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Abstract

Bladder cancer congtitutes one of the deadliest genitourinary diseases, especially when diagnosed
at late stages. These tumours harbour microenvironmental niches characterized by low levels of
oxygen (hypoxia) and limited glucose supply due to poor vascularization. However, the synergic
contribution of these features to disease development is poorly understood. Here, we
demonstrated that cells with distinct histopathological and molecular backgrounds responded
similarly to such stimuli. Cancer cells arrested proliferation, significantly increased invasive
capacity in vitro and enhanced tolerance to cisplatin-based chemotherapy. Reoxygenation and
access to glucose restored basal proliferation and invasion levels without triggering stress-
induced apoptosis, denoting significant cellular plasticity in adapting to microenvironmental
cues. Whole transcriptomics showed major molecular reprogramming, supporting main
functional alterations. Metabolomics evidenced fatty acids p-oxidation as main bioenergetic
pathway rather than anaerobic glycolysis generally adopted by hypoxic cells. Joint pathway
analysis also suggested relevant aterations in mucin-type O-glycan biosynthesis. Glycomics
confirmed a maor antagonization of O-glycosylation pathways, leading to simple cell
glycophenotypes characterized by the accumulation of immature short-chain O-glycans such as
Tn and STn antigens at the cel surface. Glycoengineered models reflecting ssmple cell
glycophenotypes were developed and functional studiesin vitro and in vivo showed that Tn and
STn overexpression decreased proliferation and promoted chemoresistance, reinforcing their
close link with tumour aggressiveness. Collectively, we have demonstrated that hypoxia and
glucose deprivation trigger more aggressive cell behaviours, in what appears to be an escape
mechanism from microenvironmental stress. We propose that, altered glycosylation may be used

to target these subpopulations, paving the way for precision oncology.

1. Introduction

Bladder cancer (BC) remains one of the deadliest malignancies of the genitourinary tract due
to high intra and inter-tumoral molecular heterogeneity. This has delayed a more comprehensive
understanding on tumour spatiotemporal evaluation and affected the efficiency of precise clinical
interventions. While genetic alterations are considered primary causes of cancer development,

downstream phenotypic changes induced by the tumour microenvironment are amongst the
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driving forces of progression and dissemination. The generation of hypoxic niches characterized
by decreased oxygen availability (<2% O.) is a microenvironment hallmark of solid tumours".
Not surprisingly, the presence of hypoxic regionsis a pivotal independent poor prognosis factor
in several cancers, including urothelial carcinomas™.

Uncontrolled tumour cell proliferation supported by avid glucose consumption and glycolysis
in the presence of oxygen and fully functioning mitochondria (the Warburg effect) are common
features of solid tumours®. Rapid proliferation is also frequently accompanied by flawed
neoangiogenesis, resulting in suboptimal oxygen and nutrients supply to cancer cells in the
periphery of blood vessels. Moreover, poor vascularization and competition for nutrients requires
constant metabolic remodelling and exploitation of alternative survival strategies by hypoxic and
nutrient deprived cells, such as the induction of cellular quiescence®. While many tumour cells
faced with suboptimal growth conditions undergo programmed cell death and necrosis, some
subpopulations show tremendous molecular plasticity adapting to hypoxic and nutrient deprived
microenvironments’. Namely, more plastic tumour cells frequently undergo a massive metabolic
reprograming towards anaerobic glycolysis and mitochondrial autophagy accompanied by an
increase in lactate biosynthesis and tumour microenvironment acidification, with maor
implications in cancer progression’®. The selective pressure caused by stress factors further
contributes to the maintenance of cancer stem cells and promotes the acquisition of epithelial-to-
mesenchymal transition (EMT) traits that decisively dictate tumour fate’. Moreover, slow
dividing bladder cancer cells in hypoxic regions can escape many cytotoxic drugs targeting
rapidly dividing cells and are aso sufficiently shielded from many other therapeutic agents when
compared to the tumour bulk'®. However, the exact molecular mechanisms by which oxygen
gradients and glucose deprivation induce more aggressive and metastatic phenotypes remain
poorly explored in bladder cancer. Furthermore, there is little knowledge on molecular
alterations occurring at the cell surface which dictate poor prognosis and may be easily targeted
in theragnostic interventions.

The cel surface is densdly covered by an extended layer of complex glycans and
glycoconjugates of different natures. Glycans are not direct gene products, but rather the
concerted result of a wide variety of glycosyltransferases, glycosidases, and sugars nucleotide
transporters across the secretory pathways'™. Moreover, glycosylation enables rapid
accommodation of microenvironmental stimuli in response to alterations in glycogenes
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expression and metabolic imbalances®. These alterations directly influence protein trafficking,
stability, and folding and decisively shape the cancer cells proteome with impact on all cancer
hallmarks". These include activation of oncogenic signalling transduction, induction of immune
tolerance, migration, cell-cell, and cell-matrix adhesion®. In early reports, we have suggested that
hypoxia may significantly antagonize protein glycosylation of serine and threonine residues (O-
glycosylation) and concomitantly induce EMT, responsible by increased cell invasion™. The
cancer-associated short-chain O-glycan Sialyl-Tn (STn) was the most prominent glycan arising
from these alterations, being associated with immune tolerance and worst prognosis in bladder
cancer’*™. However, a direct link between the glycan and cell invasion in this context needs
further demonstration. The influence of glucose was also not estimated, requiring a more in-
depth functional characterization of the glycome facing different microenvironments.

In this study, we exploit an integrated multi-omics approach combining metabolomics and
whole transcriptomics to gain insights on the molecular plasticity of bladder cancer cells facing
hypoxia and low glucose. We further devote to understanding the effect of the microenvironment
across the glycosylation axis. Functional glycomics supported by a library of well characterized
glycoengineered cell models was used to determine how altered glycosylation contributes to
bladder cancer progression. Important insights were generated to identify and address more
aggressive bladder cancer subpopulations in precision oncology settings.

2. Material and Methods

2.1. Céll culture conditions

Human BC cell lines RT4, 5637, T24, and HT1197 were purchased from American Type
Culture Collection (ATCC). RT4, 5637, and T24 cells were maintained with complete RPM|
1640 GlutaMAX™ medium (Gibco) and HT1197 with DMEM GlutaMAX™ medium (Gibco).
Cells were kept at 37 °C in a 5% CO, humidified atmosphere (normoxia). Cells were also grown
under hypoxia and nutrient deprivation at 37°C in a’5% CO,, 99.9% N, and 0.1% O, atmosphere
using a BINDER C-150 incubator (BINDER GmbH) and complete RPMI 1640 and DMEM
media without glucose (Gibco). In re-oxygenation experiments, cells under oxygen and glucose
deprivation were restored to standard culture conditions 24h prior to analysis.
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2.2. CRISPR-Cas9 glycoengineered cell models

A recombinant Streptococcus pyogenes Cas9 (GeneArt™ Platinum Cas9 Nuclease, Thermo
Fisher Scientific) together with a singleguided RNA (GTAAAGCAGGGCTACATGAG,
sgRNA) were used to generate site-specific double-strand breaks (DSBs) in the CLGALTL1 gene
in T24 cédls in vitro. In paralel, two sgRNAs were used for GCNT1 gene knock-out (KO)
(gRNAL: TAGTCGTCAGGTGTCCACCG, gRNA2: AAGCGGTATGAGGTCGTTAA).
Lipofectamine™ CRISPRMAX™ Transfection Reagent (Thermo Fisher Scientific) was used
according to the manufacturer’ s instructions. Complexes were made in serum-free media (Opti-
MEM ™ | Reduced Serum Medium) and added directly to cells in culture medium and incubated
for 24 h. Single clones were obtained by serial dilution in 96 well plates and KO clones were
identified by Indel Detection by Amplicon Analysis (IDAA) using ABI PRISM™ 3010 Genetic
Analyzer (Thermo Fisher Scientific) and Sanger sequencing. Three clones were selected for each
gene with distinct out of frame indel formation. Single clones with silent mutations provided
phenotypic control cell lines. IDAA results were analysed using Peak Scanner Software V1.0
(Thermo Fisher Scientific). Human ST6GALNACL (hST6GALNAC1 [NM_018414.5]) knock-in
(K1) was performed in CLGALT1 KO cells by conventional mammalian gene expression vector
transfection, using jetPRIME® transfection reagent (PolyPlus Transfection) according to product
ingtructions. Positively transfected cells were selected based on puromycin (2ug/mL, EMD
Millipore) resistance. In parallel, a mock system containing a 300 bp stuffer ORF was devel oped.

2.3. Cell apoptosis assay

Apoptosis was determined using the Cell Apoptosis Kit with FITC annexin V and PI for flow
cytometry (Thermo Fisher Scientific) according to the manufacturer’s instructions. Briefly, cells
cultured under normoxia and hypoxia plus glucose deprivation were detached using Accutase
enzyme cell detachment medium (Thermo Fisher Scientific) and stained with recombinant
annexin V conjugated to fluorescein (FITC annexin V) as well as with red-fluorescent propidium
iodide (PI) nucleic acid binding dye. Data analysis was performed through CXP Software in a
FC500 Beckman Coulter flow cytometer.

2.4. Flow cytometry for short-chain O-glycans
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Cedlls were detached using Versene solution (Thermo Fisher Scientific), fixed with 1%
paraformaldehyde (PFA; Sigma-Aldrich) and stained with mouse anti-TAG72 (B72.3+CC49)
(Abcam) using a 2 pg/10° cells dilution in PBS 2% FBS for 1 h at room temperature. Polyclonal
rabbit anti-mouse immunoglobulins/FITC (DAKO) were used as secondary antibodies for STn
detection at a 1:100 dilution in PBS 2% FBS for 15 minutes at room temperature. Mouse 1gG1
[MOPC-21] isotype control (Abcam) was included as negative control. In parallel, 10° cells were
digested with 70 mU Neuraminidase from Clostridium perfringens (Sigma-Aldrich) in sodium
acetate buffer at 37 °C overnight, under mild agitation, prior to STn staining, and used as
negative controls. In addition, cancer cells were screened for Tn and T antigens as well as for N-
acetylglucosamine residues using fluorescein-labelled lectins (Vector Laboratories) as Vicia
Villosa (VVA, 0.01 mg/mL), Peanut Agglutinin (PNA, 0.01 mg/mL) and Griffonia Smplicifolia
Lectin Il (GSL 11, 0.02 mg/mL), respectively. VVA and PNA lectins were incubated for 1 h in
PBS 2% FBS under mild agitation at room temperature, while the lectin GSL |1 was incubated in
10 mM HEPES, 0.15 M NaCl, 0.1 mM CaCl,, pH 7.5 buffer. Sialylated Tn and T antigens
expression was determined after neuraminidase treatment under the above-mentioned conditions.
GSL Il lectin detection was performed following PNGaseF (250 mU/10° cells, in PBS 1x;
Sigma-Aldrich) enzymatic digestion to exclude N-glycan-associated N-acetylglucosamine
residues contribution. Data analysis was performed through CXP Software in a FC500 Beckman

Coulter flow cytometer.

2.5. Immunofluorescence for short-chain O-glycans detection

To evaluate short O-glycans expressions, T24 glycoengineered cell models were cultured at
low density and fixed with 4% paraformaldehyde (PFA, Sigma-Aldrich), following
immunofluorescent staining similar to the flow cytometry protocol. Sialylated glycoforms were
evaluated in paralld with samples digested with 50 mU/mL a-neuraminidase from Clostridium
perfringens for 4 h at 37 °C. After antigen staining, cells were marked with 2,3x10 ug/uL 4’ ,6-
Diamidino-2-phenylindole dihydrochloride (DAPI, Thermo Fisher Scientific) for 10 minutes at
room temperature in the dark. All images were acquired on a Leica DM 16000 FFW microscope

using Las X software (Leica).

2.6. Cell proliferation assay
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Cdll proliferation was evaluated using a colorimetric Cell Proliferation ELISA (Roche),
based on the measurement of the incorporation of bromodeoxyuridine (BrdU) into newly
synthesized DNA of proliferative cells. Procedure steps were followed according to the
manufacturer instructions and results were monitored at 450 nm using a microplate reader
(iIMARK™ Bio-Rad).

2.7. Céll cycleanalysis

Cedlls were harvested by trypsinization, following fixation in cold 70% ethanol for 30 minutes
at 4°C. After washing, cells were resuspended in 1mL of ready to use DNA labelling solution
(Cytognos)/10° cells and incubated in horizontal position for 10 minutes at room temperature in
obscurity. Data analysis was performed through CXP Software in a FC500 Beckman Coulter

flow cytometer.

2.8. Invasion Assays

Invasion assays were performed under normoxia and hypoxia plus glycose deprivation using
Corning® BioCoat™ Matrigel® Invasion Chambers as described in Peixoto, A. et al.*%. Invasion
assays were normalized to cells proliferation and cells were seeded in quintuplicates for each
experiment. Gelatine zymography was performed using conditioned media from invasion assays
to determine proteolytic activity of matrix metalloproteinases (MMP) 2 and 9 under the

experimental conditions as described in Peixoto, A. et al.*%.

2.9. L-lactate Assay

An L-Lactate colorimetric Assay Kit (Abcam) was used to detect L(+)-Lactate in
deproteinized cultured cells lysates and conditioned medium. Procedure steps were followed
according to the manufacturer’s instructions and results were monitored at 450 nm using a
microplate reader iIMARK™, Bio-Rad). The results were normalized to cell proliferation.

2.10. Western Blot

Whole protein extracts were collected from bladder cancer cellsusing a25 mM Tris-HCI, pH
7.2, 150 mM NaCl, 5 mM MgCl,, 1% NP-40, and 5% glycerol lysis buffer, supplemented with
Halt™ Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific). Twenty
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micrograms of isolated proteins were run on 4-20% precast SDS-PAGE gels (BioRad),
transferred into nitrocellulose membranes, and screened using a mouse monoclonal antibody to
AMPK apha 1 + AMPK apha 2 (Abcam), 1:1000 for 1 h at room temperature. Peroxidase
AffiniPure Goat Anti-Mouse IgG (Jackson ImmunoResearch) was used as secondary antibody at
1:70 000 for 30 minutes at room temperature. A Rabbit polyclonal antibody to AMPK alpha 1
(phospho T183) + AMPK alpha 2 (phospho T172) (Abcam) was also used at 1:1000 dilution for
1h at room temperature as well as the respective peroxidase conjugated goat anti-Rabbit 1gG
secondary antibody (ThermoFisherScientific) at 1:60 000 for 30 minutes at room temperature. A
rabbit monoclonal antibody to beta 2 Microglobulin (Abcam) was used as loading control. Total
protein stain was also assessed using Ponceau S (BioRad) anionic dye.

2.11. HIF-1la expression

Hypoxia-inducible factor 1-alpha (HIF-1a) was evaluated using a HIF-1 Alpha ELISA Kit
(Invitrogen™). Procedure steps were followed according to the manufacturer’ s instructions and
results were monitored at 450 nm using a microplate reader iMARK™ Bio-Rad). The results

were normalized to cell proliferation.

2.12. Metabolomics

Cdlls were dispersed in 80% methanol (Merck), sonicated for 30 minutes at 4°C and kept at -
20°C for 1 h. Samples were then centrifuged, and the supernatant was analysed by UHPLC-ESI-
MS/MS in positive and negative mode. Metabolite analysis was performed using an Ultimate
3000LC combined with Q Exactive mass spectrometer (Thermo Fisher Scientific). Eluent A was
0.1% formic acid in water and eluent B was acetonitrile and metabolite separation occurred using
the following gradient elution (0-1.5 min, 95-70% A; 1.5-9.5 min, 70-5% A; 9.5-14.5 min, 5%
A; 14.5-14.6 min, 5-95% A; 14.6-18.0 min, 95% A). The flow rate of the mobile phase was 0.3
mL/min. The column (Acquity UPLC HSS T3; 100 A, 1.8 pm, 2.1 mm x 150 mm) temperature
was maintained at 40°C, and the sample manager temperature was set at 4°C. Metabolites were
identified by retention time and corresponding MS/MS spectra. For metabolomics data pre-
processing and analysis, raw data matrices were blank subtracted (a mean blank value was
calculated per metabolite) and normalized to the number of cells for each condition. The

resulting matrices were then imported to Metaboanalyst 4.0 and log-transformed to reduce
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heteroscedasticity and pareto-scaled to adjust for differences in fold-changes between
metabolites.

2.13. Metabolomics data analysis

Multivariate and univariate analysis were performed to identify metabolites that discriminate
normoxia from hypoxia with low glucose. Unsupervised principal components analysis (PCA)
was applied to unravel data structure, following a supervised method, namely partial-least-
sguares discriminant analysis (PLS-DA) to identify which metabolites are useful to predict group
membership. Metabolites with discriminative power were ranked based on Variable Importance
in Projection (VIP) values >1 and PLS-DA models were validated based on the “prediction
accuracy during training” test statistic with 1000 permutations (p<0.05 for significance). Heat
maps with hierarchical clustering of metabolites were constructed based on the following
metrics: i) distance measure: Pearson correlation (similarity of expression profiles), ii) clustering
algorithm: complete linkage (forms compact clusters), iii) feature autoscale. Hierarchica
clustering of samples was carried out based on the following metrics. i) distance measure:
Euclidean distance (sensitive to magnitude differences), ii) clustering algorithm: Ward
(minimizes within-cluster variance). Differences in metabolites between groups were further
evaluated using one-way analysis of variance (ANOV A) with a False Discovery Rate (FDR) cut-
off set at 0.05 for significance. Tukey’s post hoc was applied to check which groups differed.
Significant metabolites unravelled by ANOV A were then used for pathway analysis to identify
the most relevant pathways that are involved in the adaptation of cells from normoxia to hypoxia
with low glucose. Pathway analysis was carried out based on two features: i) functional
enrichment which was assessed using hypergeometric test for over-representation analysis
(p<0.05 for significance) and ii) pathway topology analysis, which was implemented using the
relative betweenness centrality. Pathway impact was considered relevant if > 0.1. The joint
pathway analysis was carried out using transcriptomic and metabolomic data, based on a gene
and metabolite list with associated fold-changes. The human pathway library was chosen using
the pathway database “all pathways (integrated)”. The enrichment analysis was based on the
hypergeometric test statistic while degree centrality was used as topology measure. The
integration method was based on a combination of queries.
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2.14. Citrate synthase assay

Citrate synthase (CS) activity was measured in whole cell protein lysates using the method
proposed by Coore et al. (1971)™. In brief, the CoASH released from the reaction of acetyl-CoA
(Sigma-Aldrich) with oxaloacetate (OAA, Sigma-Aldrich) was determined by its reaction with
5,5’ -dithiobis-(2-nitrobenzoic acid) (DTNB, Sigma-Aldrich) at 412 nm (¢ =13.6 mMcm™) ina
microplate reader iIMARK ™, Bio-Rad). The results were normalized to cell proliferation.

2.15. ATP detection assay

A fluorometric ATP assay kit (Abcam) was used according to the manufacturer’ s instructions
to determine ATP levels in deproteinized whole cell lysates. The ATP assay protocol relied on
the phosphorylation of glycerol to generate a fluorometric product (Ex/Em = 535/587 nm), which
was quantified using a Synergy™ Mx microplate reader. The results were normalized to cell
proliferation.

2.16. Transcriptomics

Total RNA was extracted from cell pellets using the RNeasy Plus Mini kit (Qiagen). RNA
samples were quantified using Qubit 2.0 Fluorometer (Life Technologies) and RNA integrity
was checked with Agilent TapeStation (Agilent Technologies). RNA sequencing library
preparations were performed using NEBNext Ultra RNA Library Prep Kit for Illuminafollowing
manufacturer’s recommendations (New England Biolabs). Briefly, mRNAs were first enriched
with Oligod(T) and fragmented for 15 minutes at 94°C. First strand and second strand cDNA
were subsequently synthesized. cDNA fragments were end-repaired and adenylated at 3’ ends,
and universal adapters were ligated to cDNA fragments, followed by index addition and library
enrichment with limited cycle PCR. The sequencing libraries were validated on the Agilent
TapeStation (Agilent Technologies) and quantified using Qubit 2.0 Fluorometer (Invitrogen) as
well as by quantitative PCR (KAPA Biosystems). The sequencing libraries were clustered on one
lane of a flow cell. After clustering, the flow cell was loaded on the Illumina HiSeq 4000
instrument according to manufacturer’ s instructions. The samples were sequenced using a 2x150
Paired End (PE) configuration. Image analysis and base calling were conducted by the HiSeq
Control Software (HCS). Raw sequence data (.bcl files) generated from Illumina HiSeq was

converted into fastq files and de-multiplexed using Illuminas bcl2fastq 2.17 software. One
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mismatch was allowed for index sequence identification. After investigating the quality of the
raw data, sequence reads were trimmed to remove possible adapter sequences and nucleotides
with poor quality using Trimmomatic v.0.36. The trimmed reads were mapped to the human
reference genome available on ENSEMBL using the STAR aligner v.2.5.2b. Unique gene hit
counts were calculated by using feature Counts from the Subread package v.1.5.2. Only unique
reads that fell within exon regions were strand-specifically counted. After extraction of gene hit
counts, a SNP/INDEL analysis was performed using mpileup within the Samtools v.1.3.1
program followed by VarScan v.2.3.9. The parameters for variant caling were minimum
frequency of 25%, p-value less than 0.05, minimum coverage of 10, minimum read count of 7. A
gene fusion analysis was performed using STAR Fusion v.1.1.0. For novel transcript discovery,
transcripts expressed in each sample were extracted from the mapped bam files using Stringtie.
The resulting gtf file was compared to the reference annotation file and novel transcripts were
identified.

2.17. O-glycomics
Bladder cancer celular models O-glycome was characterized through the Cdlular O-

d'®".  Briefly, benzyl 2-acetamido-2-deoxy-a-D-

glycome Reporter/Amplification metho
galactopyranoside (Sigma-Aldrich) was peracetylated and administered to semi-confluent
bladder cancer cells, as previously described in Fernandes, E. et al.*”. Secreted benzyl-O-glycans
were recovered from cell culture media by filtration and solid-phase extraction with a C18
reverse phase sorbent. Finally, Bn-O-glycans were permethylated and analysed by reverse phase
nanoLC-ESI-MS/MS, as previously described by us'. O-glycans structures represented in
spectra are proposed structures, considering previous knowledge on bladder cancer O-
glycosylation, chromatography retention times, nm/z identification, and corresponding product ion

spectra

2.18. Anchorage-independent growth

AlG was measured using the soft agar colony formation assay. A 0.5% low melting point
agarose (Lonza) solution in complete medium was used as bottom layer in 6-well flat bottom
plates (Falcon®). A top layer of 0.3% agarose containing 1x10* cells was then plated and
covered with culture medium. Cells were maintained in standard growth conditions for one
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month. Colonies were then fixed with 10% neutral buffered formalin solution (Sigma-Aldrich)
and stained with 0.01% (w/v) crystal violet (Sigma-Aldrich) for 60 minutes. Colonies were
photographed using a stereomicroscope (Olympus, SZX16 coupled with a DP71 camera) and
automatically counted using the open-source software Imagel (Fiji package). Only colonies

containing more than 50 cells were considered.

2.19. Cisplatin resistance assays

Bladder cancer cells were plated into 96 well plates, following a 24 h exposure to crescent
concentrations of cisplatin. Positive and negative controls of cell death were set, consisting of
cell incubation with complete medium with and without 1% Triton-X (Sigma-Aldrich),
respectively. After cisplatin incubation, conditioned media was replaced by a 1.2 mM 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Thermo Fisher Scientific)
solution, following a 4 h incubation at 37°C in a humidified chamber. Findly, formazan crystals
were solubilized with dimethyl sulfoxide (DM SO, Sigma-Aldrich) and plates were incubated at
37°C for 10 minutes, following well absorbance measurement at 540 nm in a microplate reader
(iIMARK™ Bio-Rad). The percentage of cell viability was calculated as follows:

Absorbance of treated cells

Cell viability (%) = 100

X
Absorbance of negative control

2.20. Chicken embryo chorioallantoic membrane (CAM) assay

The chicken embryo CAM assay was used to assess the in vivo establishment of tumour
aggregates derived from glycoengineered cell models. On embryonic development day (EDD) 3,
a squared window was opened in the eggshell of fertilized chicken (gallus gallus) eggs, and 2—
2.5 mL of albumen was removed to allow detachment of the developing CAM. The window was
then sealed with adhesive tape and the eggs were incubated horizontally at 37.8°C in a
humidified atmosphere. On EDD9, 1x10° cells derived from each developed cell model were re-
suspended in 10 ul of Corning® Matrigel® Matrix and placed in a3 mm silicone ring attached to
the growing CAM. Control cells and respective glycoengineered models were inoculated in the
same egg, at least 10 viable embryos were used per experimental pair. The eggs were re-sealed
and returned to the incubator for one week. On EDD16, the CAM was excised from the embryos,
photographed ex-ovo under a stereoscope at 20x magnification (Olympus, SZX16 coupled with a
DP71 camera), and images were analysed to determine tumour size. CAM attached tumours
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were then formalin fixed and paraffin embedded, following haematoxylin and eosin staining of
selected samples.

2.21. Transmission Electron Microscopy

For electron microscopy, T24 and 5637 cells were fixed in 2% glutaraldehyde (Electron
Microscopy Sciences) with 2.5% formaldehyde (Electron Microscopy Sciences) in 0.1 M sodium
cacodylate buffer (pH 7.4) for 2 h, at room temperature, and post fixed in 1% osmium tetroxide
(Electron Microscopy Sciences) diluted in 0.1 M sodium cacodylate buffer. Samples were then
dehydrated and embedded in Epon resin (TAAB). Ultra-thin 50 nm sections were cut on an RMC
Ultramicrotome (PowerTome) using Diatome diamond knives, mounted on 200-mesh copper
grids (Electron Microscopy Sciences), and stained with uranyl acetate substitute (Electron
Microscopy Sciences) and lead citrate (Electron Microscopy Sciences) for 5 min each. Sections
were then examined under a JEOL JEM 1400 transmission electron microscope (JEOL) and
images were digitally recorded using a CCD digital camera Orius 1100W.

2.22. Statistical Analysis

Two-way ANOVA followed by Tukey post hoc tests were used to test the effect of cell line
and microenvironmental conditions on different biomarkers (HIF-1a, lactate, and ATP levels)
and functional responses (invasion, proliferation, apoptosis). Differences were considered
significant for p<0.05. All experiments were performed in triplicates and three replicates were
conducted for each independent experiment. The results are presented as the average and
standard deviation of these independent assays.

3. Resultsand Discussion

Oxygen and glucose deprivation are salient features of advanced stage bladder cancer, with
negative implications in disease outcome. However, the precise role played by these
microenvironmental features burdening poorly vascularized tumour regions remains
insufficiently understood. Here, we have addressed the functional and molecular plasticity of
bladder cancer cells under these conditions, envisaging to better understand the

microenvironmental pressures governing bladder cancer. We aso pursued preliminary
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observations implicating hypoxia in glycome remodelling in ways that favour disease
progression and dissemination'?. Emphasis was set on understanding the synergistic impact of
low oxygen pressure and glucose in protein O-glycosylation, which remains an unexplored
matter. We hypothesize such changes may provide the molecular rationale to identify more
aggressive cancer cells capable of supporting severe microenvironmental stress and disease
perpetuation.

3.1. Functional plasticity under hypoxia and low glucose

To better understand the molecular adaptability of bladder cancer cells to hypoxia and low
glucose, we have grown four widely studied bladder cancer cell models (RT4, 5637, T24,
HT1197) under low oxygen concentrations (0.1% O,) and reduced glucose leves (<10%) to
mimic microenvironmental conditions encountered by cells growing far apart from blood
vessels. Cells in hypoxia responded rapidly to these changes, stabilizing the hypoxia biomarker
HIF-1o, which became more pronounced in the absence of glucose, supporting HIF-1o pivotal
role in adaptive responses to microenvironmental stress (Figure 1A). Notably, HIF-1o was aso
increased in cells grown at normal oxygen pressure but with very low glucose, reinforcing the
existence of a non-canonical regulation mechanism for HIF-1o. stabilization regardless of oxygen
availability, as previously described for other types of cancer cells®®?°. We then quantified
intracellular and extracellular L(+)-lactate levels through the detection of reduced products of
lactate dehydrogenase. Although differences were visualized according to the cell line, in
general, lactate increased under low oxygen and was rapidly extruded to the extracellular space,
suggesting the adoption of anaerobic glycolysis as main bioenergetic pathway and capacity to
maintain intracellular homeostasis, as extensively supported in the literature®?. Low glucose
that mimics the Warburg effect also increased lactate as result of aerobic glycolysis™>*,
However, lactate remained in the intracellular compartment, suggesting that low oxygen may be
critical for activating extrusion mechanisms. On the other hand, the combined effect of hypoxia
and low glucose reduced lactate close to vestigial levels, strongly supporting the activation of
alternative energy producing pathway to glycolysis.

Concomitantly to these molecular adaptations, we observed a striking decrease in cell
proliferation (10-15-fold) in all cell lines under hypoxia, which was significantly enhanced upon

glucose suppression (Figure 1C). Cell cycle arrest in SG2 transition was later confirmed by
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flow cytometry (Figure S1-Supporting Information). Therefore, we hypothesized that cells
may be arrested in late S phase due to depletion of the substrates required for DNA synthesis™,
which was later confirmed by metabolomics. Interestingly, prolonged G2 arrest has been
extensively described as a relevant therapy-escape mechanism after exposure to DNA damaging
agents”, which was also later confirmed for these cells. Notably, viability of 5637 and T24 cells
was not affected after 24 h of microenvironmental stress, as highlighted by little changes in the
percentage of apoptotic and pre-apoptotic cells in comparison to normoxia (Figure 1D). In
contrast, RT4 and HT1197 cells viability was decreased by ~50%. Strikingly, 5637 and T24 cells
also responded to oxygen and glucose shortage by increasing invasion in Matrigdl in vitro
(Figure 1E). Also, the suppression of glucose impacted more on invasion than the removal of
oxygen, highlighting the pivotal role played by this nutrient in cancer?’. In parallel, we assessed
the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9, which are well known
molecules supporting invasion in bladder cancer”®. However, neither 5637 nor T24 cells
exhibited changes in metalloproteinase activity under microenvironmental stress that could
support the exuberant increase in invasion, strongly suggesting the adoption of alternative
mechanisms (Figure S2-Supporting Information). Finally, reoxygenation and access to
glucose significantly restored proliferation by 50% after 24 h and induced a massive drop in
invasion without inducing apoptosis, suggesting little oxidative stress from drastic alterations in
the microenvironment (Figures 1F-H). Collectively, this demonstrated that some subpopulations
of bladder cancer cells are well capable of accommodating hypoxia induced stress, facing
proliferation arrest supported by anaerobic metabolism, while concomitantly acquiring more
aggressive and motile phenotypes. Moreover, it demonstrates that oxygen and glucose levels act
as an on-off switch between proliferation and invasion. Interestingly, resistance to cancer cell
death, early stop in proliferation, and activation of invasion traits have been closely linked to
lactic acidosis as result of either hypoxia or glucose shortage®. However, our observations
support the notion that bladder cancer cells may adopt similar behaviours in the absence of
lactate in response to the combination of these microenvironmental factors. Finaly, we
addressed tolerance to cisplatin, generally used in the clinics against less proliferative tumour
cels. Under hypoxia and glucose deprivation, bladder cancer cells either maintained or
significantly increased tolerance to cisplatin as observed for T24 cells (Figure 11). Collectively,
we have portrayed the decisive role played by these microenvironment features in bladder cancer
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cells aggressiveness, setting the rationale for more in-depth molecular studies envisaging the

identification of relevant molecular targets for precision medicine.
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Figure 1. Bladder cancer cellstolerate well hypoxia and low glucose (herein termed Hypoxia-Glc) and adopt a
quasi-quiescent and invasive behaviour. A) Hypoxia and low glucose significantly increase HIF-la
expression in bladder cancer cdl lines. HIF-1a is significantly stabilized either under low oxygen or glucose
concentrations, irrespectively of the cell line. This effect becomes significantly more pronounced when the two
microenvironmental stressors are combined. B) Bladder cancer cells grown in hypoxia and low glucose produce
residual levels of lactate. Intracellular lactate increases in cells exposed to low glucose concentrations, whereas
extracellular lactate increases in cells grown in hypoxia. The combination of both factors reduces lactate to vestigial
levels. C) Hypoxia and low glucose significantly decrease cell proliferation. Individualy, low oxygen or low
glucose decrease bladder cancer cells proliferation capacity. Their combination significantly enhances this effect for
dl cdl lines. D) Bladder cancer cells tolerate well hypoxia and low glucose, maintaining cell viability.
Environmental stress resulting from the combined effect of hypoxia and low glucose did not impact significantly on
the viability of 5637 and T24 cells. Both RT4 and HT1197 cell models reduced cell viability by 50% under these
conditions, suggesting reduced capacity to adapt. E) Bladder cancer cells become more invasive under hypoxia
and low glucose in vitro. The 5637 and T24 cell models showed more capacity to invade Matrigel in vitro when
exposed to oxygen and glucose shortage separately. Moreover, invasion was significantly enhanced when the two
stimuli were combined. The RT4 and HT1197 cell lines did not present significant invasive capacity in our study
conditions. F) Bladder cancer cells showed remar kable capacity to accommodate microenvironmental changes

with minimal impact on cell viability. Restoration of oxygen and glucose did not impact on cell viability,
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supporting high plasticity to accommodate drastic microenvironmental changes. G) Bladder cancer cells restored
basal proliferation after reoxygenation and glucose reconditioning. After 24h of reoxygenation with restoration
of glucose, 5637 and T24 cells significantly regained proliferative capacity. After 48h, cells regained basal
proliferation, supporting the plasticity of these cells to endure microenvironmental challenges. H) Bladder cancer
cells reinstate basal invasion after reoxygenation and glucose restoration. After 24h of reoxygenation with
restoration of glucose, 5637 and T24 cells significantly reduce invasion. After 48h, their original invasive capacity
was reinstalled. 1) Hypoxia and low glucose increased T24 cells resistance to cisplatin. In normoxia, 5637 and
T24 cells showed similar IC50 for cisplatin. In hypoxia and low glucose, T24 increased its tolerance to cisplatin
over awide range of concentrations, including its |C50, whereas 5637 remained unchanged. ns: not significative; *p
<0.05; **p < 0.01; ***p < 0.001; **** p < 0.0001 (two-way ANOV A Tukey post hoc test)

3.2. Bladder cancer cellstranscriptome remodelling under hypoxia and low glucose
Hypoxia is known to induce significant transcriptome remodelling in cancer cells, allowing
rapid adaptation to rising microenvironmental challenges. However, its combination with
glucose deprivation remains poorly understood, as these events are generally studied separately.
As such, we have performed comparative whole transcriptome analysis by RNA-Seq of 5637 and
T24 cells under concomitant exposure to these conditions (Figure 2). According to the principal
components analysis (PCA) in Figure 2A, the greatest variance is depicted by PC1 (95%
variance), concerning differences between the cell lines. PC2 (4% of the variance) portrayed
differences between normoxia and hypoxia with low glucose. Collectively, the two cell lines
showed markedly different transcriptomes but also common responses to hypoxia and glucose
shortage. Moreover, the global transcriptional change across the groups was visualized through a
volcano plot (Figure 2B), which highlighted 3003 differentially expressed genes in hypoxia and
glucose deprivation (1408 upregulated, 1595 downregulated), thus supporting significant
transcriptome remodelling. A bi-clustering heatmap involving the top 30 differentially expressed
genes sorted by their adjusted p-value also allowed to identify co-regulated genes across the
different microenvironments (Figure 2C). Between the most differentially expressed and
upregulated genes under hypoxia and glucose deprivation are KRT17, GADD34/PPP1R15A,
ETSL, DDIT4/REDD1, HK2, PFKFB3, DDIT3, SLC2A3, TAGLN, SLC22A15, SH3D21, DEPP1,
RORA, ANGPTL4, ELOVL6, FOSB, LMNB1, and EGR1. Together, these constitute a panel of
biotic stress activated genes driving systemic changes at the transcriptomic level towards more
undifferentiated (KRT17, FOSB)**! poorly proliferative (LMNB1)**%®, and less prone to
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progranmed cell death and anoikis (GADD34/PPP1R15A, DDIT4/REDD1, PFKFB3,
ANGPTL4) phenotypes®™*’. Moreover, the negative regulation of suppressor factors (EGR1)®,
alied to the promotion of immunosuppressor or tolerogenic (GADD34/PPP1R15A, DDIT3)
prograns®* leads to enhanced invasive/migratory (ETSL, DDIT4/REDD1, TAGLN)
capacities”*, as previously demonstrated. Finally, the pressing need for optimized energetic
pathways facing nutrient shortage drives enhanced glucose uptake (SLC2A3/GLUT3)*"*® and
lipid catabolism (RORA, ANGPTL4)®®. The later includes the upregulation of carnitine
transporters (SLC22A15)>*, while counteracting lipogenesis (ELOVLS6) through rate limiting
enzymes downregulation® and promotion of autophagic events (DDIT4, HK2, PFKFB3,
DEPP1)**%®. Significantly differentially expressed genes were then clustered by gene ontology
and the enrichment of gene ontology terms was tested using Fisher’'s exact test (Figure 2D).
Under hypoxia and glucose deprivation, cells fine-tune transcription of genes involved in cell-
cel adhesion, cell proliferation, programmed cell death, DNA damage stimuli, metabolism
reprogramming, and oxidation-reduction processes. Altogether, this denotes an intensive
transcriptome remodelling towards adaptation to biotic stress and DNA damaging factors,
supporting functional assays. Finally, to explore celular processes and their dynamics, a
functional interaction network was obtained using Cytoscape Software CluePedia and ClueGO
plugins for single cluster analysis and comparison of gene clusters (Figure 2E). The most
prominent groups of nodes include cellular responses to oxygen levels and biotic stimuli, as well
as carbohydrate metabolism and inflammatory response. This suggests an underlying correlation
between biotic stimuli, herein translated by oxygen and glucose shortage, and carbohydrate
metabolism and biosynthesis, which could ultimately impact on complex networks as
inflammatory responses. Moreover, there are suggestions that these cells may resemble with fat
cells, suggesting the adoption of similar lipid metabolic pathways as suggested by RORA and
ANGPTL4 up-regulations (Figure 2C). Collectively, BC showed remarkable transcriptomic
adaptability to microenvironmental stress. Transcriptomics analysis further supported all main
functional alterations accompanying adaptation to low oxygen and glucose, providing the
molecular foregrounds for their plasticity facing hostile conditions. Moreover, it strongly
suggests the adoption of a lipolytic metabolism, which was latter assessed. Furthermore, despite
the remarkable differences between the two cell lines, common molecular grounds were

observed in terms of response to stress.
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Figure 2. Bladder cancer cell lines under hypoxia and low glucose experience profound transcriptome
remodelling, supporting the acquisition of more aggressive phenotypes. A) Bladder cancer cells exhibit
markedly different transcriptomes but also show common responses to hypoxia and low glucose. Principle
components analysis (PCA) of transcriptomics data showed that the greatest variance explained by PC1 (95%
variance) concerns differences between the two cell lines. PC2, explaining 4% of the variance, showed marked
differences between normoxia and hypoxia with low glucose, irrespectively of the cell line. PCA supports that,
despite marked differences between cell lines, there are common responses to different microenvironmental features.
B) Volcano plot highlighting global transcriptional change between normoxia and hypoxia plus low glucose.
Exposure to hypoxia and glucose deprivation changed the expression of 3003 genes (1408 upregulated, 1595
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downregulated), supporting significant transcriptome remodelling. C) Bi-clustering heatmap concerning the top
30 differentially expressed genes showed co-regulationsin hypoxia and low glucose that support proliferation
arrest, resistance to cell death and invasion. A bi-clustering heatmap was performed using the top 30
differentially expressed genes, sorted by their adjusted p-value, by plotting their log2 transformed expression values
in samples. D) Enrichment of gene ontology terms for differently expressed genes highlights alterations in
main pathways associated with cell-cell adhesion, cell proliferation, and resistanceto cell death. E) Functional
interaction networks highlight several cellular processes activated in response to oxygen levels and biotic
stimuli, including changesin car bohydrate metabolism and inflammatory responses. Main functional nodes are
highlighted. Only pathways with a p <0.001 were considered.

3.3. Metabolic adaptive responses to hypoxia and low glucose

To gain more insights on the metabolic reprogramming induced by hypoxia and glucose
deprivation, we performed an untargeted metabolomics study by LC-MSMS on 5637 and T24
cells. As highlighted by Figures 3A-C, T24 and 5637 cells present different metabolic
fingerprints under normoxia, in line with distinct molecular backgrounds already observed at the
transcriptome level (Figure 2). Nevertheless, BC cells presented similar metabolomic responses
facing low oxygen and glucose, which were characterized by a statistically significant reduction
in the levels of 85 metabolites and incrementsin 8 species associated with main cell pathways. A
discriminant PLS-DA analysis also showed a clear separation between experimental conditions
(Figure 3C), which in agreement with the volcano plot (Figure 3A) highlighted top metabolites
contributing to group discrimination. Increased metabolites included 2-phenylaminoadenosine,
xi-5-hydroxidecanoic acid and several fatty acid-carnitine derivatives, while uridine diphosphate
glucose (UDP-glucose), uridine diphosphate N-acetylgalactosamine (UDP-GalNAC), citric acid,
and glucoronic acid levels were substantially decreased. Particularly, the generation of adenosine
and adenosine receptors agonists such as 2-phenylaminoadenosine (A2 selective ligand) have
been found increased under hypoxic conditions, exerting immune regulatory functions®. The
engagement of adenosine A2 receptors frequently leads to immunosuppressive pathways,
including inhibition of cytotoxicity and secretion of pro-inflammatory cytokines promoted by
activated immune cells®®. A potential role in angiogenesis promotion has also been suggested by
several authors™®. On the other hand, 5-hydroxydecanoate (5-HD), a specific mitochondrial ATP-
sensitive K™ channel inhibitor, has been described to attenuate the loss of mitochondrial
transmembrane potential, the increase in the formation of reactive oxygen species, and
proteasome inhibitor-induced apoptosis by suppressing the activation of caspase-8 and Bid-
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dependent pathways™. Finally, highly exacerbated levels of fatty acid-carnitine derivatives
(pentadecanoylcarninite,  L-palmitoylcarnitine, heptadecanoylcarnitine,  stearoylcarnitine,
arachidylcarnitine; Figures 3A-C) highlight active translocation of long-chain fatty acids across
the inner mitochondrial membrane for subsequent S-oxidation, which was also suggested by the
highly lipolytic transcriptomic profile of hypoxic BC cells®. Similar observations have been

made by other authors in the urine of advanced stage patients™®

, reinforcing the close link
between this metabolic phenotype and aggressiveness. Hypoxic and glucose deprived cells also
significantly reduced the levels of citric acid, which might result from the combined effect of
loss of mitochondria due to mitophagy and reduced tricarboxylic acid (TCA) cycle activity®.
Moreover, in the event of a reduction in mitochondrial citrate production, other pathways could
supply cytosolic citrate, including the reversed isocitrate dehydrogenase (IDH) reaction;
nevertheless, IDH1 was also found downregulated under these experimental conditions, further
reinforcing citric acid overall reduction. Furthermore, reduced concentration of citrate in cancer
cells has been described to favour resistance to apoptosis and cellular dedifferentiation®, thusin
agreement with functional and transcriptomics studies. The significant reduction in UDP-
GaNAc, a key sugar nucleotide for the initiation of protein O-glycosylation, supports major
aterations in the glycophenotype of cancer cells. This may be intimately related with decreased
glucose metabolism via the pentose phosphate pathway (PPP) as result of low glucose
availability, which is essential for nucleotide sugar biosynthesis, including UDP*. Glucose
shortage may also compromise anabolic processes such as carbohydrate synthesis®®, further
contributing to low UDP-GalNAc. Finally, glucose shortage may also explain the low levels of
glucuronic acid that directly derives from its oxidation® and likely have a profound impact on
glycosaminoglycans and proteoglycans biosynthesis, which are key extracellular molecules
involved in an onset of oncogenic events™®’. Moreover, an integrated enrichment overview has
evidenced carnitine biosynthesis and carnitine precursors degradation, like lysine and
methionine, as mainly enriched pathways (Figure 3 D and E). Fatty acid metabolism and
mitochondrial p-oxidation are also prominent, in agreement with the lipolytic phenotype
highlighted by transcriptomic analysis (Figure 3D). Collectively, our findings support that
hypoxia and low glucose induce lipid catabolism as the main bioenergetic pathway. Moreover,
according to several studies, the metabolites produced under hypoxia and low glucose are
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directly linked to poorly immunogenic and undifferentiated phenotypes and more advanced
stages of the disease™®.

Furthermore, we observed an increase in AMP/ATP ratios (Figure 3F) accompanied by the
activation by phosphorylation of 5-AMP-activated protein kinase (AMPK; Figure 3G) under
hypoxia and low glucose, as expected for cells under microenvironmental stress™". Increased
AMP/ATP ratio was governed by a major decrease in ATP levels, reinforcing the hypothesis of
impaired oxidative phosphorylation. In parallel, increased pAMPK/AMPK ratios, mostly driven
by higher pAMPK, have been shown, as previously observed in more aggressive bladder
tumors’2. These findings were consistent with adoption of catabolic processes such as fatty acid
S-oxidation and potentially mitophagy’®, which was later reinforced by the decrease in citrate
synthase activity (Figure 3H) and TEM (Figure 31). In fact, TEM analysis evidenced a drastic
decrease in the number of intact mitochondria, allied to evident mitophagy events (Figure 3l-I
and 1), translated by outer mitochondrial membrane-associated degradation and matrix
sectioning. Lipid droplet (LD)-associated mitochondria, also known as peridroplet mitochondria
(PDM), were also observed under hypoxic conditions (Figure 3l-11), suggesting the existence of
metabolically distinct subpopulations within the individual cell involved simultaneously in fatty
acid oxidation and LD formation™. Under microenvironmental stress, vesicles shedding was
evident (Figure 3I-111 and 1V), highlighting cellular communication events in response to
microenvironmental cues that should be carefully investigated in future studies. Finaly, stressed
cells showed considerably short and disorganized endoplasmic reticulum (ER) cisternae,
contrasting with typically longer ER sections presented by cancer cells in normoxia (Figure 3lI-
V-VI), demonstrating prominent disorganization of secretory pathways and potentially protein
O-glycosylation changes’™. Overall, biotic stress potentiated catabolic processes characterized by
fatty acid oxidation and mitophagy as well as reduced anabolic processes that support
carbohydrate biosynthesis and cellular proliferation. Moreover, it promoted a generalized
disorganization of secretory organelles, which may also contribute to global glycosylation

dlterations.

22


https://doi.org/10.1101/2021.02.14.431133

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431133; this version posted February 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A

Scores Plot
Stearoyl C o © Hypoxia
—— Uridine Hepta - amitine & € Normoxia e
Gluconic  diphosphate decanoyl © 2-Phenylamincadenosine .
oi carnitine = xi-6-Hydroxydecanoic acid
Cilric Acid e g= T24_Hz @ st Jcamiti
L-Palmitoyl = r 5637 N2 o tearoylcamitine .
_ . camiine - 2 Uridine diphosphate glucose .
:v'?: UDP- Arachidyl %o sga7 H  BB37H2 T4 N1 Citric acid .
= GalNAc carniting g - e %754 N2 Gluconicacid .
1= . Penta 5 5637_H1 524 -
g T g ° T24 N3 Heptadecanoyl camitine .
- : )Iy‘ decar‘oy‘ - 8% T24_H1 Arachidyl carnitine -
uty(?y camitine o Oxoglutaric acid .
carnitine o - T24_H2 Orotidine .
& -4 2 0 2 4 (] o UDP-GalNAc ¢
’ L-Methionine | *
ggcreased metabolites elevated metabuhteg 30 20 40 0 10 20 30 3Methyl sulfolena | *
.
Log2FoldChange Component 1 (37.8%) Oxandmlqna .
Pyridine
T T T T
166 168 170 172 174
VIP Scores

? D

Enrichment Overview (top 50)
Carnitine Synthesis

Lysine Degradation
0 Propanats Metabolism
Selencamine Acid Metabollsm

Valine, Leucine and Iseleucine Degradation
Methionine Metabolism

Fatty acid Metabelism

Phenylalanine and Tyrosine Metabolism

Citric Ackd Cycle

Mitochondrial Beta-Oxidation of Long Faty Acid

“Tyrosine Metabolism
Vitamin B8 Metabolism
Catecholamine Biosynthesis

L

High

Low

Condition Tryptophan Metaboliem P value
Lactes
[ Hypoxia Vitamin K Mebotiem 2e-04
Normoxia Thyrold hommone synthesis
Warburg Effect
Cell Line Glycine and Serine Metabolism
Cysteine Metabolism
i [ 5537 Phenylacetate hetabolism
ti dEsantios T24 Ethanel Degradation
51 - Pantothenate and CoA Biosynthesis.
Glycose-Alanine Metabelism
Phytanic Acid Peroxisomal OXidation 2e-01
Beta-Alanine Metatolism
Pterine Biosynthesis 1
Transfer of Acetyl Groups into ]
i |
Aspartate Metabolism =~
Butyrate Metabolism | —————
Arginine and 1
]
Urea Cy ——————
Biotin Metabollsm = ] 3e-01
=
Taurine and Metabelism 1
- Mitochondrial Beta-Oxidation of Short Fatty Aelds [———— 1
Pentose Phosphate Pathway L1
Pyrimidine Metabolism C—— 1
L R R — — —
28 a8 PN 288 ¥ ¥ 8 Malate-Aspartate Shutle ~ ————on——"oor—"]
S 88 2 85858y 222 Histine motanolem |
IF5=8Ss 22z 586 ‘Aarine Hetanolism
aline Metabolien ]
monka Reeychiy Y0
E F \mate Metabolism ]
e cid Biosynthesis.
o 0.8 —]
3 ns =
e I
£ 4 o 0.4
°E E 0 2 4 6
=8 0.2 .
EE 4 — ) Fold of Enrichment
& E
85
L8 — 0.0 |
g, 5637 T24
[ Normoxia DHypoxia-Gic Normoxia Hypoxia-Glc
Normoxia Hypoxia-Glc G 4 e, B2
5637 T24
N H-G N HG
*
2
ek (CF (=
3
2
£
£,
§° E Ponceau S
2
- i AMPK/
Normoxia Hypoxia-Glc p 0.24 0.78 0.992.55
H AMPK <7
40
2 . 400
3 2% 300
20 £2
E £
k= @ = 200
£ == ]
w10 E
¢ =—3 EE
o 2100
i 5 £ X
Normoxia Hypoxia-Glc x
== -

0

5637

D Normozia

T24

[ Hypoxia-Glc

Figure 3. Hypoxia and low glucose induce a shift from glycolytic to lipolytic metabolism, accompanied by a

significant reduction in the number of intact mitochondria by autophagy. A) Volcano plot highlighting major

metabolome alterations in response to hypoxia and low glucose. Eighty-five metabolites were downregulated,

namely uridine diphosphate, relevant for glycogenesis and the synthesis of severa nucleotide sugars such as UDP-
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GalNAc, and glucuronic acid, which together support significant changes in the glycome of cancer cells. Citric acid
was also underrepresented, supporting the inactivation of the tricarboxylic acid cycle. On the other hand, 8
metabolites corresponding to carnitine long-chain fatty acids esters were increased, suggesting active fatty acids
transport to mitochondria for subsequent S-oxidation. B) Discriminating heat map and C) PLS-DA analysis
revealed similar metabolic responses by 5637 and T24 cells under microenvironmental stress. The 5637 and
T24 cells showed similar metabolomes under hypoxia and low glucose, denoting analogous metabolic responses
facing microenvironmental stress. D) Pathway enrichment analysis supports major alterations in the
metabolome at different levels, including the adoption of fatty acid f-oxidation as main bioener getic pathway
in nutrient deprived bladder cancer cels. A wide array of key metabolic pathways was influenced by deprivation
of oxygen and glucose, with emphasis on carnitine biosynthesis and carnitine precursors degradation, as lysine and
methionine, supporting fatty acid S-oxidation. E) Hypoxia and low glucose induced lysine and methionine
degradation to support car nitine biosynthesis. Under hypoxia and low glucose carnitine levels were maintained at
the expenses of L-lysine and L-methionine degradation, supporting downstream lipids f-oxidation. F) AMP/ATP
ratio increases under hypoxia and low glucose accompanied by G) activation by phosphorylation of 5-AM P-
activated protein kinase (AMPK). Increased AMP/ATP ratios were observed due to increased AMP and decreased
ATP, supporting impaired oxidative phosphorylation. In addition, an increase in pAMPK/AMPK ratios, mostly
explained by increased pAMPK, was observed under microenvironmental stress, consistent with adoption of
catabolic processes and potentially mitophagy. H) Citrate synthase activity is decreased under hypoxia and low
glucose. Citrate synthase activity is significantly decreased in cells under hypoxia and low glucose, suggesting a
reduction in the number of matrix intact mitochondria. 1) Hypoxia and low glucose induce major mor phological
changesin cancer cdls, including mitophagy events. Bladder cancer cells morphological aspects were inquired by
TEM. Panel | shows normal cytoplasm mitochondria (CM) morphology in normoxia. Pandl 11 demonstrates a lower
number of mitochondria of apparently compromised nature in hypoxia and low glucose. Signs of mitophagy were
evident. Lipid droplets (LD), peridroplet mitochondria (PDM), and multicellular vesicles (MV) were also clearly
observable. Panel 1l1 reveals the basal membrane activity of bladder cancer cells. Panel IV highlights higher
membrane activity under stress, translated by pronounced shedding of vesicles (SV). Panel V displays typically long
endoplasmic reticulum (ER) sections in normoxia. Panel VI shows short and disorganized ER cisternae under stress,
suggesting prominent disorganization of secretory pathways. ns: not significative; *p < 0.05; **p < 0.01; ***p <
0.001 (Student’s T test for panel E; two-way ANOV A Tukey post hoc test for Figures E-G)

3.4. Transcriptomics and Metabolomics Joint Pathway Analysis

A joint pathway analysis, combining transcriptomics and metabolomics, was then pursued to
gan more insghts on the plasticity of BC cells. We found changes in glycolysis and
glyconeogenesis as well as glycerolipids metabolism, which support the adoption of a lipolytic
rather than a glycolytic metabolism. In addition, we observed major inhibition of different

pathways that may directly or indirectly impact on cell glycosylation patterns by impairing
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nucleotide or sugars biosynthesis. Namely, inhibition of fructose and mannose metabolism was
observed, both producing sugar intermediates necessary to fuel the hexosamine biosynthetic
pathway (HBP) and others leading to nucleotide sugar production, including UDP biosynthesis’
8 ‘which constitutes a magjor limitation for building mature glycans. In agreement with these
observations, mucin-type O-glycans biosynthesis emerged as one of the most altered pathways,
supporting previous observations (Figur e 4A). This was driven by significant reduction in UDP-
GaNACc levels under hypoxia and low glucose in both cell lines (Figure 4B). Interestingly, no
changes in gene expression were observed for key enzymes involved in the hexosamine
biosynthetic pathway, namely MPI, GNE, GALE, encoding for mannose-6-phosphate isomerase,
UDP-GIcNAc-2-epimerase/ManAc kinase and UDP-glucose 4-epimerase/UDP-galactose 4-
epimerase, respectively (data not shown). However, several glycogenes encoding different
polypeptide N-acetylgalactosaminyltransferases responsible by the initial step of protein O-
glycosylation (GALNT1, GALNT3, GALNT7, GALNT10, GALNT12; Figure 4C) were
downregulated in hypoxia and low glucose, suggesting that microenvironmental stress could
directly impact on the number of protein O-glycosites. We also observed a downregulation of
C1GALT1C1/COSMC, encoding for CLGALT1-specific chaperone 1. This chaperoneis essential
for core 1 p1-3-galactosyltransferase 1 (T synthase) function and determines cell capacity to
elongate glycans beyond the initial Tn structure. Moreover, its abrogation has been associated
with malignancy and worst prognosis in different cancers™®. Collectively, these observations
strongly suggest that hypoxia and glucose shortage act as microenvironmental pressures towards
the biosynthesis of immature truncated O-glycans and, potentially, less densely glycosylated
proteins. Remarkably, we have previously demonstrated that bladder tumours present significant
aterations in their glycosylation, translated by the expression of shorter glycans, with major

12,13,81-83

implications in bladder cancer progression and dissemination . Nevertheless, the

underlying microenvironmental features driving these events remained so far undisclosed.
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Figure 4. A) Joint metabolome and transcriptome pathway analysis supports major remodelling of bladder

cancer cells metabolic pathways accompanying adaptation to hypoxia and low glucose. Joint pathway analysis

supports changes from glycolytic to lipolytic metabolism and inhibition of relevant pathways supporting nucleotides

and sugars biosynthesis, ultimately negatively impacting on O-GalNAc glycans biosynthesis. B) Bladder cancer

cells under microenvironmental stress exhibited significantly decreased UDP-GalNAc levelsin comparison to
normoxia. ***p < 0.001 (two-way ANOV A Tukey post hoc test for panels F and H) C) Schematic representation

of mucin-type O-glycan biosynthesis highlighting main transcriptomic changes in relevant biosynthetic
enzymes. Bladder cancer cells displayed significant downregulation (highlighted in green) of several GALNTs
involved in O-glycans initiation and C1GALT1C1, which encodes for a key chaperone of C1GaT1 that drives
glycans elongation. ST3GAL3 was the only upregulated glycogene in this pathway (highlighted in red), suggesting

increased O-3 Gal sialylation.

3.5. O-glycomics

Glycomics analysis was conducted to assess the hypothesis of O-glycans biosynthesis

antagonization by the microenvironment. This was performed exploiting the Tn mimetic

benzyl-a-GaNAc as a scaffold for further O-chain elongation (Figure 5). Cells were also

reoxygenated and glucose levels were restored to evaluate O-glycome plasticity. According to
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Figure 5A, low oxygen and glucose significantly reduced the amount of extended O-glycans
(herein defined as glycans resulting from modification of the Tn antigen) produced by both cell
lines in comparison to normoxia, as suggested by joint pathway analysis. This effect was
mostly driven by the removal of glucose, trandating the key importance of this metabolite for
O-glycosylation pathways. Hypoxia enhanced the net effect induced by glucose, as clearly
highlighted by Figures 5B-E. More detailed glycomic characterization in Figure 5B showed
that both cell lines abundantly express fucosylated (m/z 746.40; type 3 H-antigen) and
siaylated T (m/z 933.48) antigens, also exhibiting several extended core 2 O-glycans of
variable lengths, degrees of fucosylation and saylation. Low amounts of shorter O-glycans
such as core 3 (m/z 613.33) and STn (m/z 729.38) antigens could also be observed. However,
the drastic reduction of oxygen and glucose tremendously impacted the glycome of cells,
inducing a simple cell glycophenotype characterized by an accumulation of few short-chain O-
glycans without chain extension beyond core 1 (Figure B). The most abundant glycoform was
core 3 and, to less extent, mono- (m/z 933.48) and di-sialylated (m/z 1294.65) T antigens
(Figures 5B-E). T antigen fucosylation was almost completely inhibited under these
conditions. Trace amounts of STn antigen could also be detected. Notably, core 3 expression is
being reported for the first time in bladder cancer cells, being typical of the colorectal
epithelium, whereit plays akey rolein homeostasis®. Interestingly, no extension of core 3 was
observed, reinforcing the inexorable expression of shorter structures by these cells. Moreover,
while the relative abundance of core 3 increases in relation to other glycans, its total amount
remains mostly unchanged from normoxia to hypoxia with low glucose, as highlighted by
Figure 5C. On the other hand, cells significantly reduce the total amount of core 1 structures,
namely sialyl-T antigens. Collectively, these findings support reduced capacity to extend
glycans to core 1, as previously suggested by the decreased expression of C1GALT1C1,
encoding for C1GalT1-specific chaperone 1 (Cosmc; Figure 4C). This likely results in an
accumulation of immature Tn glycans, while maintaining core 3 biosynthesis steady, later
confirmed by immunoassays (Figures 5F-G). Finally, Figure 5E also clearly highlights that
the inhibition of O-glycans extension beyond core 1 is mainly driven by the reduction in
glucose, since some extended structures could still be observed under hypoxia. Moreover,

bladder cancer cells regain the capacity to extend glycans after reoxygenation and
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reintroduction of glucose (Figure 5E), reinforcing the hypothesis of an on-off switch for O-
glycosylation depending on the microenvironment.

To support these observations, we then assessed the cell surface glycome by flow cytometry,
combining lectins and enzymatic digestions to expose glycans of interest. The Tn antigen was
determined using the VVA lectin, whereas the STn antigen was assessed using the same lectin
after sialidase digestion. The results were validated using B72-3 monoclonal antibody staining,
which retrieved similar results (data not shown). Core 3 was indirectly assessed using the GSL |1
lectin, targeting GICNAC residues at the nonreducing end of glycan chains. This was done to
overcome the lack of commercially available antibodies for this glycan. To minimize possible
cross-reactivity with N-glycans, GSL |1 was determined after PNGaseF digestion. Finally, the T
antigen was characterized with the PNA lectin and sialylated T antigens determined by
comparing the affinity of the lectin before and after neuraminidase digestion. According to
Figures 5F and G, both cell lines expressed short-chain O-glycans, in accordance with mass
spectrometry analysis. Moreover, hypoxia and glucose deprivation significantly increased the
number of cells expressing the Tn and ST antigens, despite the inhibitory impact of this
condition in O-glycosylation pathways. However, while the Tn antigen was detected in all cells,
salylated T antigens were found in less than half; yet with higher expression than in normoxia.
Interestingly, the increase in the number of cells expressing siaylated T antigens was
accompanied by asimilar decrease in T antigen-expressing cells, suggesting higher sialylation in
certain subpopulations. Moreover, there were little changes in the percentage of cells potentially
expressing core 3 as well as in its intensity, as previously suggested by glycomics. The STn
antigen levels were maintained constant. Taken together with mass spectrometry analysis, these
findings support a massive stop in O-glycans extension, resulting in the accumulation of
immature glycans such as the Tn/STn antigens and the maintenance of low levels of core 3. It
also supports the existence of some subpopulations showing capacity to form more extended T
and salyl-T antigens, denoting significant glycome microheterogeneity. Moreover, it highlights
the plasticity of O-glycosylation pathways in response to oxygen and glucose shortage.

Finally, we focused on understanding how the microenvironment influenced glycogenes
expression. As such, we have re-analysed individually by RT-PCR the expression of awide array
of glycogenes potentialy involved in O-glycans biosynthesis (Figure 5H). Hypoxia promoted
little alterations on glycogenes expression in comparison to conditions with low glucose.
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Nevertheless, we observed a decrease in CLGALTICL in both cell lines, which was statistically
significant for T24 cells, and may decisively contribute to inhibit O-glycans extension towards T
antigen synthesis. On the other hand, the drastic reduction in glucose under normoxia
upregulated B3GNT6, C1GALTL, and GCNT1 genes, involved in core 3, 1, and 2 synthesis,
respectively, as well as core branching enzymes, and several fucosyltransferases and
sialyltransferases. Notably, CIGALT1C1 expression was decreased in 5637 but increased in T24
cells. When hypoxia is associated with reduced glucose, there is a striking reduction in
glycogenes expression (19/25 glycogenes), with emphasis on the downregulation of CLIGALT1
and C1GALTICL in both cell lines, in accordance with whole transcriptome characterization
(Figure 2). Also, there was a significant overexpression of B3GNT6 promoted by glucose
suppression, which may contribute to sustain core 3 biosynthesis. In addition, we observed that
hypoxia and glucose suppression downregulated FUT1 and FUT2, which may explain the trace
amounts of fucosylation of the T antigen. In addition, we observed an upregulation of several
sialyltransferases that may contribute to ST overexpression (ST3GAL1, ST3GAL3, ST3GAL4),
including ST3GAL3 that was previously observed by whole transcriptome analysis.
Nevertheless, hypothesizing that the antagonization of O-glycans extension could be related to
C1GALT1 and C1GALT1C1L/COSMC downregulation we further evaluated the levels of both
proteins by western blot, which showed no changes with different microenvironmental stimuli
(Supplementary Figure S3). Based on these findings, we hypothesize that other factors such as
nucleotide sugars shortage and a net disorganization of organelles involved in the secretory

pathway play a decisiverolein this process.

29


https://doi.org/10.1101/2021.02.14.431133

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431133; this version posted February 14, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A B bt T24
~ ¥
B
gi— 3! B i
of —
_;5 N ® iy
S5 2 3 = \f
i ns =
s | ' £
21 ns
[ o
3 o ﬁ.n' .T‘ n3 = oS o 8
7 = -
8637 T24
Orormoeiz 0-Gle  CHypoxia [IHypoxia-Glc
B Reox+Gls (24h)
c
sy e
i K
] oY Sty T 5637 T24
o :o
. L (oRa Y o - & @
Cored ., (-? g L A
- o 5 5 <
2 mom 2 g % 2. om
. N 2 E
LT g & . e . § § o ewm T 1
oxia-Glc = = o & £, a7 .
2o P T E mu T g T H : =S .1,'
f [ m oo | o lL.e [
2u| Cored . ‘ i oo i 1] J 3 '
ves| W Slalyl-T R 1 L T TP o ol HLgHL | L
{1. (& 3 m arn 1 e emo R m 00 L L 1000 2K M0 e 108 00
o e e e m on w ow e mz
e (mn A F O oca [0 canae Wl cwiic o Hens
E
D CIDM3MS ™1 3n
1oy VIHI = 61323 o 10 o
- Normoxia 3
- | 80 &
@ 200 R <
P -Gle . 4 5637 'g
§ e ®T24 60 5 —~
g H £ e
g @ | SR cu,okJ ypoxia o
g . , 40 ¢
5 | ! P
g w . O . Hypoxia-Glc _;
= sz 0%
v Reox+Gle &
T A s oan ks e w 0
mz
F
Inartgen (VVA) G
\T24 _ 5637
i i 3 10, =
H E F &0 vy 4070 ﬂ
e i . " = 80 _
4 g E €0 L E ‘ ‘
i 3 I b0
3 F a o
: ; = T 2 40 P 2 4h k"l‘ ﬁ
anligen (WA aller NeuAse) &
. .4 20 H
- -
5 E: o = = 5 s 1l |l|
& - - In sSin Core 3 | sl ™ §Tn Core3 T ST
i E OmMervoria [ Hvpoxiz-GIz Oroemoxa [ Hypozia-Gle
WVA- FITC MFI . T24
" z 3o T24
Core 3 - 200
{PnCase F+3S_1I B
637 12 2 0 . S 100 ﬂﬂ ﬂ
I 3 3 - = .
H 5 2 T U
8 . O =
o e : ) § T = =
g, H . W 10
5 " G & A0l Nl [
™ STn Core3 T ST ™ S5Tn Coed 7 sT
a [ Normaxia [Hypoxia-Gle MNormaxiz M Hypoxia-G o
il A e - Normosia-Glucose Hypoxia Hypoxia-Glucose
Ty %é E3ENTE LI 1o s 7
i g H CIOALTT . .
o — - EE b IGALTICH - CORE SUTONESS N A
GSL Il F TC FI GSLII- FITG NFI GENT ‘e .
Ty | benligen Eywhzla 5
T antigen (PNA) GENTS | Gore Bronabing ! . C -
¥; E3CNT3 ¢ hd
- 5637 T4 SIS | gy exaetn
£ FUT2 »
A FUT3 . . N *a
i Fusosy aton . . ‘e
: he e o .
s 7 T .
ST antigen (PNA after NeuAse) ©-2 GalekEton . -
= M 3 . B
i i
H b o . .
E a8 STAGALNACS - a N
g % 0 wm siaen R ol om csami 2 w© G s aae s ow
£ BNA-FITE WFI = puacH G M Foldl of change to normoxia

Figure 5. Hypoxia and low glucose antagonize O-glycans extension, inducing a simple cancer cell

glycophenotype. A) Hypoxia and low glucose induce a massive reduction in bladder cancer cells capacity to

produce O-glycans. Bladder cancer cells showed significantly decreased capacity to generate O-glycans under
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microenvironmental stress, mainly driven by the decrease in glucose availability. The combination of hypoxia and
low glucose further enhances this effect, whereas reoxygenation and reposition of glucose restore normal
glycosylation. Both cell lines responded similarly to microenvironmental stress. B) Bladder cancer cells under
hypoxia and low glucose present less abundant, simpler, and shorter glycomes, lacking extension beyond core
1 structures. The full MS spectra highlight the loss of glycan chains extended beyond core 1 in cells exposed to
hypoxia and low glucose. The absence/trace amounts of fucosylated core 1 were also noticeable in cells under
microenvironmental pressure. Overall, under stress, cells acquired a smple cell glycophenotype, translated in this
analysis by the presence of core 3 and sialylated T antigens. C) Decrease in glycans abundance accompanying
adaptation to the microenvironment is driven by the loss of extended structures as well as sialylated T
antigens. Extraction ion chromatograms (EIC) highlight a clear loss of sialylated T antigens in cells under stress.
Notably, the abundance of core 3 remains constant. D) Typical nanoL C-M SIM S spectrum for core 3. Core 3 was
identified for the first time in bladder cancer cell lines and the MSMS highlights typical diagnostic fragment ions
that confirm the structure. E) Glycome heatmap highlighting the significant and reversible impact of glucose
levels and its combination with hypoxia in the antagonization of O-glycans extension. Glycomics analysis show
common responses in 5637 and T24 cells under different microenvironments, including the inhibition of O-glycans
extension beyond core 1 under glucose deprivation. The reinstitution of glycan extension upon reoxygenation and
reintroduction of glucose is also shown. F and G) Lectin flow cytometry confirms a simple cél glycophenotype
characterized by Tn/STn antigens and T and sialylated T in some subpopulations of cancer cells. The Tn
antigen was assessed with the VV A lectin. The STn antigen contribution arises from the comparison of VVA signals
before and after sialidase (NeuAse) digestion. Core 3 was assessed through comparison of GLS |1 signals prior and
after PNGaseF digestion. T antigens were estimated with PNA and sialylated T antigens with PNA after sialidase
digestion. Except for an increase in siaylated T antigens, other glycans did not vary their expression levels from
normoxia to hypoxia with low glucose. However, al cells acquired capacity to express the Tn antigen under stress.
The percentage of cells expressing sialylated T antigens a so increased, accompanying a decrease in the number of T
antigen expressing cells, supporting higher sialylation. In summary, the Tn antigen became prevalent amongst cells
under stress. Some subpopulations also showed capacity to express core 3, STn, and particularly the ST antigen. H)
Differential expression of glycogenes involved in glycan biosynthesis under low glucose, hypoxia, and the
combination of both compared to normoxia. Suppression of glucose is responsible by main aterations in
glycogenes expression in comparison to hypoxia. Namely, glucose suppression induced significant glycogenes
regulation involved in core 1 (C1GALT1), 2 (GCNT1), and 3 (B3GNT6) synthesis, as well as core branching
enzymes, and several fucosyltransferases and sialyltransferases. In hypoxia, glycogenes experience either mild
downregulation or maintain their relative levels. The combination of both microenvironmental factors significantly
enhanced major glycogenes downregulation, with emphasis on C1GALT1 and C1GALT1C1, which dictate O-
glycans extension (downregulation: green; no variation: yellow; upregulation: red). ns: not significative; *p < 0.05;
**p < 0.01; ***p < 0.001; **** p < 0.0001 (two-way ANOV A Tukey post hoc test).

In summary, we have demonstrated that hypoxia and low glucose induce a simple cell

glycophenotype in bladder cancer cells, characterized by the absence of extended O-glycans,
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Tn/STn antigen expressions and, in some subpopulations of cancer cells, aso T/ST. Moreover,
we have demonstrated that glucose levels have maor impact on the establishment of these
glycophenotypes, which are exacerbated by hypoxia. Notably, our studies have linked these short
forms of O-glycosylation to more aggressive forms of bladder cancer and poor prognosis®®, In
human tumours, we found these glycoforms in clustered cells, frequently in less proliferative
tumour areas showing high HIF-1o levels, supporting close associations with

microenvironmental niches'®8L,

3.6. Smple cell glycoengineered models

We then developed a library of bladder cancer cells displaying different simple
glycophenotypes presented by hypoxic and glucose deprived cells with the objective of gaining
more knowledge on the biological role played by altered glycosylation in bladder cancer.
Therefore, T24 cdll line has been glycoengineered to hamper O-glycan extension beyond core 1
antigen. Accordingly, C1GALT1 and GCNT1 KO were produced using validated gRNAS®
through CRISPR-Cas9 technology. To increase STn antigen expression, human ST6GALNAC1
has been knocked-in in CLGALT1 KO cells. Briefly, three CI1GALT1 and GCNT1 KO clones
were selected according to their distinct indel profile, as determined by IDAA (Supplementary
Figures $4-5). Sanger sequencing allowed detecting mutation sites in at least two different
coding alleles (Figure $4-5). Further model validation was based on immunocytochemistry,
flow cytometry, and orthogonal validation by MS (Figure 6; Supplementary Figures S7-9).
Collectively, all controls displayed similar glycomes, characterized by high sialyl-T expression
and vestigia/low Tn, STn, core 3, T antigens (Figure 6), and extended core 2 structures
(Supplementary Figures S7-9), thus like wild type cells (Figure 5). CLGALT1 KO models were
invariably characterized by a marked increase in Tn antigen (Figure 6A; Supplementary
Figure S6), with minor changes in STn and core 3 expressions. As expected, synthesis of T
antigen and extensions beyond it were also not observed (Figure 6A), confirming successful
abrogation of C1GalT1 activity. By inducing ST6GALNACL overexpression we were able to
significantly increase STn at the expenses of the Tn antigen, while maintaining low core 3
(Figure 6B; Supplementary Figure S7). Finally, GCNT1 KO modes mostly resulted in the
expression of sialylated T antigens and complete loss of core 2 and other extended glycans.

However, according to mass spectrometry (Supplementary Figure S7), it sill presented high
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levels of core fucose, which are completely lost when cells are exposed to low oxygen and
glucose. Efforts are ongoing to generate models lacking this type of fucosylation, to fully infer
the impact of this poorly understood glycosignature in cancer. Overall, these models portrait the
structural diversity of the glycome associated with hypoxia and glucose limitation and provided

decisive tools to characterize its functional implications for disease.
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3.7. Glycoengineered Cells Functional Assays

Glycoengineered cell models were used to interrogate the role played by glycosylation in
decisive aspects of the disease, namely capacity to proliferate, invade, grow without anchorage,
potentially metastasise, and tolerate chemotherapy agents. According to functional studies in
vitro, C1GALT1 KO cells were less proliferative than controls in both normoxia and hypoxia
with limited glucose (Figure 7A). However, Tn overexpression had no impact on invasion,
which was mostly driven by changes in the microenvironment. Interestingly, CLGALT1 KO cells
presented higher capacity to grow in an anchorage-independent manner and resist anoikis,
suggesting increased metastatic potential (Figure 7A). Moreover, this model was more resistant
to cisplatin over a wide array of drug concentrations and, consequently, presented a significantly
higher 1C50 than control (Figure 7A). Finally, we explored the in ovo chick CAM modd to
assess the biological role of glycans in vivo. Notably, T24 CAM models have been previoudy
developed and proven to reflect many histological and molecular features of human bladder
tumours™, providing relevant platforms for functional studies. CIGALT1 KO CAMs exhibited
significantly smaller tumours when compared with controls, which was consistent with their
lower proliferation in vitro (Figure 7A). Moreover, controls and glycoengineered cells exhibited
similar invason patterns limited to the superior layer of the intervening mesenchyme
(mesoderm) and an overall diffuse morphology (Figure 7A), which was aso observed in wild
type control cells (data not shown). Interestingly, STn overexpression did not impact
proliferation but significantly increased invasion in vitro (Figure 7B), in clear contrast with
C1GALT1 KO. These cells also presented increased capacity to form colonies in semisolid
substrates and enhanced chemoresistance. However, according to CAM assays, these cells
formed smaller tumours without displaying significant alterations in invasion compared to
controls. Nevertheless, the tumours exhibited a less cohesive phenotype characterized by high
number of isolated tumour niches, which may be related to its higher invasion capacity
demonstrated in vitro. Finally, GCNT1 KO showed no evident changes in proliferation, invasion,
capacity to form colonies, and chemoresistance in vitro (Figure 7C). However, in CAMs,
GCNGT1 KO models invaded more, reaching the lower allantoic epithelium (endoderm) and, in
some cases, even expanding beyond that. In summary, we have highlighted the different

contributions of distinct glycosylation patterns associated with hypoxia and glucose suppression
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to cancer progression and potentially dissemination. Most immature glycoforms had maor
impact on cell proliferation, as previously suggested by us and other groups™®’. These cells also
showed higher metastatic potential as well as higher tolerance to cisplatin, in agreement with
observations made for similar models from other solid tumours®%. Notably, increased
siaylation and consequent STn expression promoted cell detachment and formation of less
cohesive tumours, reinforcing the close link between this antigen and enhanced cell
motility**%°8-%! Finally, cells predominantly expressing sialylated and fucosylated T antigen are
markedly more invasive in vivo, without other major functional alterations. Building on available
literature, we hypothesize that changing the glycosylation of membrane receptors may decisively
impact on relevant downstream oncogenic pathways"%%. We are currently trying to identify
common molecular grounds between hypoxic and glucose deprived cells and smple cell models
that may account for these observations, which will be decisive to support future targeted

therapeutic interventions.
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7. Hypoxia and low-glucose associated glycophenotypes have major functional implications with impact in relevant cancer-associated hallmarks. Cells
displaying a marked immature glycophenotype composed by Tn and STn antigens and without further O-glycans extension (T24 C1GALT1 KO (A) and
C1GALT1 KO/ST6GALNACL Kl (B)) showed decreased proliferation in vitro and in in vivo CAM tumours, higher capacity to form colonies in soft agar,
suggesting increased anoikis resistance, and higher tolerance to cisplatin. Both models also showed decreased proliferation and higher invasion in vitro under
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Moreover, T24 C1GALT1 KO/ST6GALNACL Kl cells formed less cohesive tumours, suggesting increased cell motility. The T24 GCNT1 KO models
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4. Concludingremarks

Hypoxia and glucose deprivation are salient features of solid tumours arising from sustained
proliferative signalling and defective neoangiogenesis. Frequently, cells in the tumour core are
faced with limited oxygen and glucose supplies, which decisively shapes their molecular and
functional phenotypes. However, low glucose settings have been mostly linked to uncontrolled
cell proliferation in the presence of oxygen (the Warburg effect). Furthermore, the contribution
of hypoxia to disease severity, even though extensively studied and rather well known, has been
addressed without considering the influence of low glucose. Acknowledging the complex
microenvironmental challenges experienced by cells striving to survive in low vascularized
areas, the present study devoted to understanding the molecular and functional adaptations
experienced by cancer cells under low oxygen and glucose to bladder cancer. Namely, we have
attempted to comprehensively portrait the impact of these microenvironmental stressors at the
transcriptome and metabolome levels, which ultimately led us to comprehensively interrogate the
glycome and its biological implications in disease. Our goal was to better understand bladder
cancer cells plasticity and adaptability to selective pressures, providing means for more educated
and precise interventions.

Amongst the most striking observations arising from this study was that bladder cancer cell
lines of distinct genetic and molecular backgrounds responded similarly to microenvironmental
cues, denoting common biological grounds facing stress. Bladder cancer cells tolerated well
environmental stress, maintaining viability, and avoiding apoptosis, while dramatically
decreasing proliferation. This was accompanied by higher invasive capacity, denoting an active
strategy to escape to suboptimal microenvironments. Cells under stress also showed increased
capacity to tolerate cisplatin, commonly used in the clinics against non-proliferative bladder
cancer cells, possibly explaining the resilient nature of poorly vascularized bladder tumours®®®*,
Interestingly, this aggressive behaviour was completely reverted by re-oxygenation and glucose
restoration, showing the adaptive capacity of bladder cancer cells and the rapid accommodation
to microenvironmental cues. These findings provide a decisve link between the events
underlying poor tumour vascularization and the promotion of cancer aggressiveness and were
directly linked to major transcriptome and metabolome remodelling. We concluded that, under
stress, bladder cancer cells adopted p-oxidation rather than anaerobic glycolysis as main
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bioenergetic pathway, explaining the tremendous decrease in lactate production by these cells.
Similar observations were made for prostate cancer, with the fatty acid metabolism rather than
glycolysis being suggested as potentia basis for imaging diagnosis and targeted treatment™. To
some extent, this also challenges the pivotal role played by lactate in the aggressiveness of
hypoxic cancer cells suggested by many studies’™®®”. We have also found strong indications of
mitochondrial autophagy, which has been previously described as a concomitant cancer survival
mechanism under nutrient deprivation®®. These adaptions allowed cancer cells to support low
energy requirement and cellular basal functions and are consistent with drastic stop in
proliferation. Interestingly, while more proliferative bladder tumours are generally more
aggressive, they are also more prone to harbour hypoxic niches as result of poor vascularization,
which may play a decisive role driving disease fate'®.

Concomitant to major transcriptome and metabolome reprogramming, we observed major
aterations in mucin-type O-glycans biosynthesis that may implicate changes in the glycosylation
of membrane proteins with functional implications. Glycan biosynthess was significantly
antagonized by glucose limitation, which was further aggravated by the introduction of hypoxia.
As a result, bladder cancer cells exhibited more immature glycoforms, namely the Tn antigen
and, to less extent, STn and core 3. Some subpopulations also co-expressed increased levels of
ST antigen, rather than more extended glycans. Notably, these cells significantly downregulated
C1GALTI1C1, essentia for T-synthase (C1GALT1) function and glycan chains elongation beyond
the core 1 dstructure. Interestingly, according to the Human Protein Atlas
(http://www.proteinatlas.org), low expression of CLGALT1C1 associates with poor prognosis in
bladder cancer (p=0.038). However, we found no evidence of decreased COSMIC or C1GALT1 to
support this as the main mechanism for the expression of immature O-glycans by hypoxic and

glucose deprived cells. Therefore, we believe that this effect may be intimately linked to
nucleotide sugars shortage dictated by low glucose, which could be potentially aggravated by a
net disorganization of secretory pathways. Overall, cells under stress acquired ssmple cell
glycophenotypes that are well known to be implicated in an onset of bladder cancer hallmarks,
such as invasion, immune escape, and metastasis development®. According to observations in
patient samples, these glycoforms are more often overexpressed in advanced stage tumours,
frequently linked to poor prognosis, but not in the healthy urothelium, highlighting their cancer-

related nature and association with disease severity™2%-%,
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Furthermore, the STn antigen has been found in less proliferative tumour areas showing high
HIF-10 content, in accordance with studies in vitro™®!. Also, experiments involving patient-
derived xenografts have suggested a close link between the presence of immature O-glycans and

the microenvironment*®

, Which has finally been demonstrated in the present study. Finally,
functional studies implicating glycoengineered cell models have provided decisive evidence that
immature glycomes are key drivers of cancer aggressiveness linked to hypoxia and glucose
deprivation. We have shown that these molecular alterations are part of awide array of responses
that make bladder cancer cells more capable of tolerating microenvironmental stress; namely, by
enabling cells to stop proliferation, resist anoikis, invade in vivo and tolerate chemotherapy.
Moreover, it provides escape mechanisms, endowing cancer cells with less cohesive and invasive
traits. These observations are in perfect agreement with other reports from simple cells cancer
models of different origins, highlighting the pancarcinomic nature of these alterations.
Furthermore, it provides novel grounds to understand the events underlying alterations in
glycosylation, which have so far been scarcely linked to functional mutations in COSMC* and,
more recently, with pro-inflammatory immune responses'®We also noted the tremendous
plasticity of O-glycosylation pathways facing re-oxygenation and restored access to glucose, as
observed at other levels. Collectively, we hypothesize that alterations in glycosylation hold
potential to identify cells lying dormant in hypoxic niches, that may eventually be responsible by
recapitul ating the disease upon reoxygenation.

In summary, this study was able to provide the microenvironmental context for previous
observation regarding mucin-type O-glycans expression in bladder tumours, with potentia
implications for other solid tumours where short-chain glycans also play key functional roles'®.
Since most of these glycoepitopes, such as Tn and STn antigens, are not expressed by the healthy
urothelium, they also provide a unique opportunity for precise cancer targeting. Namely, it offers
a strategy to detect and target hypoxic cells that, as shown by this and other studies™'®*,

constitute more aggressive subpopulations of cancer cells with limited therapeutic options.
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