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Abstract
The use of RNA-Seq data and the generation of de novo transcriptome assemblies have
been pivotal for studies in ecology and evolution. This is distinctly true for non-model organ-
isms, where no genome information is available. Nevertheless, studies of differential gene
expression, DNA enrichment baits design, and phylogenetics can all be accomplished with
the data gathered at the transcriptomic level. Multiple tools are available for transcriptome
assembly, however, no single tool can provide the best assembly for all datasets. Therefore,
a multi assembler approach, followed by a reduction step, is often sought to generate an
improved representation of the assembly. To reduce errors in these complex analyses
while at the same time attaining reproducibility and scalability, automated workflows have
been essential in the analysis of RNA-Seq data. However, most of these tools are designed
for species where genome data is used as reference for the assembly process, limiting
their use in non-model organisms. We present TransPi, a comprehensive pipeline for de
novo transcriptome assembly, with minimum user input but without losing the ability of a
thorough analysis. A combination of different model organisms, k-mer sets, read lengths,
and read quantities were used for assessing the tool. Furthermore, a total of 49 non-model
organisms, spanning different phyla, were also analyzed. Compared to approaches using
single assemblers only, TransPi produces higher BUSCO completeness percentages, and a
concurrent significant reduction in duplication rates. TransPi is easy to configure and can
be deployed seamlessly using Conda, Docker and Singularity.
Keywords: RNA-Seq; pipeline; Nextflow; de novo; transcriptome; non-model; assembly; annotation

1. Introduction

In the last decades, technology improvements have rendered next generation sequencing
(NGS) a robust and cost effective technique of wide applicability in research fields that require
large-scale DNA sequencing. Among the different NGS-based approaches, RNA sequencing
(RNA-Seq) allows the generation of the so-called transcriptomes de novo (i.e., without the
need for a reference genome). Transcriptomes are applicable for several downstream appli-
cations, including the analysis of differential gene expression (Pita et al., 2018), gene model
prediction (Chan et al., 2017), DNA enrichment baits design (Quek et al., 2020), genome an-
notation (Testa et al., 2015; Holt and Yandell, 2011), detection of whole-genome duplication
(Yang et al., 2019), and phylogenetics (Cheon et al., 2020; Lozano-Fernandez et al., 2019).

Various software have been developed for the generation of de novo transcriptome as-
sembly. Commonly used tools include Trinity (Grabherr et al., 2011), rnaSPADES (Bushmanova
et al., 2019), Trans-ABySS (Robertson et al., 2010), and SOAPdenovo-Trans (Xie et al., 2014).
However, a recent study compared ten assemblers with nine datasets (i.e. different species
and samples) and demonstrated that the performance of each tool varies by dataset; no
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single tool was able to generate optimal assemblies for all datasets (Hölzer & Marz 2019).
The assemblers performance measurement was based on a combination of biological based
measures (e.g. number of Benchmarking Universal Single-Copy Orthologs - BUSCO), and
reference-free measures (e.g. TransRate’s optimal assembly score; Smith-Unna et al., 2016).
Therefore, combining multiple assemblers likely represents a valuable approach to increase
the quality of reference assemblies (Lu et al., 2013). Additionally, factors such as reads length
and number also play important roles in the assembly process (Grabherr et al., 2011; Schulz
et al., 2012; Francis et al., 2013).

Transcriptome de novo assemblies tend to produce thousands to hundreds of thousands
of different transcripts of which a significant amount can be misassembled (Bushmanova et
al., 2019; Schulz et al., 2012). To reduce the complexity within a transcriptome and to identify
true transcripts and isoforms, one common approach is to remove duplicated andmisassem-
bled sequences. Clustering methods are often employed for this, where similar transcripts
are combined into groups. One of the tools commonly used for clustering transcripts is CD-
HIT-EST (Fu et al., 2012), which tends to keep the longest transcripts only. However, clustering
and selecting for the longest transcripts is not always the best strategy (Gilbert, 2013) since
they often result frommisassemblies (i.e. not real transcripts) and may include frameshift er-
rors. On the other hand, tools such as EvidentialGene (Gilbert, 2013, 2019) use a combination
of clustering and classification methods (i.e, sequence features like coding sequence (CDS)
content and length) to generate a non-redundant consensus assembly. The latter approach
is more accurate for the cost of longer computing time and higher computation demands
(e.g. higher memory usage). Combining multiple assemblers with a thorough reduction of
each assembly individually thus increases the complexity of the analyses.

The ideal path to optimal reference transcriptomes should, therefore, include the use of
multiple assemblers, followed by thorough filtering of each assembly individually. Generat-
ing, combining and filtering all resulting assemblies step by step individually (cf. MacManes,
2018; Cerveau, & Jackson, 2016) is impractical, of limited reproducibility, and can be prone
to human error. Consequently, the design of streamlined RNA-Seq analysis pipelines have
gained popularity over the recent years. However, most of these pipelines require a refer-
ence genome for the transcriptome assembly (i.e., reference-guided assembly) and are, con-
sequently, not suitable for de novo approaches (Cornwell et al., 2018; D’Antonio et al., 2015;
Wang, D. 2018; Zhang, X., & Jonassen, I. 2020; Kohen et al., 2019; Martin et al., 2010). This
represents a major limitation for transcriptomics in non-model organisms, where genome
reference data is usually lacking.

To address these shortcomings, we developed TransPi, a comprehensive TRanscriptome
ANalysiS Pipeline for de novo transcriptome assembly. TransPi is implemented using the sci-
entific workflow manager Nextflow (Di Tommaso et al., 2017), which provides a user-friendly
environment, easy deployment, scalability and reproducibility. TransPi performs all steps
of standard RNA-Seq analysis workflows, from raw reads quality control up to annotation
against multiple databases (e.g. SwissProt, PFAM). To reduce possible biases, duplication and
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misassemblies, TransPi utilizes various assemblers and k-mers (i.e. k length sequences used
for the assembly) to generate an over assembled transcriptome that is then reduced to a non-
redundant consensus transcriptome with the software EvidentialGene (Gilbert, 2013, 2019).
Here we show that, when compared to approaches using single assemblers only, TransPi
produces higher BUSCO completeness percentages, and a concurrent significant reduction
in duplication rates (i.e. higher single-copy genes). Higher BUSCO scores in the complete
and single-copy categories indicates a less erroneous consensus assembly (Waterhouse et
al., 2011; Simão, et al., 2015).

In sum, TransPi provides a useful resource for the generation of de novo transcriptome
assemblies, with minimum user input but without losing the ability of a thorough analysis.
TransPi and all documentation is available at https://github.com/palmuc/TransPi.git.

2. Methods

2.1 Pipeline implementation and configuration

TransPi is based on the scientific workflow manager Nextflow (Di Tommaso et al., 2017). The
pipeline is easy to configure and can be deployed using the package management system
Conda, Docker, Singularity or cloud environments (e.g., AWS). Real-time monitoring of the
pipeline can be performed by using Nextflow Tower with nomodification needed to the Tran-
sPi script. Deployment of TransPi in computing clusters is accomplished by the native com-
munication of Nextflow with scheduling managers such as SLURM, PBS and Torque. TransPi
can deploy hundreds of jobs depending on user configurations and needs. Multiple datasets
can be run in parallel given that enough computing resources are available. Running time
of the pipeline is dependent on factors such as number of datasets, reads quantity, k-mer
selection, complexity of the transcriptome being assembled, and user-specified additional
options selected (e.g. filtration, signalP, etc.). TransPi consists of two major components: a
precheck script to install dependencies, and the main script to run the assemblers, perform
the reduction and transcriptome annotation.

2.2 Precheck script

TransPi integrates several programs and external databases (e.g. SwissProt, Boeckmann et
al., 2003; PFAM, El-Gebali et al., 2019) for the generation and annotation of the reference
transcriptome. To facilitate the setup of all necessary dependencies, TransPi includes an in-
stallation script. This will first install, if necessary, the Conda packagemanagement system, all
dependencies, and download and configure the required databases. The script is designed
to recognize when a previous run of the script was performed, thus preventing the repeti-
tion of previous steps. Another advantage of the precheck script is that it will automatically
create the configuration file needed by Nextflow to execute the pipeline with all the neces-
sary information. As a result, the user will only have to make some minor changes to the
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file (e.g. number of allocated threads, the amount of working memory, scheduling manager,
node names and queue) before running the pipeline. Essentially, the precheck has to be run
entirely only one time for the dependencies and database installation. Subsequent pipeline
runs can be done with the same configuration file. Auxiliary scripts for the automated update
of the databases such as Pfam and SwissProt are also provided.

2.3 Main script

A diagram of the TransPi v1.0.0 is shown in Figure 1. First, reads are checked for adapter pres-
ence and/or low quality bases with FastQC v0.11.9 (Andrews, 2010). Filtration of the reads
(by default reads with an average phred quality >25 are kept) and trimming of adapters (if
present) is performed with fastp v0.20.1 (Chen et al., 2018). Optionally, removal of ribosomal
RNA (rRNA) is performed with SortMeRNA v4.2.0 (Kopylova et al., 2012). Filtered reads are
subsequently normalized before being assembled (Grabherr et al., 2011). The assembly step
combines five different assemblers and usesmultiple k-mer lengths. The assemblers used by
TransPi are rnaSPADES v3.14.0 (Bushmanova et al., 2019), Trans-ABySS v2.0.1 (Robertson et
al., 2010), SOAPdenovo-Trans v1.03 (Xie et al., 2014), Trinity v2.9.1 (Grabherr et al., 2011) and
Velvet v1.2.12/Oases v0.2.09 (Zerbino & Birney, 2008; Schulz et al., 2012). After the assembly
stage, the combined transcriptomes are reduced with EvidentialGene v2019.05.14 (Gilbert,
2013, 2019). Briefly, EvidentialGene will merge perfect duplicates, cluster protein sequences,
and perform local similarities searches between the transcripts using BLAST v2.2.31 (Altschul
et al., 1997) (for more details see Gilbert, 2019).

Next, TransPi uses thenon-redundant reference transcriptome to run several downstream
analyses commonly applied to de novo transcriptomes projects: 1) rnaQUAST v2.0.1 for qual-
ity assessment (Bushmanova et al., 2016), 2) Bowtie2 v2.3.5.1 to map the reads against the
transcriptome (Langmead & Salzberg, 2012), 3) BUSCO (Simao et al., 2015; v3 and v4) to quan-
titatively assess the completeness in terms of expected universal single copy gene content, 4)
TransDecoder v5.5.0 (https://transdecoder.github.io) to identify open reading frames (ORFs),
with the option to perform homology searches of all ORFs to known proteins via BLAST, in or-
der to retain ORFs that may have functional significance but don’t pass the coding likelihood
scores, and 5) Trinotate v3.2.0 (Bryant et al., 2017) to provide automatic functional annotation.

By using Diamond v0.9.30 (Buchfink et al., 2015), the similarity searches of the transcripts
used for the annotation step against the SwissProt and UniProt databases (chosen by the
user) are accelerated. RNAmmer v1.2 (Lagesen et al., 2007), TMhmm v2.0 (Krogh et al., 2001),
SignalP 4.1 (Petersen et al., 2011) are used to search for ribosomal RNA, signal peptide pro-
teins, and transmembrane domain prediction, respectively. Protein domain searches are
performed with HMMER v3.3 (Finn et al., 2011) against the last version of the PFAM database.
All this information is combined into an annotation report which includes: 1) information
on Gene Ontology (GO); 2) evolutionary genealogy of genes: Non-supervised Orthologous
Groups (eggNOG), and; 3) Kyoto Encyclopedia of Genes and Genomes (KEGG). It also contains
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Figure 1. TransPi v1.0.0 flowchart showing the various steps and analyses it can performed.
For simplicity, this diagram does not show all the connections between the processes. Also,
it omits other additional options like the BUSCO distribution and transcriptome filtering with
psytrans (see Section 2.6). ORFs=Open reading Frames
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the similarity search against SwissProt and the user-specified UniProt database. TransPi will
also produce a customHypertextMarkup Language (HTML) report that summarizes the steps
and provides interactive plots for straightforward exploration of the data. Plots from the in-
teractive report can also be saved in SVG format. Other plots are also saved automatically
(PDF and SVG) in the results directory generated by the pipeline. Altogether, TransPi provides
the user with the ability to assess and evaluate the final assembly and to compare it to other
commonly used methods for reference transcriptome generation (e.g., a Trinity only assem-
bly).

2.4 K-mer selection, Reads length effect and Chimera detection

To test the performance of the pipeline and the effect of k-mer selection (Prjibelski et al.,
2020), read quantities, and read lengths, datasets from the model organism Caenorhabditis
elegans, Drosophila melanogaster, and Mus musculus were used. These species were selected
given the vast amount of transcriptomic data availablewith various read length andquantities
(Supplementary Table 1). Three k-mer sets (A, B, C) depending on read length were designed,
since the selection of this parameter will modify how the assembly graph is constructed. For
the read length test, data consisting of paired-end reads of 50 base-pairs (bp), 75 bp, 100 bp,
150 bp (Supplementary Table 1) were analysed. All statistical analyses, such as ANOVA and
Kruskal-Wallis test, were performed in R (v3.6.2).

To measure the percentage of chimeric transcripts and transcript accuracy a similar ap-
proach to Kerkvliet et al. 2019 was used. First, gene sets for model organisms Caenorhabditis
elegans (i.e. c_elegans.PRJNA13758.WS279.mRNA_transcripts.fa fromWormbase ), Drosophila
melanogaster (i.e. Dmel-all-transcript-r6.39.fasta from Flybase), and Mus musculus
(i.e. GCF_000001635.27_GRCm39_rna_from_genomic.fna fromNCBI)were downloaded. Then
a BLASTN search was performed using the transcriptomes from TransPi and Trinity against
each corresponding gene set. Parameters used were as specified by Kerkvliet et al., 2019 (-
perc_identity .90 -evalue .001). BLASTN output was filtered using a minimum length of 300bp
for each match. Non-chimeric transcripts were identified as transcripts with one match per
gene. Transcripts with two or more matches were classified as chimeras.

2.6 Additional options

Various additional options were implemented in TransPi to obtain more insight into the tran-
scriptomes being assembled. One of these options is filtering symbionts and/or contami-
nants from the assembly using the Parasite & Symbiont Transcriptome Separation software
(psytrans) (https://github.com/sylvainforet/psytrans). The filtration step was tested with the
dataset of the coral Porites pukoensis (accession SRR8491966) using sequences of it symbiont
Symbiodinium microadriaticum (Uniprot Taxon Identifier: 2951) and sequences of the order
Scleractinia (Uniprot Taxon Identifier: 6125) as host. Another option of TransPi examines the
presence andabsence of BUSCOgenes in all the generated assemblies and creates a heatmap
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of genes distribution. This option was tested with the epadomorph barnacle Octolasmis war-
wickii dataset (SRR10527303) given the difference between TransPi and Trinity BUSCO scores
for the missing category (see Results).

3 Results

3.1 K-mer selection, Reads length effect and Chimera detection

K-mer test carried out on the model organisms used here (Supplementary Table 1) showed
that differences in BUSCO percentages between k-mer sets (i.e. A, B, C) were not significant
(Supplementary Table 2). However, slightly higher single-copy and lower duplication BUSCO
percentages were observed with k-mer set C (Figure 2; Supplementary Table 2; Supplemen-
tary File 1-4). This pattern was observed in all three model organisms: Caenorhabditis ele-
gans (worm), Drosophila melanogaster (fly), and Mus musculus (mouse) (Supplementary File
1-4). The read length test (i.e. 50 bp, 75 bp, 100 bp, and 150 bp) also showed no signif-
icant difference in complete BUSCO percentages (Figure 2; Supplementary File 1-4). How-
ever, it should be noted that D. melanogaster 50 bp paired-end reads produced low complete
BUSCO percentages for TransPi and Trinity (Complete BUSCO mean <45%). On the contrary,
D. melanogaster libraries with paired-end reads of 75 bp, 100 bp and 150 bp length showed
high BUSCO percentages for both, TransPi and Trinity, where Trinity surpasses TransPi by
1.0% (Figure 2; Supplementary File 1-4). A similar pattern of a marginal difference between
TransPi and Trinity (with 1.0% higher complete BUSCO percentage in Trinity) was also ob-
served for the C. elegans and M. musculus datasets (Supplementary File 1-4).

The major difference between TransPi and Trinity in the model organisms was observed
in the single-copy BUSCO category. This differencewasmore significant in theD.melanogaster
and M. musculus datasets. For the M. musculus 150 bp reads, the difference between the
single-copy BUSCO percentages was over 37% (Supplementary Table 2). In terms of frag-
mented andmissing BUSCO genes, TransPi scores were slightly higher (<1.0%) than for Trinity
alone in most cases (Supplementary Table 2; Supplementary File 1-4). The increase of read
length showed no clear effect on producing better BUSCO percentages on themajority of the
model organisms datasets (Supplementary File 1-4). The same was observed for the increase
of the read quantities in the datasets (Supplementary File 1-4). Only for D. melanogaster 50 bp
reads, an increase was observed in complete BUSCO percentages when incrementing reads
quantity from 10M to 26M. The other model organisms datasets did not show significant
differences with respect to read quantities (Supplementary File 1-4).

Results for the chimera detection test are presented in Table 2. A similar trend was ob-
served in all model species (i.e. C. elegans, D. melanogaster, and M. musculus). The number
of non-chimeric transcripts (i.e. % of unique BLASTN matches) in TransPi (i.e. lowest: 3.07% -
highest: 39.13%) was higher than in Trinity alone (i.e. lowest: 3.66% - highest: 38.32%). Only
in one sample (i.e. M. musculus SRR8329326 ) the percentage of non-chimeric transcripts of
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Table 1. Non-model organisms datasets used in this study.
Phylum Class Order Species SRA # of reads Length(bp)
Cnidaria Anthozoa Alcyonacea Pinnigorgia flava ERR3026433 30,545,400 50
Cnidaria Anthozoa Alcyonacea Sinularia cruciata ERR3026434 22,160,908 50
Cnidaria Anthozoa Alcyonacea Tubipora musica ERR3026435 23,006,724 50
Cnidaria Anthozoa Helioporacea Heliopora coerulea ERR3040053 29,000,821 50
Cnidaria Anthozoa Scleractinia Acropora palmata SRR5569439 10,476,071 75
Cnidaria Anthozoa Scleractinia Acropora pulchra SRR8601367 14,037,157 75
Cnidaria Anthozoa Scleractinia Porites pukoensis SRR8491966 16,448,725 150
Cnidaria Hydrozoa Anthoathecata Millepora alcicornis SRR4294206 24,645,545 150
Porifera Homoscleromorpha Homosclerophorida Oscarella pearsei SRR1042012 11,306,242 100
Porifera Homoscleromorpha Homosclerophorida Corticium candelabrum SRR504694 18,897,095 150
Porifera Demospongiae Spongillida Ephydatia muelleri SRR1041944 11,425,188 100
Porifera Demospongiae Spongillida Spongilla lacustris SRR1168575 5,136,881 100
Porifera Demospongiae Poecilosclerida Mycale phylophylla SRR1711043 11,408,543 100
Porifera Demospongiae Haplosclerida Haliclona tubifera SRR1793376 16,356,602 100
Porifera Demospongiae Dictyoceratida Ircinia fasciculata SRR7655554 13,420,109 100
Porifera Calcarea Leucosolenida Sycon coactum SRR504690 9,098,097 100
Mollusca Gastropoda Trochida Monodonta labio SRR1505119 10,388,770 100
Mollusca Bivalvia Pholadomyoida Lyonsia floridana SRR1560310 9,919,645 100
Mollusca Bivalvia Veneroida Mercenaria campechiensis SRR1560359 11,935,267 100
Mollusca Bivalvia Trigoniida Neotrigonia margaritacea SRR1560432 11,215,767 100
Mollusca Bivalvia Veneroida Cardites antiquatus SRR1560458 11,916,756 100
Mollusca Bivalvia Veneroida Sphaerium nucleus SRR1561723 18,539,173 100
Mollusca Bivalvia Nuculoida Ennucula tenuis SRR331123 14,420,942 100
Mollusca Bivalvia Ostreoida Dimya lima SRR3350463 5,426,850 150
Rotifera Monogononta Ploima Brachionus plicatilis SRR3404576 7,403,847 150
Arthropoda Branchiopoda Diplostraca Eoleptestheria cf ticinensis SRR5140141 5,471,351 150
Arthropoda Remipedia Nectiopoda Godzilliognomus frondosus SRR8280777 14,086,834 75
Arthropoda Arachnida Solifugae Galeodes sp SRR8745910 6,356,774 75
Arthropoda Hexanauplia Calanoida Neocalanus flemingeri SRR5873556 4,112,626 150
Arthropoda Hexanauplia Calanoida Calanus finmarchicus SRR4113507 10,633,606 150
Arthropoda Hexanauplia Pedunculata Octolasmis warwickii SRR10527303 15,813,391 150
Echinodermata Holothuroidea Aspidochirotida Apostichopus japonicus SRR8393254 8,289,770 150
Echinodermata Crinoidea Comatulida Florometra SRR3097584 32,710,859 100
Echinodermata Echinoidea Echinoida Paracentrotus lividus ERR1000783 6,803,316 75
Echinodermata Echinoidea Echinoida Paracentrotus lividus SRR10744002 13,583,857 75
Xenacoelomorpha - Acoela Childia submaculatum SRR3105702 6,089,955 100
Chaetognatha Sagittoidea Aphragmophora Krohnitta subtilis SRR7754744 15,954,007 100
Brachiopoda Rhynchonellata Rhynchonellida Hemithiris psittacea SRR1611556 9,221,875 100
Nemertea Enopla Bdellonemertea Malacobdella grossa SRR1611560 8,307,739 100
Nemertea Palaeonemertea - Cephalothrix linearis SRR1273789 4,869,244 75
Phoronida - - Phoronis psammophila SRR1611565 12,949,999 100
Platyhelminthes Catenulida - Catenula lemnae SRR1796434 3,028,636 100
Onychophora Udeonychophora Euonychophora Peripatopsis capensis SRR1145776 11,638,180 100
Onychophora Udeonychophora Euonychophora Peripatoides novaezealandiae SRR8745911 5,768,550 75
Gastrotricha - Macrodasyida Macrodasys sp SRR1271706 3,204,609 75
Gastrotricha - Chaetonotida Lepidodermella squamata SRR1273732 4,370,938 75
Annelida Polychaeta Phyllodocida Nephtys caeca SRR1232685 1,576,665 75
Gnathostomulida - Bursovaginoidea Gnathostomula paradoxa SRR1271607 5,954,962 75

Peer Community In Genomics 9 of 26

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431773
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. K-mers selection tests on the model organisms C. elegans, . Shown are the Tran-
sPi results for three different k-mer settings for read lengths of 50bp (A), 75bp (B), 100bp
(C), and 150bp (D). For the k-mer test performed with M. musculus and D. melanogaster see
Supplementary Files 1-4.
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Table 2. Chimera test for model species C. elegans, D. melanogaster, and M. musculus
C. elegans

Trinity
Sample BLASTN hits # transcripts % unique BUSCO v4 - Metazoa DB (n:954)

SRR10407355 9,538 28,219 33.80 C:76.9%[S:65.2%,D:11.7%],F:2.2%,M:20.9%
SRR10407357 9,014 23,526 38.32 C:76.1%[S:65.7%,D:10.4%],F:2.5%,M:21.4%
SRR10407359 9,310 27,734 33.57 C:76.3%[S:65.8%,D:10.5%],F:2.6%,M:21.1%

TransPi
Sample BLASTN hits # transcripts % unique BUSCO v4 - Metazoa DB (n:954)

SRR10407355 8,567 23,803 35.99 C:75.7%[S:68.9%,D:6.8%],F:2.3%,M:22.0%
SRR10407357 8,494 21,709 39.13 C:75.5%[S:68.7%,D:6.8%],F:2.5%,M:22.0%
SRR10407359 8,675 24,891 34.85 C:75.5%[S:69.6%,D:5.9%],F:2.8%,M:21.7%

D. melanogaster
Trinity

Sample BLASTN hits # transcripts % unique BUSCO v4 - Metazoa DB (n:954)
SRR7716077 4,585 36,267 12.64 C:97.2%[S:84.6%,D:12.6%],F:1.5%,M:1.3%
SRR7716078 4,133 31,793 13.00 C:93.6%[S:63.6%,D:30.0%],F:1.0%,M:5.4%
SRR7716080 4,364 31,928 13.67 C:90.1%[S:63.4%,D:26.7%],F:3.1%,M:6.8%

TransPi
Sample BLASTN hits # transcripts % unique BUSCO v4 - Metazoa DB (n:954)

SRR7716077 4,603 29,014 15.86 C:93.9%[S:81.0%,D:12.9%],F:1.3%,M:4.8%
SRR7716078 4,211 25,225 16.69 C:93.8%[S:84.1%,D:9.7%],F:1.5%,M:4.7%
SRR7716080 4,383 25,817 16.98 C:91.4%[S:82.9%,D:8.5%],F:2.2%,M:6.4%

M. musculus
Trinity

Sample BLASTN hits # transcripts % unique BUSCO v4 - Metazoa DB (n:954)
SRR10560364 12,360 244,523 5.05 C:98.2%[S:53.1%,D:45.1%],F:0.9%,M:0.9%
SRR10560365 12,807 261,000 4.91 C:98.2%[S:48.7%,D:49.5%],F:0.7%,M:1.1%
SRR8329326 29,885 816,077 3.66 C:97.4%[S:36.8%,D:60.6%],F:1.4%,M:1.2%

TransPi
Sample BLASTN hits # transcripts % unique BUSCO v4 - Metazoa DB (n:954)

SRR10560364 8,901 165,890 5.37 C:97.2%[S:84.6%,D:12.6%],F:1.5%,M:1.3%
SRR10560365 10,551 198,502 5.32 C:96.5%[S:81.0%,D:15.5%],F:1.3%,M:2.2%
SRR8329326 18,418 600,340 3.07 C:94.4%[S:81.7%,D:12.7%],F:2.4%,M:3.2%

Trinity was higher than TransPi. However, the Trinity assembly had over 215,000 more tran-
scripts than the TransPi transcriptome. Nevertheless, the percentage difference was only
0.59%. BUSCO scores followed the same pattern as explained above.

3.2 TransPi on non-model organisms

A similar trend as seen in the model organisms was observed in the non-model organisms
datasets (Figure 3; Supplementary Table 3). However, there were some key differences. First,
results of complete BUSCO percentages were higher for TransPi in 41 of the 49 datasets
tested in the study. The mean of complete BUSCO percentages was 79.57%±18.60 (median:
85%) for TransPi and 78.14%±19.30 (median: 84.2%) for the Trinity assemblies. Of all datasets,
21 had complete BUSCOpercentages higher than 90%with TransPi and 17with Trinity (Figure
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4). Eleven and 13 datasets resulted in 80-90% identified complete BUSCO genes with TransPi
and Trinity, respectively. However, Kruskal-Wallis test showed no significant differences be-
tween TransPi and Trinity (Table 3).

Second, there was a significant improvement of the percentage of identified complete
single-copy BUSCO genes. Mean percentages with TransPi and Trinity were 67.57±16.75%
(median: 72.9%) and 42.03±15.37% (median: 40.8%), respectively. For the single-copy BUSCO
genes, 16 datasets obtained scores higher than 80% with TransPi and none with Trinity (Fig-
ure 4). For the range of 70-80%, 11 datasets obtained scores in this range when using TransPi,
whereas only one dataset in this range was obtained when using Trinity (Figure 4). Statistical
test (i.e. Kruskal-Wallis) demonstrated a significant difference for the single-copy BUSCO per-
centages between TransPi and Trinity (p-value 5.6e-10, Table 3). In the case of the nemertean
wormMalacobdella grossa ( accession SRR1611560), single-copy BUSCO genes had a substan-
tial change from 20.4% for Trinity to 83% with TransPi (Supplementary File 5). Other dataset
with significant changes included the crinoid echinoderm Florometra serratissima (accession
SRR3097584), where the scores for Trinity and TransPi were 41.3% and 87.3%, respectively
(Supplementary File 5).

Through the reduction step performed by EvidentialGene in TransPi, an expected sub-
stantial decrease of the duplication rate was observed. The means for duplicated BUSCO
genes with TransPi and Trinity were 12.0±9.96% (median: 9.7%) and 36.11±20.52% (median:
31.1%), respectively (Figure 3,4; Supplementary Table 3). Kruskal-Wallis tests demonstrated
a significant difference for the duplicated BUSCO percentages (p-value of 9.60e-11, Table 3).
Even though differences in fragmented BUSCO percentages were not statistically significant,
these values were lower for datasets when using TransPi. In the case of missing BUSCO per-
centages, TransPi scores are higher than Trinity (Supplementary File 5), although differences
were not significant. These genes were removed during the reduction step of EvidentialGene
(seeDiscussion). It should be noted that a fewdatasetswere encounteredwhere neither Tran-
sPi nor Trinity obtained complete BUSCO percentages higher than 50%. These datasets are:
the polychaete annelid Nephtys caeca ( accession SRR1232685), and the bivalve molluscsMer-
cenaria campechiensis (accession SRR1560359), Sphaerium nucleus ( accession SRR1561723),
and Cardites antiquatus (accession SRR1560458) (Supplementary Table 3). However, the ma-
jority of the identified complete BUSCO genes in these sets were single-copy in the TransPi
assemblies (Supplementary File 5). On the other hand, datasets such as the scleractinian
coral Porites pukoensis (a accession SRR8491966) were observed with complete BUSCO per-
centages of 99.4% with both TransPi and Trinity (with high duplication rates in both).

As expected due to the transcripts reduction, the total number of transcripts in Tran-
sPi was lower than with Trinity (Supplementary File 6). The mean for TransPi transcripts
was 93,351 ± 89,863 (median: 73,435) and for Trinity transcripts 157,130 ± 142,410) (median:
109,261). The reduction of transcript was also observed for the numbers of transcripts larger
than 500 bp and 1,000 bp (Figure 5). However, in terms of the longest transcript, themean for
TransPi was 23,684 bp ± 15,374 bp (median: 22,147 bp) and 20,668 bp ± 11,248 bp (median:
18,708 bp) for Trinity (Figure 5). Mapping of sequencing reads to the assembled transcripts
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Figure 3. BUSCO results of non-model organisms (n=49). A full list of analysed taxa see table
2. A) BUSCO percentages comparison for TransPi and Trinity for all datasets. Comparisons
of scores by read length for complete (B), single-copy (C), and duplicated (D) BUSCO genes.
Significant differences (Kruskal-Wallis test p <0.05) were obtained for (B) and (C).
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Figure 4. Histogramof number of datasets and BUSCOpercentages in 10%bins. Comparison
of identified complete (including duplicates) (A) and single-copy (B) BUSCO genes between
TransPi and Trinity
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showed lowermapping rates obtainedwith TransPi thanwith Trinity (Figure 5; Supplementary
File 7). The mean of the predicted genes by TransPi and Trinity was 34,659±43,987 (median:
25,280) and 52,106±47,273 (median: 43,783), respectively (Figure 5; Supplementary File 6).
This reduction in TransPi vs Trinity mirrors the reduction of duplicated BUSCOs results.

3.3 TransPi Report

The report generated by TransPi is interactive (i.e., a HTML file is generated) and canbe viewed
with standard web browsers (Supplementary File 10). The report allows the user to compre-
hensively assess the data by zooming in in the figures, compare datasets, and see detailed
info by selecting specific data points. The report summarizes all major steps performed by
the pipeline, including quality filtering, assemblymetrics, ORF numbers, annotation andKEGG
pathway assignment using iPATH3 (Darzi et al. 2018). TransPi provides the user with multiple
files for further downstream analyses of the final reference transcriptome. For example, a
file with all Gene Ontologies is created and can be directly used as input for TopGO to per-
form enrichment analysis (Alexa and Rahnenfuhrer, 2016). All final and key intermediate files,
including all plots, are stored in the user selected output directory for manual inspection. Ad-
ditionally, TransPi will save the execution report generated by Nextflow, in which the user can
inspect how their system resources are being used in each process (Example in Supplemen-
tary File 9).

3.4 Additional TransPi options

The dataset of Porites pukoensis (SRR8491966) produced a transcriptome with 567,526 se-
quences. Despite having a high BUSCO completeness (i.e. 99.4%), the majority of these were
duplicates (i.e. 61.2%) (Supplementary File 5). Using the filtration step of TransPi, the num-
ber of transcripts was reduced by over 39% (from 567,526 to 343,832). The removed 223,694
transcripts had similarities with the S. microadriaticum sequences used for filtering (SeeMeth-
ods 2.6). In the case of the “buscoDist” option, theOctolasmis warwickii dataset (SRR10527303)
was used and 30 genes that were missing from the TransPi assembly but were present in the
other assemblies were found (Figure 6).

4. Discussion

De novo transcriptome assemblies are use in several applications such as: differential gene
expression (Pita et al., 2018), gene model prediction (Chan et al., 2017), DNA target enrich-
ment bait design (Quek et al., 2020), genome annotation (Testa et al., 2015; Holt and Yandell,
2011), detection of whole-genome duplication (Yang et al., 2019), and phylogenetics (Cheon
et al., 2020; Lozano-Fernandez et al., 2019). Even thoughmultiple software are currently avail-
able for transcriptome assembly, no single tool is able to generate optimal assemblies given
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Figure 5. rnaQUAST results comparing TransPi and Trinity. A) Number of transcripts higher
than 500bp, 1000bp, longest transcripts and number of predicted genes in the transcriptome.
B) Transcripts average length and N50. C) Histograms (10% bins) of all samples and percent-
age of mapping (reads to transcriptome), BUSCO complete and BUSCO single (light color Trin-
ity, dark color TransPi). D) Percentage of mapping (reads to transcriptome), BUSCO complete
and BUSCO single by individual samples (light color Trinity, dark color TransPi).
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Table 3. Statistical tests on non-model organisms
Shapiro-Wilk (p >0.05)

TransPi Trinity
Normally
distributed

ANOVA
Kruskal-Wallis
(p <0.05)

Significant

Complete 5.09E-06 1.76E-05 no - 0.6492791 no
Single-copy 0.0001667 0.1081 no - 5.67E-10 yes
Duplicated 2.51E-07 0.008433 no - 9.60E-11 yes
Fragmented 0.0005825 0.002121 no - 0.1375242 no
Missing 1.81E-08 3.61E-09 no - 0.1413003 no

various datasets (Hölzer & Marz 2019). Thus, combining multiple assemblies, generated with
various k-mers and software, represents a valuable approach to increase the quality of ref-
erence assemblies (Lu et al., 2013). Given the complexity of such analyses, automated work-
flows are desirable, including the need for standardization, reproducibility, and scalability.

The selection of k-mers is the first step before performing an assembly. The selection
of this parameter will modify how the assembly graph is constructed, and it was tested here
how k-mer selection can have an effect in the effectiveness of the TransPi pipeline. Tests in-
cluded different k-mer sizes, combination of k-mers, and different organisms (Table 1). Since
TransPi is relying on multiple assemblers and various k-mers, the effect on k-mer selection
and their impact on the outcome of the pipeline is minimized. However, k-mer set C con-
sistently resulted in moderately higher BUSCO percentages for single-copy genes and lower
duplication levels, respectively. This k-mer set had a wider range of k-mer sizes (from small
to long) than the other sets. Small k-mers tend to generate more transcripts but are more
prone to misassemblies (Zerbino & Birney, 2008; Gibbons, 2009). On the contrary, longer
k-mers produce more contiguous assembly while decreasing transcript numbers (Robertson
et al., 2010). Thus, by combining various k-mer sizes (i.e. short and long k-mers), a more com-
prehensive representation of the transcriptome can be achieved (Peng et al., 2013). The use
of different read lengths did not yield significant differences between TransPi and Trinity in
all three model organisms (i.e. worm, fly, and mouse) included in this study. Generally, Trin-
ity performed better than TransPi with respect to the ‘complete’ and ‘fragmented’ categories
of the metazoa BUSCO genes set. The major advantage of TransPi in the model organisms,
however, was the reduction of duplicated BUSCO genes (Figure 2). Furthermore, TransPi had
a higher number of non-chimeric transcripts when compare to Trinity alone (Table 2).

It previous studies, it has been shown that using more than 30M read pairs does not
significantly improve the quality of the transcriptome assembly (MacManes, 2018; Francis
et al., 2013). However, in our tests mixed results were observed when comparing reads
quantities and BUSCO scores in each organism respectively (Supplementary File 5). As previ-
ously demonstrated, assembly quality and characteristics are data-dependent (Hölzer &Marz
2019). Consequently, to provide a profound conclusion on the effects of reads quantities in
de novo transcriptome assemblies, a larger number of datasets from a broad range of taxa, in
addition to biological replicates for each taxon, are needed. Also, organisms with sources of
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contamination, for example, of symbiotic origin, prey, parasites or eukaryotic overgrowth in
the target tissue, may need higher quantities of reads. In terms of read length, mixed results
were observed, and a conclusive comparison of TransPi and Trinity cannot be performed on
the sample size used in this study. However, the tests conducted on the three model organ-
isms strongly suggest the usage of longer reads (150bp) should be preferred, because those
generally yielded higher-quality transcriptomes with respect to the BUSCO results.

The newly established TransPi pipeline performed significantly better than the Trinity
assembler alone on non-model organisms (Figure 3). A high BUSCO completeness with a
high number of single-copy BUSCO genes was obtained for the majority of the non-model
datasets used here (Figure 3, 4). In the case of the ‘fragmented’ BUSCO genes category, Tran-
sPi produced lower scores than Trinity due to the reduction step by EvidentialGene. Since
the tool relies on sequence features like coding sequence (CDS) content and length (Gilbert,
2013, 2019), fragmented CDS will be less likely to pass the filtration step. The high number
of single-copy BUSCO genes results were statistically significant and are a major difference
when comparing with the TransPi results of model organisms. The reduction of transcript
duplication is obviously beneficial for studies where the presence of duplicates would bias
the interpretation of the results. Another major disadvantage of keeping false isoforms is in
phylogenomic analyses. Due to the relative ease of generation and affordability, many phy-
logenomic studies analyse multi-gene alignments based on transcriptome data instead of
full genome data to estimate phylogenies (Lozano-Fernandez et al., 2019; Cheon et al., 2020).
By using TransPi, the automation of large-scale phylogenomic approaches, focusing on thou-
sands of proteins from many taxa, can be attained with ease in a scalable and reproducible
way.

As expected, the final number of transcripts was consistently lower for TransPi given
the reduction performed by EvidentialGene (Figure 5). In some cases (Malacobdella grossa)
the reduction of transcripts was over 50% (Figure 5; Supplementary File 5). This explains
why the mapping percentages for TransPi were also lower than for Trinity. However, having
reduced mapping rates (i.e. TransPi) did not affect the content of BUSCO genes in the tran-
scriptomes. For example, in the Malacobdella grossa assembly, TransPi mapping was 65.41%
versus 82.86% for Trinity (Figure 5; Supplementary File 5), but the difference of complete
BUSCO geneswas only 0.30% (TransPi=94.0%, Trinity=94.30%) and 62% (TransPi=83.0%, Trin-
ity=20.4%) for single copy BUSCOs, respectively. Thus, the reduction in mapping percentages
is due to the reduction of redundant transcripts (including allelic variants) rather than miss-
ing information from the assemblies. This pattern was observed throughout the non-model
organisms analysed here (Figure 5; Supplementary File 5). In general, when the mapping
percentage of TransPi was over 65%, satisfactory BUSCO content in the transcriptomes (i.e.
high BUSCO presence and in single copies) was observed. However, there were some cases
where both TransPi and Trinity produced equally low BUSCO scores, even though a relative
high mapping percentage was obtained (Figure 5; Supplementary File 7). This was the case
for a Catenula lemnae dataset (SRR1796434), where read mapping percentage was relatively
high (74.69% and 89.37% for TransPi and Trinity, respectively), while the BUSCO gene con-
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Figure 6. Heatmap of BUSCO gene presence in all assemblers with multiple k-mers that are
found missing in TransPi for dataset of Octolasmis warwickii (SRR10527303)

tent (complete and single) were <53% (Figure 5; Supplementary File 7). In such cases, the
assemblies may not be optimal and likely do not represent the complete transcriptome of
the organism. (Figure 5; Supplementary File 7).

For the missing BUSCO category, TransPi produced assemblies with slightly higher val-
ues in comparison to the other assemblers. When a BUSCO gene is missing in TransPi (i.e. re-
moved by the EvidentialGene step), in some cases, these genes are found in the other individ-
ual assemblies (Figure 6). EvidentialGene aims to keep themost valid biological transcript, dis-
cards the likely not valid (based on specific measures), and decreases the redundancy of the
multiple assemblers to obtain a non-redundant consensus transcriptome assembly (Gilbert,
2019). However, by doing so, some genes can be categorized as redundants, presumably, be-
cause better candidates were selected. To get more insight into cases like the one above, the
TransPi option “buscoDist” was used with the Octolasmis warwickii dataset. Comparing the
missing genes of all generated assemblies and plotting the distribution of the BUSCO genes
showed that TransPi had more missing genes that were categorized in other assemblers as
to be present (Figure 6). However, a considerable amount of these genes were classified as
duplicates by BUSCO. Since the BUSCO scores are indicators of the transcriptome complete-
ness, correcting them will provide a more realistic estimation on the transcriptome quality of
a given taxon. This TransPi option offers the user insight into the BUSCO gene content and
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transcripts reduction by EvidentialGene to help better assess the quality of the assemblies.
In certain cases, significant numbers of BUSCO genes were not retrieved by TransPi, Trin-

ity or any of the assemblers. Although this could be related to assembler performance, other
factors have been shown to alter transcriptome quality (e.g. RNA degradation, library prepa-
ration, sequencing depth, etc.) (Romero et al., 2014; Sultan 2014). In the non-model organ-
isms, four of the datasets yielded BUSCO complete percentages <50% in TransPi and Trinity
(Supplementary File 5). Three of these datasets (i.e. Mercenaria campechiensis (SRR1560359),
Sphaeriumnucleus (SRR1561723), Cardites antiquatus (SRR1560458)) stem from the sameProject
and the same taxonomic group, the molluscan class Bivalvia. Extraction of nucleic acids in
molluscs is known to be hampered by the presence of mucopolysaccharides and polyphe-
nolic proteins, which can inhibit PCR and lead to biases in RNA preservation and/or the ex-
traction quantities and/or qualities (Rzepecki et al., 1991; Gayral et al., 2011; Knutson et al.,
2020). Nevertheless, BUSCO genes that were retrieved exhibited low rates of duplication,
highlighting how the incorporation of EvidentialGene into TransPi can also decrease redun-
dancy in cases of low transcriptome completeness. For the fourth dataset (Nephtys caeca
(SRR1232685), a polychaete annelid), only a small number of 1.5M read pairs were deposited
in INSDCdatabases (i.e. NCBI’s Genbank), which helps to explain the poor results (Supplemen-
tary File 5). Deeper sequencing of these particular specimens may well lead to an improved
transcriptome. This also might indicate that quantity of reads rather than the quality of input
material was the limiting factor for the generation of a complete transcriptome.

TransPi also addresses putative contamination issues that might affect a transcriptome
by providing an additional option that performs filtering of “contaminants”. Datasets from
organisms like corals can represent a challenge during transcriptome assembly and down-
stream analyses due to their endosymbiotic zooxanthellae (Shinzato et al., 2014). Thus, a
filtration step is usually performed to remove sequences that do not belong to the target
(host) transcriptome (Veglia et al., 2018). The filtration step of TransPi is a useful step in
the cases of known contamination sources. For example, in the dataset of the coral Porites
pukoensis both programs, TransPi and Trinity obtained high BUSCO completeness percent-
ages. However, despite the reduction with EvidentialGene, single-copy BUSCO percentages
were low and the percentage of duplicated BUSCO geneswas high in both, TransPi and Trinity.
Given the shown strong efficiency of TransPi to remove redundancy, the presence of many
duplicates in this dataset may indicate the presence of algae (symbionts) transcripts and/or
contamination. Also, it has been previously reported that other eukaryotes, particularly fungi,
are commonly found in Porites pukoensis (Li et al., 2014). This could potentially bias the out-
comes and can strongly affect downstream analyses. Thus, using a contaminant filtration
step, as performed by TransPi, is beneficial to generate a cleaner and accurate transcriptome
assembly and provide the user with a host only transcriptome to be further analyzed.

In summary, TransPi offers researchers working with non-model organisms the opportu-
nity of a comprehensive de novo transcriptome analysis, requiring minimum user input but
without losing the ability of a thorough analysis. The non-redundant assembly generated by
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TransPi can be used directly in several downstreamanalyses including differential expression,
gene modelling for genome annotations, bait design and phylogenetics. Another key advan-
tage of using TransPi is that it offers reproducibility of the results with ease, where entire
experiments can be repeated with defined versions of all programs included in the work-
flow. It provides a user-friendly environment, easy deployment, and scalability by employing
Nextflow. TransPi also has other additional features to help gain extra insight into the assem-
blies. We anticipate that TransPi will be a valuable tool for the generation of comprehensive
de novo non-redundant transcriptome assemblies for non-model organisms.

Data accessibility

Data are available online:
https://github.com/PalMuc/TransPi,
10.5281/zenodo.5060055

Supplementary material

Script and codes are available online:
https://github.com/PalMuc/TransPi,
10.5281/zenodo.5060055

Acknowledgements

Version 3 of this preprint has been peer-reviewed and recommended by Peer Community In
Genomics Peer Community In Genomics (https://doi.org/10.24072/pci.genomics.100009). RERV,
ME and GW acknowledge funding from the European Union’s Horizon 2020 research and in-
novation programme under theMarie Skłodowska-Curie grant agreement No 764840 (ITN IG-
NITE). CGE acknowledges the Advanced Human Capital Program of the National Commission
for Scientific and Technological Research (CONICYT) for the Becas-Chile Scholarship awarded
to study at LMU. CGEandMEacknowledges funding by Lehre@LMU (project number: W19_F1;
Studi_forscht@GEO). GWacknowledges funding through the LMUMunich’s Institutional Strat-
egy LMUexcellent within the framework of the German Excellence Initiative. The authors
gratefully acknowledge the Leibniz Supercomputing Centre (LRZ) as a partner of ITN IGNITE
for providing computing time and support on its Linux-Cluster and Compute Cloud system.

Conflict of interest disclosure

The authors of this preprint declare that they have no financial conflict of interest with the
content of this article.

Peer Community In Genomics 21 of 26

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431773doi: bioRxiv preprint 

https://github.com/PalMuc/TransPi
http://doi.org/10.5281/zenodo.5060055
https://github.com/PalMuc/TransPi
http://doi.org/10.5281/zenodo.5060055
https://doi.org/10.24072/pci.genomics.100009
http://www.itn-ignite.eu
http://www.itn-ignite.eu
https://doi.org/10.1101/2021.02.18.431773
http://creativecommons.org/licenses/by-nc/4.0/


References
Alexa A, and Rahnenfuhrer J (2016). topGO: Enrichment Analysis for GeneOntology. R package version 2.32.0.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17),
3389–3402. https://doi.org/10.1093/nar/25.17.3389
Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.
Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., ... & Pilbout, S. (2003).
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 31(1),
365–370. https://doi.org/10.1093/nar/gkg095
Bryant, D. M., Johnson, K., DiTommaso, T., Tickle, T., Couger, M. B., Payzin-Dogru, D., Lee, T. J., Leigh, N. D.,
Kuo, T.-H., Davis, F. G., Bateman, J., Bryant, S., Guzikowski, A. R., Tsai, S. L., Coyne, S., Ye, W. W., Freeman, R.
M., Peshkin, L., Tabin, C. J., ...,& Whited, J. L. (2017). A Tissue-Mapped Axolotl De Novo Transcriptome Enables
Identification of Limb Regeneration Factors. Cell Reports, 18(3), 762–776.
https://doi.org/10.1016/j.celrep.2016.12.063
Bushmanova, E., Antipov, D., Lapidus, A., Suvorov, V., & Prjibelski, A. D. (2016). rnaQUAST: a quality assess-
ment tool for de novo transcriptome assemblies. Bioinformatics, 32(14), 2210–2212.
https://doi.org/10.1093/bioinformatics/btw218
Bushmanova, E., Antipov, D., Lapidus, A., & Prjibelski, A. D. (2019). rnaSPAdes: a de novo transcriptome
assembler and its application to RNA-Seq data. GigaScience, 8(9). https://doi.org/10.1093/gigascience/giz100
Cerveau, N., & Jackson, D. J. (2016). Combining independent de novo assemblies optimizes the coding tran-
scriptome for nonconventional model eukaryotic organisms. BMC Bioinformatics, 17(1).
https://doi.org/10.1186/s12859-016-1406-x
Chan, K.-L., Rosli, R., Tatarinova, T. V., Hogan, M., Firdaus-Raih, M., & Low, E.-T. L. (2017). Seqping: gene predic-
tion pipeline for plant genomes using self-training genemodels and transcriptomic data. BMCBioinformatics,
18(S1), 1–7. https://doi.org/10.1186/s12859-016-1426-6
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics,
34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Cheon, S., Zhang, J., & Park, C. (2020). Is Phylotranscriptomics as Reliable as Phylogenomics? Molecular
Biology and Evolution, 37(12), 3672–3683. https://doi.org/10.1093/molbev/msaa181
Cornwell, M. I., Vangala, M., Taing, L., Herbert, Z., Köster, J., Li, B., Sun, H., Li, T., Zhang, J., Qiu, X., Pun, M., Je-
selsohn, R., Brown, M., Liu, X. S., & Long, H. W. (2018). VIPER: Visualization Pipeline for RNA-seq, a Snakemake
workflow for efficient and complete RNA-seq analysis. BMC Bioinformatics, 19(1).
https://doi.org/10.1186/s12859-018-2139-9
D’Antonio, M., D’Onorio De Meo, P., Pallocca, M., Picardi, E., D’Erchia, A. M., Calogero, R. A., Castrignanò, T., &
Pesole, G. (2015). RAP: RNA-Seq Analysis Pipeline, a new cloud-based NGS web application. BMC Genomics,
16(Suppl 6), S3. https://doi.org/10.1186/1471-2164-16-s6-s3
Darzi, Y., Letunic, I., Bork, P., & Yamada, T. (2018). iPath3.0: interactive pathways explorer v3. Nucleic Acids
Research, 46(W1), W510–W513. https://doi.org/10.1093/nar/gky299
Di Tommaso, P., Chatzou,M., Floden, E.W., Barja, P. P., Palumbo, E., &Notredame, C. (2017). Nextflowenables
reproducible computationalworkflows. NatureBiotechnology, 35(4), 316–319. https://doi.org/10.1038/nbt.3820

Peer Community In Genomics 22 of 26

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431773
http://creativecommons.org/licenses/by-nc/4.0/


El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar,
G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S. C. E., & Finn, R. D. (2018).
The Pfam protein families database in 2019. Nucleic Acids Research, 47(D1), D427–D432.
https://doi.org/10.1093/nar/gky995
Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: interactive sequence similarity searching.
Nucleic Acids Research, 39(suppl), W29–W37. https://doi.org/10.1093/nar/gkr367
Francis, W. R., Christianson, L. M., Kiko, R., Powers, M. L., Shaner, N. C., & D Haddock, S. H. (2013). A compari-
son across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly.
BMC Genomics, 14(1), 167. https://doi.org/10.1186/1471-2164-14-167
Freedman, A. H., Gaspar, J. M., & Sackton, T. B. (2020). Short paired-end reads trump long single-end reads
for expression analysis. BMC Bioinformatics, 21(1). https://doi.org/10.1186/s12859-020-3484-z
Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequenc-
ing data. Bioinformatics, 28(23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565
Gayral, P., Weinert, L., Chiari, Y., Tsagkogeorga, G., Ballenghien, M., & Galtier, N. (2011). Next-generation
sequencing of transcriptomes: a guide to RNA isolation in nonmodel animals. Molecular Ecology Resources,
11(4), 650–661. https://doi.org/10.1111/j.1755-0998.2011.03010.x
Gibbons, J. G., Janson, E. M., Hittinger, C. T., Johnston, M., Abbot, P., & Rokas, A. (2009). Benchmarking Next-
Generation Transcriptome Sequencing for Functional and Evolutionary Genomics. Molecular Biology and
Evolution, 26(12), 2731–2744. https://doi.org/10.1093/molbev/msp188
Gilbert, D. (2013). Gene-omes built from mRNA-seq not genome DNA.
Gilbert, D. (2019). Longest protein, longest transcript or most expression, for accurate gene reconstruction
of transcriptomes?. bioRxiv, https://doi.org/10.1101/829184
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowd-
hury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum,
C., Lindblad-Toh, K., . . . Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a
reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883
Holt, C., & Yandell, M. (2011). MAKER2: an annotation pipeline and genome-database management tool for
second-generation genome projects. BMC Bioinformatics, 12(1). https://doi.org/10.1186/1471-2105-12-491
Hölzer, M., & Marz, M. (2019). De novo transcriptome assembly: A comprehensive cross-species comparison
of short-read RNA-Seq assemblers. Gigascience, 8(5). https://doi.org/10.1093/gigascience/giz039
Huang, X., Chen, X. G., & Armbruster, P. A. (2016). Comparative performance of transcriptome assembly
methods for non-model organisms. BMC genomics, 17(1), 523. https://doi.org/10.1186/s12864-016-2923-8
Johnson, L. K., Alexander, H., & Brown, C. T. (2019). Re-assembly, quality evaluation, and annotation of 678mi-
crobial eukaryotic reference transcriptomes. GigaScience, 8(4). https://doi.org/10.1093/gigascience/giy158
Kerkvliet, J., de Fouchier, A., van Wijk, M., & Groot, A. T. (2019). The Bellerophon pipeline, improving de novo
transcriptomes and removing chimeras. Ecology and evolution, 9(18), 10513-10521.
https://doi.org/10.1002/ece3.5571
Knutson, V. L., Brenzinger, B., Schrödl, M., Wilson, N. G., & Giribet, G. (2020b). Most Cephalaspidea have
a shell, but transcriptomes can provide them with a backbone (Gastropoda: Heterobranchia). Molecular
Phylogenetics and Evolution, 153, 106943. https://doi.org/10.1016/j.ympev.2020.106943

Peer Community In Genomics 23 of 26

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431773
http://creativecommons.org/licenses/by-nc/4.0/


Kohen, R., Barlev, J., Hornung, G., Stelzer, G., Feldmesser, E., Kogan, K., Safran, M., & Leshkowitz, D. (2019).
UTAP: User-friendly Transcriptome Analysis Pipeline. BMC Bioinformatics, 20(1).
https://doi.org/10.1186/s12859-019-2728-2
Kopylova, E., Noé, L., & Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in meta-
transcriptomic data. Bioinformatics, 28(24), 3211-3217. https://doi.org/10.1093/bioinformatics/bts611
Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein
topologywith a hiddenmarkovmodel: application to complete genomes. Journal ofMolecular Biology, 305(3),
567–580. https://doi.org/10.1006/jmbi.2000.4315
Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H.-H., Rognes, T., &Ussery, D.W. (2007). RNAmmer: consistent
and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100–3108.
https://doi.org/10.1093/nar/gkm160
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), 357.
https://doi.org/10.1038/nmeth.1923
Li, J., Zhong, M., Lei, X., Xiao, S., & Li, Z. (2014). Diversity and antibacterial activities of culturable fungi associ-
ated with coral Porites pukoensis. World Journal of Microbiology and Biotechnology, 30(10), 2551–2558.
https://doi.org/10.1007/s11274-014-1701-5
Lozano-Fernandez, J., Tanner, A. R., Giacomelli, M., Carton, R., Vinther, J., Edgecombe, G. D., & Pisani, D. (2019).
Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari
and Arachnida. Nature communications, 10(1), 1-8. https://doi.org/10.1038/s41467-019-10244-7
Lu, B. X., Zeng, Z. B., & Shi, T. L. (2013). Comparative study of de novo assembly and genome-guided assembly
strategies for transcriptome reconstruction based on RNA-Seq. Science China Life Sciences, 56(2), 143–155.
https://doi.org/10.1007/s11427-013-4442-z
MacManes, M. D. (2018). The Oyster River Protocol: a multi-assembler and k-mer approach for de novo
transcriptome assembly. PeerJ, 6, e5428. https://doi.org/10.7717/peerj.5428
Martin, J., Bruno, V. M., Fang, Z., Meng, X., Blow, M., Zhang, T., Sherlock, G., Snyder, M., & Wang, Z. (2010).
Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC
Genomics, 11(1), 663. https://doi.org/10.1186/1471-2164-11-663
Peng, Y., Leung, H. C., Yiu, S. M., Lv, M. J., Zhu, X. G., & Chin, F. Y. (2013). IDBA-tran: a more robust de novo de
Bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics, 29(13), i326-i334.
https://doi.org/10.1093/bioinformatics/btt219
Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides
from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/nmeth.1701
Pita, L., Hoeppner, M. P., Ribes, M., & Hentschel, U. (2018). Differential expression of immune receptors in
twomarine sponges upon exposure tomicrobial-associatedmolecular patterns. Scientific reports, 8(1), 1-15.
https://doi.org/10.1038/s41598-018-34330-w
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes De Novo Assem-
bler. Current Protocols in Bioinformatics, 70(1). https://doi.org/10.1002/cpbi.102
Quek, R. Z. B., Jain, S. S., Neo, M. L., Rouse, G. W., & Huang, D. (2020). Transcriptome-based target-enrichment
baits for stony corals (Cnidaria: Anthozoa: Scleractinia). Molecular Ecology Resources, 20(3), 807–818.
https://doi.org/10.1111/1755-0998.13150

Peer Community In Genomics 24 of 26

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431773
http://creativecommons.org/licenses/by-nc/4.0/


Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S., Okada, H. M.,
Qian, J. Q., Griffith, M., Raymond, A., Thiessen, N., Cezard, T., Butterfield, Y. S., Newsome, R., Chan, S. K., She,
R., Varhol, R., . . . Birol, I. (2010). De novo assembly and analysis of RNA-seq data. Nature Methods, 7(11),
909–912. https://doi.org/10.1038/nmeth.1517
Romero, I. G., Pai, A. A., Tung, J., & Gilad, Y. (2014). RNA-seq: impact of RNA degradation on transcript quan-
tification. BMC biology, 12(1), 1-13. https://doi.org/10.1186/1741-7007-12-42
Rzepecki, L. M., Chin, S. S., Waite, J. H., & Lavin, M. F. (1991). Molecular diversity of marine glues: polyphenolic
proteins from five mussel species. Molecular marine biology and biotechnology, 1(1), 78-88.
Schulz, M. H., Zerbino, D. R., Vingron, M., & Birney, E. (2012). Oases: robust de novo RNA-seq assembly across
the dynamic range of expression levels. Bioinformatics, 28(8), 1086–1092.
https://doi.org/10.1093/bioinformatics/bts094
Shinzato, C., Inoue, M., & Kusakabe, M. (2014). A Snapshot of a Coral “Holobiont”: A Transcriptome Assem-
bly of the Scleractinian Coral, Porites, Captures a Wide Variety of Genes from Both the Host and Symbiotic
Zooxanthellae. PLoS ONE, 9(1), e85182. https://doi.org/10.1371/journal.pone.0085182
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing
genomeassembly and annotation completenesswith single-copy orthologs. Bioinformatics, 31(19), 3210–3212.
https://doi.org/10.1093/bioinformatics/btv351
Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly,S.(2016). TransRate: reference-free quality
assessment of de novo transcriptome assemblies. Genome Research, 26(8), 1134–1144.
https://doi.org/10.1101/gr.196469.115
Sultan, M., Amstislavskiy, V., Risch, T., Schuette, M., Dökel, S., Ralser, M., Balzereit, D., Lehrach, H., & Yaspo,
M.-L. (2014). Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC
Genomics, 15(1), 675. https://doi.org/10.1186/1471-2164-15-675
Testa, A. C., Hane, J. K., Ellwood, S. R., & Oliver, R. P. (2015). CodingQuarry: highly accurate hidden Markov
model gene prediction in fungal genomes using RNA-seq transcripts. BMC genomics, 16(1), 170.
https://doi.org/10.1186/s12864-015-1344-4
Torres-García, W., Zheng, S., Sivachenko, A., Vegesna, R., Wang, Q., Yao, R., Berger, M. F., Weinstein, J. N., Getz,
G., & Verhaak, R. G. W. (2014). PRADA: pipeline for RNA sequencing data analysis. Bioinformatics, 30(15),
2224–2226. https://doi.org/10.1093/bioinformatics/btu169
Veglia, A. J., Hammerman, N. M., Rivera-Vicéns, R. E., & Schizas, N. V. (2018). De novo transcriptome assem-
bly of the coral Agaricia lamarcki (Lamarck’s sheet coral) from mesophotic depth in southwest Puerto Rico.
Marine Genomics, 41, 6–11. https://doi.org/10.1016/j.margen.2018.08.003
Wang, D. (2018). hppRNA—a Snakemake-based handy parameter-free pipeline for RNA-Seq analysis of nu-
merous samples. Briefings in bioinformatics, 19(4), 622-626. https://doi.org/10.1093/bib/bbw143
Waterhouse, R. M., Zdobnov, E. M., & Kriventseva, E. V. (2011). Correlating traits of gene retention, sequence
divergence, duplicability and essentiality in vertebrates, arthropods, and fungi. Genome Biology and Evolu-
tion, 3, 75–86. https://doi.org/10.1093/gbe/evq083
Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., Zhou, X., Lam, T.-W., Li,
Y., Xu, X., Wong, G. K.-S., & Wang, J. (2014). SOAPdenovo-Trans: de novo transcriptome assembly with short
RNA-Seq reads. Bioinformatics, 30(12), 1660–1666. https://doi.org/10.1093/bioinformatics/btu077
Yang, Y., Li, Y., Chen, Q., Sun, Y., & Lu, Z. (2019). WGDdetector: a pipeline for detecting whole genome dupli-
cation events using the genome or transcriptome annotations. BMC bioinformatics, 20(1), 1-6.
https://doi.org/10.1186/s12859-019-2670-3

Peer Community In Genomics 25 of 26

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431773
http://creativecommons.org/licenses/by-nc/4.0/


Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs.
Genome Research, 18(5), 821–829. https://doi.org/10.1101/gr.074492.107
Zhang, X., & Jonassen, I. (2020). RASflow: an RNA-Seq analysis workflowwith Snakemake. BMCbioinformatics,
21(1), 1-9. https://doi.org/10.1186/s12859-020-3433-x

Peer Community In Genomics 26 of 26

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431773
http://creativecommons.org/licenses/by-nc/4.0/

