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ABSTRACT

The ability to predict the future is essential for decision-making and interaction with the environment
to avoid punishment and gain reward. Reinforcement learning algorithms provide a normative way
for interactive learning, especially in volatile environments. The optimal strategy for the classic
reinforcement learning model is to increase the learning rate as volatility increases. Inspired by
optimistic bias in humans, an alternative reinforcement learning model has been developed by adding
a punishment learning rate to the classic reinforcement learning model. In this study, we aim to 1)
compare the performance of these two models in interaction with different environments, and 2)
find optimal parameters for the models. Our simulations indicate that having two different learning
rates for rewards and punishments increases performance in a volatile environment. Investigation of
the optimal parameters shows that in almost all environments, having a higher reward learning rate
compared to the punishment learning rate is beneficial for achieving higher performance which in
this case is the accumulation of more rewards. Our results suggest that to achieve high performance,
we need a shorter memory window for recent rewards and a longer memory window for punishments.
This is consistent with optimistic bias in human behavior.

Keywords reinforcement learning · volatile environment · reversal learning · optimal behavior ·
asymmetric updating
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1 Introduction

Reinforcement learning (RL) algorithms as normative models present optimal learning rule for the problem of interactive
learning in uncertain environments [Sutton and Barto, 2018]. Specially standard RL algorithm or Rescorla-Wagner
model [Rescorla, 1972] with a fixed learning rate can follow the changes of reward statistics in a volatile environment.
While learning rate in this and other RL algorithms play a role similar to precision-based weighting of prediction error
in Bayesian algorithms and so can be updated at each trial. RL algorithms with fixed learning rate are easy to implement
and possibly is more common for describing the human and other organisms’ behavior.

In the classical standard RL model, it has been shown that optimal learning rate increases as volatility of environment
increases [Behrens et al., 2007, Farashahi et al., 2017]. The change in environment characteristics affects the learning
rate of human subjects and it seems that decision maker chooses an appropriate learning rates in different environments
with different volatilities. Recent studies show that humans are more likely to use alternative reinforcement learning
model instead of classical RL model [Frank et al., 2007, Niv et al., 2015]. In this model subjects weigh the positive and
negative prediction error differently and accordingly they have two different learning rates: one for positive prediction
errors and another for negative prediction errors.

The dual learning rate model has evidences in human behavior and its underlying neural processing and it is inspired
by the bias toward good news versus bad news [Sharot et al., 2007]. This optimism bias helps humans to have better
mood and prevent disappointment. But it may have disadvantages in some situations and may hinder optimal decision
making. Besides the optimism bias, there is another bias in belief updating toward optimistic news that can be
the underlying mechanism for observed bias in humans behavior in RL tasks [Lefebvre et al., 2017, Sharot, 2012].
Moreover, loss aversion is a trait in which decision maker is averse to losing reward relative to gaining an equivalent
reward [Tversky and Kahneman, 1991]. Both optimism bias and loss aversion are biases that are prevalent in human
decision making. So, the observed different weights for losing and winning in human behavior can be a result of their
interplay.

Cognitive flexibility is an essential ability in humans to interact and survive in a complex and volatile environment
[Cools, 2019, Cools and Robbins, 2004]. The Probabilistic Reversal learning (PRL) task is a cognitive decision-making
task that represents the volatile environment [Pessiglione et al., 2006, Den Ouden et al., 2013, Kanen et al., 2021]. To
successfully interact with a complex environment, it is critical to have a trade-off between cognitive stability and
cognitive flexibility in order to ignore rare events in stable conditions and flexibly update previous beliefs in the
changing conditions. In this study we consider a modified version of a two-option PRL task which is addressed in
[Farashahi et al., 2017].

We aim to evaluate whether adding a punishment learning rate to the learning model increase performance in a volatile
environment and what is the optimal parameters for reaching the optimal performance. The rest of this paper is
organized as follows. Section (2) presents the method which contains behavioral (PRL) task, RL models, and simulation
details. Results of Simulation are presented in Section (3). Section (4) discusses the results of simulations and concludes
the paper.

2 Method

In this study, we aim at simulating the decision-making process during a PRL task. For this purpose we consider a
modified version of a two-option PRL task which is addressed in [Farashahi et al., 2017] and simulate it for a wide
range of possible environments. We then use RL models to simulate the decision making in each of the designed
environments. In what follows we first describe the structure of the PRL task. Then we explain the RL models we use
and our simulation procedure.

2.1 Probabilistic Reversal Learning task

Reversal learning task represents a volatile environment with uncertainty. In this study we used a modified version of
PRL task with two choice options [Farashahi et al., 2017, Den Ouden et al., 2013]. On each trial, two visual stimuli
were represented in right or left of the fixation point and participants were instructed to select between two alternative
options and receive feedback Fig. 1. Each stimulus was probabilistically associated with reward or punishment.
Choosing the mostly rewarded stimulus, called Correct stimulus, delivers reward with the probability of pCor and the
mostly punished stimulus, Incorrect, results in reward with complementary probability, pIncor = 1− pCor. The level
of uncertainty in an environment is determined by pCor where the high value indicates a certain environment.

After a certain number of trials, L, the reward contingencies was reversed, so the mostly rewarded stimulus now became
mostly punished and vice versa and this can happen several times. Participants were informed that the contingency rules
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Figure 1: Behavioral task. (A) Probabilistic Reversal Learning task. (B) An example environment with pCor = 0.8,
L = 20 and two reversal points. In each trail, the green line indicates the correct stimulus and blue dots determines the
rewarded stimulus. Thus, on the trials that correct and rewarded stimulus are different, subjects received ‘misleading’
feedback due to the environment uncertainty.

would change but they were blind to the number of trials between reversals. The level of volatility of environment is
defined by L and a large one represents a stable environment. Fig. 1B shows an example environment with pCor = 0.8
and L = 20.

2.2 Computational model space

In order to have a good performance in the PRL task, the subject has to continuously update the action values for each of
the two options based on receiving feedback. We employed Reinforcement Learning (RL) models as described below.

2.2.1 Rescorla-Wagner (RW) model

The RW model is known as the standard RL model [Sutton and Barto, 2018, Watkins and Dayan, 1992], which contains
a single learning rate parameter to update the expected action values, Vc,t, based on the environment feedback. The
update equation for the expected value is described by the following equation:

Vc,t+1 = Vc,t + α(Rt − Vc,t) (1)

where α is the learning rate. The expected value of choice c on trial t, Vc,t, is updated by integrating the environment
feedback Rt ε {1,−1}. The higher learning rate results in a greater weight on a prediction error, δt = Rt − Vc,t, thus
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Table 1: Summary of the parameters detail for simulation. It contains environmental and models parameter

Parameter Range Step size #Sim. values Type of parameter

L [20, 200] 20 10 Environmental
pCor [0.6, 0.8] 0.2 11 Environmental
α [0, 1] 0.05 21 RW model
αrew [0, 1] 0.05 21 RP model
αpun [0, 1] 0.05 21 RP model

faster updating in the expected value. On other hand with a lower learning rate, the expected value leads to integration
over a wider range of choice-outcome observations. Note that the expected value corresponding to the unchosen option,
V∼c,t, remains unchanged:

V∼c,t+1 = V∼c,t (2)

2.2.2 Dual learning rate, Reward-Punishment (RP) model

The RP model is an extended version of the standard RL model [Frank et al., 2007, Den Ouden et al., 2013,
Brolsma et al., 2020]. This model utilizes separate mechanisms for learning from positive and negative prediction
errors, using dual learning rates. Thus, the expected action value is updated with reward and punishment learning rates
for positive and negative prediction error, respectively. The values are updated as follows:

Vc,t+1 =

{
Vc,t + αrew(Rt − Vc,t) if Rt = 1
Vc,t + αpun(Rt − Vc,t) if Rt = −1

(3)

where αpun is the punishment learning rate and indicates the impact size of negative prediction error on the action value
for unexpected punishment. The reward learning rate, αrew, reflects the degree of effect that positive prediction error
has on updating the action value. Note that only the value corresponding to the chosen option is updated. In comparison
to the RW model, the RP model has one extra parameter, which increases the degree of freedom and can results in more
flexible behavior.

For both models, to select an action based on the computed values, a soft-max choice function was employed to calculate
the probability of each choice, left or right. For the current PRL task, jε {left, right} is the set of all possible options
and the probability is computed as follows:

p(ct+1 = i) =
exp (βVc=i,t+1)

Σj exp (βVc=j,t+1
(4)

where β is the inverse temperature parameter, also known as the exploration/ exploitation parameter, which reflects the
stochasticity of choices. A high β means choosing the option with higher expected value more consistently.

2.2.3 Simulation

In order to quantify and evaluate the performance of each model, we performed an extensive simulation, which is the
first and important step of each computational neuroscience study [Wilson and Collins, 2019]. As described above, the
PRL task environment is determined by two parameters, the level of uncertainty pCor and the level of volatility L. First,
we created different environments using all possible combinations of the following parameter values pCor = [0.6, 0.8]
with a step size of 0.02, and L = [20, 200] with step size of 20. As we aimed to run 2000 trials for each environment,
the number of reversals are different for environments with different level of volatility. The environment feedback for
each stimulus type is generated as a pseudo-random series based on pCor.

Then, for each of 110 environments, we computed the maximum performance that can be reached using both models.
The free parameters for RW model are θRW = {α, β}, and for RP model are θRP = {αrew, αpun, β}. In order to
find the optimal values for α, αrew, and αpun we simulated performance score for the entire [0, 1] range of these three
parameters with step size = 0.05. For β parameter we used the median value reported in other studies, β = 4.5
[Den Ouden et al., 2013, Kandroodi et al., 2020]. Although we checked the consistency of the results for β = [2, 8].
The summary of the parameters detail for simulation is reported in Table 1.

We simulated 20 artificial agents for each parameter combination set and reported the average (normalized) performance
of these agents. We computed a normalized performance score, Sp, based on the likelihood of receiving positive
feedback for each of the stimulus options [Kandroodi et al., 2020]:

Sp =
pCor ×NCor + pIncor ×NIncor − pIncor ×NT

(pCor − pIncor)×NT
(5)
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where NCor (NIncor) is the number of trials in which Correct (Incorrect) stimulus is selected and NT is the total
number of trials. The last term in the numerator and the term in the denominator is added to normalize the performance
score to a minimum of 0 when the incorrect stimulus was chosen on all trials, and a maximum of 1 when the correct
stimulus was chosen on all trials. The normalized performance score is comparable across different environment.

3 Results

We generated the simulation data for 110 environments with different levels of uncertainty and volatility. The behavior
in each environment was therefore simulated for 212 = 441 combination of free parameters {αrew, αpun} for RP
model and 21 value of learning rate for RW model, see Table 1. In order to reduce noise in behavior we simulated 20
artificial agents for each parameter combination set and reported the average performance of these agents. In what
follows we first report the optimal performance of the models in different environments and their comparison. Then we
present the optimal learning rate for the RP model.

3.1 Optimal performance

The landscape for optimal performance is demonstrated in Fig. 2. The key observation is that the optimal performance
is lower for the more volatile (small L) and more uncertain (small pCor) environments. In contrast, it was higher for the
more stable (big L) and more certain (big pCor) environments. This trend is consistent for both models, Fig. 2A-B.

The difference between optimal performance of the two models (RP-RW) is presented in Fig. 2C. The RP model
performed better, average difference=0.04, than RW in almost all environments and this difference is bigger for more
certain environments.

3.2 Optimal learning rate

The optimal learning rate for the RP model is computed based on the set of parameters that resulted in the best
performance in each of the environments. The landscape for optimal reward learning rate is demonstrated in Fig. 3A.
The figure shows that optimal reward learning rate is higher both for the more volatile but more certain (bottom right
corner) and the more uncertain but stable (top left corner). It can also be seen that when environment is more stable
and certain (top right corner), the optimal performance is reached by comparably lower reward learning rate. The
landscape for optimal punishment learning rate is demonstrated in Fig. 3B. As a general trend, a smaller punishment
learning rate is needed for optimal behavior in the more certain environments. The reward learning rate to punishment
learning rate ratio is demonstrated in Fig. 3C. Notice that, for reward learning rate equal to punishment learning rate,
αrew/αpun = 1, the RP model reduces to the RW model. The results indicate that in almost all environments, reaching
the optimal performance needs the reward learning rate to be greater than the punishment learning rate. The black line
shows the level contour equal to one, where the optimal performance occurs at the reward learning rate equal to the
punishment learning rate. For the rest, optimal performance occurs when the reward learning rate is higher than the
punishment learning rate.

4 Discussion and conclusion

In this study, we aimed at finding the optimal learning rates in a reinforcement learning model with two different
learning rates for positive and negative prediction errors. The optimal performance for different learning rates show
that using two different learning rates results in a better performance compared to single learning rate. The results
demonstrate that for almost all environments, reaching the optimal performance needs the reward learning rate to be
greater than the punishment learning rate.

Our simulation results are aligned with the study of [Lefebvre et al., 2017] in which it is shown that human decision
makers have higher reward learning rate than punishment learning rate. Our results can be a base for justification of
optimistic update bias [Sharot et al., 2011] and introduce an advantage for this bias in volatile environments. From
evolutionary perspective, it seems that as organisms encountered high volatile environments, they possibly developed
optimism in belief updating.

It is important to note that higher learning rate does not mean higher learning, instead it shows the backward extension
of memorizing rewards. In other words, learning rate somehow shows the relative weight of recent versus old rewards;
i.e. higher learning rates put emphasis on the recent reward while lower learning rates use older rewards relatively more.
It is a kind of forgetting factor, and as learning rate increases older reward are forgotten more. So, higher reward learning
rates show shorter integration window for rewards, while smaller punishment learning rates show longer integration
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Figure 2: The optimal performance score landscape as a function of environment variables: level of uncertainty (pCor)
and level of volatility (L). The normalized performance of 0.5 indicates the chance level. Optimal performance
corresponding to the environment and the model is computed by averaging top 2% performance in order to reduce noise
(see [Farashahi et al., 2017]). (A) The optimal performance using RW model. The optimal performance is lower for
the more volatile (small L) and more uncertain (small pCor) environments. In contrast, it is higher for the more stable
(big L) and more certain (big pCor) environments. (B) The optimal performance using RP model. (C) The difference
between optimal performance of RP and RW model. The RP model shows better optimal performance in different
environments. On average, the RP model has 0.04 higher performance than RW model.
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Figure 3: The optimal learning rates landscape for the RP model as a function of environment variables: level of
uncertainty (pCor) and level of volatility (L). (A) The optimal reward learning rate. The optimal reward learning rate
is higher both for the more volatile but more certain (bottom right corner) and the more uncertain but stable (top left
corner). The optimal performance is reached by comparably lower reward learning rate when the environment is more
stable and certain (top right corner). (B) The optimal punishment learning rate. A smaller punishment learning rate is
needed for optimal behavior in the more certain environments. (C) The ratio of the optimal learning rates for the RP
model. The results demonstrates that for almost all environments, reaching the optimal performance needs the reward
learning rate to be greater than the punishment learning rate. The black line shows the level contour, where the optimal
performance occurs at the reward learning rate equal to the punishment learning rate.

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.15.431283doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431283
http://creativecommons.org/licenses/by/4.0/


ROSTAMI KANDROODI et al. - 2021

window. Thus, optimal strategy in our simulation emphasizes recent rewards more and integrates punishments in longer
windows. Optimal strategy has longer memory of punishments and failures and shorter memory for recent rewards.

There are studies that have already investigated the fitting of dual learning rate RL model to the behavior and higher
reward learning rate seems to be valid [Sharot et al., 2007, Lefebvre et al., 2017]. However, it is important to remind
that the application of this model for behavioral studies in volatile environments and observing the learning rates of
human subjects need to be investigated in future studies. Moreover, instead of constant learning rates, using some
adaptive strategies to adjust learning rates according to environment statistics is an open question. Future studies need
to find a way to estimate environment volatility and use them in adjustment of learning rates. Some models in Bayesian
modeling, such as Hierarchical Gaussian Filtering (HGF) [Mathys et al., 2014] provide Bayesian insights on this issue.

Optimal performances in different environments show that reward accumulation expectedly increases as environment
become more stable and more certain. Importantly, added benefit of having two learning rates is small in environments
that are uncertain, and performance improvement increases for environments with certainty irrespective of volatility.
Optimal punishment learning decreases as the environment becomes more certain, and so higher punishment learning
rates are needed for uncertain environments. Optimal reward learning rate shows an interaction between volatility and
uncertainty. The highest reward learning rates are obtained both for the more certain but volatile and the more stable but
more uncertain environments. These all show that optimal learning strategy can be adjusted depending on the statistics
of environment.

In conclusion, by knowing the statistics of the environment, both uncertainty and volatility, we can use obtained
parameters for the accumulation of more reward. The proposed strategy seems to have a higher reward learning rate and
so short memory window for recent rewards and a longer memory window for punishment learning rates.
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