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16 Abstract   

17 Spatial   omics   data   are   advancing   the   study   of   tissue   organization   and   cellular   
18 communication   at   an   unprecedented   scale.   Here,   we   present   Squidpy,   a   Python   framework   
19 that   brings   together   tools   from   omics   and   image   analysis   to   enable   scalable   description   of   
20 spatial   molecular   data,   such   as   transcriptome   or   multivariate   proteins.   Squidpy   provides   both   
21 infrastructure   and   numerous   analysis   methods   that   allow   to   efficiently   store,   manipulate   and   
22 interactively   visualize   spatial   omics   data.   

23 Main   

24 Dissociation-based  single  cell  technologies  have  enabled  the  deep  characterization  of            
25 cellular  states  and  the  creation  of  cell  atlases  of  many  organs  and  species 1 .  However,  how                 
26 cellular  diversity  constitutes  tissue  organization  and  function  is  still  an  open  question.              
27 Spatially-resolved  molecular  technologies  aim  at  bridging  this  gap  by  enabling  the             
28 investigation  of  tissues  in  situ  at  cellular  and  subcellular  resolution 2–4 .  In  contrast  to  the                
29 current  state  of  the  art  dissociation-based  protocols,  spatial  molecular  technologies  acquire             
30 data  in  greatly  diverse  forms,  in  terms  of  resolution  (few  cells  per  observation  to  subcellular                 
31 resolution),  multiplexing  (dozens  of  features  to  genome-wide  expression  profiles),  modality            
32 (transcriptomics,  proteomics  and  metabolomics)  and  often  times  with  an  associated            
33 high-content  image  of  the  captured  tissue 2–4 .  Such  diversity  in  resulting  data  and              
34 corresponding  formats  currently  represents  an  organisational  hurdle  that  has  hampered            
35 urgently  needed  development  of  interoperable  and  broad  analysis  methods.  The  underlying             
36 computational  challenge  requires  solutions  both  in  terms  of  efficient  data  representation  as              
37 well   as   comprehensive   analysis   and   visualization   methods.   
38   
39 Hence,  existing  analysis  frameworks  for  spatial  data  focus  either  on  pre-processing 5–8  or  on               
40 one  particular  aspect  of  spatial  data  analysis 9–13 .  Due  to  the  lack  of  a  unified  data                 
41 representation  and  modular  API,  users  so  far  cannot  perform  comprehensive  analyses             
42 leveraging  the  full  spatial  modality,  e.g.  combining  stlearn’s 12  integrative  analysis  of  tissue              
43 images  together  with  Giotto’s  powerful  spatial  statistics 11 .  A  comprehensive  framework  that             
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44 enables  community-driven  scalable  analysis  of  both  spatial  neighborhood  graph  and  image,             
45 along   with   an   interactive   visualization   module,   is   missing   (Supplementary   Table   1).   
46   
47 For  this  purpose  we  developed  “Spatial  Quantification  of  Molecular  Data  in  Python”              
48 (Squidpy),  a  python-based  framework  for  the  analysis  of  spatially-resolved  omics  data  (Fig.              
49 1).  Squidpy  aims  to  bring  the  diversity  of  spatial  data  in  a  common  data  representation  and                  
50 provide  a  common  set  of  analysis  and  interactive  visualization  tools.  Such  infrastructure  is               
51 useful  in  a  variety  of  analysis  settings,  for  different  data  types,  and  it  explicitly  leverages  the                  
52 additional  information  that  spatial  data  provides:  the  spatial  coordinates  and,  when  available,              
53 the  tissue  image.  Squidpy  is  built  on  top  of  Scanpy  and  Anndata 14 ,  and  it  relies  on  several                   
54 scientific  computing  libraries  in  Python,  such  as  Scikit-image 15  and  Napari 16 .  Its  modularity              
55 makes  it  suitable  to  be  interfaced  with  a  variety  of  additional  tools  in  the  python  data  science                   
56 and  machine  learning  ecosystem,  as  well  as  several  single-cell  data  analysis  packages.  It               
57 allows  to  quickly  explore  spatial  datasets  and  lays  the  foundations  for  both  spatial  omics                
58 data   analysis   as   well   as   novel   methods   development.   
59   

60 Results   

61 Squidpy   provides   technology-agnostic   data   representations   for   spatial   graphs   and   images   

62 Squidpy  introduces  two  main  data  representations  to  manage  and  store  spatial  omics  data  in                
63 a  technology-agnostic  way:  a  neighborhood  graph  from  spatial  coordinates,  and  large  source              
64 images  acquired  in  spatial  omics  data  (Fig.  1b).  Spatial  graphs  encode  spatial  proximity,  and                
65 are,  depending  on  data  resolution,  flexible  in  order  to  support  the  variety  of  neighborhood                
66 metrics  that  spatial  data  types  and  users  may  require.  For  instance,  in  Spatial               
67 Transcriptomics  (ST 17 ,  Visium 18 ,  DBit-seq 19 ),  a  node  is  a  spot  and  a  neighborhood  set  can  be                 
68 defined  by  a  fixed  number  of  adjacent  spots  whereas  in  imaging-based  molecular  data               
69 (seqFISH 20 ,  MERFISH 21 ,  Imaging  Mass  Cytometry 22,23 ,  CyCif 24 ,  4i 25 ,  Spatial  Metabolomics 26 ,           
70 see  Fig.  1a),  a  node  can  be  defined  as  a  cell  (or  pixel),  and  a  neighborhood  set  can  also  be                      
71 chosen  based  on  a  fixed  radius  (expressed  in  spatial  units)  from  the  centroid  of  each                 
72 observation.  Alternatively,  other  dissimilarity  measures,  such  as  euclidean  distance,  can  be             
73 utilized  to  build  the  neighbor  graph.  Such  data  representation  is  suitable  for  many  analysis                
74 tools  that  aim  at  quantifying  spatial  organization  of  the  tissue.  In  Squidpy,  we  provide  several                 
75 tools  to  compute  statistics  at  cell  and  gene  level,  such  as  a  neighborhood  enrichment  score                 
76 on  the  spatial  graph,  a  ligand-receptor  interaction  analysis  tool,  and  the  Moran's  I  spatial                
77 autocorrelation   score   for   spatially   variable   genes   identification   (Fig.   1c).   
78 The  high  resolution  microscopy  image  additionally  captured  by  spatial  omics  technologies             
79 represents  a  rich  source  of  morphological  information  that  can  provide  key  biological  insights               
80 into  tissue  structure  and  cellular  variation.  Squidpy  introduces  a  new  data  object,  the  Image                
81 Container,  that  efficiently  stores  the  image  with  an  on-disk/in-memory  switch  based  on              
82 xArray  and  Dask 27,28 .  The  Image  Container  provides  image  analysis  tools,  such  as              
83 performing  image  preprocessing,  segmentation,  and  feature  extraction,  as  well  as  interfacing             
84 with  modern  deep  learning  frameworks  for  more  advanced  analysis 15  (Fig.  1c  right).  It               
85 provides  seamless  integration  with  Napari 16 ,  thus  enabling  interactive  visualization  of            
86 analysis  results  stored  in  an  Anndata  object  alongside  the  high  resolution  image  directly  from                
87 a  Jupyter  notebook.  It  also  enables  interactive  manual  cropping  of  tissue  areas  and               
88 automatic  annotation  of  observations  in  Anndata.  Since  Napari  is  an  image  viewer  in  Python,                
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89 all  the  above-mentioned  functionalities  can  be  also  interactively  executed  without  additional             
90 requirements.   

91 Squidpy   enables   calculation   of   spatial   cellular   statistics   using   spatial   graphs   

92 A  key  question  in  the  analysis  of  spatial  molecular  data  is  the  description  and  quantification                 
93 of  spatial  patterns  and  cellular  neighborhoods  across  the  tissue.  Squidpy  provides  several              
94 tools  that  leverage  the  spatial  graph  to  address  such  questions.  For  instance,  a               
95 neighborhood  enrichment  analysis  score  that  quantifies  cluster  proximity  with  a  permutation             
96 based  test  (see  online  methods)  is  available.  When  applied  to  a  recently  published  seqFISH                
97 data  of  mouse  gastrulation 29 ,  we  found  several  clusters  to  be  co-enriched  in  their  cellular                
98 neighbors  (Fig.  2a,b),  recapitulating  the  main  results  of  the  original  authors.  Furthermore,our              
99 implementation  is  scalable  and  ~10  fold  faster  than  a  similar  implementation  in  Giotto 11               

100 (Supplementary  Fig.  1a),  enabling  analysis  of  large-scale  spatial  omics  datasets.  Squidpy             
101 also  computes  a  co-occurrence  score  for  clusters  across  spatial  coordinates,  which  we              
102 applied  to  a  4i  dataset  of  Hela  cells 25 .  We  considered  ~270,000  pixels  as  subcellular                
103 resolution  observations,  and  evaluated  their  cluster  co-occurrence  at  increasing  distances            
104 (Fig.  2  c,d).  As  expected,  the  subcellular  measurements  annotated  in  the  Nucleus              
105 compartment  co-occur  together  with  the  Nucleus  and  the  Nuclear  envelope,  at  short              
106 distances.  Squidpy  provides  additional  tools  to  investigate  features  of  spatial-molecular  data,             
107 such  as  a  fast  and  broader  implementation  of  CellPhoneDB 30  for  spatial  ligand-receptor              
108 interaction  analysis,  leveraging  the  larger  Omnipath  database 31 ,  and  the  Moran's  I  spatial              
109 autocorrelation  statistic  for  detection  of  spatially  variable  genes 32  (Fig  2  e,f).  These  statistics               
110 yield  interpretable  results  across  diverse  experimental  techniques,  as  we  demonstrate  on  an              
111 Imaging  Mass  Cytometry  dataset 33 ,  where  we  showcase  additional  methods  like  the  Ripley's              
112 K  function,  average  clustering,  and  degree  and  closeness  centrality  (see  Supplementary  Fig.              
113 3).   

114 Squidpy   allows   analysis   of   images   in   spatial   omics   analysis   workflows   

115 Squidpy's  Image  Container  object  provides  a  general  mapping  between  pixel  coordinates             
116 and  molecular  profile,  enabling  analysts  to  relate  image-level  observations  to  omics             
117 measurements.   
118 Following  standard  image-base  profiling  techniques 34 ,  Squidpy  implements  a  pipeline  based            
119 on  Scikit-image 15  for  preprocessing  and  segmenting  images,  extracting  morphological,           
120 texture,  and  deep  learning-powered  features  (Supplementary  Fig.  2a).  To  enable  efficient             
121 processing  of  very  large  images,  this  pipeline  utilises  lazy  loading,  image  tiling  and               
122 multi-processing  (Supplementary  Fig.  1b).  Features  can  be  extracted  from  a  raw  tissue              
123 image  crop,  or  Squidpy’s  nuclei-segmentation  module  can  be  used  to  extract  nuclei  counts               
124 and  nuclei  sizes  (Supplementary  Fig.  2b).  For  instance,  we  can  leverage  segmented  nuclei               
125 to  inform  cell-type  deconvolution  methods  such  as  Tangram 35  or  Cell2Location 36            
126 (Supplementary   Fig.   4).   
127 As  an  example  of  segmentation-based  features,  we  calculated  a  nuclei  segmentation  using              
128 the  DAPI  stain  of  a  fluorescence  mouse  brain  section  and  showed  the  estimated  number  of                 
129 nuclei  per  spot  on  the  hippocampus  (Fig.  2g).  The  cell-dense  pyramidal  layer  can  be  easily                 
130 distinguished  with  this  view  of  the  data,  showcasing  the  richness  and  interpretability  of               
131 information   that   can   be   extracted   from   tissue   images   when   brought   in   a   spot-based   format.   
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132 Squidpy’s  feature  extraction  pipeline  enables  direct  comparison  and  joint  analysis  of  image              
133 data  and  omics  data.  For  instance,  using  a  Visium  mouse  brain  dataset,  we  compared  gene                 
134 clusters  with  a  clustering  of  summary  features  (mean,  standard  deviation,  0.1,  0.5,  and  0.9th                
135 quantiles)  of  the  accompanying  H&E  stained  tissue  image  (Fig.  2e,h).  Several  image  feature               
136 clusters  show  similarities  with  the  gene-based  clusters,  especially  in  the  hippocampus  (77%              
137 overlap  with  image  feature  cluster  10),  and  the  hypothalamus  (54%  overlap  with  image               
138 feature  cluster  10),  but  provide  a  different  view  of  the  data  in  the  cortex  (no  overlap  >33%                   
139 with   any   image   feature   clusters)   (Supplementary   Fig.   2e).   
140   

141 Conclusion   

142 In  summary,   Squidpy  enables  the  analysis  of  spatial  molecular  data  by  leveraging  two  data                
143 representations:  the  spatial  graph  and  the  tissue  image.  It  interfaces  with  Scanpy  and  the                
144 Python  data  science  ecosystem,  providing  a  scalable  and  extendable  framework  for  novel              
145 methods  development  in  the  field  of  biological  spatial  molecular  data.  We  are  convinced  that                
146 Squidpy  could  contribute  to  building  a  bridge  between  the  molecular  omics  community  and               
147 the  image  analysis  and  computer  vision  community  to  develop  the  next  generation  of               
148 computational   methods   for   spatial   omics   technologies.   
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149 Figures   

150

  
151 Figure   1:   Squidpy   is   a   software   framework   for   the   analysis   of   spatial   omics   data.   
152 (a)   Squidpy   supports   inputs   from   diverse   spatial   molecular   technologies   with   spot-based,   
153 single-cell,   or   subcellular   spatial   resolution.   
154 (b)   Building   upon   the   single-cell   analysis   software   Scanpy 14    and   the   Anndata   format,   
155 Squidpy   provides   efficient   data   representations   of   these   inputs,   storing   spatial   distances   
156 between   observations   in   a   spatial   graph   and   providing   an   efficient   image   representation   for   
157 high   resolution   tissue   images   that   might   be   obtained   together   with   the   molecular   data.   
158 (c)   Using   these   representations,   several   analysis   functions   are   defined   to   quantitatively   
159 describe   tissue   organization   at   cellular   (spatial   neighborhood)   and   gene   level   (spatial   
160 statistics,   spatially-variable   genes   and   ligand-receptor   interactions),   to   combine   microscopy  
161 image   information   (image   features   and   nuclei   segmentation)   with   omics   information   and   to   
162 interactively   visualize   high-resolution   images.     
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163

  
164 Figure   2:   Analysis   of   spatial   omics   datasets   across   diverse   experimental   techniques   
165 using   Squidpy .     
166 (a)   Neighborhood   enrichment   analysis   between   cell   clusters   in   spatial   coordinates.   The   
167 "Lateral   plate   mesoderm"   cluster   is   co-enriched   with   the   "Alllantois"   and   "Intermediate   
168 mesoderm"   cluster.   Also,   the   "Endothelium"   cluster   is   enriched   with   the   "Haematoendothelial   
169 progenitors".   Both   of   these   results   were   also   reported   by   the   original   authors 29 .   
170 (b)   Visualization   of   selected   clusters   of   the   seqFISH   mouse   gastrulation   dataset.     
171 (c)   Visualization   of   subcellular   molecular   profiles   in   Hela   Cells,   plotted   in   spatial   coordinates  
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172 (approx   270000   observations/pixels).     
173 (d)   Cluster   co-occurrence   score   at   increasing   distance   threshold   across   the   tissue.   The   
174 cluster   "Nucleolus"   is   found   to   be   co-enriched   at   short   distances   with   the   "Nucleus"   and   the   
175 "Nuclear   envelope"   clusters.   
176 (e)   Expression   of   Nrgn,   Mobp,   and   clustering   result   from   gene   expression   space   plotted   on   
177 spatial   coordinates.   Nrgn   and   Mobp   are   spatially   variable   genes   defined   with   Moran’s   I   
178 global   spatial   autocorrelation   score.   The   selected   genes   are   spatially   distributed   and   they   
179 are   shared   across   different   clusters.   
180 (f)   Ligand-receptor   interactions   from   the   cluster   “Hippocampus”   to   clusters   “Pyramidal   Layer”   
181 and   “Pyramidal   layer   dentate   gyrus”.   Shown   are   a   subset   of   significant   ligand-receptor   pairs   
182 queried   using   Omnipath   database.     
183 (g)   Segmentation   features   derived   from   fluorescence   image   of   Visium   mouse   brain   dataset.   
184 Top   left:   DAPI   stain.   Bottom   left:   nuclei   segmentation   using   DAPI   stain.   Right:   number   of   
185 nuclei   in   each   Visium   spot   derived   from   the   nuclei   segmentation   count.   The   yellow   square   
186 shows   the   location   of   the   inset.     
187 (h)   H&E   stain   and   clustering   of   summary   image   features   (channel   intensity   mean,   standard   
188 deviation,   and   0.1,   0.5,   0.9th   quantiles)   derived   from   the   H&E   stain   at   each   spot   location   (for   
189 quantitative   comparison   see   Supplementary   Fig.   2e).     
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190 Code   and   data   availability   

191 Squidpy   is   a   pip   installable   python   package   and   available   at   the   following   github   repository:   
192 https://github.com/theislab/squidpy    ,   with   documentation   at:   
193 https://squidpy.readthedocs.io/en/latest/    .   All   the   results   of   this   analysis   can   be   found   at   the   
194 following   github   repository:    https://github.com/theislab/squidpy_reproducibility    .   The   
195 pre-processed   datasets   have   been   deposited   at   
196 https://doi.org/10.6084/m9.figshare.c.5273297.v1    and   they   are   all   conveniently   accessible   in   
197 Python   via   the    squidpy.dataset    module.   The   datasets   used   in   this   article   are   the   following:  
198 Imaging   Mass   Cytometry 33 ,   seqFISH 29 ,   4i 25 ,   and   several   Visium 18    datasets   available   from   the   
199 website:    https://support.10xgenomics.com/spatial-gene-expression/datasets    .   
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223 Supplements   

224

  
225 Supplementary   Figure   1.   Benchmarking   resources   for   Squidpy   analysis   modules.   
226 Benchmarks   (a)   and   (b)   were   run   on   a   2,4   GHz   Intel   Core   i5   processor   with   4   cores   and   16   
227 GB   RAM.   Benchmarks   (c)   and   (d)   were   run   on   a   Centos   8   server   cluster   with   32   cores   and   
228 128   GB   of   memory.   Unless   explicitly   mentioned,   functions   were   run   without   parallelization.   
229   
230 (a)   Execution   times   for   spatial   graph   building   and   neighborhood   enrichment   analysis,   
231 comparing   four   spatial   datasets   at   increasing   number   of   observations.   Squidpy   outperforms   
232 similar   functions   provided   by   the   Giotto   toolkit 11 ,   for   any   dataset   and   task.   Reported   are   
233 mean   values   for   10   runs,   except   for   the   4i   neighbor   enrichment   test   that   was   run   only   once   in   
234 Giotto.   
235   
236 (b)   Execution   time   for   typical   feature   extraction   workflow   on   different   datasets.   The   feature   
237 extraction   workflow   consisted   of   segmenting   the   image   using   watershed   with   a   fixed   
238 threshold,   and   extracting   summary   and   segmentation   features   with   default   parameters.   The   
239 segmentation   was   done   using   image   tiles   of   size   2000.   Using   more   cores   (tasks)   linearly   
240 decreases   computation   time   for   the   feature   extraction   workflow,   enabling   processing   of   very   
241 large   images   (>400M   pixels).   
242   
243 (c)   Execution   time   for   Squidpy’s   implementation   of   the   CellphoneDB   permutation-based   test,   
244 at   an   increasing   number   of   genes   for   the   development   of   human   forebrain   dataset 37 .   
245   
246 (d)   Squidpy   implementation   of   the   CellphoneDB   permutation-based   tests   uses   the   full   
247 Omnipath   database   for   ligand   receptor   annotations.   For   two   datasets   (paul15 38    mouse   and  
248 pbmc3k 39    human),   Omnipath   in   Squidpy   can   recover   a   higher   number   of   interactions.   
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249

  
250 Supplementary   Figure   2.   Image   processing   workflow   and   examples   of   segmentation   
251 and   deep   learning   interface   
252 (a)   Exemplary   image   processing   workflow   utilising   Squidpy’s   Image   Container   object.   From   
253 left   to   right   are   shown:   the   high-resolution   source   image,   the   preprocessing   results   (smooth,   
254 gray   methods),   the   cell-segmentation   results   (that   can   be   done   with   a   watershed   or   custom,   
255 deep   learning-based   approach)   and   finally   the   feature   extraction   results.   The   features   can   be   
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256 computed   both   at   spot   level,   or   at   segmentation   mask   level,   enabling   the   analysis   to   relate   
257 any   pixel-level   metric   to   the   molecular   profile.   
258   
259 (b)   Segmentation   features   extracted   using   a   watershed   segmentation.   Extension   of   Figure   2   
260 (a).   From   left   to   right   are   shown:   number   of   nuclei   underneath   each   Visium   spot,   mean   
261 intensity   of   anti-NEUN   channel   within   the   nuclei   masks,   mean   intensity   of   anti-GFAP   channel   
262 within   the   nuclei   masks,   and   a   leiden   clustering   of   the   gene   expression   values.   The   
263 segmentation   features   provide   interpretable,   additional   information   to   the   gene-space   
264 clustering.   We   can   see   that   the   cell-rich   pyramidal   layer   of   the   Hippocampus   has   more   cells   
265 than   the   surrounding   areas.   This   fine-grained   differentiation   of   the   Hippocampus   is   not   
266 visible   in   the   gene   clusters,   where   the   Hippocampus   is   only   one   cluster.   The   per-channel   
267 intensities   show   that   the   areas   labelled   with   "Cortex_1"   and   
268 "Cortex_3"   have   a   higher   intensity   of   neurons   (higher   intensity   of   anti-NEUN   channel)   and   
269 that   clusters   "Fiber_tracts"   and   "lateral   ventricles"   are   enriched   with   glial   cells   (higher   
270 intensity   of   anti-GFAP   channel).   
271   
272 (c)   Qualitative   comparison   of   gene-space   clustering   (left)   with   clustering   of   ResNet   features   
273 (center)   and   clustering   of   summary   features   (right,   see   Fig.   2b)   using   a   mouse   brain   Visium   
274 dataset   with   an   H&E   microscopy   image.   ResNet   features   were   calculated   by   training   a   
275 pre-trained   ResNet   model   to   predict   the   gene-expression   cluster   assignment   (shown   on   the   
276 left)   and   taking   the   feature   vector   of   the   last   fully   connected   layer   as   data   representation.     
277   
278 (d)   Confusion   matrix   showing   the   proportion   of   assigned   labels   in   gene   clusters   and   resnet   
279 embedding   clusters   from   (c).   Rows   correspond   to   clusters   in   gene   expression   space   (c)   left),   
280 columns   correspond   to   resnet   embedding   clusters   (c)   center).   The   heatmap   shows   the   
281 proportion   of   overlapping   observations   in   each   cluster   annotation.   For   instance,   for   
282 "Thalamus_2"   cluster,   88%   of   observations   are   annotated   as   cluster   2   in   the   resnet   
283 embedding   visualization.   We   can   see   that   for   some   cluster   labels   the   prediction   was   strong,   
284 whereas   for   others   the   resnet   model   was   unable   to   discriminate   the   labels.   For   instance,   
285 some   regions   of   the   cortex   and   hypothalamus   seemed   to   not   have   been   accurately   
286 classified.   This   showcases   how   the   image   container   object   can   be   used   to   relate   morphology   
287 information   from   the   source   image   to   any   annotation   in   the   Anndata   object.   
288   
289 (e)   Confusion   matrix   showing   the   proportion   of   assigned   labels   in   gene   clusters   and   image   
290 summary   feature   clusters   from   (c).   Rows   correspond   to   clusters   in   gene   expression   space   
291 (c)   left),   columns   correspond   to   image   summary   feature   clusters   (c)   center).   The   heatmap   
292 shows   the   proportion   of   overlapping   observations   in   each   cluster   annotation.   Several   of   the   
293 gene   clusters   are   recognizable   using   simple   image   features.   E.g.,“Hypothalamus_1”   is   
294 overlapping   to   77%   with   cluster   8,   “Hippocampus”   is   overlapping   to   54%   with   cluster   10,   and   
295 “Pyramidial_layer”   and   “Pyramidial_layer_dentate_gyrus”   are   covered   to   43%/44%   by   cluster   
296 14.   In   other   regions,   especially   the   cortex   (clusters   “Cortex_1”,   “Cortex_3”,   “Cortex_4”),   the   
297 image   clusters   do   not   overlap   well   (no   cluster   overlap   >   33%),   showing   that   in   these   regions   
298 simple   image   features   and   gene   expression   values   show   different   patterns.     
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299

  
300 Supplementary   Figure   3.   Example   analysis   of   Imaging   Mass   Cytometry   data   from   
301 breast   cancer   biopsies.     
302 (a)   Spatial   visualization   of   cell   types   as   defined   by   the   original   authors 33 .     
303 (b)   Ripley's   K   statistics   computed   at   increasing   distances   threshold   across   the   tissue.   There   
304 is   no   clear   spatial   pattern   in   the   data,   except   for   a   small   increased   clustering   pattern   of   the   
305 "basal   CK   tumor   cell",   which   can   be   visualized   in   the   lower-right   section   of   the   spatial   plot.   
306 (c)   Co-occurrence   analysis   of   cell   types   at   increasing   distance   thresholds   across   the   tissue.   
307 Visualized   is   the   probability   conditioned   on   the   presence   of   the   "basal   CK   tumor   cell".   
308 Interestingly,   we   can   observe   a   slight   co-enrichment   with   the   "small   elongated   stromal   cell"   
309 cluster.   
310 (d)   Neighborhood   enrichment   analysis   between   cell   type   clusters   in   the   spatial   graph.   We   
311 can   observe   how   the   immune   cell   subsets   and   stromal   cells   seem   to   form   a   closer   
312 neighborhood   as   opposed   to   the   tumor   cells.     
313 (e)   Network   centralities   for   cell   types   (nodes   of   the   spatial   graph).   The   "apoptotic   tumor   cell"   
314 cluster   shows   high   closeness   and   degree   centrality,   and   it   is   indeed   the   most   abundant   and   
315 spread   class   label   in   the   graph.   
316 (f)   Visualization   of   two   markers   for   immune   cell   populations,   visualized   in   spatial   coordinates.   
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317

  
318 Supplementary   Figure   4.   Interfacing   Squidpy   to   Tangram   for   segmentation-aware   
319 cell-type   deconvolution.     
320 Tangram   is   a   recently   published   cell-type   deconvolution   method   that   maps   single   cell   to   
321 spatial   voxels   of   gene   expression   profiles.   Squidpy’s   Image   Container   can   be   used   to   
322 acquire   nuclei   segmentation   mask   and   leverage   this   mask   to   map   cell   types   to   tissue   using   
323 Tangram.   
324 (a)   Subset   of   Visium   spatial   transcriptomics   dataset   showing   a   mouse   brain   coronal   section.   
325 (b)   scRNA-seq   data   from   the   mouse   cortex   from   Tasic   et   al 40 .  
326 (c)   Tangram   results   as   averaged   by   cell   type.   The   cortical   layers   have   been   deconvoluted   
327 successfully.   
328 (d)   Tangram   maps   of   single   cells.   The   cell   type   of   the   segmentation   objects   were   assigned   
329 by   Tangram,   employing   the   seamless   integration   provided   by   Squidpy   between   the   
330 segmentation   objects   and   the   original   spot   observations   in   Anndata.   In   the   figure,   each   point   
331 corresponds   to   a   segmentation   object   colored   by   the   cell   type   assigned   by   Tangram.     
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332   

333   
334 Supplementary   Table   1.   Comparison   of   Squidpy   features   to   existing   tools   for   spatial   
335 molecular   data   analysis   
336 Rows   correspond   to   a   set   of   analysis   features   that   are   specific   for   working   with   spatial   
337 molecular   data.   It   is   subdivided   in   Infrastructure,   Spatial   Analysis,   Image   Analysis,   
338 Integration,   Visualization   and   Others.   The   columns   contain   software   tools   that   are   tailored   for   
339 spatial   data   analysis.   Entries   have   been   labelled   according   to   whether   the   software   tool   is   
340 able   to   provide   a   specific   functionality,   whether   it's   partially   available   or   whether   it's   missing.   
341 The   row   “Framework”   specifies   which   programming   languages   are   necessary   to   use   all   of   
342 the   functionalities   of   the   package.   Finally,   for   SpatialExperiment,   since   it   is   an   object   to   store   
343 spatial   transcriptomics   data,   the   analysis   features   do   not   apply.     

  Squidpy   stLearn   Giotto   Seurat   (spatial)   SpatialExperiment   STUtility   

Package   focus   Efficient   unified   data   
representations   for   
spatial   data,   
comprehensive   spatial   
graph   and   image   
analysis   tools,   
(interactive)   
visualisation   in   python   

Method   to   combine   
image   information   with   
gene   expression   
measurements   in   a   joint   
representation.   
Provides   several   
additional   analysis   tools   
for   spatial   data   analysis   

Spatial   analysis   and   
visualisation   in   R:   a   
comprehensive   
package   tool   that   
provides   analysis   and   
visualization   tool   for   
spatial   graph   and   
image   

Seurat   extension   to   
support   spatial   
visualization   and   
spatially   variable   genes   
analysis   

Bioconductor   object   to   
store   spatial   genomics   
data   

Tool   to   analyze   and   
visualize   spatial   
transcriptomics   data   
and   the   microscopy   
image   in   R   

Infrastructure               

Store   large   tissue   image   (>500Mb)   Yes   No   Yes   No   No   Yes   

Store   small   tissue   image   (<10Mb)   Yes   Yes   Yes   Yes   Yes   Yes   

Build   spatial   neighborhood   graph   Yes   No   Yes   No   NA   Yes   (only   knn)   

              

Spatial   analysis               

Spatial   statistics   for   cell   types   Yes   Partial   (no   spatial   
graph)   

Yes   No   NA   No   

Spatially   variable   genes   Yes   Yes   Yes   Yes   NA   Yes   

Ligand-receptor   analysis   Yes   Partial   (no   database)   Partial   (no   database)   No   NA   No   

              

Image   analysis               

Morphology   features   (Standard)   Yes   No   No   No   NA   No   

Morphology   features   (DNN   based)   Yes   Yes   (only   low   res   
image)   No   No   NA   No   

Segmentation   Yes   No   No   No   NA   No   

Registration   No   No   No   No   NA   Yes   

Interface   with   DL   framework   Yes   Yes   No   No   NA   No   

              

Integration               

Image-gene   expression   integration   Yes   (with   external   tool)   Yes   No   No   NA   No   

Mapping/Deconvolution   Yes   (with   external   tool)   Yes   (with   external   tool)   Yes   (with   external   tool)   Yes   NA   No   

              

Visualization               

2d   static   Yes   Yes   Yes   Yes   NA   Yes   

3d   static   No   No   Yes   No   NA   Yes   

2d   interactive   Yes   No   Yes   No   NA   Yes   

Interactive   cropping   Yes   No   Yes   No   NA   No   

              

Others               

Unit   tests   Yes   No   No   Yes   Yes   No   

Documentation   Yes   Yes   Yes   Yes   Yes   Yes   

Framework   Python   Python   R/Python/ImageMagick  R   R   R   
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Online methods

1 Infrastructure

Spatial graph The spatial graph is a graph of spatial neighbors with cells (or spots in case of
Visium) as nodes and neighborhood relations between spots as edges. We use spatial coordinates
of spots to identify neighbors among them. Different approach of defining a neighborhood relation
among spots are used for different types of spatial datasets.

Visium spatial datasets have a hexagonal outline for their spots, i.e each spot has up to eight spots
situated around it. For this type of spatial dataset the parameter n_rings should be used. It specifies
for each spot how many hexagonal rings of spots around it will be considered neighbors.

sq.gr.spatial_neighbors(adata , coord_type="visium", n_rings=<int>)

For the other types of spatial datasets neighbors can be defined as the closest spots in terms of
euclidean distance between their coordinates. For a fixed number of the closest spots for each spot,
it leverages the k-nearest neighbors search from Scikit-learn1 and n_neigh must be used.

sq.gr.spatial_neighbors(adata , coord_type="generic", n_neigh=<int>)

In order to get all spots within a specified radius (in units of the spatial coordinates) from each spot
as neighbors, the parameter radius should be used.

sq.gr.spatial_neighbors(adata , coord_type="generic", radius=<float>)

The function builds a spatial graph and saves its adjacency and weighted adjacency matrices to
adata.obsp['spatial_connectivities'] in either Numpy2 or Scipy sparse arrays3. The weights
of the weighted adjacency matrix are distances in the case of coord_type="generic" and ordinal
numbers of hexagonal rings in the case of coord_type="visium". Together with the connectivities,
we also provide a sparse adjacency matrix of distances, saved in adata.obsp['spatial_distances
'] We also provide spectral and cosine transformation of the adjacency matrix for uses in graph
convolutional networks4.

Image Container The Image Container is an object for microscopy tissue images associated
with spatial molecular datasets. The object is a thin wrapper of an xarray.Dataset5 and provides
efficient access to in-memory and on-disk images. On-disk files are loaded lazily using dask6 through
rasterio7, meaning content is only read in memory when requested. The object can be saved as a
zarr store zarr8. This allows handling very large files that do not fit in memory.

Image Container is initialised with an in-memory array or a path to an image file on disk. Im-
ages are saved with the key layer. If lazy loading is desired, the chunks parameter needs to be
specified.

sq.im.ImageContainer(PATH , layer=<str>, chunks=<int>)

More images layers with the same spatial dimensions x and y like segmentation masks can be added
to an existing Image Container.

img.add_img(PATH , layer_added=<str>)

The Image Container is able to interface with Anndata objects, in order to relate any pixel-level
information to the observations stored in Anndata (e.g. cells, spots etc.). For instance, it is possible
to create a generator that yields image’s crops on-the-fly corresponding to locations of the spots in
the image:
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spot_generator = img.generate_spot_crops(adata)
lambda x: (x for x in spot_generator) # yields crops at spots location

This of course works for both features computed at crop-level but also at segmentation-object level.
For instance, it is possible to get centroids coordinates as well as several features of the segmentation
object that overlap with the spot capture area.

Napari for interactive visualization Napari is a fast, interactive, multi-dimensional image
viewer in Python9. In squidpy, it is possible to visualize the source image together with any an-
ndata annotation with Napari. Such functionality is useful for fast and interactive exploration of
analysis results saved in anndata together with the high resolution image. Furthermore, leveraging
Napari functionalities, it is possible to manually annotate tissue areas and assign underlying spots
to annotations saved in the Anndata object. Such ability to relate manually defined tissue areas
to observations in anndata is particularly useful in settings where there is a pathologist annotation
available and it needs to be integrated with analysis at gene expression or image level. All the steps
described here are done in Python, therefore available in the same environment where the analysis
is performed (it does not require an additional tool).

img = sq.im.ImageContainer(PATH , layer=<str>)
img.interactive(adata)

2 Graph and spatial patterns analysis

Neighborhood enrichment test The association between label pairs in the connectivity graph
is estimated by counting the sum of nodes that belong to classes i and j (e.g. cluster annotation) and
are proximal to each other, noted xij . To estimate the deviation of this number versus a random
configuration of cluster labels in the same connectivity graph, we scramble the cluster labels while
maintaining the connectivities, and then recount the number of nodes recovered in each iteration
(1,000 times by default). Using these estimates, we calculate expected means (µij) and standard
deviations (σij) for each pair, and a Z-score as,

Zij = (xij − µij)/σij

The Z-score indicates if a cluster pair is over-represented or over-depleted for node-node interactions
in the connectivity graph. This approach was first described (to the best of our knowledge) by
Schapiro et al10. The analysis and visualization can be performed with the analysis code showed
below.

sq.gr.nhood_enrichment(adata , cluster_key="<cluster_key >")
sq.pl.nhood_enrichment(adata , cluster_key="<cluster_key >")

Our implementation leverages just-in-time compilation with Numba11 to achieve greater perfor-
mances in computation time (see Supplementary figure 1).

Ligand-receptor interaction analysis We provide a re-implementation of the popular Cell-
phonedb method for ligand-receptor interaction analysis12. In short, it’s a permutation-based test of
ligand-receptor expression across cell-types combinations. Given a list of annotated ligand-receptor
pairs, the test computes the mean expression of the two molecules (ligand, receptor) between cell
types, and builds a null-distribution based on n permutations (default 1000). A p-value is computed
based on the proportion of the permuted means against the true mean. In Cellphonedb, if a receptor
or ligand is composed of several subunits, the minimum expression is considered for the test. In our
implementation, we also include the option of taking the mean expression of all molecules in the
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complex. Our implementation also employs Omnipath13 as ligand-receptor interaction annotatiojn.
A larger database that contains the original CellphoneDB database together with 5 other resources
(see Turei et al.13). Finally, our implementation leverages just-in-time compilation with Numba11

to achieve greater performances in computation time (see Supplementary figure 1).

Ripley’s K function is a spatial analysis method used to describe whether points with discrete
annotation in space follow random, dispersed or clustered patterns. Ripley’K function can be used
to describe the spatial patterning of cell clusters in the area of interest. Ripley’s K function is defined
as

K(t) = A

n∑
i=1

n∑
j=1

wi,jI(di,j < t) (1)

Where I(di,j < t) is the indicator function, that sets whether the operand is 1 or 0 based on the
(euclidean) distance di,j evaluated at search radius t, A is the average density of point in the area
of interest and wi,j is the edge effect correction (see Astropy implementation for details on this
term14).

sq.gr.ripley_k(adata , cluster_key="<cluster_key >")
sq.pl.ripley_k(adata , cluster_key="<cluster_key >")

Cluster co-occurrence ratio provides a score on the co-occurrence of clusters of interest across
spatial dimensions. It is defined as

p(exp|cluster)
p(exp)

(2)

where cluster is the annotation of interest to be used as conditioning for the co-occurrence of all
clusters. It is computed across n radius of size d across the tissue area. It was inspired by an
analysis performed by Tosti et al. to investigate tissue organization in the human pancreas with
spatial transcriptomics15.

sq.gr.co_occurrence(adata , cluster_key="<cluster_key >")
sq.pl.co_occurrence(adata , cluster_key="<cluster_key >")

Global Moran’s I is a spatial auto-correlation statistics, widely used in spatial data analysis.
Given a feature (gene) and spatial location of observations, it evaluates whether the pattern expressed
is clustered, dispersed, or random16. It is defined as:

I =
n

S0

∑n
i=1

∑n
j=1wi,jzizj∑n
i=1 z

2
i

(3)

where zi is the deviation of the feature from the mean (xi −X), wi,j is the spatial weight between
observations, n is the number of spatial units. We provide an wrapper for the global Moran’s I
statistics implemented in libpysal17. Test statistics and p values (computed from a permutation
based test and further FDR corrected) are stored in adata.uns["moranI"].

sq.gr.moran(adata , cluster_key="<cluster_key >")

Centrality scores provide a numerical analysis on node patterns in the graph, which helps to
better understand complex dependencies in large graphs. A centrality is a function C which assigns
every vertex v in the graph a numeric value C(v) ∈ R. It therefore gives a ranking of the single
components (i.e. cells) in the graph which simplifies to identify key individuals. Group centrality
measures have been introduced by Everett and Borgatti.18. They provide a framework to assess
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clusters of cells in the graph, i.e. is a specific cell type more central or more connected in the graph
than others. Let G = (V,E) be a graph with nodes V and edges E. Additionally, let S be a group
of nodes allocated to the same cluster cS . Then N(S) defines the neighbourhood of all nodes in
S. The following four (group) centrality measures are implemented. Group degree centrality is
defined by the fraction of non-cluster members that are connected to cluster members, so

Cdeg(S) =
|N(S)− S|
|V | − |S|

∈ [0, 1].

Larger values indicate a more central cluster. Group degree centrality can help to identify essential
clusters or cell types in the graph. Group closeness centrality measures how close the cluster is
to other nodes in the graph and is calculated by the number of non-group members divided by the
sum of all distances from the cluster to all vertices outside the cluster, so

Cclos(S) =
|V − S|∑
v∈VS

dS,v
∈ [0, 1]

where dS,v = minu∈S du,v is the minimal distance of the group S from v. Hence, larger values indicate
a greater centrality. Group betweenness centrality measures the proportion of shortest paths
connecting pairs of non-group members that pass through the group. Let S be a subset of a graph
with vertex set VS . Let gu,v be the number of shortest paths connecting u to v and gu,v(S) be the
number of shortest paths connecting u to v passing through S. The group betweeenness centrality
is then given by

Cbetw(S) =
∑
u<v

gu,v(S)

gu,v
for u, v /∈ S.

The properties of this centrality score are fundamentally different from degree and closeness centrality
scores, hence results often differ. The last measure described is the average clustering coefficient.
It describes how well nodes in a graph tend to cluster together. Let n be the number of nodes in S.
Then the average clustering coefficient is given by

Ccluster(S) =
1

n

∑
v∈S

2T (v)

deg(v)(deg(v)− 1)

with T (v) being the number of triangles through node v and deg(v) the degree of node v. The
describes centrality scores have been implemented using the NetworkX library in python19.

sq.gr.centrality_scores(adata , cluster_key="<cluster_key >")
sq.pl.centrality_scores(adata , cluster_key="<cluster_key >", selected_score="<

selected_score >")

Interaction matrix represents the total number of edges that are shared between nodes with
specific attributes (e.g. clusters or cell types).

sq.gr.interaction_matrix(adata , cluster_key="<cluster_key >", normalized=True)
sq.pl.interaction_matrix(adata , cluster_key="<cluster_key >")

Python implementations relies ont the NetworkX library19.

3 Image analysis and segmentation

Image processing Before extracting features from microscopy images, the images can be pre-
processed. Squidpy implements functions for commonly used preprocessing functions like conversion
to gray-scale or smoothing using a gaussian kernel.

5

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431994doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.431994
http://creativecommons.org/licenses/by/4.0/


sq.im.process(img , method="gray")
img.show()

Implementations are based on the Scikit-image package20 and allow processing of very large images
through tiling the image into smaller crops and processing these.

Image segmentation Nuclei segmentation is an important step when analysing microscopy
images. It allows the quantitative analysis of the number of nuclei, their areas, and morphological
features. There are a wide range of approaches for nuclei segmentation, from established techniques
like thresholding to modern deep learning-based approaches.

A difficulty for nuclei segmentation is to distinguish between partially overlapping nuclei. Watershed
is a classic algorithm used to separate overlapping objects by treating pixel values as local topology.
For this, starting from points of lowest intensity, the image is flooded until basins from different
starting points meet at the watershed ridge lines.

sq.im.segment(img , method="watershed")
img.show()

Implementations in Squidpy are based on the original Scikit-image python implementation20.

Custom approaches with deep learning Depending on the quality of the data, simple seg-
mentation approaches like watershed might not be appropriate. Nowadays, many complex segmen-
tation algorithms are provided as pre-trained deep learning models, such as Stardist21, Splinedist22

and Cellpose23. These models can be easily used within the segmentation function.

sq.im.segment(img , method=<pre-trained model>)
img.show()

Image features Tissue organisation in microscopic images can be analysed with different image
features. This filters relevant information from the (high dimensional) images, allowing for easy
interpretation and comparison with other features obtained at the same spatial location. Image
features are calculated from the tissue image at each location (x, y) where there is transcriptomics
information available, resulting in a obs x features features matrix similar to the obs x gene matrix.
This image feature matrix can then be used in any single-cell analysis workflow, just like the gene
matrix.

The scale and size of the image used to calculate features can be adjusted using the scale and
spot_scale parameters. Feature extraction can be parallelized by providing n_jobs (see Supple-
mentary Figure 1). The calculated feature matrix is stored in adata[key] .

sq.im.calculate_image_features(adata , img , features=<list>, spot_scale=<float>,
scale=<float>, key_added=<str>)

Summary features calculate the mean, the standard variation or specific quantiles for a color channel.
Similarly, histogram features scan the histogram of a color channel to calculate quantiles according
a defined number of bins.

sq.im.calculate_image_features(adata , img , features="summary")
sq.im.calculate_image_features(adata , img , features="histogram")

Textural features calculate statistics over a histogram that describes the signatures of textures. To
grasp the concept of texture intuitively the inextricable relationship between texture and tone is
considered24: if a small-area patch of an image has little variation in it’s gray tone the dominant
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property of that area is tone. If the patch has a wide variation of gray tone features, the dominant
property of the area is texture. An image has a simple texture if it consists of recurring textural
features. For a grey level image I or e.g. a fluorescence color channel, a co-occurrence matrix C is
computed. C is a histogram over pairs of pixels (i, j) with specific values (p, q) ∈ [0, 1, ..., 255]2 and
a fixed pixel offset:

Cp,q =
∑
i

δI(i),pδI(j),q (4)

with Kronecker-Delta δ. The offset is a fixed pixel distance from i to j under a fixed direction
angle. Based on the co-occurence matrix different meaningful statistics (texture properties) can be
calculated which summarize textural pattern characteristics of the image:∑

p,q

Cp,q(p− q)2 contrast∑
p,q

Cp,q|p− q| dissimilarity

∑
p,q

Cp,q

1 + (p− q)2
homogeneity∑

p,q

C2
p,q ASM

∑
p,q

Cp,q
(p− µp)(q − µq)√

σ2pσ
2
q

correlation.

(5)

sq.im.calculate_image_features(adata , img , features="texture")

All the above implementations rely on the Scikit-image python package20.

Segmentation features Similar to image features that are extracted from raw tissue images,
segmentation features can be extracted from a segmentation object (3). These features allow to get
statistics over the number, area, and morphology of the nuclei in one image. To compute these fea-
tures, the Image Container img needs to contain a segmented image at layer <segmented_img>

sq.im.calculate_image_features(adata , img , features="segmentation", features_kwargs
={"label_layer":<segmented_img>})

Custom features based on deep learning models Squidpy feature calculation function can
also be used with custom user-defined features extraction functions. This enables the use of e.g.,
pre-trained deep learning models as feature extractors.

sq.im.calculate_image_features(adata , img , features="custom", features_kwargs={"
func":<pre-trained keras model>})
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