequent number of fibers estimated at each subsampling size
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Figure 6: Whole-brain DTI Reliability Map (LLS) for Mean Error < 5% (Subject 2) (A) The color scale
shows the number of DWI measurements needed to achieve a voxel-wise error less than 5% in FA. Error is calculated
relative to the mean FA found using the entire sample. Results for (B) RD, (C) AD, (D) MD, and (E) angle ϕ are
shown. Subjects 1 and 3 are shown in Figure S13

matching BaMM’s results at all subsampling sizes
and QBI’s with ~1,000 DWIs.

3.6. Left Frontal White Matter: BPX with Two
Fiber Default Setting Accurate with Fewest
DWIs

We next selected a voxel in the left frontal lobe
(MNI -18, 22, 26) where the superior longitudinal
fasciculus and the uncinate fasciculus cross (Fig-
ure 8A). This voxel was chosen to be > 10 mm

from any gray matter voxel in all three subjects
(subjects 1 and 3 in Figures S18 and S19, respec-
tively). Reliability curves for LLS and STB angle
metrics (φ, θ) are shown in Figure 8B as con-
trols. The single tensor models are inadequate to
describe the full microstructural complexity, and
increased error can be observed in Figure 8B vs
Figure 7B.

Figure 8C-D contrasts the angle measurement
reliability of the crossing fibers models (BaMM,
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Figure 7: Reliability of Diffusion Measures in the Genu of the Corpus Callosum (Subject 2) (A) The locus of
the analyzed voxel (MNI: 1, 22, 9) is marked with a circle. LLS FA reliability map as in Figure 6A. (B) Log Error of angle
estimation by LLS and STB. (C) ϕ Angle estimations by Bayesian Multi-tensor Model-selection (BaMM), BedpostX
(BPX), and Constant Solid Angle Q-Ball Imaging (QBI). (D) θ Angle estimations by BaMM, BPX, and QBI. (E) Log
Error estimation by BaMM, BPX, and QBI. Error is calculated relative to the mean ϕ or θ found using the entire sample.
Subject 1 and 3 in Figures S14 and S15, respectively February 18, 2021
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BPX, and QBI). For very low numbers of DWI
per subsample (< 50), BaMM identified the prin-
cipal diffusion direction, whereas BPX returned
approximately uniform density of diffusion direc-
tions at all angles (i.e., little to no angular infor-
mation).

BaMM consistently estimated two diffusion di-
rections with > 100 DWI. BPX consistently es-
timated two directions with > 20 DWI. Angular
measurement error was generally less with BPX
than BaMM, but comparable for > 250 DWI.

QBI most frequently estimated three fiber di-
rections at all subsampling sizes, but also fre-
quently estimated one or two fibers. The QBI
estimation of two or three fibers was broadly dis-
tributed over 0 to π for < 500 DWI, and the error
only improved marginally with increasing DWIs.

3.6.1. Right Corticospinal Tract: Poor Reliabil-
ity, BaMM Estimates Relatively Superior

The third ROI we analyzed in depth was
in the right corticospinal tract as it progressed
through/near the internal capsule, a brain region
with potentially three crossing fibers (MNI 22,
-19, 11; Figure 9A). Based on anatomical pri-
ors, model sensitivity, registration to MNI coor-
dinates, and accuracy of ROI location across sub-
jects, we could expect a single fiber direction re-
flecting the CST, two fiber directions for the CST
and internal capsule, or three directions for a fan-
ning behavior of either the CST or internal cap-
sule fibers. BPX settings were set to a maximum
of three fibers accordingly. Results for subjects
1 and 3 are in Figures S20 and S21, respectively.
Control reliability curves for LLS and STB an-
gle metrics (φ, θ) are shown in Figure 9B and
demonstrate the expected increase in reliability
as a function of DWI number.

Figure 9C-D contrasts the angle measurement
reliability of the crossing fibers models (BaMM,
BPX, and QBI). For samples with < 260 DWIs,
BaMM estimated a single fiber; between 260 and
500 DWI BaMM most frequently estimated two
fibers; and for DWIs > 500, BaMM estimated
three fibers. However, the distribution of angle
estimates (φ, θ) was broader than seen in pre-

vious ROIs. With > 50 DWIs, BPX estimated
three fibers with almost uniform distribution of
φ and θ from 0 to π. In contrast, QBI followed
an estimation pattern previously observed in the
corpus callosum and simulated single tensor data
(Figures 3 and 7). For < 200 DWI QBI estimated
three fibers, then two fibers for < 550 DWI, and
for > 550 DWI a single primary fiber was esti-
mated.

Error estimation (relative to the mean) im-
proved with increasing number of DWI for all
methods. BaMM’s error estimation stabilized
once the model selection consistently chose three
fibers (Figure 9E, >500 DWI). However, esti-
mated error in this ROI was higher than in previ-
ously tested ROI. BPX error estimation also im-
proved with increasing sample size but remained
above 5% for all subsampling sizes. Similarly, QBI
estimated error decreased for the primary fiber
direction with increasing sample size. However,
since the three models diverged in their estima-
tion of number of fibers and the orientation of
those fibers, we can only speak to the reliability
of the models and not their accuracy.

4. DISCUSSION

Identifying and understanding inter-individual
differences in brain organization is critically im-
portant for neuroscience, neurology, neurosurgery,
and psychiatry [43]. While almost all typically de-
veloping individuals share the same major white
matter bundles [2], variations in size, position,
and/or orientation of white matter fibers could
have significant effects on surgical plans, and re-
covery from brain injury. In addition, individual-
specific precision diffusion imaging is necessary to
effectively bridge functional and structural con-
nectivity. To fully capitalize on the microstruc-
tural information revealed by DTI and other
methods, we must improve our ability to gener-
ate precise, individual-specific diffusion imaging
maps.

4.1. BaMM: A Novel Estimation Method for Dif-
fusion Imaging Robust to Overfitting

Accuracy is inherently limited in single-tensor
models because modeling complex white matter
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Figure 8: Reliability of Diffusion Measures in Left Frontal ROI (Subject 2) (A) The locus of the analyzed voxel
(MNI: 18,22,26) is marked with a circle. LLS FA reliability map as in Figure 6A. (B) Log Error of angle estimation by LLS
and STB. (C) ϕ Angle estimations by Bayesian Multi-tensor Model-selection (BaMM), BedpostX (BPX), and Constant
Solid Angle Q-Ball Imaging (QBI). (D) θ Angle estimations by BaMM, BPX, and QBI. (E) Log Error estimation by
BaMM, BPX, and QBI. Error is calculated relative to the mean ϕ or θ found using the entire sample. Subject 1 and 3
in Figures S16 and S17, respectively. February 18, 2021
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Figure 9: Reliability of Diffusion Measures in Right Corticospinal Tract (Subject 2) (A) The locus of the
analyzed voxel (MNI: -22, -19,11) is marked with a circle. LLS FA reliability map as in Figure 6A. (B) Log Error of angle
estimation by LLS and STB. (C) ϕ Angle estimations by Bayesian Multi-tensor Model-selection (BaMM), BedpostX
(BPX), and Constant Solid Angle Q-Ball Imaging (QBI). (D) θ Angle estimations by BaMM, BPX, and QBI. (E) Log
Error estimation by BaMM, BPX, and QBI. Error is calculated relative to the mean ϕ or θ found using the entire sample.
Subject 1 and 3 in Figures S18 and S19, respectively. February 18, 2021
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microstructure as a single tensor may obscure
valuable information, i.e., crossing fibers. While
existing techniques can model multiple fibers,
they are limited because of the model’s shape
assumptions. Therefore, we developed a novel
Bayesian Multi-tensor Model-selection (BaMM)
method that can precisely and accurately fit
single- and crossing-tensor DWI data (simulated;
highly sampled, individual-specific). The novel
BaMM parameter estimation algorithm was based
on previous Bayesian, overfitting robust model-
selection work [44]. In particular, we designed
BaMM to compare multiple models and select the
model best suited for the available data. Here,
we demonstrated that BaMM can accurately esti-
mate one, two, or three tensors, and that its pre-
cision improves with increasing DWI number. In
the current implementation, BaMM uses the same
assumed model as BPX (ball-and-sticks; [10]) but
can accommodate a large input data set by scaling
the parameter estimation penalties to the dataset
size. We tested and validated BaMM over a
wide range of diffusion measurements (10 to 1000)
to rule out bias for a specific number of DWIs.
The current work was completed using a ball-
and- sticks partial volumes model, but BaMM
can also accommodate full multi-tensor models,
multi-fiber kurtosis models, or other models yet
to be developed [13, 45]. The BaMM framework
is adaptable to any set of mathematical assump-
tions about white matter structure and can serve
to directly compare different diffusion models.

4.2. BPX: Accurate and Reliable if Assumptions
Are Met

BPX inspired the creation of BaMM but dif-
fers in its parameter estimation approach. BPX
was initially optimized for about 30 DWI, and
then updated for 60 DWI [11, 46]. The datasets
analyzed here contained much higher quantities
of high-quality data (800+ low-motion DWIs for
each individual). With an excess of DWIs, we ob-
served that BPX consistently estimates the maxi-
mum allowed number of fibers. BPX’s default set-
ting is a maximum of two fibers, and with these
settings BPX estimated two fibers for simulated
single tensor data (Figure 3) and for the corpus

callosum (Figure 7). When set to allow for a max-
imum of three tensors, BPX estimated three fibers
in simulated single tensor data and in the cor-
pus callosum ROI (Figure S4 and S14). When
provided with a large number of DWIs (> 500),
BPX’s splitting of a single tensor into two that are
almost superimposed is inaccurate but not detri-
mental to subsequent tractography. By contrast,
a potentially inappropriately oriented second or
third fiber, could substantially deviate probabilis-
tic tracking (Fig 9C-D). Nevertheless, we note
that when the data match BPX’s assumptions,
it is accurate and reliable from 10-1,000 DWIs.
Determining the appropriate priors for all voxels
in the brain, however, is a significant challenge.

4.3. QBI: Accurate Only with Very Large
Amounts of Diffusion Data

Constant solid angle Q-Ball Imaging (QBI) was
designed to eliminate diffusion tensor shape as-
sumptions, and it estimates water diffusion using
spherical harmonics [12, 35]. QBI can estimate
one, two or three tensors with 1,000 DWIs, but
problematically, the reliability of these estimates
always remained low (Fig 3-5, 7-9). With < 800
DWIs QBI tends to model additional fiber direc-
tions, possibly capturing noise in the data. Since
the published literature recommends a specific ac-
quisition scheme sequence for QBI (i.e., high an-
gular resolution; at least 500 DWI) [12], we col-
lected supplementary DWI data with 960 unique
B-vectors and 50 B0 (1020 DWI). Supplemen-
tal analyses (Figure S16) revealed that none of
the tested methods, QBI included, improved with
high angular resolution data. Instead, it appears
that repeated acquisitions of ABCD’s 103 DWI
protocol were less prone to overfitting [18]. Com-
bining DWI samples over multiple sessions intro-
duces jitter in angular sampling owing to variabil-
ity of head position, and effectively provides the
needed angular resolution.

4.4. Reliability of Diffusion/Anisotropy and Fiber
Orientation Increases with Increasing DWI
Number

In both highly sampled human and simulated
data, estimate variability decreased with increas-
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ing sample size. Standard error is defined as the
standard deviation divided by the square root of
the sample size, therefore assuming a normal dis-
tribution measurement error should be inversely
related to the square root of the sample size. Our
results failed to follow this pattern under two con-
ditions: when there was insufficient data to con-
strain the model (e.g., < 20 DWI for LLS and
STB), or when the model misrepresented the un-
derlying diffusion process (i.e., using single tensor
methods for multiple fibers, or assuming multiple
fibers for a single tensor). Overall, deep white
matter voxels demonstrated lower measurement
error than the rest of the brain, and larger data
amounts were needed for voxels with lower FA
(Figure 6). FA measurement error was < 5% with
70-150 DWIs in deep white matter, while corti-
cal voxels required 300-500 DWIs to comparably
reduce error. Angles φ and θ showed the high-
est measurement error of all the diffusion metrics.
Uncertainty in the angle of the tensor is related
to uncertainty in anisotropy, explaining why angle
error estimation is higher in gray matter [16].

4.5. Precision Diffusion Imaging is Achievable
with Realistic Data Acquisition Times

Our work demonstrates the feasibility of im-
plementing individual-specific, precision diffusion
imaging. Only 15 to 30 DWIs commonly are ac-
quired in clinical settings, requiring very short
scan times of < 1 minute. As MRI hardware and
processing software improved, researchers have
started to acquire larger diffusion data sets (100
- 300 DWIs per subject) while maintaining rea-
sonable imaging times (6 - 20 min). Our study
demonstrated that one can reliably estimate the
shape and orientation of a single diffusion ten-
sor in deep white matter with about 100 diffu-
sion measurements. Thus, not only research DTI
scans [17, 18, 47] but also clinical ones should col-
lect a greater number of DWIs (at least ~100).

For crossing-fiber diffusion models, at least 300
DWIs are generally required in deep white matter,
assuming high data quality. To advance from 100
to 300 DWI requires an increase in total scan time
from about 6 minutes to about 20 minutes. Ac-
quiring 1,000 DWIs takes a little over an hour. An

hour- long diffusion scan can may be warranted
for individual-specific precision mapping for re-
search or in neurosurgical planning [48]. Diffu-
sion data acquisition is typically better tolerated
than task or resting state functional MRI (fMRI)
because the patient can sleep or watch a movie
during the scan. Therefore, a small additional
investment in scanning time could have signifi-
cant positive effects on diagnostics and treatment
of individual neurological and neurosurgical pa-
tients. In addition, acquiring greater amounts of
high-quality DTI data would expand the available
processing schemes beyond the models described
here to methodologies which are even data hun-
grier (e.g., DSI, DBSI) [14, 47].

4.6. Precision Diffusion Imaging to Enhance
Structural Connectivity Maps (End-to-End
Tracking) in Cortex

Researchers have been exploring the feasibility
and validity of MRI based structural connectiv-
ity analyses since before the export of these tech-
niques to fMRI data. [41, 49–55]. Many stud-
ies that attempt to build structural connectivity
maps initiate the fiber tracking at the border of
gray and white matter. Since FA and angle orien-
tations (φ and θ; Figure 6, S13) are less reliable
closer to gray matter, more errors are introduced
at initiation of the tracking. Though many other
challenges to structural connectivity maps must
still be addressed [56, 57], structural connectivity
and other advanced modeling techniques would
likely also greatly benefit from larger numbers of
DWIs per individual.

Individual-specific precision DTI will facilitate
and enrich clinical and investigative neuroimag-
ing. Higher-fidelity DTI holds great promise
for surgical planning and post-surgical evalua-
tion (e.g., epilepsy disconnection procedures [58]),
and for any studies seeking to evaluate longitu-
dinal changes within-subject (ABCD; [59]). As
with precision functional mapping (PFM), we
cannot fully predict the fine-grained details and
individual-specific variants that precision DTI
will reveal, but precise individual-specific struc-
tural connectomes will very likely increase our un-
derstanding of brain architecture in general, and
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of individual variability in health and disease, in
particular.
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Precision Diffusion Imaging: Supplemental Materials

Figure 1: Validation of Subsampling Repeated sampling selecting an entire acquisition of 103 DWI (so select
1-12 acquisitions). (A) FA by LLS and STB with repeated sampling of 1-12acquisitions. (B) Angle ϕ(C)
Angle θ
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Figure 2: Accuracy of DTI Measures by BaMM, BPX, QBI, Simulated Single Tensor (A)Error estimation by
Bayesian Multi-tensor Model-selection (BaMM), BedpostX (BPX), and constant solid angle Q-Ball Imaging
(QBI) at SNR30. Mean error at each subsampling size was calculated, then plotted on a log scale. Plots
are colored by the most frequent number of fibers estimated: subsamples with a single fiber direction are
plotted in blue/sky blue, two fibers plotted red/pink and green/olive, 3 fibers are plotted in purple/lilac,
orange/salmon, teal/cyan. (B) SNR50. (C) SNR 100.
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Figure 3: Accuracy of DTI Measures by LLS and STB, Simulated Single Tensor (A) Error estimation by
Linear Least Squares (LLS) and Single TensorBayesian (STB) at SNR30. Mean error at each subsampling
size was calculated, then plotted on a log scale. LLS and STB plotted using straight and dotted lines,
respectively. FA is in navy, RD in yellow, AD in brown, and MD in bright green. ϕis plotted in blue, and θ
sky blue. (B) SNR 50. (C) SNR 100
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Figure 4: Accuracyof DTI Measures by BPX, Simulated Single Tensor with Max 3 Fibers (A) ϕ angle
estimations by BedpostX (BPX) with maximum2 or 3 fibers. Open circles represent the results obtained
by repeated permutation sampling. Same color legend for all data panels. Permutations that resulted in a
single fiber direction are plotted in blue (ϕ). Permutations that resulted in two fibers are plotted in red (ϕ)
and green (ϕ). Permutations that resulted in three fibers are plotted in purple (ϕ), orange (ϕ), teal (ϕ).
(B) θ angle estimations. Permutations are plotted in sky blue (θ) for one fiber, pink(θ) and olive (θ) for two
fibers, and lilac (θ), salmon (θ), cyan (θ) for three fibers. (C) Error estimation for BPX with max 2 or 3
fibers. Mean error at each subsampling size was calculated, then plotted on a log scale. The same colors as
in (A/B) are used and indicate the most frequent number of fibers estimated at each subsampling size
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Figure 5: Accuracy of BaMM in variety of two tensor simulated data (A )Error estimation by BaMM for
two crossing tensors at varying SNR. Mean error at each subsampling size was calculated, then plotted as
the log of error. Plots are colored by the most frequent number of fibers estimated: subsamples with a single
fiber direction are plotted in blue/sky blue, two fibers plotted red/pink and green/olive, 3 fibers are plotted
in purple/lilac, orange/salmon, teal/cyan. (B) Vary tensor Fraction. (C) Vary tensor FA. (D) Vary angle
between tensors. February 18, 2021
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Figure 6: Accuracy of BPX in variety of two tensor simulated data (A) Error estimation by BPX for two
crossing tensors at varying SNR. Mean error at each subsampling size was calculated, then plotted as the
log of error. Plots are colored by the most frequent number of fibers estimated: subsamples with a single
fiber direction are plotted in blue/sky blue, two fibers plotted red/pink and green/olive, 3 fibers are plotted
in purple/lilac, orange/salmon, teal/cyan. (B) Vary tensor Fraction. (C) Vary tensor FA. (D) Vary angle
between tensors. February 18, 2021
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Figure 7: Accuracy of QBI in variety of two tensor simulated data (A) Error estimation by QBI for two
crossing tensors at varying SNR. Mean error at each subsampling size was calculated, then plotted as the
log of error. Plots are colored by the most frequent number of fibers estimated: subsamples with a single
fiber direction are plotted in blue/sky blue, two fibers plotted red/pink and green/olive, 3 fibers are plotted
in purple/lilac, orange/salmon, teal/cyan. (B) Vary tensor Fraction. (C) Vary tensor FA. (D) Vary angle
between tensors. February 18, 2021
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Figure 8: Accuracy of LLS and STB in variety of two tensor simulated data (A) Error estimation by LLS
and STB for two crossing tensors at varying SNR. Mean error at each subsampling size was calculated, then
plotted as the log of error. Plots are colored by the most frequent number of fibers estimated: subsamples
with a single fiber direction are plotted in blue/sky blue, two fibers plotted red/pink and green/olive, 3
fibers are plotted in purple/lilac, orange/salmon, teal/cyan. (B) Vary tensor Fraction. (C) Vary tensor FA.
(D) Vary angle between tensors. February 18, 2021
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Figure 9: Accuracy of BPX in two tensor simulated data with max 3 fibers The tensors were oriented such
that they were perpendicular to each other. The first tensor had larger weighting equal to 60% of the signal.
Rician noise was added for an SNR = 50. (A) ϕ angle estimations by BedpostX (BPX), with max 2 or three
fibers. Open circles represent the results obtained by repeated permutation sampling. Same color legend for
all data panels. Permutations that resulted in a single fiber direction are plotted in blue (ϕ). Permutations
that resulted in two fibers are plotted in red (ϕ) and green (ϕ). Permutations that resulted in three fibers
are plotted in purple(ϕ), orange (ϕ), teal (ϕ). (B) θ angle estimations. Permutations are plotted in sky blue
(θ) for one fiber, pink (θ) and olive (θ) for two fibers, and lilac(θ), salmon (θ), cyan (θ) for three fibers. (C)
Error estimation for BPX with max two or three fibers. Mean error at each subsampling size was calculated,
then plotted on a log scale. The same colors as in (A/B) are used and indicate the most frequent number
of fibers estimated at each subsampling size.
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Figure 10: Accuracy of BaMM in variety of three tensor simulated data (A) Error estimation by BaMM for
three crossing tensors at varying SNR. Mean error at each subsampling size was calculated, then plotted
as the log of error. Plots are colored by the most frequent number of fibers estimated: subsamples with a
single fiber direction are plotted in blue/sky blue, two fibers plotted red/pink and green/olive, 3 fibers are
plotted in purple/lilac, orange/salmon, teal/cyan. (B) Vary tensor Fraction. (C) Vary tensor FA. (D) Vary
angle between tensors. February 18, 2021
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Figure 11: Accuracy of BPX in variety of three tensor simulated data (A) Error estimation by BPX for
three crossing tensors at varying SNR. Mean error at each subsampling size was calculated, then plotted
as the log of error. Plots are colored by the most frequent number of fibers estimated: subsamples with a
single fiber direction are plotted in blue/sky blue, two fibers plotted red/pink and green/olive, 3 fibers are
plotted in purple/lilac, orange/salmon, teal/cyan. (B) Vary tensor Fraction. (C) Vary tensor FA. (D) Vary
angle between tensors. February 18, 2021
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Figure 12: Accuracy of QBI in variety of three tensor simulated data (A) Error estimation by QBI for three
crossing tensors at varying SNR. Mean error at each subsampling size was calculated, then plotted as the
log of error. Plots are colored by the most frequent number of fibers estimated: subsamples with a single
fiber direction are plotted in blue/sky blue, two fibers plotted red/pink and green/olive, 3 fibers are plotted
in purple/lilac, orange/salmon, teal/cyan. (B) Vary tensor Fraction. (C) Vary tensor FA. (D) Vary angle
between tensors. February 18, 2021
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Figure 13: LLS whole-brain reliability map for Mean Error < 5%, Subject 1 & and Subject 3 (A) The color
scale shows the number of DWI measurements needed to achieve a voxel-wise error less than 5% in FA.
Error is calculated relative to the mean FA found using the entire sample. Results for (B) RD, (C) AD, (D)
MD, and (E) angle ϕ are shown.
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Figure 14: Reliability of BPX Subject 2 Corpus Callosum with max 3 fibers The same ROI as in figure 7
in subject 2 isanalyzed. (A) ϕ Angle estimations by BedpostX (BPX) with max two or three fibers. (B)
θ Angle estimations by BPX with max two or three fibers. (C) Log Error estimation by BPX with two or
three fibers. Error is calculated relative to the mean ϕ or θ found using the entire sample.
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Figure 15: Reliability of Diffusion Measures in the Genu of the Corpus Callosum, Subject 1 (A)The locus
of the analyzed voxel (MNI: 1, 22, 9) is marked with a circle. LLS FA reliability map as in Figure 6A.
(B) Log Error of angle estimation by LLS and STB. (C) ϕ Angle estimations by Bayesian Multi-tensor
Model-selection (BaMM), BedpostX (BPX), and ConstantSolid Angle Q-Ball Imaging (QBI). (D) θ Angle
estimations by BaMM, BPX, and QBI. (E) Log Error estimation by BaMM, BPX, and QBI. Error is
calculated relative to the mean ϕ or θ found using the entire sample February 18, 2021
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Figure 16: Reliability of Diffusion Measures in the Genu of the Corpus Callosum, Subject 1 Subject 1
was rescanned using a 1020 DWI sequence with 960 unique B-vector direction. The data was analyzed in
native space, and the same ROI as in Figure S14 was tested. (A) ϕ Angle estimations by Bayesian Multi-
tensor Model-selection (BaMM), BedpostX (BPX), and ConstantSolid Angle Q-Ball Imaging (QBI). (B) θ
Angle estimations by BaMM, BPX, and QBI. (C) Log Error estimation by BaMM, BPX, and QBI. Error is
calculated relative to the mean ϕ or θ found using the entire sample
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Figure 17: Reliability of Diffusion Measures in the Genu of the Corpus Callosum, Subject 3 (A)The locus
of the analyzed voxel (MNI: 1, 22, 9) is marked with a circle. LLS FA reliability map as in Figure 6A.
(B) Log Error of angle estimation by LLS and STB. (C) ϕ Angle estimations by Bayesian Multi-tensor
Model-selection (BaMM), BedpostX (BPX), and ConstantSolid Angle Q-Ball Imaging (QBI). (D) θ Angle
estimations by BaMM, BPX, and QBI. (E) Log Error estimation by BaMM, BPX, and QBI. Error is
calculated relative to the mean ϕ or θ found using the entire sample February 18, 2021
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Figure 18: Reliability of Diffusion Measures in the Left Frontal White Matter, Subject 1 (A)The locus of the
analyzed voxel (MNI: 18,22,26) is marked with a circle. LLS FA reliability map as in Figure 6A. (B) Log Error
of angle estimation by LLS and STB. (C) ϕ Angle estimations by Bayesian Multi-tensor Model-selection
(BaMM), BedpostX (BPX), and Constant Solid Angle Q-Ball Imaging (QBI). (D) θ Angle estimations by
BaMM, BPX, and QBI. (E) Log Error estimation by BaMM, BPX, and QBI. Error is calculated relative to
the mean ϕ or θ found using the entire sample February 18, 2021
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Figure 19: Reliability of Diffusion Measures in the Left Frontal White Matter, Subject 3 (A) The locus
of the analyzed voxel (MNI: 18,22,26) is marked with a circle. LLS FA reliability map as in Figure 6A.
(B) Log Error of angle estimation by LLS and STB. (C) ϕ Angle estimations by Bayesian Multi-tensor
Model-selection (BaMM), BedpostX (BPX), and Constant Solid Angle Q-Ball Imaging (QBI). (D) θ Angle
estimations by BaMM, BPX, and QBI. (E) Log Error estimation by BaMM, BPX, and QBI. Error is
calculated relative to the mean ϕ or θ found using the entire sample February 18, 2021
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Figure 20: Reliability of Diffusion Measures in Right Corticospinal Tract, Subject 1 (A) The locus of
the analyzed voxel (MNI: -22, -19,11) is marked with a circle. LLS FA reliability map as in Figure 6A.
(B) Log Error of angle estimation by LLS and STB. (C) ϕ Angle estimations by Bayesian Multi-tensor
Model-selection (BaMM), BedpostX (BPX), and ConstantSolid Angle Q-Ball Imaging (QBI). (D) θ Angle
estimations by BaMM, BPX, and QBI. (E) Log Error estimation by BaMM, BPX, and QBI. Error is
calculated relative to the mean ϕ or θ found using the entire sample. February 18, 2021

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.432023doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.432023


Figure 21: Reliability of Diffusion Measures in Right Corticospinal Tract, Subject 3 (A) The locus of
the analyzed voxel (MNI: -22, -19,11) is marked with a circle. LLS FA reliability map as in Figure 6A.
(B) Log Error of angle estimation by LLS and STB. (C) ϕ Angle estimations by Bayesian Multi-tensor
Model-selection (BaMM), BedpostX (BPX), and ConstantSolid Angle Q-Ball Imaging (QBI). (D) θ Angle
estimations by BaMM, BPX, and QBI. (E) Log Error estimation by BaMM, BPX, and QBI. Error is
calculated relative to the mean ϕ or θ found using the entire sample. February 18, 2021
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