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ABSTRACT2

Structural and diffusion MRI provide complimentary anatomical and microstructural3
characterization of early brain maturation. The existing models of the developing brain in time4
include only either structural or diffusion channels. Furthermore, there is a lack of tools for5
combined analysis of structural and diffusion MRI in the same reference space.6

In this work we propose methodology to generate multi-channel (MC) continuous spatio-7
temporal parametrized atlas of brain development based on MC registration driven by both8
T2-weighted and orientation distribution functions (ODF) channels along with the Gompertz9
model (GM) fitting of the signals and spatial transformations in time. We construct a 4D MC10
atlas of neonatal brain development during 38 to 44 week PMA range from 170 normal term11
subjects from developing Human Connectomme Project. The resulting atlas consists of fourteen12
spatio-temporal microstructural indices and two parcellation maps delineating white matter tracts13
and neonatal transient structures. We demonstrate applicability of the atlas for quantitative region-14
specific comparison of 140 term and 40 preterm subjects scanned at the term-equivalent age. We15
show multi-parametric microstructural differences in multiple white matter regions, including the16
transient compartments. The atlas and software will be available after publication of the article.17

Keywords: multi-modal MRI, neonatal brain, spatio-temporal atlas, atlas-based analysis, multi-channel registration, white matter18
maturation, white matter parcellation19
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1 INTRODUCTION
In addition to being a routine diagnostic tool in neonatal brain imaging (Rutherford et al., 2010), MRI20
has been widely used for quantification and interpretation of neonatal brain development in term- and21
preterm-born infants. Premature birth before 37 weeks postmenstrual age (PMA) is associated with an22
increased risk of atypical brain maturation leading to neurocognitive and neurobehavioural disorders.23
Multiple studies demonstrated correlation of MRI metrics with prematurity, clinical and environmental24
factors and neurodevelopmental outcomes (Ball et al., 2017; Barnett et al., 2018; Dimitrova et al., 2020).25
In this context, models of the normal brain development such as spatio-temporal atlases (Schuh et al.,26
2018) can also potentially facilitate detection of altered maturation patterns. The advanced acquisition and27
reconstruction protocols produce high-resolution structural T1-weighted (T1w) and T2-weighted (T2w)28
MRI volumes that allow segmentation of fine brain anatomical structures (Makropoulos et al., 2014).29
But these MRI modalities have low contrast for white matter (WM) structures that also varies during the30
neonatal stage due to the ongoing myelination. On the other hand, lower resolution diffusion MRI reflects31
the properties of tissue microstructural complexity in terms of diffusivity, anisotropy, neuronal density32
and fibre orientation (Bastiani et al., 2019; Pietsch et al., 2019). Combined diffusion and structural MRI33
analysis has already showed a potential to increase interpretability of the brain maturation patterns (Ball34
et al., 2017).35

1.1 Structural MRI metrics36

The structural MRI-derived metrics most commonly used in the neonatal brain studies include tissue-37
and structure-specific volumetry (Kuklisova-Murgasova et al., 2011; Makropoulos et al., 2016; Thompson38
et al., 2019) and surface measurements such as cortical thickness and curvature (Bozek et al., 2018;39
Fenchel et al., 2020) that can be extracted from automated segmentations (Makropoulos et al., 2014).40
Recently, automated segmentation of T2w images has been also applied for quantification of the volume41
of myelinated regions (Wang et al., 2019). Intensity changes in T1w and T2w images characterize white42
matter injury (O’Muircheartaigh et al., 2020) and diffuse excessive high signal intensity (DESHI) regions43
(Morel et al., 2020). Quantitative and semi-quantitative metrics applied to developing neonatal brain include44
the T1w/T2w signal ratio associated with myelin content (Bozek et al., 2018) and T2 relaxometry (Pannek45
et al., 2013; Kulikova et al., 2015; Wu et al., 2017; Knight et al., 2018).46

1.2 Diffusion MRI metrics47

Brain microstructure can be probed using a variety of quantitative metrics derived from diffusion MRI.48
Even though diffusion tensor imaging (DTI) is limited by inconsistencies in fiber-crossing regions (Jeurissen49
et al., 2013), DTI-derived metrics, including the fractional anisotropy (FA) and the mean, radial and axial50
diffusitivity (MD, RD and AD) are still most widely used in the neonatal brain studies (Barnett et al.,51
2018; Feng et al., 2019; Thompson et al., 2019; Dimitrova et al., 2020). Recently, higher order metrics,52
that alleviate some of the limitations of the DTI in the fibre crossing regions, have also been applied to53
investigate neonatal brain development, including the mean kurtosis (MK) index derived from diffusion54
kurtosis imaging (DKI) (Bastiani et al., 2019) and intracellular volume fraction (ICVF), fiber orientation55
dispersion index (ODI) and volume fraction of the isotropic compartment (FISO) derived from Neurite56
Orientation Dispersion and Density Imaging (NODDI) model (Zhang et al., 2012). The NODDI-derived57
indices have been used to characterize development of both white and gray matter microstructural features58
(Kunz et al., 2014; Batalle et al., 2019; Kimpton et al., 2020; Fenchel et al., 2020). The microscopic59
fractional anisotropy (µFA) index (Kaden et al., 2016) designed to disentangle microscopic diffusion60
anisotropy from the orientation dispersion has not yet been applied to neonatal brain. Constrained spherical61
deconvolution (CSD) (Tournier et al., 2007) allows extraction of orientation-resolved microstructural62
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information as orientation distribution functions (ODFs) from multi-shell high angular resolution diffusion63
imaging (HARDI) data. Based on fibre ODFs, fixel-based analysis (Raffelt et al., 2017) provides the means64
for assessment of specific fibre populations in terms of fibre density (FD) and fibre-bundle cross-section65
(FC) (Pannek et al., 2018; Pecheva et al., 2019).66

1.3 Atlases and models of the neonatal brain development67

Spatio-temporal normalisation and construction of age-specific group-average templates have been68
routinely employed in processing pipelines in the recent large neonatal brain MRI studies, to detect69
inter-group differences and anomalies in individual brains (Oishi et al., 2019). The majority of the reported70
spatio-temporal population-averaged atlases of the neonatal brain include either structural (T2w and T1w)71
(Kuklisova-Murgasova et al., 2011; Serag et al., 2012; Wright et al., 2014; Schuh et al., 2014; Makropoulos72
et al., 2016; Schwartz et al., 2016; Schuh et al., 2018; Wang et al., 2019; O’Muircheartaigh et al., 2020) or73
diffusion (Feng et al., 2019; Pietsch et al., 2019; Dimitrova et al., 2020) channels. Up to our knowledge, the74
only existing multi-channel population-averaged T1w+T2w+DTI atlas (Oishi et al., 2011) was constructed75
from a set of normal term subjects from 38 to 41 weeks PMA. However, the averaged template was reported76
to have significantly lower sharpness than the original T2w and DTI images. Apart from (Feng et al., 2019)77
who used FA+MD guided registration, these atlases were constructed using registration driven by a single78
channel and the output transformations were propagated to the rest. In general, one of the challenges of79
multi-channel registration is considered to be the alignment between the structural and diffusion MRI80
volumes. Following spatial normalization, the templates were created using either weighted or direct81
averaging of the signal in the reference space. Zhang et al. (2016) proposed to perform averaging in the82
frequency domain and reported higher sharpness of the atlas features.83

Due to the rapid changes of structure, volume and cytoarchitecture during the fetal and neonatal period, the84
majority of the atlases have been also resolved in time in the form of weekly templates. Smooth transition85
between the atlas time points have been provided through kernel regression (Kuklisova-Murgasova et al.,86
2011; Serag et al., 2012; Schuh et al., 2014, 2018), logistic regression (Wang et al., 2019) or Gaussian87
process regression (Marquand et al., 2016; O’Muircheartaigh et al., 2020; Dimitrova et al., 2020). Recently,88
Gompertz model was successfully used to parametrize fetal and neonatal brain volumetry and surface89
measurements (Wright et al., 2014; Makropoulos et al., 2016; Schwartz et al., 2016), showing better90
approximation than the linear model (Makropoulos et al., 2016), even though the changes in averaged91
structural (O’Muircheartaigh et al., 2020) and DTI (Bastiani et al., 2019; Feng et al., 2019; Dimitrova et al.,92
2020) metrics in WM and GM can be approximated by linear trends. However, so far, there has been no93
reported works combining structural and diffusion MRI into a spatio-temporal atlas of the normal term94
born neonatal brain development.95

1.4 Region specific analysis96

The majority of the neonatal brain studies has been employing region-specific quantitative analysis based97
on correlation between the MRI-derived metrics measured within specific regions and parameters such98
as gestation age (GA) at birth, clinical factors or neurodevelopmental outcomes. In structural-only MRI99
datasets segmentation is normally performed by atlas-based methods (Makropoulos et al., 2014). In the100
WM atlas-based analysis, the parcellation maps for the single-subject or population-average WM DTI101
atlases (Oishi et al., 2011; Feng et al., 2019; Alexander et al., 2020) were created by 2D manual delineation102
based on DTI directionally-encoded colour maps for single subject or population-averaged templates. Label103
propagation based on DTI channel-guided registration has been widely used in neonatal brain studies104
(Kersbergen et al., 2014; Rose et al., 2014; Wu et al., 2017; Claessens et al., 2019; Feng et al., 2019). The105
tract-based spatial statistics (TBSS) (Smith et al., 2006) approach uses skeletonized FA maps for definition106
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of the regions (Krishnan et al., 2016; Young et al., 2018; Barnett et al., 2018; Thompson et al., 2019).107
As an alternative, track-specific analysis employs tractography to identify and segment the major WM108
pathways (Kulikova et al., 2015; Akazawa et al., 2016; Pecheva et al., 2017; Bastiani et al., 2019; Zollei109
et al., 2019; Kimpton et al., 2020; Dubner et al., 2020). In this case, the seed regions for tractography are110
defined in the template space and the segmentations of WM tracts are achieved by thresholding of the111
resulting probabilistic tractography maps. In Akazawa et al. (2016), this approach was also used to create112
population-specific average probabilistic maps of the major WM tracts.113

1.5 Contributions114

In this paper we propose to merge multiple metrics extracted from both diffusion and structural MRI in a115
single parametrized multi-channel spatio-temporal atlas of the normal neonatal brain development.116

The generated 4D MC atlas covers 37-44 weeks PMA range and includes structural (T1w, T2w and117
T1w/T2w myelin contrast) and diffusion channels with ODF, DTI, DKI, µFA and NODDI derived metrics.118
Furthermore, the atlas includes two parcellation maps: (i) the major WM tract regions (Alexander et al.,119
2020) refined using probabilistic tractography in the template and (ii) the map of the transient WM regions120
with high maturation rates during neonatal period. To ensure accuracy of spatial alignment, we propose121
a multi-channel (MC) registration (Uus et al., 2020) guided by spatially-weighted structural, diffusion122
(ODFs) MRI and cortical segmentation (Makropoulos et al., 2018) channels. Parametrization in time is123
performed by the Gompertz model (GM) widely used for fitting of growth data. We implemented the124
atlas construction and fitting functionalities within MRtrix3 software package (Tournier et al., 2019). To125
demonstrate the application of the proposed atlas we perform multi-modality study to compare term and126
preterm brain development and identify regions where WM maturation has been altered by preterm birth.127

2 MATERIAL AND METHODS
2.1 Cohort, datasets and preprocessing128

The atlas was constructed using 170 multi-modal MRI datasets of term-born neonates (born and scanned129
between 37 and 44 weeks PMA) that included T1w, T2w and HARDI scans. Additional 40 datasets of130
preterm neonates (born between 23 and 32 weeks GA: 28.94∓2.54 and scanned between 37 and 44 weeks131
PMA) were used for comparison analysis. Inclusion criteria were high image quality for scans of all132
modalities, singleton pregnancies and no major brain abnormalities. All scans were acquired under the133
developing Human Connectome Project (dHCP)1.The distribution of the GA at birth and PMA at scan is134
given in Fig. 1.135

Datasets were acquired on a 3T Philips Achieva scanner equipped with a dedicated 32-channel neonatal136
head coil and baby transportation system (Hughes et al., 2017). The multi-shell HARDI volumes were137
acquired with four phase-encode directions on four shells with b-values of 0, 400, 1000 and 2600 s/mm2138
with TE 90 ms, TR 3800 ms (Hutter et al., 2018; Tournier et al., 2020) with 1.5× 1.5× 3 mm resolution139
and 1.5 mm slice overlap and reconstructed to 1.5 mm isotropic resolution using the SHARD pipeline140
(Christiaens et al., 2021). The structural T2w volumes were acquired using a TSE sequence with TR 12 s,141
TE 156 ms. The T1-weighted volumes were acquired using an IR TSE sequence with TR 4.8 s, TE 8.7 ms.142
The isotropic T2w and T1w volumes with 0.5 mm resolution were reconstructed using a combination of143
motion correction (Cordero-Grande et al., 2018) and super-resolution reconstruction (Kuklisova-Murgasova144
et al., 2012).145

1 dHCP project: http://www.developingconnectome.org
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Figure 1. Selected cohort of neonatal subjects from dHCP project: GA at birth and PMA at scan of 170
term subjects (A) and 40 preterm subjects (B).

Intensities of individual T1w and T2w volumes were bias-corrected and normalised to the same intensity146
ranges. The brain tissue and structure segmentations were generated by dHCP pipeline (Makropoulos147
et al., 2014, 2018). For each dataset, the structural and diffusion volumes were coaligned using affine148
registration of T2w and MD volumes using NCC similarity metric in MRTrix3. The DWI volumes were149
globally normalised prior to the nonlinear multi-channel registration step (Tournier et al., 2019).150

2.2 Extraction of MRI metrics151

The structural metrics include normalised T1w and T2w intensities as well as the the T1w/T2w ratio152
thought to be associated with the myelin content (Glasser and Van Essen, 2011). Furthermore, we extracted153
Jacobians (J) of deformation fields from the MC registration output (Section 2.4) to measure local volumetric154
changes.155

The DTI metrics included AD, MD, RD and FA extracted using MRtrix3 toolbox (Tournier et al.,156
2019). The DKI fitting and calculation of MK was performed similarly to Bastiani et al. (2019). The157
NODDI (Zhang et al., 2012) toolbox was used for fitting FISO, ICVF and ODI metrics. The estimation158
of micro FA maps was performed using SMT toolbox (Kaden et al., 2016). Only the two top HARDI159
shells were used for µFA and DKI fitting in order to minimise the impact of artefacts. In addition, we160
computed the mean DWI signal mDWI for the top 2600 s/mm2 shell since it provides high contrast for161
WM structures. We extracted WM ODF from HARDI using MRtrix3 multi-shell multi-tissue constrained162
spherical deconvolution (CSD) (Jeurissen et al., 2014). The track density imaging (TDI) maps were163
generated from the outputs of probabilistic tractography (Tournier et al., 2010) with whole brain as the seed164
region and 700,000 streamlines for all dataset. This particular number of streamlines was selected arbitrary.165

2.3 Multi-channel registration of structural and HARDI MRI166

In this work, we propose a MC non-linear registration technique to improve accuracy of spatial167
normalisation. We build on multi-contrast ODF registration framework (Pietsch et al., 2017; Raffelt168
et al., 2011) which employs SyN Demons (Avants et al., 2007) with an SSD metric and reorientation of169
ODF using apodized point spread functions (Raffelt et al., 2012). In order to decrease the sensitivity to170
acquisition or physiology related changes in signal intensities, we propose to replace SSD metric with171
a novel robust local angular correlation metric for ODF channels based on angular correlation metric172
introduced in (Anderson, 2005). We further add structural and tissue parcellation channels with local NCC173
(LNCC) similarity measure. We combine the channels through weighted fusion of the displacement field174
updates (Forsberg et al., 2011).175
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Angular correlation rA between two ODFs FODF and GODF represented with real valued spherical176
harmonic (SH) orthonormal basis functions Ylm(θ, φ)177

FODF (θ, φ) =
∝∑
l=0

l∑
m=−l

flmYlm(θ, φ), GODF (θ, φ) =
∝∑
l=0

l∑
m=−l

glmYlm(θ, φ) (1)

is computed as (Anderson, 2005):178

rA =

∑L
l=2

∑l
m=−lflmglm

[
∑L

l=2

∑l
m=−l|flm|2]

1
2 [[
∑L

l=2

∑l
m=−l|glm|2]

1
2

, (2)

where glm and flm are the SH coefficients of GODF (θ, φ) and FODF (θ, φ) of order L with even l =179
{2, 4, ..., L} harmonic degree terms, correspondingly. The l = 0 term does not contribute to AC values.180
Since this is a correlation metric, the corresponding symmetric updates to the displacement fields ΛF and181
ΛG can be computed in a similar manner to LNCC demons (Avants et al., 2008) but with respect to the 4D182
ODFs rather than only the 3D local neighbourhood (Eqn. 3).183

ΛF =
2FG

F 2G2

(
G− FG

F 2
F

)
∇F, ΛG =

2FG

F 2G2

(
F − FG

G2
G

)
∇G, (3)

where G = {gnlm}l=2,...,lmax,m=−l,...,l and F = {fnlm}l=2,...,lmax,m=−l,...,l are the vectors of SH coefficients184
at a given location in the 3D volume space with local neighbourhood n = 1, ..., N . We refer to this185
registration metric as local angular cross-correlation (LAC).186

The contributions from each of the channels i to the global symmetric displacement field update Λglobal187
are locally weighted with respect to the 3D certainty maps based on the approach proposed in (Forsberg188
et al., 2011). First, at every iteration, the certainty gradient maps αF

i and αG
i are computed from the original189

volumes F and G for each of the channels (including structural and ODF volumes) and normalised as:190

αF
i =‖ ∇F T

i ∇Fi ‖, α̂i
F =

αF
i

max(αF
i )

(4)

Then, the global symmetric updates to the displacement fields are computed by weighted averaging of191
the channel-specific update fields with respect to the certainty maps. The sum of all weighted updates is192
normalized with respect to the sum of the gradient maps.193

ΛF
global =

∑
i α̂i

FΛF
i∑

i α̂i
F

, ΛG
global =

∑
i α̂i

GΛG
i∑

i α̂i
G

(5)

The proposed approach ensures that the output deformation fields are defined by the contribution of the194
local channel regions with the highest structural content. This is relevant for the ROIs where one of the195
channels has low intensity contrast. In comparison, the classical multi-variate SyN approach Avants et al.196
(2007) is based on averaging of the individual channel updates.197
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2.4 Generation of 4D multi-channel atlas198

The 4D parametrized MC atlas of the neonatal brain development was generated from the 170 term199
neonatal datasets in three sequential steps: (A) initial registration of structural channels to a single200
structural template and creation of an average multi-channel template, (B) refined registration of structural201
and diffusion channels to the multi-channel template and creation age-dependent average multi-channel202
templates, (C) fitting of the signal and deformation fields in time using the Gompertz model to generate203
parametrized 4D multi-channel atlas. The proposed pipeline is summarised in Fig. 2.204

2.4.1 Generation of a 3D multi-channel template205

We chose the T2w 36 week template from the dHCP neonatal brain atlas2 (Schuh et al., 2018) as the206
global 3D reference space (Y (reforg)) due to the lower degree of cortical folding which facilitates more207
accurate registration of the cortex. All datasets {Xi},i=1,...,N were registered to this template using affine208
alignment with global NCC followed by non-linear registration guided by two structural channels (T2w +209
cortex mask), similarly to O’Muircheartaigh et al. (2020):210

W
(1)
i = DLNCC(Y

(reforg)
c , Xi,c), c={T2; Mcortex};i=1,...,N (6)

where D is the MC Demons registration operator, W (1)
i are the output deformation warps for each of the N211

datasets Xi,c with c = {T2; Mcortex} channels and Y (ref)
c is the reference volume. The MC registration212

included spatially weighted fusion of the channels (Sec.2.3, Uus et al. (2020)). The output deformation213

warps {W (1)
i },i=1,...,N were propagated to the rest of the structural and dMRI channels. The preliminary214

set of 3D MC templates {Y (1)
c },c={T2; Mcortex; normODF} was generated by averaging of all registered215

volumes of T2w, cortex mask and normalized ODF channels (Fig. 2A).216

2.4.2 Generation of a age-specific multi-channel templates217

At the second iteration (Fig. 2B), we used registration with T2w + cortex mask + normalized ODF218
channels (Sec. 2.3) to align all datasets to the multi-channel template (Sec. 2.4.1):219

W
(2)
i = DLNCC+LAC(Y

(1)
c , Xi,c), c={T2; Mcortex; normODF};i=1,...,N (7)

Next, the datasets were divided into 15 subsets according to PMA, to sample the range from 37 to 44 weeks220
PMA into 0.5 week time-windows. Each of the subsets N t contains 6-17 subjects depending on availability.221

The templates Y (2)
c,t for each of the metrics (c) described in Section 2.2 were generated by robust weighted222

averaging the transformed metric maps Xi,c in subsets i ∈ N t:223

Y
(2)
c,t =

∑
i∈N t

ωi,c ·Θ(Xi,c,W
(2)
i )/

∑
i∈N t

ωi,c, t=37,...,44 (8)

where Θ is the transformation operator, c is the list of all channels (See Fig. 2C). The voxel-wise weights224
ωi,c are binary maps with all values with > 1.5 standard deviations from the mean being excluded in order225
to minimise the impact of artifacts, cropped regions or misregistrations.226

The templates Y
(2)
c,t are biased towards 36 weeks reference space, we therefore calculate the227

transformations to remove this bias for each time-point. Because the registration is symmetric, we choose228

the inverse warps (W
(2)
i )−1 to create the transformation W−1av,t from the global reference space to the229

2 dHCP weekly neonatal brain atlas: https://gin.g-node.org/BioMedIA/dhcp-volumetric-atlas-groupwise
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Figure 2. The proposed pipeline for generation of parametrized 4D MC atlas of the neonatal brain
development during 37 to 44 weeks PMA range. A: (Iteration 1) The T2w + cortex mask guided MC
registration to a global reference space Y (ref) (36 weeks T2w dHCP template from Schuh et al. (2018)) is
performed for all subjects. Preliminary average templates Y (1)

c are created for T2w, cortex mask and ODF
channels. B: (Iteration 2) The ODF + T2w + cortex mask guided MC registration to the new multi-channel
template is performed of all subjects. Average templates Y (2)

c,t are created for all channels and 15 discrete
time points. The average inverse nonlinear warps W−1av,t and affine transformations A−1av,t are also created for
all 15 time points. C: The Gompertz curve fitting in time is performed for all channels and transformations
resulting in continuous 4D multi-channel atlas Y ref

c (t) in the reference space the unbiased version Yc(t).

age-specific average space230

W−1av,t =
∑
i∈N t

(W
(2)
i )−1/N t, t=37,...,44 (9)
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Similarly, we create average inverse affine transformation A−1av,t by selecting only the scaling and sheering231
components, followed by averaging and inverting.232

2.4.3 Parametrized 4D multi-channel atlas233

In the final step we construct a continuous 4D spatio-temporal multi-channel model of the developing234
neonatal brain (Fig. 2C) by fitting the Gompertz growth curves to the time-dependent average metric maps235
and transformations. We propose the following form of the Gompertz function since it allows interpretation236
of both growth rate (γ) and peak in time (τ ):237

G(t) = (α− δ)exp(−exp(−γ(τ − t))) + δ, (10)

where t is the time point, α and δ control the upper and lower limits of G(t), γ represents the growth rate238
and τ is the center point corresponding to the growth peak. The model was fitted to the time-dependent239

average metric maps Y (2)
c,t and transformations W−1av,t, A

−1
av,t using least square minimisation to produce240

continuous spatio-temporal maps in reference space as well as average inverse transformations:241

Y ref
c (t) = G(αc, δc, γc, τ c, t), t=[37;44] (11)

242
W−1(t) = G(αW , δW , γW , τW , t), t=[37;44] (12)

243
A−1(t) = G(αA, δA, γA, τA, t), t=[37;44], (13)

where αc, δc, γc and τ c are the interpretable Gompertz model parameters of metrics c = { T1w; T2w;244
T1w/T2w; mDWI; ODF: SH ODF, TDI; DTI: MD, RD, FA; DKI: MK; NODDI: ODI, FISO, ICVF; µFA;245
Jacobian} and t is continuous over 37 to 44 weeks PMA range. Unbiased spatio-temporal maps Yc(t) are246
obtained by applying nonlinear transformation W−1(t) followed by affine transformation A−1(t) to the247

biased spatio-temporal maps Y ref
c (t).248

2.5 Parcellation of WM regions249

The dHCP structural atlas (Schuh et al., 2018) already provides parcellations of cortical and subcortical250
regions, we therefore specifically focus on WM tracts and transient regions. We first propagated the251
parcellation map of the major WM tract regions from M-CRIB-WM atlas (a single subject template at 41252
weeks PMA, Alexander et al. (2020)) by registration to our T2w 41 week template Y ref

T2w(41).253

Then we performed the MRTrix3 probabilistic tractography (Tournier et al., 2010) in YODF (41) channel254
for each of the 54 WM regions with propagated labels as seeds. This was followed by manual refinement255
of all labels in 3DSlicer (Fedorov et al., 2012) based on the thresholded TDI maps for individual tracts and256
the FA and T2 channels. The procedure was performed in three iterations. The output labels were stored in257
the atlas reference space resampled to 0.5 mm isotropic resolution to account for finer features.258

The transient WM regions were localised as regions with high rates of signal changes during 37 to 44259
weeks PMA. The parcellation was generated semi-automatically from the γav map obtained by averaging260
growth rate γc for T1w, T2w, RD and FISO channels. The γav map was thresholded at experimentally261
selected value 0.25, followed by manual refinement. In addition, the parcellation map was masked with the262
dHCP atlas cortex mask in order to avoid inclusion of any regions affected by possible misregistrations in263
the cortex.264
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2.6 Atlas-based region-specific analysis265

In order to assess the application of the proposed approach for the atlas-based region-specific analysis,266
we performed comparison of term and preterm cohorts. The analysis was based on both the WM and γav267
parcellation maps. At first, all subject (selected 40 preterm and 140 term subjects scanned between 38268
and 43 weeks PMA range) are registered to the PMA-matched atlas space (Sec. 2.3) with T2w, ODF,269
cortex and ventricle mask channels. It was identified experimentally, that adding the ventricle mask channel270
improves registration results for preterm subjects since preterm brains commonly have enlarged ventricles.271
Therefore, it was used for all subjects in the term-preterm comparison study. The average values for each272
of the structural and dMRI metrics were computed per each of the investigated regions using weighted273
averaging with only the values with the difference < 1.5 · st.dev from the mean being included. Then, we274
assessed the association between the extracted metrics and the PMA at scan and the GA at birth using the275
ANOVA analysis. The output p-values were corrected for multiple comparisons.276

2.7 Implementation details277

Taking into account the differences in resolution between the input structural (0.5 mm) and diffusion278
datasets (1.5 mm), we chose 0.75 mm isotropic resolution as the optimal for the MC atlas. It also should279
be noted that unlike the previous dHCP atlas (Schuh et al., 2018), the proposed pipeline does not employ280
Laplacian sharpening of the atlas in order to avoid introducing artificial features into the interpretable maps.281

The LAC metric for MC registration of ODF channels was implemented in MRtrix3 (Tournier et al.,282
2019). In addition, we implemented LNCC Demons metric (Avants et al., 2008) in MRtrix3 for registration283
of the structural channels. It was experimentally identified that multi-resolution {0.5; 0.75; 1.0} and SH284
order lmax = {0; 2; 4} schemes and 3 voxel radius for the local neighbourhood for both structural and285
ODF channels produce high quality for deformable registration of the investigated datasets. We used the286
standard MRtrix3 regularisation of gradient update with 1 voxel standard deviation and displacement fields287
based on Gaussian smoothing with 0.75 voxel standard deviation. The proposed 4D GM fitting step (10)288
was implemented in MRtrix3. The ANOVA analysis for comparison between the term and preterm subjects289
was performed in RStudio (RStudio Team, 2020) using function lm.290

3 RESULTS AND DISCUSSION
3.1 Multi-channel registration291

We have previously demonstrated that the proposed MC registration improves overall alignment of292
cortical and WM regions when driven by both structural and ODF channels (Uus et al., 2020). Here we293
show that adding cortex mask Mcortex channel further improves alignment of the cortex. We investigated294
three scenarios for the MC registration to the reference space (average Y ref

c (t) templates from the generated295
atlas): (I) T2w + Mcortex, (II) T2w + Mcortex + FA, (III) T2w + Mcortex + ODF channels and (IV)296
T2w +Mcortex +ODFMventricles channels. We tested the performance on 12 term datasets from 42.00297
to 42.57 weeks PMA range. The alingment was quantitatively assessed by NCC between transformed298
individual maps and templates Yc(t) of the corresponding PMA, using the TDI channel in the dilated WM299
region and T2w channel in the cortex and ventricles regions (highlighted in yellow in Fig.3A).300

The T2w+Mcortex+ODF MC registration (dark blue) produced the highest NCC within the WM for the301
aligned TDI maps. It also showed similar results to the structural only registration T2w+Mcortex (light blue)302
within cortex region for the aligned T2 images. This was achieved by the additional cortex mask channel303
thus resolving the limitation reported in our previous work (Uus et al., 2020). The T2w +Mcortex + FA304
MC registration showed significantly lower NCC potentially due impact of not well defined cortical features305
in FA map. Both T2w +Mcortex +ODF and T2w +Mcortex + FA (gray) combinations showed lower306
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Figure 3. A: Comparison of MC registration results for three combinations of channels: T2w +Mcortex
(I,light blue), T2w +Mcortex + FA (II,gray), T2 +Mcortex +ODF (III,dark blue) and T2 +Mcortex +
ODF +Mventricles (IV,green). The performance was measured by NCC for the WM, cortex and ventricle
regions between Yc(t) and transform TDI map and T2w image. The results are statistically significant with
p < 0.001 for all cases apart from the combinations I and III for the cortex, II and III for ventricles and III
and IV for all regions, which produced similar results. B: Examples of the average TDI templates in the
cerebellum region generated from the datasets registered using different combinations of channels.

performance in the ventricle region. Addition of the ventricles mask only slightly improved the results307
in several cases. This was primarily due to the fact that the ventricles are quite small and the quality of308
the segmentation is not sufficient. At the same time, since the preterm subjects commonly have enlarged309
ventricles, we used it to improve the results for the preterm cohort study in the atlas-based analysis310
(Sec.2.6,Sec.3.4). The advantage of the T2w +Mcortex +ODF MC registration is demonstrated visually311
by better defined average TDI map of the cerebellum shown in Fig.3B.312

3.2 4D multi-channel atlas of normative neonatal brain development313

The resulting multi-channel 4D atlas Y ref
c (t) in the reference space (36 weeks PMA dHCP atlas (Schuh314

et al., 2018)) is given in Fig. 4. Unbiased atlas Yc(t) obtained after application of average inverse warps for315
38, 41 and 44 weeks PMA time points is presented in Fig. 5. We can observe nonlinear changes due to316
cortical folding in the T2w templates. Volumetric expansion/contraction due to growth the is visible in the317
Jacobian maps.318

The WM parcellations map with 54 ROIs created in the atlas reference space (Sec. 2.5) for the region-319
specific analysis of the metric values is shown in Fig. 6. The label annotation information follows the320
original annotations in Alexander et al. (2020).321
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Figure 4. Multi-channel 4D atlas in the reference space (corresponding to 36 weeks PMA). Structural
channels: T1, T2, T1/T2 and Jacobian; ODF channels: SH ODF, mDWI, TDI; DTI channels: MD, RD, FA;
DKI channel: MK; NODDI channels: ODI, FISO, ICVF; µFA.

Figure 5. Example unbiased 4D atlas channels at 38, 41 and 44 weeks PMA. The corresponding Jacobian
maps (J) are shown in the reference space.
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Figure 6. The WM parcellation map in the atlas reference space. The 54 ROIs are based on the structures
defined in the M-CRIB-WM atlas (Alexander et al., 2020). The corresponding TDI map highlights the
WM pathway regions.

Figure 7. A: The parcellation map of 24 paired regions identified by high change rates during 37 to 44
week PMA. B: The average maturation rate map γav computed from T1w, T2w, RD and FISO channels.
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Fig. 7.A presents the parcellation map of the transient regions identified by high rates of signal changes322
during 37 to 44 week PMA segmented from the average γav map (Fig. 7.B). The parcellation map has 24323
regions with the majority being consistent with the transient fetal compartment regions described in the324
recently introduced extended MRI scoring systems of cerebral maturation (Pittet et al., 2019) including325
periventricular crossroads, Von Monakow WM segments and subplate. We also identified fast developing326
regions within the cerebellum and subcortical grey matter.327

We also calculated R2 scores to evaluate the Gompertz model fit. Our results confirmed that GM offers328
higher R2 scores than linear regression with p<0.001 for the combined γ and WM parcellation map region.329
The primary regions where the GM fitting outperformed linear fitting corresponded to the γav parcellation330
map (0.662∓0.189 vs. 0.652∓0.190 with p<0.001) with the high signal change rates. Examples of non-331
linear patterns are shown in Figures 9-11. Relatively small improvement in R2 however suggests, that332
linear fit offers reasonable approximation during this time-window.333

3.3 Visual analysis of normal neonatal brain development334

Fig. 8 shows probabilistic tractography generated from the ODF channel and the corresponding T1w335
channel (in the reference space) in the frontal WM region at 38, 41 and 44 weeks PMA time points.336
The increase in the T1w signal (known to be sensitive to proliferation of cells and myelin precursors337
and decreasing water content (Girard et al., 2012) ) can be linked to the developing WM pathways seen338
in tractography ( highlighted in red circle). The graphs show the corresponding increasing intensities in339

age-specific average templates Y (2)
c,t and fitted signal values Y ref

c (t) of the TDI and T1w channels computed340
in the small Von Monakow WM segment (Pittet et al., 2019) highlighted in yellow in the T1w channel.341

Figure 8. Whole brain probabilistic tractography generated from the ODF channel and the corresponding
T1w channel (in the reference space) in the frontal WM region at 38, 41 and 44 PMA weeks time points.
The developing WM pathway (red circle) can be linked to increasing T1w signal intensity (yellow region).
The graphs show the signal in age-specific templates Y (2)

c,t and fitted Gompertz model Y ref
c (t) in the TDI

and T1w channels averaged over the region highlighted in yellow.

Figures 9-11 show examples of the signal intensity changes in time and the corresponding growth rate342
maps γc. The regions highlighted in yellow have significant growth peak offsets in time (≥ 0.2 weeks from343
the 40.5 weeks central time point) in τ c. The graphs show average signal values in 15 discrete age-specific344
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Figure 9. Examples of the signal changes in time (in the reference space) in T1w/T2w (A), FA (B),
µFA (C) and MD (D) channels. First column: 37 week template. Second column: 44 week template.
Third column: signal change in time. Fourth column: γc maps. Fifth column: Signal change in time in
age-specific templates Y (2)

c,t and fitted Gompertz model Y ref
c (t) computed over 3x3x3 voxel regions in two

locations: PLIC (blue) and superior corona radiata (red). The regions highlighted with yellow contours
have significant growth peak offset in τ c.

templates Y (2)
c,t and the corresponding fitted signal Y ref

c (t) calculated within small 3x3x3 voxel regions at345
specific locations, including the right posterior limb of internal capsule (PLIC), superior corona radiata,346
periventricular crossroads, corpus callosum, Von Monakow WM segment and cerebellum.347
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Figure 10. Examples of the signal changes in time (in the reference space) in TDI (A), FISO (B) and T2w
(C) channels. First column: 37 week template. Second column: 44 week template. Third column: signal
change in time. Fourth column: γc maps. Fifth column: Signal change in time in age-specific templates Y (2)

c,t

and fitted Gompertz model Y ref
c (t) computed over 3x3x3 voxel regions in two locations: prefrontal corpus

callosum (red) and Von Monakow WM segment (blue). The regions highlighted with yellow contours have
significant growth peak offset in τ c.

The WM tracts are characterized by different maturation times and rates (Iida et al., 1995). The T1w/T2w348
contrast (linked to myelination by Glasser and Van Essen (2011)) shows signal increase from 37 to 44349
weeks (Fig. 9.A). The γT1w/T2w map and the average signal graphs YT1w/T2w(t) confirm that the rate350
of T1w/T2w signal increase is the highest in the PLIC region (blue) and the corona radiata (red). The351
τT1w/T2w parameter of the Gompertz model is 40.5 weeks in both regions which is agreement with352
the previously reported myelination milestones (Counsell et al., 2002; Wang et al., 2019). There is also353
a noticeable increase in the cortical T1w/T2w signal, also previously reported by Bozek et al. (2018),354
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Figure 11. Examples of the signal changes in time (in the reference space) in T1w (A), RD (B), MK
(C) and FISO (D) channels. First column: 37 week template. Second column: 44 week template. Third
column: signal change in time. Fourth column: γc maps. Fifth column: Signal change in time in age-specific
templates Y (2)

c,t and fitted Gompertz model Y ref
c (t) computed over 3x3x3 voxel regions in two locations:

cerebellum (blue) and periventricular crossroads (red). The regions highlighted with yellow contours have
significant growth peak offset in τ c.

which may be due to myelination or the increased cell density (Girard et al., 2012). Both FA and µFA355
signals (Fig.9.B-C) gradually increase in all WM regions in agreement with the trends reported in (Feng356
et al., 2019). The µFA map shows generally higher degree of changes than FA, potentially due to the357
increasing crossing fiber effect, while in γFA, the more prominent WM changes are observable primarily358
in the corona radiata, sagittal stratum and superior longitudinal fasciculus (highlighted with arrows).359
The γMD map of the MD channel (Fig.9.D) shows high decrease in the superior corona radiata, sagittal360
stratum and the transient fetal compartments associated with WM maturation (Pittet et al., 2019) including361
the periventricular crossroads and subplate regions (highlighted with arrows). The MD signal is slowly362
decreasing the PLIC region as can be seen in the corresponding graph (blue). All of the presented γc maps363

Frontiers 17

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430835
http://creativecommons.org/licenses/by/4.0/


Uus et al. Running Title

also show significant changes in the periventricular parietal crossroad regions (highlighted with arrows)364
with the significant decrease in MD and increasing in T1w/T2w.365

Given the fixed number of streamlines used for probabilistic tractography, there is a notable redistribution366
of the TDI amplitude from the main to proximal WM tracts (Fig 10.A). The corresponding growth rate γTDI367
map is positive in the frontal (anterior corona radiata) and thalamic radiation WM regions (highlighted with368
arrows) and negative in the internal capsule. The R-L time profile in the frontal region (Von Monakow WM369
segment, blue) shows the increased track density at 44 weeks. The average TDI signals Y ref

TDI(t) in this370
region (blue) and the corpus callosum (red) are also characterized by a significant degree of nonlinearity.371
NODDI FISO component (Fig. 10.B) shows a prominent reduction in the same frontal region which is372
in agreement with the expected decrease of water content and progressing maturation of WM pathways373
(Girard et al., 2012). Similarly to TDI, the average FISO signals Y ref

FISO(t) in the investigated WM ROIs374
have nonlinear shape with the steep decrease the occurring during the 39.5-43 weeks period. Similar375
decrease is observed in T2w signal (Fig. 10.C). The FISO channel in the sagittal view in Fig. 11.D also376
demonstrates similar patterns in the periventricular crossroads (red).377

Most of the channels also show prominent changes in the cerebellum associated with normal maturation378
(Fig.11, blue). The T1w signal intensity Y ref

T1w(t) is gradually increasing due to WM maturation along with379
the increasing microstructural complexity reflected in the MK channel with the high γMK map values380
and the expected decreasing trends of the RD Y ref

RD (t) and FISO YFISO(t) signals (potentially due to the381
decreasing amount of free water (Girard et al., 2012)).382

3.4 Atlas-based region-specific analysis383

We performed ANOVA analysis to assess influence of GA at birth on microstructure of WM regions384
delineated in our new atlas, with PMA as a cofounding variable. In order to assess the feasibility of using385
the ANOVA analysis for the investigated datasets, we performed linear fitting for each of the channels. The386
γc values showed high correlation with the linear slope maps with the average NCC for all channels in the387
whole brain ROI 0.903∓0.085 (without CSF). This confirms that during 37 to 44 weeks PMA range linear388
approximation is acceptable.389

Fig.12 visualises WM and transient regions in selected channels where average signal value was390
significantly associated with GA at birth. We found significant association of multiple indices with391
GA in the corona radiata, superior longitudinal fasciculus, corpus callosum and thalamic radiation. The392
T1w/T2w contrast was also significantly associated with GA in the internal and external capsules (Fig.12.A).393
We also found significant association of GA with γav parcellation regions (Fig.12.B), which is in agreement394
with the prolonged existence of transient compartments in preterm subjects (Kostović and Judaš, 2006).395

Fig.13.A highlights differences in rate of maturation in γc maps between term and preterm cohorts.396
The graphs in Fig.13.B show the average signal values in the frontal right Von Monakow WM segment397
(highlighted in yellow in the γc maps). There is a clear increasing trend in T1w/T2w, FA and TDI for398
the term cohort along with the decreasing FISO and RD. However, the slopes for the preterm cohort are399
close to zero with high variance in the signal values. Furthermore, in this region, the preterm subjects are400
characterized by the significantly higher FISO and RD values and lower T1w/T2w, TDI and FA than the401
term cohort at the 42-43 week PMA period. This is consistent with the commonly reported lower FA and402
higher diffusivity values in preterm groups (Hermoye et al., 2006; Knight et al., 2018; Dimitrova et al.,403
2020), again suggesting delayed maturation of transient compartments in premature babies (Kostović and404
Judaš, 2006).405
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Figure 12. Atlas-based region-specific analysis. The regions significantly associated with GA at birth are
highlighted with red (p < 0.001), yellow (p < 0.01) and green (p < 0.05) and overlaid over the averaged
TDI map in two coronal view locations. A: WM parcellation regions. B: γav parcellation regions.

4 LIMITATIONS AND FUTURE WORK
The generated atlas is specific to dHCP acquisition protocols, which might limit application in terms of406
comparison with the datasets from other studies. However, the proposed tools can be easily applied to407
generate study- and acquisition-specific 4D MC atlases. We investigated relatively narrow neonatal period,408
and extension wider age range would improve reliability of Gompertz model fit and bring more insights409
into early brain development.410

The study comparing term and preterm brain development included only 40 preterm subjects and they411
were not grouped with respect to specific types of anomalies, which can be addressed in future as more412
datasets become available. Including additional cortical and sub-cortical regions could also enrich the413
insights into normal and preterm microstructural brain development.414

5 CONCLUSIONS
In this work, we proposed and implemented a novel pipeline for generation of continuous 4D multi-channel415
atlases. It is based on MC ODF+T2w guided registration and the Gompertz model fitting of both signal416
intensities and spatial transformations. The MC registration pipeline implemented in MRtrix3 employs the417
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Figure 13. Atlas-based analysis: comparison of the term (140) and preterm cohorts (40) for 38 to 43
weeks scan PMA range for a subset of channels c={ T1w/T2w; TDI; RD; FA; FISO; µFA }. A: The γc
maps of GM fitting for the term and preterm cohorts for 38 to 43 weeks PMA range. B: The mean signal
values in the frontal WM ROI from the γaverage parcellation map (highlighted in yellow in the gamma
maps) for the term (blue) and preterm (red) cohorts for 38 to 43 weeks PMA range.

novel LAC similarity metric for ODF channels, LNCC metric for structural T2w and weighted fusion of418
the updates to the displacement fields. It also includes the cortex mask channel for better alignment of the419
cortex regions.420

Based on the proposed methods, we generated a first continuous multi-channel atlas of the normal421
term neonatal brain development during 37 to 44 weeks PMA range generated from 170 subjects from422
dHCP project. The atlas contains 15 channels including structural (T1w, T2w and T1w/T2w contrast) and423
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DWI-derived metrics based on ODF, DTI, DKI, µFA and NODDI models. The GM fitting of the signal424
intensity and spatial transformation components in 4D allowed parametrization of the atlas. The output425
γ maps representing the rate of change can be used for interpretation of how maturation processes are426
manifested in different structural and diffusion MRI-derived metrics.427

We also found that the fetal transient compartments (Pittet et al., 2019) have high contrast in the T2w,428
T1w, FISO, MD, RD and TDI γc maps.429

The atlas also includes detailed WM parcellation maps: (i) the map with the major WM tract ROIs based430
on the definitions from the recently introduced M-CRIB-WM neonatal atlas (Alexander et al., 2020) and431
(ii) the map of the regions associated with the high γ signal change rates during the normal WM maturation432
process. We tested the applicability of these parcellation maps for region-specific atlas-based studies on433
comparison between the term and preterm cohorts. We found significant effects linked to prematurity in434
the multiple WM regions including the transient fetal compartments. The atlas and the software tools are435
publicly available to support future studies of early brain development.436
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