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Abstract
The sources of inter- and intra-individual variability in age-related cognitive decline remain poorly
understood. We examined the association between 20-year trajectories of cognitive decline and
multimodal brain structure and morphology in older age. We used the Whitehall II Study, an extensively
characterised cohort with 3T brain magnetic resonance images acquired at older age (mean age = 69.52±
4.9) and 5 repeated cognitive performance assessments between mid-life (mean age = 53.2 4.9 years)±
and late-life (mean age = 67.7 4.9). Using non-negative matrix factorization, we identified 10 brain±
components integrating cortical thickness, surface area, fractional anisotropy, and mean and radial
diffusivities. We observed two latent variables describing distinct brain-cognition associations. The first
describes variations in 5 structural components associated with low mid-life performance across multiple
cognitive domains, decline in reasoning, but maintenance of fluency abilities. The second describes
variations in 6 structural components associated with low mid-life performance in fluency and memory,
but retention of multiple abilities. Expression of latent variables predicts future cognition 3.2 years later
(mean age = 70.87 4.9). This data-driven approach highlights brain-cognition relationships wherein±
individuals degrees of cognitive decline and maintenance across diverse cognitive functions that are both
positively and negatively associated with cortical structure.
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1.0 Introduction
Cognitive decline is a well-established aspect of the aging process. Age-related impairments which
impact everyday functioning have been reported across a range of cognitive domains (Salthouse, 2010;
Tucker-Drob, 2011b). However, significant inter-individual variability has also been observed across
cognitive domains including memory, spatial functioning, processing speed and reasoning. While some
individuals experience accelerated rates of deterioration, others experience a relative maintenance of
cognitive functioning into old age (Pudas et al., 2013; Tucker-Drob & Salthouse, 2011; Wilson et al.,
2002). Even within the same individual, some cognitive domains may remain intact whereas other
domains are more vulnerable to decline (Tucker-Drob, 2011a). It is unclear whether this intra- and
inter-individual variation arises from underlying changes already present in early-to-mid life, or if they
are established in older age. Improving our understanding of the sources of this variability is an important
step in understanding aging-related changes in cognition.

Numerous magnetic resonance imaging (MRI) studies have suggested that inter-individual variation in
cognitive function may be partially explained by differences in brain structure, be it through differences in
neurobiology at a given time (brain reserve) or in preservation of brain morphology changes during
ageing over time (brain maintenance), (Stern et al., 2020). MRI provides macro- and microstructural
measures such as volume, thickness, surface area, diffusivity and fractional anisotropy, each of which
convey complementary information about the local morphology, axonal density, organization and
myelination of the cerebral cortex (Lerch et al., 2017; Tardif et al., 2016). In healthy aging, these
techniques have demonstrated widespread age-related degeneration of brain structure, namely decreases
in overall brain volume (Hedman et al., 2012), cortical thickness (Fjell, McEvoy, et al., 2014; Lowe et al.,
2019; Shaw et al., 2016), and fractional anisotropy as well as increases in diffusivity (Bartzokis, 2004;
Lebel et al., 2012; Marner et al., 2003; Tardif et al., 2016). They have also provided evidence for a
brain-cognition link in aging, for example by previously established associations between episodic
memory performance with volumes and diffusivity of the medial temporal lobe (Philippi et al., 2016; Raz
& Rodrigue, 2006; Reas et al., 2018; Schneider et al., 2019), and between decline in executive
functioning and widespread grey matter atrophy (Schneider et al., 2019).

However, most studies to date have considered these micro- and macro-structural MRI metrics
individually, without considering the complementary information multiple metrics provide on brain
structure, or their potential overlap and interdependencies. Moreover, most studies have considered a
priori definitions of cognitive decline. Previous approaches investigating brain-cognition relationships
have defined subject groupings based on cognitive trajectories and then assessed group differences in
brain structure (Persson et al., 2006; Schneider et al., 2019). For example, individuals have been broadly
categorised as cognitive “maintainers”, or “decliners” (Josefsson et al., 2012). A common strategy is to
categorize the most severe decliners and compare them to the rest of a cohort (Schneider et al., 2019).
This approach involves arbitrary cut-offs, and may be biased by the extremes of the decliner-maintenance
dimension, neglecting individuals demonstrating neither sharp decline nor strong maintenance (Persson et
al., 2012). Furthermore, broad categorisations of maintainers/decliners may also ignore intra-individual
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heterogeneity and the differential impact of age across cognitive domains (Goh et al., 2012; Park &
Reuter-Lorenz, 2009; Rönnlund et al., 2005).

This study builds on previous work in two important ways. First, we integrate multiple MRI based indices
of cortical macro- and microstructure. Incorporating data from multiple MRI modalities is useful as each
conveys complementary information, such that the resulting multimodal assessments query a wider range
of biological phenomena (Tardif et al., 2016). This approach has enabled fine grained assessments of the
cerebral cortex. Glasser et al., for example, incorporated data from structural and functional MRI to
delineate a novel parcellation of the cortex, including the identification of de novo areas distinguishable
as a result of this strategy (Glasser et al., 2016). Seidlitz et al. integrated multimodal MRI indices of
cortical structure to identify morphometric networks, such that areas of the cortex displaying
morphometric similarity shared cytoarchitectonic and transcriptional features (Seidlitz et al., 2018). These
findings demonstrate the specificity of associations demonstrated using multimodal MRI. Modelling
shared covariance across MRI metrics, as opposed to separately analysing each piece of information,
allows for a more comprehensive assessment of differences across subjects (Groves et al., 2012). To this
end, we expand previous work from our group on multi-modal data-driven parcellation of the
hippocampus using non-negative matrix factorization (NMF), and extend this methodology to facilitate
integration of multiple modalities into a single analytical framework (R. Patel et al., 2020). In this study
we consider five MRI metrics. From structural MRI we derive measurements of cortical thickness (CT),
surface area (SA), which have been routinely used to track age-related alterations of brain structure
(Dickerson et al., 2009; Fjell, Westlye, et al., 2014; Frangou et al., 2022; Habeck et al., 2020; Lemaitre et
al., 2012; Lerch et al., 2017; Querbes et al., 2009; Raz & Rodrigue, 2006; Salat et al., 2004; Storsve et al.,
2014; Tamnes et al., 2013). We also incorporated diffusion tensor imaging (DTI) indices of mean and
radial diffusivity (MD, RD) and fractional anisotropy (FA). While more commonly associated with the
study of fiber structure and organization in brain white matter (Alexander et al., 2007; Assaf, 2019), a
number of recent studies have demonstrated their sensitivity to microstructural properties of cortical grey
matter (Aggarwal et al., 2015; Assaf, 2019; Douaud et al., 2013; Grydeland et al., 2013; Kleinnijenhuis et
al., 2015; Kochunov et al., 2011; P. Lee et al., 2020; McKavanagh et al., 2019; Preziosa et al., 2019; Scola
et al., 2010; Seidlitz et al., 2018; Torso, Bozzali, et al., 2021; Torso, Ridgway, et al., 2021; Truong et al.,
2014). Though their interpretation in cortical grey matter is complex and still under study, DTI indices
have been shown to be sensitive to a range of neurobiological features including myelinated and
unmyelinated axons, dendrites, and cell bodies (Edwards et al., 2018). Further, while interrelated to some
degree, these measures have each been shown to query unique aspects of microstructure (Uddin et al.,
2019), making them complementary in nature. Thus, applied to these five MRI metrics, NMF highlights
regions of the brain in which shared patterns of variation occur across a range of macro- and
microstructural features (D. D. Lee & Seung, 1999; R. Patel et al., 2020; Robert et al., 2022; Sotiras et al.,
2015).

Second, we explore individual differences in brain-cognition relationships without a priori designations
of cognitive trajectories. We instead use a data-driven approach to probe the relationships between brain
structure and cognition. We employ partial least squares (PLS), a multivariate technique used to relate two
sets of variables together (McIntosh & Lobaugh, 2004), to identify covarying relationships between brain
structure and cognitive performance in a data-driven fashion. This approach sidesteps the need for a

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2021.02.19.431732doi: bioRxiv preprint 

https://paperpile.com/c/L0pmiP/iCnrz+tStcN+i6Q1e
https://paperpile.com/c/L0pmiP/iCnrz+tStcN+i6Q1e
https://paperpile.com/c/L0pmiP/aoYL
https://paperpile.com/c/L0pmiP/cD4Kj
https://paperpile.com/c/L0pmiP/j4ikl
https://paperpile.com/c/L0pmiP/1ZRQ
https://paperpile.com/c/L0pmiP/CKlNz
https://paperpile.com/c/L0pmiP/DNa5W+aLofb+dmlL2+ICEhB+vHzi7+UCtHb+osj0d+jVOF2+PcZY8+pqjhb+IEH2H
https://paperpile.com/c/L0pmiP/DNa5W+aLofb+dmlL2+ICEhB+vHzi7+UCtHb+osj0d+jVOF2+PcZY8+pqjhb+IEH2H
https://paperpile.com/c/L0pmiP/DNa5W+aLofb+dmlL2+ICEhB+vHzi7+UCtHb+osj0d+jVOF2+PcZY8+pqjhb+IEH2H
https://paperpile.com/c/L0pmiP/jq40V+pNQBk
https://paperpile.com/c/L0pmiP/FDgMf+ak7Nj+jq40V+ncZTe+zXiHV+6fBtN+uITxy+H3tmG+Yi5Bd+PioOa+DfxWB+xQYD2+j4ikl+TRenf
https://paperpile.com/c/L0pmiP/FDgMf+ak7Nj+jq40V+ncZTe+zXiHV+6fBtN+uITxy+H3tmG+Yi5Bd+PioOa+DfxWB+xQYD2+j4ikl+TRenf
https://paperpile.com/c/L0pmiP/FDgMf+ak7Nj+jq40V+ncZTe+zXiHV+6fBtN+uITxy+H3tmG+Yi5Bd+PioOa+DfxWB+xQYD2+j4ikl+TRenf
https://paperpile.com/c/L0pmiP/FDgMf+ak7Nj+jq40V+ncZTe+zXiHV+6fBtN+uITxy+H3tmG+Yi5Bd+PioOa+DfxWB+xQYD2+j4ikl+TRenf
https://paperpile.com/c/L0pmiP/uCKfq
https://paperpile.com/c/L0pmiP/zhYp3
https://paperpile.com/c/L0pmiP/zhYp3
https://paperpile.com/c/L0pmiP/Y2cAG+gaW2B+CKlNz+TcfM
https://paperpile.com/c/L0pmiP/Y2cAG+gaW2B+CKlNz+TcfM
https://paperpile.com/c/L0pmiP/YJgwe
https://doi.org/10.1101/2021.02.19.431732
http://creativecommons.org/licenses/by/4.0/


priori definitions and enables identification of dimensions along which subject-specific brain-cognition
relationships exist, instead of distinct decline/maintenance categorizations. Importantly, we then assess
biological significance of the identified patterns by exploring how individual variation in these
dimensions predicts future cognitive performance.

In this study we analyse data from the Whitehall II cohort, a unique and comprehensive longitudinal
dataset which enables study of the relationship between mid- and late-life features. This ongoing study
was established in 1985 at University College London and initially included 10,308 British civil servants
(Marmot & Brunner, 2005). Longitudinal follow-up occurred at multiple timepoints (defined throughout
as Waves). We analyse data collected between 1997 and 2016, collected roughly every five years at Wave
5 (1997-1999), 7 (2002-2004), 9 (2007-2009), 11 (2012-2013), and 12 (2015-2016). At each Wave,
information on social, cognitive, and biological data was collected, resulting in a unique source of
information to study aging. Eight hundred individuals from Wave 11 were randomly selected to
participate in the Whitehall II Imaging sub-study (Imaging Wave, 2012-16) in which structural, diffusion,
and functional MRI was collected (Filippini et al., 2014). In this work, our goal is to probe sources of
individual variability in the link between cognitive decline and cortical structure. We do this by leveraging
the unique Whitehall II Imaging sub-study dataset with multivariate techniques to identify brain-cognition
modes of covariance between multimodal MRI measures of late-life brain structure and cognitive
trajectories from mid- to late-life. We then examine the biological significance of the brain-cognition
relationships by testing their association with future cognitive performance.

2.0 Methods
Using the comprehensive lifespan data from the Whitehall II Imaging sub-study (Figure 1A), we analyse
longitudinal cognitive trajectories across multiple domains and assess their relationship with late-life
cortical structure using surface area (SA), cortical thickness (CT), mean diffusivity (MD), fractional
anisotropy (FA) and radial diffusivity (RD). Across multiple structural MRI indices, we model shared
covariance using NMF. We use linear mixed effects modeling to extract subject specific indices of
baseline performance and change in performance across multiple cognitive tests during a period of 20
years. We then use partial least squares (PLS) to identify distinct patterns of covariance between structure
and longitudinal cognitive performance, which we term brain-cognition latent variables (Figure 1B)
(McIntosh & Lobaugh, 2004; McIntosh & Mišić, 2013). Finally, we use each individual’s expression of
the identified latent variables to predict cognitive function at a follow-up timepoint, approximately 3.2
years later (Wave 12) (Figure 1C).
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Figure 1. Identifying structural-cognition relationships in aging using data-driven techniques. A) We analysed
data from the Whitehall II Imaging Sub-Study. Participants were tested across multiple cognitive domains at ~5-year
intervals since 1997, with structural and diffusion MRI collected between Waves 11 and 12. B) We applied
non-negative matrix factorization (NMF) to five metrics of cortical morphology: cortical thickness (CT), surface
area (SA), fractional anisotropy (FA), and mean and radial diffusivity (MD, RD) to identify patterns of variance.
Using cognitive data from Wave 5-11, we applied mixed effects modelling to identify intercept and slope
measurements for each individual across a range of cognitive tests during the 20-year period. We then used a partial
least squares (PLS) analysis to identify brain-cognition latent variables describing covariance between longitudinal
cognitive trajectories and late life cortical morphology. C) We related expression of the brain-cognition latent
variables to future cognition to show the identified brain-cognition latent variables predict future performance in two
distinct ways.
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2.1 Sample
We used data from the Whitehall II Imaging Sub-Study (Filippini et al., 2014), a random sample of 800
individuals from the Whitehall II Study of British civil servants, of which 775 received an MRI scan
(Marmot & Brunner, 2005). After quality control and exclusions based on available data, 398 participants
(mean age = 69.5 years ± 4.2, 92 females) were included in the final sample (Figure S1). These
individuals have been assessed longitudinally since 1985 across a total of 12 waves thus far. Cognitive
performance was assessed at 5 timepoints at University College London: Wave 5 (1997-1999), Wave 7
(2002-2004), Wave 9 (2007-2009), Wave 11 (2012-2013), and Wave 12 (2015-2016). Structural and
diffusion weighted magnetic resonance imaging (MRI) was conducted at the University of Oxford
between 2012-2016 (Imaging Wave, Figure 1). Montreal Cognitive Assessment (MOCA) was also
conducted at the Imaging Wave to be used as a covariate during subsequent analyses. All participants
provided informed written consent, and the Whitehall II Imaging Sub-Study was granted ethical approval
by the University of Oxford Central University Research Ethics Committee.

2.2 MRI Acquisition
MRI data was acquired on one of two scanners - a 3T Siemens Magnetom Verio (Erlangen, Germany)
(n=552) or a 3T Siemens Magnetom Prisma scanner (Erlangen, Germany) (n=223) at the FMRIB Centre
in the Wellcome Centre for Integrative Neuroimaging (WIN), Oxford. T1 weighted images were acquired
using a Multi-Echo MPRAGE (MEMPR) sequence (1mm3, TR = 2530ms, TE = 1.79/3.65/5.51/7.37ms)
on the Verio scanner and a closely-matched MPRAGE sequence on the Prisma scanner (1mm3,
TR=1900ms, TE=3.97ms). Diffusion weighted imaging (DWI) was acquired with an identical sequence
across both scanners, using monopolar diffusion encoding gradients with parallel imaging at 2mm
isotropic (60 directions, b=1500s/mm2, 5 b=0s/mm2 images). Detailed acquisition descriptions have been
described elsewhere (Filippini et al., 2014).

2.3 Obtaining Brain Structural Metrics
In this study we focus on vertex-wise measures of cortical macro- and microstructure. T1w images were
preprocessed using the minc-bpipe-library (https://github.com/CoBrALab/minc-bpipe-library), including
bias field correction (Tustison et al., 2010), adaptive non-local means denoising (Manjón et al., 2010),
head masking and brain extraction (Eskildsen et al., 2012) The resulting bias field corrected, head-masked
images and brain masks of each subject were input into the CIVET algorithm (Ad-Dab’bagh et al., 2006;
Lerch & Evans, 2005) (version 2.1.0) in order to obtain cortical mid-surfaces and vertex wise measures of
cortical thickness (CT) and surface area (SA), describing CT and SA estimates at a total of 81924 points
across the cortical mid-surface. Vertex wise CT and SA were blurred using 30 mm and 40 mm geodesic
surface kernels, respectively. We masked out 4802 vertices located along the left and right midline as CT
and SA estimates in this region are unreliable or nonexistent, resulting in a total of 77122 vertices valid
for analysis. CIVET outputs were quality controlled for registration quality, grey/white matter
classification accuracy, and surface abnormalities by one of the authors (RP).
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DWI data were preprocessed using the FMRIB’s diffusion toolbox (FDT) in order to correct for
distortions due to susceptibility, eddy currents, and head motion simultaneously. This process, based on
methods applied to the Human Connectome Project Dataset (Sotiropoulos et al., 2013), begins with the
topup tool in which pairs of reversed phase encoded images are used to estimate a susceptibility distortion
field map (J. L. R. Andersson et al., 2003; Filippini et al., 2014; Sotiropoulos et al., 2013). Next, the eddy
tool is used to estimate eddy current distortion as well as head motion using diffusion data acquired with
opposite gradient directions (Sotiropoulos et al., 2013). Notably, all distortion estimates are corrected in a
single resampling step in order to minimize interpolation and introduction of error (J. Andersson et al.,
2012; J. L. R. Andersson et al., 2003; Sotiropoulos et al., 2013). DTIFit
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT) was used to generate maps of MD, FA, and RD for each
subject. For each subject, MD, FA, and RD images were registered to their T1w image using a
multispectral affine registration, conducted using the antsRegistration tool from the ANTs toolbox
(version 2.3.1) with transform type set to Affine, T1w image as the fixed image, FA, MD, RD images as
the moving images. A brain mask for the T1w image was also supplied. The resulting transformations
were then concatenated with CIVET computed transformations between the T1w image and MNI space in
order to form a single transformation from MNI space to DWI space. This single transform was used to
warp cortical mid-surfaces from MNI space to DWI space. The transformed surfaces were then used to
obtain mid-surface estimates of each of MD, FA, and RD, by supplying the transformed surfaces and each
respective image to the volume_object_evaluate function (minc-toolkit v1.9.17). This process aims to
measure DWI values at voxels which intersect with the mid-surface vertices, thus discarding values in
white matter as well as grey matter superficial and deep to the mid-surface. Like CT and SA data, left and
right midline data was masked out resulting in a total of 77122 vertex-wise data points for each of MD,
FA, and RD.

2.4 Identifying Components using Non-negative Matrix Factorization
We used non-negative matrix factorization (NMF) to identify multimodal structural components,
motivated by previous work from our group deriving a multi-modal parcellation of the human
hippocampus (R. Patel et al., 2020). NMF is a matrix decomposition technique which decomposes an
input matrix into two matrices containing components and weights, respectively. In the context of this
analysis, NMF identifies regions of the brain where inter-individual macro- and microstructural variation
is observed (spatial components) as well as each individual’s macro- and microstructural profile in a given
component (subject weightings). Together, these outputs localize individual variability to specific brain
regions in a data-driven manner. As the name suggests, NMF requires non-negativity in both inputs and
outputs, leading to an additive parts-based representation (D. D. Lee & Seung, 1999). Given an input
matrix of dimensions m x n, NMF outputs a component matrix W (m x k), and a weight matrix H (k x n).
The number of components, k, is defined by the user. Each component describes a distinct multimodal
covariance pattern across the input imaging data, with the W component matrix identifying the spatial
location of the component (vertices with higher component scores represent where the component is
located), and the H weight matrix quantifying the interindividual variability within the identified spatial
region for each of the 5 input MRI metrics.
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In this implementation, the NMF input matrix is constructed by stacking the vertex x subject matrices of
each microstructural metric together. For each of the 5 metrics, vertex-wise data from all subjects is
concatenated to form 5 separate matrices of dimensions 77122 rows x 398 columns (77122 vertices, 398
subjects). At each vertex and for each metric, we model out the effect of scanner using linear regression.
Prior to concatenating individual metric matrices together, a per-vertex z-scoring is applied to each metric
to account for differences in magnitude. This decision removes regional differences in structure, but
instead emphasizes and focuses our analysis on interindividual differences.The resulting 5 matrices are
then stacked side by side to form a matrix containing z-scored and residualized data with dimensions
77122 rows and 1990 columns (77122 vertices, 398 subjects * 5 metrics = 1990 columns) . This matrix is
shifted by its minimum value to create a non-negative input matrix for NMF. We used sklearn (version
0.23.1) to implement NMF with a non-negative singular value decomposition initialization to improve
sparsity (Boutsidis & Gallopoulos, 2008). Number of components was selected through a split half
stability analysis and a balance of spatial stability and model reconstruction accuracy (R. Patel et al.,
2020).

The use of NMF in this study creates a two-step analysis procedure - MRI data is first input into NMF
with the resulting components serving as input to the PLS analysis. It’s justification is three-fold. First,
NMF provides an efficient form of dimensionality reduction of the input brain data. After extracting
vertex-wise values of each MRI metrics, a total of 385610 measurements exist per subject (77122 vertices
x 5 metrics). In light of potential concerns regarding the use of multivariate brain-cognition techniques in
which the number of features vast outnumbers the number of subjects (Helmer et al., 2021; Marek et al.,
2020), use of NMF significantly reduces the number of features per subject to help guard against concerns
of latent variable stability. Second, NMF provides a means of multimodal data fusion. By inputting all
metrics into NMF, the covariance across all metrics is considered simultaneously, a key point for fully
taking advantage of multimodal data and its complementary nature (Groves et al., 2012). Finally, NMF
has shown the ability to act as a detector of biologically relevant data in a number of neuroimaging
applications (Nassar et al., 2018; Sotiras et al., 2015, 2017; Varikuti et al., 2018). By choosing to
normalize data on a per-vertex basis as described above, we take advantage of this variance detection
ability by restricting NMF to identify covariance patterns purely related to interindividual variability, as
opposed to also including intraindividual (i.e. regional) variability related to regional differences in
cortical structure. We thus constrain the downstream PLS analysis to focus on brain-cognition
relationships in which the “brain” data represents, as best as possible, purely interindividual variability of
cortical structure.

2.5 Cognitive Function Trajectories
We used 5 tests to measure cognitive performance. These include semantic fluency (in one minute, recall
as many animals as possible), lexical fluency (in one minute, recall as many words starting with “S” as
possible), short term memory (20 word free recall, recall within two minutes), inductive reasoning
through the Alice-Heim 4-I (AH4) test (Heim, 1970), and vocabulary using the Mill Hill test (Raven,
1958; Singh-Manoux et al., 2012). We included the total AH4 score (inductive reasoning) as well as
mathematical and verbal reasoning sub scores, giving a total of 7 cognitive scores. For each score, a linear
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mixed effects model was performed with an interaction of baseline age and time since baseline as a fixed
effect, a random slope of time since baseline, and random intercept for each subject (1).

𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ∼ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐴𝑔𝑒 * 𝑇𝑖𝑚𝑒 +  (1 +  𝑇𝑖𝑚𝑒|𝑆𝑢𝑏𝑗𝑒𝑐𝑡) (1)

Models were implemented in R (version 3.6.3) using the nlme (version 3.1-149) package and
implemented continuous autoregressive moving-average correlation structure to consider correlations
between repeated measures on the same individual. Importantly, cognitive test data prior to the MRI time
point (Wave 5-11 but excluding Wave 12) was included in the linear mixed effects modelling. For each
model we extracted subject-specific intercepts, as well as the slope (i.e. coefficient) of the time variable
(using the R coef() function). These values are a summation of the overall fixed effects and
subject-specific random effects (De Jager et al., 2012), thus representing individual differences in
modelled baseline performance (intercept) and impact of time (slope).

2.6 Partial Least Squares
To investigate structural-cognition relationships, we performed a brain-cognition partial least squares
analysis (PLS). PLS is a multivariate technique which aims to maximize the covariance between two sets
of variables (Krishnan et al., 2011; McIntosh & Lobaugh, 2004; McIntosh & Mišić, 2013). In this
implementation, brain variables correspond to a 398 x 50 matrix containing NMF weightings of each
subject within each of 10 components, for each of 5 MRI metrics. Cognitive data corresponds to a 398 X
14 matrix containing intercept and slope measures for each subject, for each of the 7 cognitive test scores.
PLS outputs orthogonal latent variables (LV), each describing an independent pattern of covariance
between NMF weights and cognitive intercepts and slopes. Each brain-cognition LV includes a singular
value used to measure the proportion of total covariance explained. Statistical significance of an LV is
assessed using permutation testing (n=10000), which develops a null distribution of singular values from
which a non parametric p-value of each singular value in the original, non permuted data is computed.
Bootstrap resampling is used to generate distributions of the singular vector weights of each brain and
cognition variable, which enables identification of a confidence interval associated with each brain and
cognition variables contribution to a given LV. For brain variables, the bootstrap resampling ratio (BSR)
is computed as the ratio of the singular vector weight from the original run over the standard error of the
weight derived from the corresponding bootstrap distribution. A BSR of high magnitude (BSR can be
positive or negative) thus describes a brain variable with a strong and consistent contribution to an LV. We
used a threshold of +/- 1.96 as a cutoff, analogous to a 95% confidence interval, such that only brain
variables with a BSR magnitude above 1.96 are interpreted as contributing to an LV. (Krishnan et al.,
2011; McIntosh & Lobaugh, 2004; Nordin et al., 2018; Zeighami et al., 2017). Finally, we obtained
“brain” and “cognition” scores for each individual via multiplication of the output saliences and the
original subject data. This outputs a brain score as well as a cognition score for each individual, and for
each LV, which describes the degree to which a given individual expresses the pattern of covariance
described by an LV (Zeighami et al., 2017). Matlab R2016a was used to perform the analysis along with
the PLS package created by the Rotman Research Institute (http://pls.rotman-baycrest.on.ca/source).
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2.7 Predicting Future Cognition Using Brain-Cognition Latent Variables
To further investigate the biological significance of the LVs, we performed linear models to examine the
relationship between LV cognition scores and future cognitive performance (i.e. cognitive scores at Wave
12). For each cognitive score, we modelled Wave 12 performance as a function of LV1 and LV2 cognition
scores while covarying for age, sex and years of education using a model of the form

𝑊𝑎𝑣𝑒12𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ∼ 𝐿𝑉1 + 𝐿𝑉2 +  𝐴𝑔𝑒 +  𝑆𝑒𝑥 +  𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛  (2)
Where LV1 and LV2 terms represent cognition scores of each individual in a given LV. We performed the
above model for 6 of the 7 test scores used in the PLS analysis described in section 2.6 (Mill Hill test was
not conducted at Wave 12 and thus is not included in this analysis). Given the count nature and skew of
cognitive test scores, a square root transformation followed by inverse normal transformation was applied
to these data prior to linear modelling. Terms of interest included the LV1, LV2 terms and their
interaction, assessed at a bonferroni threshold of 0.0083 (0.05 / 6 tests). To complete our characterization
of LV cognition scores, we repeated this analysis using untransformed test score data and assessed
relationships between LV cognition scores and each of age, MOCA status, sex, and education at the
Imaging Wave.

2.8 Data and Code Availability
The study follows Medical Research Council data sharing policies
(https://mrc.ukri.org/research/policies-and-guidance-for-researchers/data-sharing/). In accordance with
these guidelines, data from the Whitehall II Study and the Imaging Sub-study are accessible via a formal
application on the Dementias Platform UK portal (https://portal.dementiasplatform.uk/). Code used in this
analysis is available at https://github.com/raihaan/micro-cog-nmf.

3.0 Results

3.1 Sample
The final analysis sample included 398 individuals who passed quality control for motion and cortical
thickness processing, and had whole brain DWI available (mean age = 69.5 years ± 4.2, 92 females
(23%), mean education years = 14.2 ± 3). Comparison of the analysis and initial samples is shown in
Table 1. For further details on sample selection, see SI Methods and Figure S1.

Table 1: Demographic characteristics for the analysis and starting samples including mean and standard
deviations for age, years of education, and MOCA score at the MRI Wave. Number of women, as well as
number of individuals with MOCA score >=26, indicative of no major cognitive impairments, is shown.
Statistical tests (t-test or chi-squared) show no differences between the analysis sample and full starting
sample.
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Analysis sample
(N=398)

Starting sample
(N=775)

Test Statistic p

Age (years) 69.52 4.9± 69.81 5.19± 𝑡 = 0. 95 0.35

Education (years) 15.84 3.54± 15.72 3.53± 𝑡 =− 0. 58 0.57

MOCA score 27.29 2.23± 27.18 2.26± 𝑡 =− 0. 80 0.42

Women, N (%) 92 (23.1%) 150 (19.3%) chi-squared
= 2. 27

0.13

MOCA>=26, N
(%)

322 (80.9%) 614 (79.2%) chi-squared
= 0. 46

0.49

N (%) of
participants
scanned on Verio
MRI scanner

281 (70.6%) 552 (71.2%) chi-squared
= 0. 49

0.82

3.2 Non-negative matrix factorization identifies 10 stable structural
components
NMF analysis was performed on an input matrix consisting of cortical measurements of all subjects CT,
SA, MD, FA, and RD data (R. Patel et al., 2020; Sotiras et al., 2015). Split half stability analysis (R. Patel
et al., 2020) identified 10 components as a suitable balance between spatial stability and reconstruction
error (see SI Methods and Figure S2). The 10 spatial components and associated weightings are displayed
in Fig 2A and 2B, respectively. Each component identifies a group of vertices which share a covariance
pattern for CT, SA, MD, FA, and RD. The components are largely bilateral and non-overlapping, and their
regional descriptions and naming conventions are described below.

1. Component 1: (Fronto-Temporal) is localized in the superior frontal and posterior temporal
regions.

2. Component 2: (Motor) is localized to primary and supplementary motor cortices, with some
spread to adjacent posterior frontal and superior parietal regions.

3. Component 3: (Visual) is strongly localized in the medial and lateral occipital lobe, as well as the
cingulate cortex and inferior temporal lobe.

4. Component 4: (Parietal) occupies most of the parietal cortex, with some spread to the lateral
temporal regions.

5. Component 5: (Inferior Frontal) is most prominent in the inferior, medial frontal lobe, but also
shows some presence in the inferior temporal lobe, anterior cingulate regions, and inferior lateral
frontal lobe.
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6. Component 6: (Anterior Frontal) occupies the anterior frontal regions as well as the temporal
pole.

7. Component 7: (Cingulate) occupies much of the midline regions but with a strong preference to
the cingulate cortex and shows some spread to insular cortices.

8. Component 8: (Postcentral) is heavily localized to the postcentral gyrus but shows considerable
presence in the lateral inferior frontal lobe and superior temporal gyrus.

9. Component 9: (Right lateralized) is the only component showing a laterality effect, including
bilateral medial parietal anterior temporal regions, but most prominent in right superior temporal
and lateral inferior frontal regions.

10. Component 10: (Temporal Pole) is most prominent in the temporal pole, but also shows some
presence in medial temporal and ventromedial frontal areas.

Figure 2. 10 structural components derived from the NMF decomposition. A) Cortical mappings of each of the
spatial patterns for each of the 10 components. For each component, lateral and medial views of both left and right
hemispheres are shown. Components are identified using the putative descriptors from the main text (e.g.,
Fronto-temporal) as well as lettering at the centre of each set of surface views (e.g., C1). Red areas indicate vertices
loading heavily onto a particular component (thresholded at 25% to max value). Each component identifies a
selection of vertices sharing a structural variance pattern. Together, components cover the entire brain, are largely
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bilateral (with exception of component 9) and are not spatially overlapping. B) Subject-specific weightings
associated with each of the displayed 10 components. Each row corresponds to a specific component’s NMF
weightings for each subject-metric combination, describing the CT, SA, MD, FA and RD patterns of each subject in
each component. Together these two outputs describe the morphological patterns of each subject within each spatial
component. Each element of the matrix is displayed as a fraction of its row mean, such that values below 0 indicate
a below average weight for a given component and vice versa.

Each of the 10 components represents a set of vertices sharing a covariance pattern across the input
imaging data. Recalling the per-vertex normalization procedure described in Section 2.4, which
prioritized interindividual variability, these components represent between-subjects variability derived
from multimodal MRI measures of cortical structure. Each component can be described via a spatial
pattern (Figure 2A) as well as a set of weightings for each subject and MRI metric (Figure 2B)
quantifying the variability across individuals. To further probe the significance of these patterns in the
context of cognitive decline, these subject weightings were used as input to PLS analysis.

3.3 Specific Patterns of Cortical Morphology Relate to Baseline and
Longitudinal Cognitive Function
We next related the variation in cortical structure captured by the NMF subject weightings to variability in
cognitive performance over time. For each participant we derived the intercept and slope for the change in
performance across each of seven cognitive tests: lexical and semantic fluency, short-term memory,
verbal, mathematical and inductive reasoning, and vocabulary (SI Results Table S1). The intercept
describes the estimated baseline (i.e., mid-life) performance while the slope describes the linear rate of
change in performance over time (i.e., from mid-life to late-life). We performed a brain-cognition PLS
with NMF component weightings as “brain” data and intercept and slope measurements as “cognition”
data. PLS analysis identified two significant latent variables (LVs), explaining 56.9% and 19.7% of shared
brain-cognitive covariance respectively. Each LV identifies a distinct pattern of longitudinal cognitive
trajectories across the 20-year follow up that relate to patterns of late-life structural characteristics (Figure
3). As the LVs contain a mix of cross sectional and longitudinal measures, in the descriptions below the
use of the words “decline”, “increase”, and “decrease” specify changes over time. Conversely, when
describing the brain features of each LV (derived from cross sectional MRI), use of the words “higher”
and “lower” is instead used and pertains to relatively higher or lower MRI measures in relation to the
comparison group at study.

To interpret the brain-cognition patterns identified by PLS, we have presented a cognitive plot and
associated brain maps. The cognitive plot shows the correlation of each brain variable with a given LV.
Two variables with the same direction (e.g. both positive) are identified to covary together, while those
with opposing directions (e.g. positive and negative) covary negatively. If the error bars of a variable
cross zero, the contribution of this variable to the LV is not deemed to be reliable and is excluded. For
example, in LV1, baseline performance on fluency (negative correlation) covary negatively with fluency
decline measures (positive correlation) but covary positively with memory baseline performance. To
identify the brain variables involved with the cognitive pattern described by the LV, the BSR of each brain
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variable can be used. Specifically, those variables with a positive BSR above the BSR threshold are
positively associated with the cognitive pattern, while those with negative BSR below the BSR threshold
are negatively associated. For example, the cognitive features of LV1 are positively associated with FA in
component 1 (blue, positive BSR), and negatively associated with SA in component 1 (red, negative
BSR).

LV1 (p = 0.0042) describes a pattern in which low baseline performance across all tests, accelerated
20-year decline in inductive, verbal, and mathematical reasoning abilities, but slow 20-year decline in
verbal and semantic fluency are associated with low late-life SA across the brain, lower CT
(cingulate/insular), lower FA (visual, temporal, right lateral), higher MD and RD (temporal pole), and
higher FA in posterior temporal and superior frontal regions. (Figure 3A, Table 2). LV2 (p = 0.0003)
describes a pattern in which low baseline performance in each of lexical fluency, semantic fluency, and
short term memory, but slower decline in each of lexical fluency, semantic fluency, inductive reasoning,
verbal reasoning, and numeric reasoning is associated with high SA across the brain, higher CT and lower
RD in the temporal pole, higher MD in inferior frontal, anterior frontal, and cingulate cortices, higher RD
in motor, anterior frontal, and cingulate cortices, and lower FA (anterior frontal, cingulate/insular) (Figure
3B, Table 2).

In summary, each brain-cognition LV described mixed patterns of cognitive decline and maintenance, as
well as both positive and negative associations with cortical structure indices. This suggests that rather
than cognitive decline being uniformly negatively associated with cortical structure, individuals display
degrees of cognitive decline and maintenance across diverse cognitive functions that are both positively
and negatively associated with cortical structure.
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Figure 3: Two brain-cognition latent variables identified by PLS. PLS identified two (LV1: A, LV2: B)
significant latent variables (p<0.05), each identifying a pattern of covariance between NMF weights and cognitive
intercept and slopes. Bar plots describe the contribution of cognitive variables. The y-axis denotes correlation of
each cognitive variable in a LV. Error bars denote 95% confidence interval, only variables with non-zero confidence
interval are described as contributing to a LV (marked with *). For each bar plot, cortical maps (right) show spatial
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patterns of the components contributing to the LV. The fingerprint of each map describes whether a given metric is
positively  (blue) or negatively (red) associated to the cognitive pattern shown in bar plots.

Table 2: Correlations of the contributing cognitive variables to each latent variable

Brain-Cognition
Latent Variable

Parameter Cognitive Test R [95% CI]

1 Intercept Lexical Fluency -0.22 [ -0.33 , -0.16 ]

Semantic Fluency -0.24 [ -0.36 , -0.2 ]

Short Term Memory -0.16 [ -0.28 , -0.09 ]

Inductive Reasoning -0.35 [ -0.45 , -0.31 ]

Verbal Reasoning -0.33 [ -0.42 , -03 ]

Mathematical Reasoning -0.35 [ -0.45 , -0.3 ]

Vocabulary -0.34 [ -0.44 , -0.26 ]

Slope Lexical Fluency 0.17 [ 0.07 , 0.27 ]

Semantic Fluency 0.25 [ 0.18 , 0.36 ]

Inductive Reasoning -0.26 [ -0.37 , -0.2 ]

Verbal Reasoning -0.25 [ -0.36 , -0.2 ]

Mathematical Reasoning -0.16 [ -0.27 , -0.09 ]

2 Intercept Lexical Fluency -0.08 [ -0.19 , -0.01 ]

Semantic Fluency -0.12 [ -0.23 , -0.06 ]

Short Term Memory -0.15 [ -0.24 , -0.08 ]

Slope Lexical Fluency 0.13 [ 0.07 , 0.24 ]

Semantic Fluency 0.15 [ 0.09 , 0.26 ]

Inductive Reasoning 0.14 [ 0.08 , 0.25 ]

Verbal Reasoning 0.1 [ 0.04 , 0.22 ]

Mathematical Reasoning 0.13 [ 0.09 , 0.25 ]
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3.4 Brain-Cognition Latent Variables Predict Cognitive Performance at
Future Timepoint
To investigate the biological significance of the brain-cognition relationships identified by the two distinct
LVs, we assessed how expression of LVs predicted cognitive performance at a future time point (Wave
12). In doing so, we were particularly interested in seeing if baseline performance may be better
predictors of future cognition than measurements of decline. Throughout the LV patterns, there are
varying combinations of baseline and decline. For example, an individual with high LV1 expression
performed poorly at the baseline measurement on tests of fluency but exhibited slower decline. A natural
follow up to this observation is if this individual performs better in the future than their counterpart, who
showed the inverse pattern of higher baseline performance but accelerated decline. Within each LV, a
cognition score was computed for each subject by projecting PLS derived saliences on the input cognitive
data. These scores describe the degree to which an individual expresses the cognitive phenotype described
by LV1. For example, LV1 describes low semantic fluency baseline performance but slower decline
measures (Figure 3A). Thus, an individual with a high LV1 cognition score would be expected to have
low semantic fluency at baseline but a slower decline. This is illustrated by the plots in Figure 4A, which
show a histogram of LV1 cognition scores and a strong negative association to semantic fluency baseline
and positive association to semantic fluency decline (Figure 4A).

Higher expression of the LV1 phenotype was associated with having fewer years of education (β=-0.43,
p<0.01) and lower MOCA scores (i.e. greater cognitive impairment) (t(98.5)=7.9, p<0.01, Figure 4B) at
the Imaging Wave. However, LV2 scores were not related to either MOCA (t(101.9)=0.79, p>0.05) or
education (β=-0.04, p>0.05) (Figure 4B). Both LV1 and LV2 showed sex differences, with females having
higher LV1 but lower LV2 scores in comparison to males (SI Results and Figure S3). Neither LV1 or LV2
showed any relationship to age (SI Results and Figure S3).

We next performed linear models to examine the relationship between LV scores and Wave 12 cognitive
performance. Table 3 lists standardized coefficients and p values of these analyses, assessing significance
at Bonferroni corrected threshold of p<0.0083 (0.05/6) . We observed that high expression of LV1 scores
was associated with lower performance on each test. Conversely, higher expression of the LV2 was
associated with lower Wave 12 performance of semantic fluency, lexical fluency, and memory tests but
better performance on  inductive, mathematical, and verbal reasoning tests. Thus, we find both LV1 and
LV2 are predictive of future cognitive performance in unique and distinct ways. A second model was run
with time interval between waves as an additional covariate which showed similar results (Supplementary
Table S3).
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Figure 4: Individual expression of PLS derived brain-cognition latent variables is indicative of cognitive status
and future performance. We used each subject’s expression of LV1 and LV2 to predict their cognitive performance
at a future wave. A) An illustration of the utility of LV cognition scores. Top row: a histogram shows the distribution
of LV1 cognition scores, which quantify the degree to which each subject expresses the phenotype described by
LV1. Plots of LV1 versus semantic fluency baseline and decline measures show positive and negative relationships,
respectively. These match that described in LV1 in Figure 3, demonstrating that LV cognition scores can be used to
describe the cognitive phenotype of subjects. Bottom row: equivalent plots for LV2 including the histogram, and
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plots of LV2 cognition scores vs verbal reasoning baseline (no relation) and verbal reasoning decline (positive
relation). B) LV1, but not LV2, cognition scores relate to key demographic variables. Linear modelling of years of
education as a function of LV scores showed a negative relationship with LV1 (β = -0.43, p<0.01), but no
relationship with LV2 (β = -0.04, p>0.05). Similarly, t-test of mean score between healthy and impaired MOCA
groups showed significant differences for LV1 (t(98.5)=7.9, p<0.01) but not LV2 (t(101.9)=0.79, p>0.05). C)
Effects plots of each Wave 12 test vs. LV1 and LV2, respectively. Effects plots, created using the effects() R
function, plot the predicted test score at various levels of either LV1 or LV2 while assuming population averages for
other covariates. Shaded areas represent confidence intervals around the estimate. Table 3 displays statistics from the
linear models used to assess these relationships, each of which was significant at a bonferroni threshold of p <
0.0083 (0.05/6).

Table 3: Statistical results from linear models run for Wave 12 performance on each of 6 cognitive tests. Each model
had the form . Standardized beta coefficients and 95%𝑇𝑒𝑠𝑡 ∼ 𝐿𝑉1 + 𝐿𝑉2 +  𝐴𝑔𝑒 +  𝑆𝑒𝑥 +  𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛
confidence intervals are reported, where the standardized coefficient represents the change in wave 12 test scores for
every one unit increase in LV scores, in units of standard deviation. Bold p-values are deemed significant at a
Bonferroni-corrected threshold of p<0.0083.

Test Term Standardized β  [95% CI] p

Semantic Fluency LV1 -0.61 [-0.69 -0.53] <0.001

LV2 -0.18 [-0.26 -0.11] <0.001

Lexical Fluency LV1 -0.52 [-0.61 -0.43] <0.001

LV2 -0.20 [-0.28 -0.12] <0.001

Memory LV1 -0.42 [-0.51 -0.33] <0.001

LV2 -0.13 [-0.22 -0.04] 0.003

Inductive Reasoning LV1 -0.82 [-0.88 -0.77] <0.001

LV2 0.13 [0.08 0.18] <0.001

Mathematical Reasoning LV1 -0.81 [-0.87 -0.76] <0.001

LV2 0.13 [0.08 0.19] <0.001

Verbal Reasoning LV1 -0.78 [-0.84 -0.72] <0.001

LV2 0.13 [0.07 0.18] <0.001

4.0 Discussion
In this study, we used a data-driven approach to identify brain-cognition latent variables of covariance
linking individual variation in cognitive decline over a period of 20-years from mid-to-late life, with
later-life patterns of cortical structure. We present several novel results. First, we demonstrate that the
association between cognitive decline and cortical structure as assessed by multivariate data-driven
methodologies is complex and heterogenous. Related univariate studies have yielded positive
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brain-cognition associations in a relatively consistent fashion (Oschwald et al., 2019). Further, purely
hypothesis driven approaches may be constrained by prior definitions and categorizations, limiting the
detection of heterogeneity in the sample (Habes et al., 2020). By operating with a hypothesis free and
data-driven approach, here we instead demonstrate brain-cognition relationships in which the
directionality of brain-cognition, as well as cognition-cognition relationships is more variable. For
example, LV2 shows that in our sample, a relative maintenance over time of reasoning abilities covaries
with lower baseline performance in fluency and memory tests, and that these cognitive characteristics are
associated with higher cortical area but also higher diffusivity in the anterior frontal regions. Second, the
simultaneous analysis of multimodal MRI measures using NMF better enables us to uncover global and
distributed networks in which cortical macro- and microstructural features are associated with cognition.
A common approach thus far has been to relate a single measure of brain structure with one or more
cognitive tests (Oschwald et al., 2019), identifying localized regions associated with cognition. Our
approach instead investigated vertex-wise measurements of the entire cortex and identified networks of
brain regions with shared covariance patterns (Sotiras et al., 2015). We include a range of macro- and
microstructural level metrics, increasing the sensitivity of our analysis to complementary underlying
neurobiological mechanisms (Tardif et al., 2016). The resulting analysis enabled us to identify large-scale
distributed brain regions which covary with cognitive maintenance and decline, suggesting that single
region approaches may be obscuring the importance of numerous other brain regions. Third, we show that
individual variation within these LVs is predictive of future cognitive performance, helping to understand
the biological significance of these distinct brain-cognition LVs. From a technical perspective, our study
adds to a growing body of evidence showing that multivariate data-driven analyses offer the ability to
uncover distributed networks of brain regions linked to cognition (Assem et al., 2020; Bassett et al., 2020;
Bassett & Sporns, 2017; Pichet Binette et al., 2020; van den Heuvel & Sporns, 2013). From a biological
perspective, our study emphasizes the importance of mid-life cognitive health when considering late-life
cognitive performance.

4.1 Brain-Cognition latent variables include a mixture of maintenance
and decline
The two brain-cognition relationships identified in this work contain a mixture of positive and negative
features across both brain and cognition. The first brain-cognition LV describes a pattern of low midlife
performance across all tests, accelerated decline in reasoning, but relatively maintained fluency associated
with a multimodal pattern of low SA in all areas of the brain except for the primary and supplementary
motor cortices, low CT in cingulate and insular cortex, high diffusivity in the temporal pole, low FA in
visual, temporal, and right lateral cortex but high FA in superior frontal and lateral temporal regions.
Meanwhile, the second brain-cognition LV links low baseline fluency and memory performance, but
slower fluency and reasoning declines with higher diffusivities in nearly all regions except occipital
cortex, high surface area in cingulate, insular and right lateral areas, high temporal pole thickness, and
low FA in frontal, cingulate and insular regions. Thus, across both brain and cognition, we observe a mix
of what studies have traditionally characterised as adaptive and maladaptive characteristics. Previous
findings have linked performance in fluency tests to fronto-temporal regions (Rodríguez-Aranda et al.,
2016; Zhang et al., 2013), and potentially parietal cortex as well (Rodríguez-Aranda et al., 2016).
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Similarly, frontal cortex has been highlighted as playing a key role in reasoning abilities (Mole et al.,
2021). These findings are in line with general theories attributing cognitive decline to impairments of
processing speed and executive function in which the frontal lobes play a prominent role (Jagust, 2013).
Our findings instead suggest a more distributed and variable pattern, in which not only other regions such
as the visual (LV1) and motor cortex (LV2) are involved, but the directionality of associations may not be
as straightforward as simple positive associations. While it may be tempting to infer patterns of overall
cognitive or neuroanatomical maintenance, our work suggests that by refraining from a priori definitions
of maintenance or decline groups, including baseline and decline measures across a range of tests, and
analysing multimodal indices of cortical structure simultaneously, we can identify subtle, complex
brain-cognition relationships which show a mix of maintenance and decline features across both cognitive
and anatomical measures. These findings thus discourage the use of a ‘one size fits all’ approach, and
instead encourage the consideration of cognitive domains and regional, multivariate anatomy at the
individual level.

While we cannot derive direct mechanistic inferences, our results also shed light on the neurobiological
underpinnings of the two latent variables. Histological evidence links CT reductions in old age with
decreased dendritic arborization (Esiri, 2007; Goriounova et al., 2018). A recent application of virtual
histology supports this, having found cortical thinning is related to increased expression of CA1
pyramidal cell gene sets enriched with processes related to dendritic arborization approach correlated
longitudinal CT changes with cell type expression levels (Y. Patel et al., 2021; Vidal-Pineiro et al., 2020).
Corresponding studies of SA remain uninvestigated, though see our discussion in Section 4.2 for more on
our SA findings. DWI metrics may relate to a range of age-related alterations such as decline in small
diameter myelinated fibers, alterations in the myelin sheath, and inflammatory processes (Beaulieu, 2002;
Marner et al., 2003). Increased diffusivity is a common finding in aging studies, and may relate to
enlarged interstitial spaces or axon swelling (Benedetti et al., 2006; Chad et al., 2018; Madden et al.,
2012). Rodent studies incorporating imaging and histology demonstrate that demyelination of axons leads
to increased RD (Song et al., 2002, 2004; Sun et al., 2008; Tuor et al., 2014). Common interpretations of
increased FA is related to the presence of a preferential fiber orientation, and of high myelin content
(Alexander et al., 2007; Basser & Ozarslan, 2010; Beaulieu, 2002; Lazari & Lipp, 2021; Le Bihan et al.,
2001; Mancini et al., 2020), however these interpretations are based on the study of FA in white matter
where it is accepted that orientation of myelinated axons represents the dominant source of anisotropy
(Edwards et al., 2018). In the cortex, interpretation of anisotropy is more challenging and less explored
(Edwards et al., 2018; Lampinen et al., 2019). Though evidence of anisotropy in the cortex has been
demonstrated (Aggarwal et al., 2015; McNab et al., 2013; Truong et al., 2014), FA is generally lower in
cortex than in white matter (Assaf, 2019; McNab et al., 2013) and may be driven by a number of factors
including unmyelinated axons (Assaf, 2019; Leuze et al., 2014; Nair et al., 2005), dendrites (Jespersen et
al., 2007), and cell bodies (Edwards et al., 2018). Thus we restrict our interpretation of cortical FA
changes to decreased FA potentially reflecting general degeneration as well as lower myelin content. We
hypothesize that LV1 has a neurobiological pattern of widespread reductions in cortical area, dendritic
branching, demyelination, and axonal degeneration. A surprising feature of LV1 is the higher FA in the
lateral and temporal regions of component 1. Higher FA in aging populations has been hypothesized to
represent a degeneration of secondary fiber populations rather than increases in fiber coherence (Douaud
et al., 2011; Miller et al., 2016). We consider this a tentative explanation of our FA findings in LV1,
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though based on the complexities of FA interpretation in cortical grey matter discussed above we avoid
strong interpretations of differential fiber orientation based on our findings. Meanwhile, LV2 is associated
with near global demyelination and axonal degeneration, but relatively maintained cortical area in
cingulate, insular, right lateral cortex and dendritic morphology in the temporal pole. However, while
plausible, these interpretations are complicated by the fact that each MRI metric is sensitive to a large
range of cellular level alterations (Tardif et al., 2016; Zatorre et al., 2012) as well as the interrelated nature
of the DWI metrics analysed (Madden et al., 2012). While joint analyses of all metrics, as is a focus of
this work, may help alleviate some concerns (Assaf & Pasternak, 2008), caution is still warranted in
absence of direct histological evidence.

4.2 Late Life Cognitive Performance is Driven by Mid Life Phenotypes
In our study sample and within the timeframe examined, the strongest predictor of later life (>65 years)
cognitive performance across a range of tests was performance in midlife (at mean age of 40 years). We
assessed the relationship between LV cognition scores and cognitive performance at a future time point
and found that across all tests, individuals scoring high on LV1 performed worse than those who
expressed the inverse cognitive pattern. In certain cases this is a straightforward result, as the cognition
features of LV1 included either decreased baseline performance (memory) or both decreased baseline
performance and accelerated decline (inductive, mathematical, and verbal reasoning). However, for tests
of lexical and semantic fluency LV1 describes low baseline performance and slower decline. In this case,
the inverse relationship between LV1 and future performance shows the relative maintenance of these
abilities is not enough to compensate for lower initial performance. Individuals scoring high on LV2
performed worse on tests of fluency and memory, but better on tests of inductive, mathematical, and
verbal reasoning compared to those with lower LV2 scores. Similar to LV1, LV2 describes low baseline
performance and slower decline on both fluency measures, and the inverse relationship between LV2 and
future performance shows maintenance is not enough to compensate for lower initial performance. For
tests of inductive, verbal and mathematical reasoning, LV2 describes a relative maintenance without any
baseline effects, in line with the positive association between LV2 and future performance on these tests.

Inclusion of both LV1 and LV2 scores in our models suggests that each of the brain-cognition LVs
identified are distinct in their ability to predict future cognitive performance. That we covaried for
impacts of age, sex, and education further supports the unique impact of each LV, over and above other
factors considered. For tests of inductive, mathematical, and verbal reasoning, LV1 and LV2 describe
opposing characteristics with LV1 showing low baseline performance and accelerated decline and LV2
showing a relative maintenance over time. When predicting future performance, we found that LV1 beta
coefficients were consistently larger in magnitude compared to LV2, suggesting the low midlife
characteristics of LV1 have a larger impact on future performance than the maintenance characteristics of
LV2. This supports the notion that low midlife performance is not adequately countered by the identified
longitudinal maintenance. This finding has relevance to the concept of cognitive reserve. High levels of
cognitive reserve, often probed through proxies such as education or occupational attainment, have been
strongly linked to better cognitive function in aging (Ewers, 2020). Whether this is driven by a
maintenance of previously developed advantages, moderation of the effects of aging on cognition and
hence cognitive decline, or a combination however remains unclear (Ewers, 2020; Soldan et al., 2020).
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Our findings altogether suggest that midlife differences in cognitive performance were the most
prominent predictors. However, it may be that individuals in our study sample have not yet reached a
point of drastically accelerated decline and therefore showed relatively less profound differences in
cognitive trajectories (Gregory et al., 2017).

While the MRI data is cross sectional and collected only in late life, in the context of mid life dominance
we find the widespread involvement of SA to be of particular interest. SA is commonly assessed in
parallel with CT, though the contribution of each to cortical volume, as well as their neurobiological and
genetic underpinnings (Panizzon et al., 2009; Rakic, 1988, 2000; Storsve et al., 2014), varies. For
example, while each of SA, CT, and cortical volume decrease with age, CT and volume change are
positively correlated while changes between CT and SA tend to be inversely related (Storsve et al., 2014).
SA decreases during aging are also of smaller magnitude than those observed for CT (Storsve et al.,
2014), and the primary determinant of SA, cortical column generation, occurs during prenatal and
perinatal periods (Rakic, 1988, 2000). These findings suggest SA may be more temporally fixed than CT
between mid and late life, and throughout the full lifespan. In this context, the pronounced influence of
LV1 mid life cognitive performance and late life SA on late life cognition lends credence to a lifespan
perspective in which developmental and mid-life events play a significant role in cognitive health in late
life. In a unique study involving the Lothian Birth Cohort, positive cognitive ageing between childhood
(age 11) and late life (age 73) was associated with higher SA in late life (Cox et al., 2018). In another
unique study involving multiple samples, Walhovd et al. identified a large region of the cortex in which
increased general cognitive ability was associated with increased surface area in a developmental sample
(aged 4-12) and noted that this association persisted throughout the lifespan (Walhovd et al., 2016). While
the above discussion focussed on SA, we also note the widespread involvement of FA. As described
below, the involvement of SA is of particular interest due to its reported life course characteristics as well
as relevant works assessing SA and cognition. At this point, the life course characteristics of FA and
cognition are not as concrete and so we hesitate to expand further on FA involvement in this context. Our
findings, along with others, support the idea that stable advantages may give certain individuals a ‘head
start’ in terms of cognitive function in aging. They also support the need for early and mid-life
preventative measures of cognitive decline to maintain cognitive performance in older ages, though the
potential role of reserve mechanisms on cognitive decline warrant further investigation. The mixed,
complex relationships identified also support the development of individualized preventative strategies.
Interestingly, within a subset of the Whitehall II cohort, previous work has identified similar mid to late
life relationships across different biological domains such that midlife cardiovascular health was
predictive of indicative of cerebral hypoperfusion in late life (Suri et al., 2019).

4.3 Strengths and Limitations
A key strength of this study is the use of multimodal MRI data to characterize cortical morphology. Use
of multiple MRI metrics provides complementary information regarding anatomical properties of the
brain in comparison to unimodal analyses. We take this further by employing NMF to analyse multimodal
data simultaneously to capture shared patterns of covariance across measures. This approach allows us to
identify 10 major components which are spatially contiguous and highlight relevant regions in which
cortical morphology varies across subjects. We relate this variability to longitudinal cognitive
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performance using PLS. This approach does not limit us to broad categorizations of decliners or
maintainers, rather, we obtain continuous measures for each individual identifying the degree of
expression of each of the identified brain-cognition latent variables. The use of multimodal data and
longitudinal cognitive measures is made possible by the unique dataset analysed. However, our study is
limited by a smaller sample size in comparison to large scale neuroimaging analyses. It may be that more
brain-cognition relationships would be identifiable in a larger sample. Our study also lacks an out of
sample validation, as the unique longitudinal data makes a compatible out of sample dataset difficult to
find. Further, because of our sample size we elected not to hold out a portion of the dataset to perform an
internal validation, and instead used the full dataset to improve the descriptive nature of our analysis at
the cost of its predictive utility. Future work with independent validations are needed in larger
longitudinal MRI datasets as they emerge. In addition to this, the Whitehall II Imaging Sub-study cohort
contains a higher proportion of men compared to the general population and is relatively more educated.
Thus, generalizability of our findings to the wider population is limited. While we were able to quantify
20-year cognitive trajectories, MRI data is currently available at a single time-point which limits
investigations of longitudinal brain-cognition relationships. Furthermore, while a combination of
structural and diffusion MRI was used to provide a more comprehensive assessment of cortical structure,
the limitations of MRI, in particular its resolution in comparison to the neural substrates under study,
preclude us from inferring the cellular mechanisms which may be at play (Tardif et al., 2016). The use of
NMF in this study enables a multimodal fusion and dimensionality reduction simultaneously, though
unlike similar techniques such as Principal Component Analysis, exact quantification of variance
explained is unavailable. Finally, we focus this analysis on the neocortical grey matter which captures a
distributed set of brain regions, but this decision makes our study blind to the role of the hippocampus and
subcortical structures, both of which have been shown to be heavily involved in brain aging (Bartsch &
Wulff, 2015; Bussy, Patel, et al., 2021; Bussy, Plitman, et al., 2021; Fjell, McEvoy, et al., 2014; Tamnes et
al., 2013; Tullo et al., 2019; Walhovd et al., 2011). Re-examining this research question using macro- and
micro-structural measures of these structures (similar to our previous work in healthy young adults (R.
Patel et al., 2020; Robert et al., 2022), could provide a pathway forward for reconciling the role of these
structures.

5.0 Conclusion
This work provides novel information on brain-cognition relationships in a healthy elderly population. We
uncover complex brain-cognition relationships using an unbiased data-driven approach, free of a priori
definitions of cognitive maintainers or decliners and including a rich and comprehensive longitudinal
cognitive data and multimodal MRI measures. This supports future works including multimodal data as
well as cognitive trajectories to capture the full range of brain-cognition relationships. We also find the
largest determinant of late life cognition is mid life cognition, as opposed to the rate of decline over time.
This, and the associated link with widespread surface area measurements, support early and mid-life
preventative measures of cognitive decline.
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