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Abstract 

Prescription opioid use is an initiating factor driving the current opioid epidemic. There are several 

challenges with modeling prescription opioid addiction. First, prescription opioids such as oxycodone are 

orally self-administered and have different pharmacokinetics and dynamics than morphine or fentanyl. 

This oral route of administration determines the pharmacokinetic profile, which is critical for establishing 

reliable drug-reinforcement associations in animals. Second, intravenous (i.v.) opioid self-administration is 

typically performed with intermittent drug self-administration sessions in a separate environment from 

the home cage. This does not recapitulate prescription opioid use, which is characterized by continuous 

drug access in the patients’ homes. To model features of prescription opioid use and the transition to 

abuse, we developed an oxycodone self-administration paradigm that is administered in the home cage. 

Mice voluntarily self-administer oxycodone in this paradigm without any taste modification such as 

sweeteners, and exhibit preference for oxycodone, escalation of intake, physical signs of dependence, 

reinstatement of seeking after withdrawal, and a subset of animals demonstrate drug taking that is 

resistant to negative consequences.  This model is therefore translationally relevant and can be useful for 

studying the neurobiological substrates specifically relevant to prescription opioid abuse.  
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Introduction 

Misuse of prescription opioids is a significant public health and economic burden worldwide. In 2017 in 

the United States, more than 10 million people reported prescription opioid misuse [1]. Despite its 

importance, modeling prescription opioid abuse in rodents has been challenging [2-5]. Certain aspects 

unique to prescription opioid use, such as route of administration and pattern of intake, may contribute to 

abuse liability and propensity toward relapse. As such, a representative preclinical model of prescription 

opioid addiction is critical for understanding the neurobiology underlying this disorder. 

Pre-clinical drug self-administration studies have typically employed paradigms where drug 

administration is limited to discrete time periods in operant chambers, before returning animals to their 

home cages. In these studies, drugs are often self-administered intravenously under various reinforcement 

schedules, which allows experimenters to assay distinct features of addiction behavior, such as motivation 

for the drug [6,7], reinstatement of drug seeking [8,9] or compulsive drug taking [10-12]. However, several 

characteristics of prescription opioid use introduce unique challenges that may not be optimally modelled 

by classical self-administration paradigms. 

First, in contrast to many addictive drugs (e.g., heroin, cocaine, methamphetamine, or morphine), 

prescription opioids are most often orally self-administered: among chronic and recreational opioid users, 

oral self-administration is decidedly preferred over non-oral routes (e.g., insufflation, injection) [13,14]. 

The route of administration of drugs of abuse is highly relevant for establishing learned drug associations 

[15], which contribute to the subjective reinforcing properties of the drug, escalation of intake, and 

propensity toward reinstatement [10,11,16-20]. Indeed, the pharmacodynamic and pharmacokinetic 

profiles of opioids – and therefore their physiology and time-course of action – vary widely across routes 

of administration [21]. These differences underscore the need to model prescription opioid abuse through 

the oral route of administration. 

Second, prescription opioids are most commonly self-administered in a familiar setting such as the home 

(see Caprioli et al. (2007) for a review [22]). Yet, where oral self-administration has been reported [2-4], 

experimental paradigms have required self-administration to take place in a novel context (e.g., operant 

chamber) and under food restriction. Environmental context (i.e., setting of drug taking) plays an 

important role in both drug taking and reinstatement, a finding that has been well-documented in 

humans and recapitulated by animal models [22-27]. Moreover, the nature of operant self-administration 

paradigms requires intermittent access to the drug during daily sessions separated by acute periods of 

forced abstinence. However, this intermittent pattern of intake stands in stark contrast to continuous 
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access to prescription opiates, which is even more pronounced in the case of extended-release 

formulations [28]. The pattern of drug intake is critical, since intermittent access patterns exacerbates 

mesolimbic adaptations induced by opioid self-administration [29,30].  

Previous investigations have applied the oral route of self-administration by implementing two-bottle 

choice procedures, where animals are free to choose between bottles containing drug- and drug-free 

solutions. Because the opioid alkaloid structure confers a bitter taste to opium derivatives, and typically 

sweeteners have been added to encourage animals to self-administer opioid via the oral route, or 

adulterants to the drug-free bottle to control for aversive taste. However, the addition of these extraneous 

reinforcers or adulterants introduce experimental confounds which limit the interpretability of two-bottle 

choice procedures [31]. For example, sucrose itself can support seeking after abstinence [32], disrupt 

overall patterns of fluid intake [33], and stimulate dopamine and opioid receptors in the mesolimbic 

pathway [34-37]. Therefore, recapitulating a continuous access pattern and oral route of administration 

without adulterants is important to accurately model prescription opioid use disorder (OUD).   

Here, we characterize a home cage-based, oral oxycodone (OxyContin, Tylox
TM 

or Percodan
TM

) self-

administration paradigm that models several features of prescription opioid abuse. We demonstrate that 

mice exhibit a preference for high concentrations of unadulterated oxycodone (1.0 mg/mL) over regular 

drinking water and voluntarily escalate drug intake over the course of a two-bottle choice paradigm. This 

model also recapitulates multiple behavioral features that have been used to model criteria for addiction 

as defined by the fifth version of the diagnostic and statistics manual [40] (DSM), specifically escalation of 

drug intake, physical signs of dependence, drug craving after withdrawal and drug use despite negative 

consequences. Critically, these behaviors were also accompanied by potentiation of excitatory synapses in 

the nucleus accumbens (NAc), which is a conserved neurobiological substrate of drug reinstatement [41-

43]. By understanding the neurobiological substrates specific to prescription opioid abuse, it may be 

possible to design effective therapies for prescription opioid misuse, and to develop novel medications to 

treat pain with lower abuse liability.  

 

Materials and Methods 

Subjects. A total of 112 adult mice (C57BL/6J background; age, 10–16 weeks). Both males (n=57) and 

females (n=55) were included in the study and balanced across experiments and treatment groups. Mice 

were housed in standard mouse vivarium caging and kept on a 12 h light/dark cycle (light onset, 7:00 
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A.M.; light offset, 7:00 P.M., temperature (22-26°C), in-cage humidity (22-50%). Mice had ad libitum access 

to food and were single housed during self-administration experiments. Experiments were run in 

successive waves of treatment- and sex-matched cohorts with up to 20 mice being run simultaneously. All 

studies were approved by the internal animal care and use committee at Washington University in St. 

Louis.  

Home cage lickometer devices. All devices used in these experiments are low-cost and open-source, with 

detailed parts lists, code and fabrication instructions published and available on-line [44,45]. Drinking 

water and oxycodone solutions were provided using an in-cage two-bottle lickometer apparatus which 

detects interactions with two separate drinking spouts via a pair of photobeams [45]. Cages were also 

equipped with a wireless passive infrared (PIR) activity monitor [44] to measure mouse activity levels 

(Models 4430 and 4610 from MCCI Corporation, Ithaca NY). Lickometer counts on each sipper, PIR activity 

data, and environmental measurements (temp, humidity, light levels) were transmitted via Low frequency 

Radio Wide Area Network (LoRaWAN) using Internet of Things (IoT) infrastructure (The Things Network, 

Netherlands), saved in a cloud-database (InfluxDB), and visualized with an online dashboard (Grafana).  

The wireless lickometer and PIR sensors were also equipped with back-up microSD cards and liquid 

volumes were measured manually each day. 

Oxycodone self-administration. Habituation: Mice were transferred to single housing with an in-cage two-

bottle choice apparatus at least three days prior to the start of the escalation protocol, during which the 

sipper device was the only source of drinking water (supplied in both tubes).  Phase I: Mice in the 

experimental group (“OXY mice”) were supplied with a single bottle of oxycodone hydrochloride dissolved 

in drinking water as their only source of liquid; 0.1 mg/mL was available for 24 hours, 0.3 mg/mL was 

available for 48 hours, and 0.5 mg/mL was available for 48 hours (Fig 1A), based on an operant protocol 

developed by Phillips et al. [3]. Mice in the control group (“CTRL mice”) had access to drinking water only 

throughout the protocol. The position of the bottle within the two-bottle apparatus was switched daily. 

Phase II: Oxycodone (1.0 mg/mL in drinking water) and drinking water were supplied to OXY mice ad 

libitum in the two-bottle choice apparatus.  Both solutions were available 24 hours a day for 7 days. 

Drinking water was supplied in both bottles for CTRL mice. Withdrawal: The two-bottle lickometer was 

removed from the home cage after the 7-day two-bottle choice period, and standard cage-top water 

bottles were replaced as the source of drinking water. Separate groups of mice were used for the 

oxycodone seeking, quinine adulteration and electrophysiology studies outlined below. 
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Oxycodone Seeking Test. In a subset of mice (nCTRL =10M/10F, nOXY = 10M/10F), an oxycodone seeking test 

was performed. After 24 hours (early) or 22-24 days (late) withdrawal, the lickometer device containing 2 

empty bottles was re-introduced to the cage for a 60-minute probe trial, and interactions with the sipper 

tubes as detected by the photobeam were recorded. Mice were tested at both early and late withdrawal 

points. 

Quinine Adulteration. In a subset of mice (nCTRL = 8M/7F, nOXY = 8M/7F) we tested resistance of oxycodone 

drinking to quinine adulteration. Following the conclusion of the 7 days of two-bottle choice protocol, 

increasing concentrations of quinine were added to the oxycodone-containing bottle (OXY mice), such 

that OXY mice had the choice between standard drinking water (one bottle) and 1.0 mg/mL oxycodone + 

quinine. CTRL mice had the choice between standard drinking water (one bottle) and water + quinine. 

Mice were given 48 hours at each quinine concentration in increasing order: 125 µM, 250 µM, 325 µM, 

volumes consumed from each tube were recorded daily. 

Baseline Oxycodone Preference Test. In a separate cohort of naïve mice (n = 19M/22F), we determine 

baseline preference for oxycodone by giving the mice the choice between 1 bottle of drinking water and 1 

bottle of 1.0 mg/mL oxycodone hydrochloride solution. Preference was calculated as the proportion of 

oxycodone as a fraction of total liquid volume consumed over the overnight session. 

Physical Withdrawal Signs. Acquisition: After either 24 hours or 22-24 days of withdrawal, mice were 

habituated to the testing room for at least 1 hour. Three consecutive, 5 minute videos were acquired of 

individual mice at 100 fps in a double-tall Von Frey chamber with an unobstructed background and 

overhead lighting (LUX). Videos were scored for signs of withdrawal (jumps, tremors, movement speed) 

and anxiety related behaviors (grooming, rearing, climbing) using markerless pose estimation and 

subsequent supervised machine learning predictive classifiers of behavior. Markerless pose estimation was 

done using DeepLabCut
TM

 (DLC, version 2.2b6 [46,47]): 12 frames of 64 videos representing all treatment 

conditions were extracted using k-means clustering and subsequently manually annotated for the 

following 9 body parts: left ear, right ear, left forepaw, right forepaw, left hind paw, right hind paw, snout, 

tail base, back. The training fraction was set to 0.95, and the resnet_50 network was trained for 1,030,000 

iterations. A train error of 1.82 and test error of 11.47 were achieved with a cutoff value of p=0.6. DLC 

tracking data and generated videos were then imported to the Simple Behavioral Analysis (SimBA) project 

workflow (version 1.2 [48]). Within SimBA, single animal, 9-body part supplied configuration was used to 

extract behavioral features from the pose estimation data after outlier and movement correction (both 

parameters set to 7x outside the interaural distance. Extracted frames from four independent videos were 
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annotated to build classifiers for the following behaviors: “climbing”, “jumping”, “tremor”, “rearing, and 

“grooming”.  Individual models were trained using a random forest machine model with 2000 estimators, 

and a training fraction of 0.2 (default hyperparameters). Following validation, videos were analyzed using 

the random forest model, with the following p-cutoffs and minimum behavioral bout lengths for each of 

the following behaviors: “climbing (p = 0.26, 35 ms)”, “jumping (p = 0.4, 35 ms)”, “tremor (p=0.0495, 50 

ms”, “rearing (p = 0.45, 70 ms)”, and “grooming (p = 0.38, 70 ms)”. The SimBA pipeline is built primarily on 

scikit-learn [49], OpenCV [50], FFmpeg45 [51], and imblearn [52]. Total time spent in each behavior was 

exported and the three videos were averaged to get one value for each subject to be included in the 

analysis. Euclidean distance of displacement of all body parts was also extracted from the pose-estimation 

data and averaged to achieve one ‘movement’ score for each subject. 

Patch Clamp Electrophysiology. Coronal mouse brain slices, 220 μm in thickness were prepared in cooled 

artificial cerebrospinal fluid containing (in mM): 119 NaCl, 2.5 KCl, 1.3 MgCl, 2.5 CaCl2, 1.0 Na2HPO4, 

NaHCO3 26.2 and glucose 11, bubbled with 95% O2 and 5% CO2. Slices were kept at 30- 32°C in a 

recording chamber perfused with 2.5 mL/min artificial cerebrospinal fluid. Visualized whole-cell voltage-

clamp recording techniques were used to measure spontaneous and synaptic responses of NAc shell 

MSNs. Holding potential was maintained at -70 mV, and access resistance was monitored by a 

depolarizing step of -10 mV each trial, every 10 s. Currents were amplified, filtered at 2 kHz and digitized 

at 10 kHz. All experiments were performed in the presence of picrotoxin (100 μM) to isolate excitatory 

transmission, and TTX (0.5 µM) was included for recordings of miniature excitatory post-synaptic currents 

(mEPSCs). Internal solution contained (in mM): 130 CsCl, 4 NaCl, 5 creatine phosphate, 2 MgCl2, 2 Na2ATP, 

0.6 Na3 GTP, 1.1 EGTA, 5 HEPES and 0.1 mm spermine. Synaptic currents were electrically evoked by 

delivering stimuli (50 – 100 μs) every 10 seconds through bipolar stainless-steel electrodes. The AMPAR 

component was calculated as the peak amplitude at -70 mV, The NMDAR component was estimated as 

the amplitude of the outward current at +40 mV after decay of the AMPA current, measured 50 msec 

after the electrical stimuli (Fig 5A-C). Paired-pulse ratio PPR was calculated as the ratio of the second to 

first baseline-subtracted peak elicited with an ISI of 50 msec.  

Statistical Analyses. Photobeam break data on the lickometer devices was extracted and analyzed using 

custom python code (SipperViz graphical user interface is available for download at 

https://github.com/earnestt1234/SipperViz). Statistics were performed in python (3.7 using Spyder 4.1.5), 

using the pinguoin (0.3.10) and statsmodels (0.10.0) packages. Data was analyzed with repeated measures 

ANOVA or two-factor ANOVA where appropriate, followed by post-hoc t-tests. Sex and Treatment group 

were included as between-subject factors for all analyses.  
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Results 

Mice exhibit preference, escalation, and altered pattern of intake of oxycodone. 

We mimicked a prescribed course of opioids by including escalating concentrations of oxycodone in the 

drinking water in a single-bottle phase, followed by a two-bottle choice phase where mice could choose 

between a concentrated oxycodone solution (1.0 mg/mL) and unadulterated drinking water (Fig 1A-C).  

During the single bottle phase, mice increased their daily oxycodone consumption (Fig 1D), which is 

predicted, based on the increasing concentrations of oxycodone in their drinking water (0.1, 0.3, 0.5 

mg/mL). However, mice continued to systematically escalate their drug intake during the two-bottle 

choice phase, where the drug concentration remained constant (1.0 mg/mL) and drinking water was also 

available ad libitum (Fig 1D-F), with OXY mice consuming higher total volumes of liquid than CTRL mice 

that only had access to drinking water (Fig 1B,C). Moreover, during this two-bottle choice phase, mice 

exhibited a significant preference for 1.0 mg/mL oxycodone over drinking water (Fig 1G-I), which is 

noteworthy, since 1.0 mg/mL oxycodone solution is bitter, and both male and female naïve mice preferred 

drinking water when given the choice between drinking water and 1.0 mg/mL oxycodone (Fig S1A).  

In addition to the total volume consumed, the home cage sipper device allows for 10 second resolution of 

licking behavior on each bottle. Examination of the time course of the drinking behavior confirmed that 

there was no systematic preference for the left or right bottle in CTRL mice (Fig 1J-K), while OXY mice 

exhibited higher levels of responding on the oxycodone-containing bottle (Fig 1L-M). Moreover, the 

circadian index of sipping behavior (defined as sipper counts registered during the dark cycle / sipper 

counts registered during the light cycle) was significantly reduced in OXY mice relative to controls (Fig S3). 

The home cage nature of this paradigm allows for large sample sizes with statistical power to detect sex 

differences (nCTRL=40 and nOXY=52). While both male (n=26) and female (n=26) mice exhibited preference 

for oxycodone (Fig 1H-M, S1C, D), during the single bottle phase, female mice consumed more 

oxycodone than males (Fig 1C). Female mice continued to self-administer higher doses of oxycodone over 

the two-bottle phase of the protocol (Fig 1D, S1E-F). No sex differences were observed for escalation 

index or oxycodone preference (Fig 1G-M, S1C,D, S2).  

 

Oxycodone self-administration induces physical signs of intoxication and withdrawal. 
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DSM criteria for substance use disorder include tolerance to and withdrawal from an addictive substance. 

Although we did not measure drug tolerance, the oral self-administration protocol did induce physical 

signs of intoxication (hyperactivity) as well as acute and protracted physical withdrawal symptoms (Fig 2). 

Acute injections of oxycodone [53-55], or vapor exposure [56] to opioids induce hyperactivity, and these 

locomotion-inducing properties of addictive drugs are thought to reflect increased dopamine release in 

the NAc [57-59]. We equipped our home cages with PIR sensors to detect locomotor activity during the 

self-administration protocol (Fig 2A). OXY mice exhibited higher levels of hyperactivity than CTRL mice 

during both the single- and two-bottle choice phases of self-administration (Fig 2B,C), suggesting that 

levels of oxycodone voluntarily self-administered via the oral route produced sufficient brain levels of 

oxycodone to induce hyperactivity [54,60,61]. We found no sex differences in oxycodone-induced 

locomotor activity (Fig S4). 

We also determined whether withdrawal from oral oxycodone self-administration induced physical 

withdrawal signs. During withdrawal from opioids such as morphine or heroin, mice exhibit characteristic 

withdrawal signs including tremors, jumping, teeth chattering and diarrhea. We quantified jumping and 

tremor, along with the total distance moved by the animal. Relative to CTRL mice, OXY mice exhibited 

significantly more movement (Fig 2D), as well as increased jumping (Fig 2E) and paw tremors (Fig 2F) at 

both the acute (1 day) and protracted (3 weeks) withdrawal periods.  

Finally, we quantified climbing (an index of escape behavior), grooming, and rearing, which have been 

used as a proxy for anxiety-like behavior, and have also been reported to be increased following 

withdrawal from opioids. OXY mice did not exhibit significantly more rearing or grooming relative to CTRL 

mice (Fig 2G, H). While there was a significant effect of drug on escape behaviors in acute oxycodone 

withdrawal, this effect was driven by two subjects and resulting group differences were small (Fig 2I). 

There were no significant differences between male and female mice for any physical symptom measured. 

Together, these results demonstrate that oral oxycodone self-administration induces physical signs of 

dependence that are consistent with opioid withdrawal syndrome.  

 

The two-bottle choice paradigm induces aversion-resistant drug consumption and persistent drug seeking 

into withdrawal.  

Drug seeking behavior is operationally defined as performance of an action that previously led to 

consumption of the drug, in the absence of the drug itself [62,63].  In the case of i.v. drug self-
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administration, this response may be operationalized as lever-pressing or nose-poking to receive a drug 

infusion. In our model, oxycodone is delivered through a unique sipper device, which is distinct from the 

standard cage-top water bottle.  Therefore, we assayed drug seeking behavior by measuring photobeam 

breaks on the lickometer devices under extinction conditions, with no oxycodone or drinking water in the 

tubes after 24 hours and 3 weeks of forced abstinence from oxycodone (Fig 3A). OXY mice exhibited 

significantly higher lickometer counts than CTRL mice in both the acute (1 day) and protracted (3 weeks) 

withdrawal periods (Fig 3B). This drug seeking behavior was not significantly different between the early 

and the late probe trials, nor between males and females (Fig 3C-H, Fig S5A-B). This establishes that the 

two-bottle choice paradigm supports drug seeking behavior that persists after abstinence. 

Our final behavioral test sought to determine whether mice would consume oxycodone despite negative 

consequences. Negative consequences are frequently modeled by a physical punishment such as foot 

shock [64-66] or adulteration with aversive tastants, such as quinine [67,68]. Given the analgesic 

properties of oxycodone that could confound responses to foot shock punishment, we introduced 

increasing concentrations of quinine to the oxycodone-containing drinking tube, such that the quinine 

concentration increased by 125 µM every 48 hours (Fig 4A). Both male and female CTRL mice avoided the 

quinine-containing bottle at the lowest quinine concentration (Fig 4B). By contrast, OXY mice persisted in 

drinking oxycodone beyond the lowest concentration of quinine, with 2 of 15 mice even drinking 

oxycodone at the highest concentration tested (Fig 4C, D). There were no sex differences in the AUC of 

the quinine preference curve (Fig 4E).  

      

Oxycodone self-administration is characterized by enhanced excitatory transmission in the nucleus 

accumbens. 

Addiction is a chronic, relapsing disorder, with behavioral symptoms persisting long into abstinence in 

humans and rodents [69,70].  The chronic nature of these symptoms is mediated by long-lasting plasticity 

in the mesolimbic dopamine system, which is induced by exposure to drugs of abuse. One characteristic 

form of this plasticity that has been causally linked to drug sensitization and persistent relapse is 

potentiation of excitatory input onto medium sized-spiny neurons in the NAc (MSNs) [71-75]. This 

potentiation is mediated by the insertion of AMPA receptors into the post-synaptic membrane of 

accumbal MSNs, is dopamine-dependent, and has been observed after self-administration of opioids 

[41,76-79] and psychostimulants [72,75,80]. Here, we performed whole cell recordings of accumbal MSNs 

in the NAc shell after 22 days of withdrawal from oxycodone self-administration (Fig 5A, B). 
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The AMPA-to-NMDA ratio (Fig 5C, D) and mEPSC amplitude (Fig 5F) were significantly greater in mice 

who underwent oxycodone self-administration and withdrawal relative to control mice, suggesting post-

synaptic insertion of AMPA receptors. We found no differences in PPR (Fig 5E) nor in frequency of mEPSCs 

(Fig 5F) between oxycodone self-administering mice and control mice, providing evidence that pre-

synaptic excitatory transmission onto accumbal MSNs is not altered by oxycodone self-administration and 

withdrawal. Together, these results provide evidence that self-administration and withdrawal from 

oxycodone leads to a post-synaptic potentiation of excitatory synapses onto NAc MSNs, consistent with 

hallmark plasticity that is induced by self-administration and withdrawal from other opioids and 

psychostimulants.  

 

Discussion 

Much of our current understanding of addiction has relied on animal models to understand the 

relationship between behavioral phenomena and their neurobiological correlates. Environmental factors, 

route of administration, and pattern of intake strongly influence nearly every aspect of drug misuse, yet 

previous models of addiction have historically been conducted under experimental parameters which 

differ significantly from typical conditions associated with prescription opioid misuse. For example, 

intermittent access to i.v. drug infusions with discrete cues in a novel environment are ideal for modeling 

addiction to psychostimulants. However, prescription opioids, including oxycodone, are typically 

administered via the oral route, with near continuous access (especially with extended-release 

formulations) in familiar environments. Here, we characterize a novel paradigm that more closely 

recapitulates factors relevant to prescription opioid abuse, which may prove valuable for studying the 

neurobiology of opioid use disorder in mice. 

In this oral oxycodone self-administration paradigm, female mice consumed more oxycodone (mg/day) 

during the single bottle phase and higher total dose of oxycodone (mg/kg) compared to males (Fig 1), 

consistent with previous observations that female rodents self-administer higher doses of opioids than 

males [3,5,81-84]. The effects of sex on opioid intake, dependence, and abuse liability have been well 

documented [61,81,85-88], and interact with feeding conditions [89,90] and route of administration [3,38] 

to influence the bioavailability of oxycodone. While pharmacokinetic influences on sex differences were 

beyond the scope of our study, others have explored sex-dependent factors that may contribute to 

different oral oxycodone consumption between females and males. Phillips et al. (2018) [3] demonstrate 

that while oral oxycodone ubiquitously resulted in elevated plasma concentrations of oxycodone and its 
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active metabolite oxymorphone, the extent of this effect was influenced by sex, presence of sex organs, 

and feeding conditions, and was exacerbated following repeated administrations. Such observations are 

congruent with pharmacokinetic studies showing that plasma concentrations of oxycodone and its active 

metabolites are mediated, in part, by CYP3A4 and CYP2D6 [91,92], whose activity can be modulated by 

sex hormones and food intake [93,94]. Importantly, however, sex effects on oxycodone pharmacokinetics 

were either diminished or not observed with i.v. administration [38,95], highlighting the importance of 

route of administration in addiction models.  

Moreover, mice voluntarily escalate their consumption of oxycodone despite ad libitum access to drinking 

water (Fig 1, S1), and alter their pattern of intake (Fig S2, S3). Escalation of intake is a key feature which is 

relevant to modeling DSM criteria for addiction [11,96,97]. Additionally, we found that voluntary 

oxycodone consumption induced robust physical withdrawal signs, including hyperactivity, jumps and 

paw tremors which persisted into protracted withdrawal, albeit with reduced severity than in acute 

withdrawal (Fig 2). While there was large variability in the severity of observable withdrawal signs, it is 

critical that this paradigm fomented these signs; withdrawal symptoms often contribute to drug relapse 

through negative reinforcement, where the drug is taken to relieve the aversive state of withdrawal 

[98,99].  

Another cardinal DSM criterion for OUD is drug craving [40], which is frequently modeled with 

reinstatement paradigms. In these classical reinstatement paradigms, an instrumental response is first 

paired with drug infusion in a self-administration paradigm. Then, following a period of extinction 

training, stress, a priming dose of drug, or discriminative or contextual cues are introduced to reinstate 

the instrumental response in the absence of further drug availability [10,20,101]. However, this extinction 

training is not typically a feature of prescription drug use. Rather, abstinence is typically imposed by the 

cessation of opioid availability, either because of abrupt changes in prescribing practices, admission to in-

patient facilities, or loss of access to recreational sources [102]. For this reason, we opted to use a ‘forced 

abstinence’ model, where no extinction training occurs after drug self-administration, and the response 

that previously lead to drug consumption is measured after variable periods of withdrawal [62,103]. We 

found that lickometer interactions, which resulted in the delivery of oxycodone solution during the self-

administration phase, were significantly greater in oxycodone-self-administering mice relative to controls 

at both acute (24h) and late (3 week) withdrawal phases (Fig 3). Interestingly, we did not find evidence for 

the incubation of craving in this paradigm, which refers to the tendency for craving-related behavior to 

increase with the length of the forced abstinence period [62,122]. We propose three possible explanations 

for this: incubation of craving is most robustly observed under long access, high concentrations of IV 
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administration, where initial seeking responses on the first probe session are typically low [72]. This is not 

the case with our oral administration, where seeking behavior is quite high, even during a short assay in 

the acute withdrawal. Additionally, incubation of craving is frequently measured when mice are tested 

either in acute or late withdrawal, and behavior is compared between different subjects, with late 

withdrawal subjects showing increased seeking [75,104].  Here, we are testing the same subjects at two 

time points, and while we don’t see differences between these time points, it is possible that the first 

session served as an extinction trial, which may mask any potential effects on incubation [105]. Finally, the 

time course of incubation of craving is highly dependent on the addictive substance [62], and the single 

three-week time point may not be adequate to capture the temporal dynamics of oxycodone seeking 

after withdrawal. 

We modeled drug consumption despite negative consequences by adulterating oxycodone solution with 

increasing doses of quinine, which is commonly used to assess compulsive alcohol drinking [106,107]. 

While the quinine concentrations were quite low relative to ethanol studies, oxycodone is an alkaloid with 

a bitter taste prior to the introduction of quinine and already aversive, which we confirmed by establishing 

that naïve mice avoid 1.0 mg/mL oxycodone before the introduction of quinine (Fig S1A). Critically, we 

also observed individual differences in quinine-resistant drug consumption, with only a subset of mice 

persisting at the highest quinine doses (Fig 4). This is reminiscent of i.v. opioid or psychostimulant self-

administration, where typically only a subpopulation (15-30%) of animals exhibit punishment-resistant 

drug self-administration [65,108-110]. This is critical as it also reflects human patients who are often able 

to use drugs recreationally, with only a subpopulation transitioning to compulsive drug use [109,111] and 

underscores the utility of this model for studying individual differences in aversion-resistant oxycodone 

consumption. 

Finally, we demonstrate that oral oxycodone self-administration induces potentiation of excitatory 

transmission into NAc MSNs (Fig 5), which has been linked to persistence of reinstatement and physical 

symptoms following withdrawal from self-administration of cocaine [42,75,112] and opioids [113-117]. 

This plasticity is induced by drug-induced dopamine release from the ventral tegmental area (VTA) into 

the nucleus accumbens [42,43,118], and can be mimicked by strong optogenetic stimulation of VTA DA 

neurons alone [65]. Relative to morphine, oxycodone causes even more robust release of dopamine into 

the NAc, presumably through mu-receptor activation of inhibitory inputs to VTA dopamine neurons [119]. 

Consistent with this mechanism, we also found that oxycodone self-administering mice exhibited an 

increase in AMPA/NMDA ratio in accumbal MSNs, which was accompanied by an increased amplitude of 

mEPSCs.  Conversely, we observed no effect of oxycodone self-administration on PPR or frequency of 
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mEPSCs. Together, these data suggest a post-synaptic strengthening of excitatory transmission onto 

accumbal MSNs. Cocaine exposure potentiates excitatory transmission onto NAcSh MSNs, although this 

plasticity is preferentially expressed in D1-MSNs [65,121,123] (but see [72]), while morphine self-

administration potentiates excitatory drive onto both D1- and D2-MNSs [41,78]. Here, we used electrical 

stimulation in wild-type mice, and therefore do not know if adaptations we observe are specific to a 

particular excitatory accumbal input, or whether they occur in both D1- and D2-MSNs within the 

accumbens. However, our results suggest a bimodal distribution of AMPA/NMDA ratio, raising the 

possibility that adaptations may be cell-type specific. Moreover, the paradigm of drug access differentially 

affects plasticity at discrete excitatory inputs to the NAc, with inputs from the paraventricular thalamus 

implicated in physical signs of withdrawal [77,78], medial prefrontal cortical inputs implicated in drug 

seeking, sensitization and reinstatement [41,72,79,120,121], and hippocampal inputs implicated in context 

recognition necessary for behavioral expression of drug seeking [73]. While these results demonstrate the 

utility of this oral paradigm for studying synaptic mechanisms underlying persistent drug-adaptive 

behavior into withdrawal, future work will determine how pathway- and cell type-specific plasticity 

contribute to discrete elements of addiction-relevant behavior in this oral opioid self-administration 

paradigm.  

Here we characterize a novel paradigm for study prescription opioid misuse. This oral, home cage two-

bottle choice procedure can be used to model several features of DSM criteria that are specifically 

relevant to OUD, while conserving the route of administration, pattern of access, and contextual factors 

relevant to prescription opioid intake. This model has potential utility for studying the neurobiological 

substrates driving drug relapse and quinine-resistant drug intake. Moreover, the high-throughput nature 

of this paradigm permits high-powered studies necessary for understanding sex differences, circadian 

biology, and individual variability underlying vulnerability to OUD.  
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Figure Captions 

Figure 1. Mice voluntarily consume oxycodone in a two-bottle choice paradigm. (a) 

schematic of experimental paradigm (n = CTRL: 20M/20F, OXY: 26M/26F). (b-c) Volumes of total 

liquid consumed in control or oxycodone-administering mice (CTRL female 3.527 ± 0.044, male = 

3.422 ± 0.049, OXY female = 4.233 ± 0.103, male = 3.862 ± 0.083). Mice with OXY available drank 

significantly higher volumes over the two-bottle choice phase (Fdrug = 55.679, p < 0.001), and 

female mice consumed higher volumes of OXY during the self-administration protocol (Fsex = 

9.588, p = 0.002, Fsex●drug = 1.833, p = 0.045). (d) Oxycodone dosage increased throughout the 

single bottle phase and mice continued to escalate their consumed oxycodone levels throughout 

the two-bottle choice phase (FTime = 2.743, p = 0.002). (e) There was no sex difference in 

escalation index, calculated as the dose on the final day of two-bottle choice (day 12) divided by 

dose on the first day of the two-bottle choice phase (day 6; Females = 1.610 ± 0.193, Males = 

1.748 ± 0.153, F = 0.313, p = 0.579). (f) Female mice self-administered higher total doses of 

oxycodone over the course of the protocol (Females = 1499.135 ± 78.745, Males = 1147.788 ± 

59.855, F = 12.619, p = 0.001). (g-h) OXY-self-administering mice, but not control mice developed 

a significant preference for the oxycodone-containing bottle over the 7 days of two-bottle choice, 

which did not differ between males and females (Fdrug = 227.488 p < 0.001, Fdrug●day = 9.233, p = 

0.003, Fsex = 3.308, p = 0.070 ). (i) There was no systematic preference for drinking water from the 

left or right bottle in CTRL mice, while mice consumed significantly more OXY solution relative to 

drinking water when available (CTRL female = 44.8 ± 4.9%, male = 53.9 ± 6.0% preference for 

right drinking bottle; OXY female = 88.2 ± 3.9%, male = 89.6 ± 3.2% preference for OXY-

containing bottle, Fdrug = 76.45 p < 0.001). (j-k) Sipper counts (photobeam breaks on each 

lickometer) were normalized for total Sipper Counts made over the 7 days of the two-bottle 

choice task and plotted in 1 hour bins in CTRL mice. There was no difference in sipper counts on 

the left vs. right sipper in control mice (CTRL female Left/Right = 0.531 ± 0.039/0.466 ± 0.039, 

male Left/Right = 0.465 ± 0.061/0.471 ± 0.048). (l-m) Counts were significantly higher on the 

oxycodone-containing bottle relative to the water containing bottle in oxycodone-administering 

mice (OXY female H2O/OXY = 0.287 ± 0.075/0.641 ± 0.087, male H2O/OXY = 0.218 ± 0.036/0.782 

± 0.036, Fbottle = 29.485, p < 0.001, Fdrug●bottle = 38.154, p < 0.001). 

Figure 2. Oral oxycodone self-administration induces hyperactivity and persistent physical 

withdrawal signs. (a) Experimental schematic. Home cages were equipped with PIR sensors to 

monitor activity during the single- and two-bottle choice phases of OXY-self administration.  

Withdrawal symptoms were assayed after 24h and after 3 weeks of withdrawal. (b-c) Both male 

and female mice exhibited significantly higher homecage activity during OXY self-administration 

than control mice (CTRL: 2072.189 ± 196.455, OXY = 4530.370, Fsex = 0.956, p = 0.333, 

Fdrug=19.549, p<0.001). (d) There was a significant effect of drug and time point, with OXY mice 

exhibiting higher levels of movement relative to control mice at acute (CTRL: 473.18 ± 20.18, OXY: 

570.65 ± 43.45 cm) and protracted (CTRL: 555.56 ± 27.62, OXY: 689.67 ± 29.00 cm) withdrawal 

time points (FTimePoint=10.938, p = 0.002, Fdrug = 13.343, p=0.001). (e) OXY mice exhibited greater 

numbers of jumps at both early (CTRL: 0.778 ± 0.298, OXY: 6.824 ± 2.254) and late withdrawal 

points (CTRL: 2.400 ± 0.498, OXY: 7.735 ± 1.523, Fdrug = 15.284, p < 0.001). (f) OXY mice exhibited 

increased paw tremors at both early (CTRL: 4.053 ± 1.217, OXY: 9.132 ± 2.423) and late time 

points (CTRL: 2.420 ± 0.590, OXY: 6.025 ± 1.763, Fdrug = 7.155, p = 0.010). (g-h) While there was a 

significant effect of time point on both rearing and grooming behavior (Rearing FTimePoint = 46.380, 

p < 0.001, Grooming FTimePoint = 7.757, p = 0.007), these behaviors were not different between 

control and OXY-self-administering mice. (i) There was a significant effect of drug on climbing 
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time at the acute time point only (CTRL: 7.862 ± 1.269, OXY: 21.092 ± 6.080 sec, Fdrug = 5.065, p 

=0.028). (h-i) *p<0.05, **p<0.01, ***p<0.001. 

Figure 3. Drug seeking behavior persists into protracted withdrawal. (a) Experimental 

timeline (CTRL n = 10M/10F, OXY n = 10M/10F). 24h (early seeking) and 24 days (late seeking) 

after the two-bottle choice protocol, drinking counts were measured under extinction conditions. 

(b) Time course of photobeam breaks (sipper counts) made on empty bottles over the 60 minute 

probe trial; mice that had self-administered OXY showed more seeking interactions relative to 

controls (Fdrug = 51.062 p < 0.0001), with no difference between early and late seeking (FTimePoint = 

0.227, p = 0.653, Fdrug●TimePoint = 0.927, p=0.339). (c-e) Both male and female mice that had self-

administered OXY exhibited higher sipper counts in early withdrawal (CTRL female = 17.3 ± 3.50, 

male = 6.5 ± 2.50, OXY female = 62.9 ± 12.33, male = 82.6 ± 20.87, Fdrug = 24.427, p<0.001). (f-h) 

Both male and female mice that had self-administered OXY exhibited higher sipper counts in 

early withdrawal (CTRL female = 15.2 ± 5.64, male = 15.9 ± 3.55, OXY female = 59.4 ± 13.58, male 

= 64.5 ± 8.12, Fdrug = 29.220, p<0.001).    

Figure 4. Oral OXY self-administration is resistant to quinine adulteration. (a) Experimental 

schematic. After seven days of two-bottle choice, the OXY-containing bottle (or one H2O bottle in 

CTRL mice) was adulterated with increasing concentrations of quinine. CTRL = 7M/8F, OXY 

n=8M/7F. (b-c) Normalized volume consumed from the quinine-adulterated bottle over the final 

three days of two bottle choice (before quinine adulteration) and for 6 days of quinine 

adulteration. (d-e) Area under the curve of adulterated quinine drinking volumes. There was a 

significant effect of Drug (Fdrug = 27.908, p<0.001), of day (Fday = 66.767, p<0.001) and 

interaction (Fdrug●day = 7.485, p<0.001), with both male and female OXY mice exhibiting 

significantly higher AUC relative to CTRL mice (Fsex = 0.6896, p = 0.414, CTRL female = 0.862 ± 

0.130, male = 0.989 ± 0.201, OXY female = 3.495 ± 0.662, male = 2.704 ± 0.415).   

Figure 5. Excitatory transmission onto NAc MSNs is increased after withdrawal from OXY 

self-administration. (a) experimental schematic and representative alexofluor-488 filled MSN 

(green), DAPI nuclear stain shown in blue. (b) Location of recorded cells in control (above) and 

oxycodone-self-administering groups (bottom); AP coordinates relative to bregma are indicated 

(mm) (c) representative traces showing calculation of AMPA/NMDA and paired pulse ratio in 

control (top) and OXY withdrawn (bottom) groups; scale bar = 50 pA, 50 ms. (d) There was a 

significant increase in A/N following OXY withdrawal (CTRL = 1.79 ± 0.13, OXY = 3.46 ± 0.33; Fdrug 

= 21.07, p<0.0001), and a significant drug by sex interaction (Fdrug●sex = 4.98, p = 0.030). (e) PPR 

was not different between groups (CTRL = 1.06 ± 0.06, OXY = 0.945 ± 0.07; Fdrug = 1.37, p=0.36). 

(f-g) There was a significant increase in mEPSC amplitude following OXY withdrawal 

(Kolmogorov–Smirnov test statistic = 2.89, p < 0.05) but no difference in mEPSC frequency 

between groups (Kolmogorov–Smirnov test statistic = 1.12, p = 0.16). Scale bar = 20 pA, 1 sec.  

Supplemental Figure 1. Individual data for oxycodone dose and preference. a) Baseline 

preference for 1.0 mg/ml oxycodone in naïve mice; while both males and females showed a 

preference for water over oxycodone, the initial preference was higher for females, which was 

driven by a subset of oxy-preferring mice (males: 5.21 ± 1.39, females: 24.03 ± 7.90, Fsex = 6.59, p 

= 0.014). b) Body weight for individual subjects; while the average weight of males was 

significantly higher than that of females (CTRL male = 26.09 ± 37, female = 20.96 ±0.39, OXY 

male = 25.57 ± 0.41, female = 22.07 ± 0.46), drug treatment did not have a significant effect on 

body weight (Fsex = 107.174, p< 0.0001, Fdrug = 0.474, p = 0.493, Fsex*drug = 3.837, p = 0.054). (c-d) 
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Daily dose escalation curves for individual subjects (n = 20 M, 20 F). (c-d) Preference for 

oxycodone for individual mice; preference is defined as [consumed volume of oxycodone / total 

volume of fluid consumption]. (e-f) Escalation of oxycodone dose for individual mice; dose is 

defined as [mg oxycodone consumed / body weight].  

Supplemental Figure 2. Individual data for sipper counts over two-bottle choice phase in 

control and oxycodone self-administering mice. Individual cumulative lickometer photo-

interrupter counts for each subject are shown. Counts made on the left and right bottles are 

shown for controls are shown separately (left, right, respectively). Counts made on the 

oxycodone-filled and water-filled bottles are shown separately (oxycodone, water, respectively). 

Supplemental Figure 3. Homecage drinking monitoring confirms OXY preference and 

reveals altered patterns of OXY and water intake. Circadian index for Sipper Counts on each 

bottle (Dark Cycle Counts/Light Cycle Counts). Circadian index for both water and oxycodone 

drinking was significantly lower in OXY- mice (CTRL female Left/Right = 0.740 ± 0.030/0.783 ± 

0.029, male Left/Right = 0.737 ± 0.021/0.768 ± 0.029, FDrug = 28.617 p < 0.001, FBottle = 0.899, p = 

0.345).  

Supplemental Figure 4. Oxycodone-induced activity patterns did not differ between male 

and female mice. PIR counts during the single bottle and two-bottle choice phases of the self-

administration protocol are shown for male mice (a) and female mice (b). **P < 0.01 

Supplemental Figure 5. Individual data for sipper counts during early and late seeking 

tasks. Individual photobeam breaks made during the 60-minute probe test made under 

extinction conditions in both the early (a) and late (b) withdrawal time points. Data from males 

(left) and females (right) is shown. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.02.08.430180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430180
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.02.08.430180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430180
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Mice voluntarily consume oxycodone in a two-bottle choice 

paradigm. (a) schematic of experimental paradigm (n = CTRL: 20M/20F, OXY: 

26M/26F). (b-c) Volumes of total liquid consumed in control or oxycodone-

administering mice (CTRL female 3.527 ± 0.044, male = 3.422 ± 0.049, OXY female 

= 4.233 ± 0.103, male = 3.862 ± 0.083). Mice with OXY available drank 

significantly higher volumes over the two-bottle choice phase (Fdrug = 55.679, p < 

0.001), and female mice consumed higher volumes of OXY during the self-

administration protocol (Fsex = 9.588, p = 0.002, Fsex●drug = 1.833, p = 0.045). (d)

Oxycodone dosage increased throughout the single bottle phase and mice 

continued to escalate their consumed oxycodone levels throughout the two-

bottle choice phase (FTime = 2.743, p = 0.002). (e) There was no sex difference in 

escalation index, calculated as the dose on the final day of two-bottle choice (day 

12) divided by dose on the first day of the two-bottle choice phase (day 6; 

Females = 1.610 ± 0.193, Males = 1.748 ± 0.153, F = 0.313, p = 0.579). (f) Female 

mice self-administered higher total doses of oxycodone over the course of the 

protocol (Females = 1499.135 ± 78.745, Males = 1147.788 ± 59.855, F = 12.619, p 

= 0.001). (g-h) OXY-self-administering mice, but not control mice developed a 

significant preference for the oxycodone-containing bottle over the 7 days of 

two-bottle choice, which did not differ between males and females (Fdrug = 

227.488 p < 0.001, Fdrug●day = 9.233, p = 0.003, Fsex = 3.308, p = 0.070 ). (i) There 

was no systematic preference for drinking water from the left or right bottle in 

CTRL mice, while mice consumed significantly more OXY solution relative to 

drinking water when available (CTRL female = 44.8 ± 4.9%, male = 53.9 ± 6.0% 

preference for right drinking bottle; OXY female = 88.2 ± 3.9%, male = 89.6 ±

3.2% preference for OXY-containing bottle, Fdrug = 76.45 p < 0.001). (j-k) Sipper 

counts (photobeam breaks on each lickometer) were normalized for total Sipper 

Counts made over the 7 days of the two-bottle choice task and plotted in 1 hour

bins in CTRL mice. There was no difference in sipper counts on the left vs. right 

sipper in control mice (CTRL female Left/Right = 0.531 ± 0.039/0.466 ± 0.039, 

male Left/Right = 0.465 ± 0.061/0.471 ± 0.048). (l-m) Counts were significantly 

higher on the oxycodone-containing bottle relative to the water containing bottle 

in oxycodone-administering mice (OXY female H2O/OXY = 0.287 ± 0.075/0.641 ±

0.087, male H2O/OXY = 0.218 ± 0.036/0.782 ± 0.036, Fbottle = 29.485, p < 0.001, 

Fdrug●bottle = 38.154, p < 0.001). 
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Supplemental Figure 1. Individual data for oxycodone dose and 

preference. a) Baseline preference for 1.0 mg/ml oxycodone in naïve 

mice; while both males and females showed a preference for water over 

oxycodone, the initial preference was higher for females, which was 

driven by a subset of oxy-preferring mice (males: 5.21 ± 1.39, females: 

24.03 ± 7.90, Fsex = 6.59, p = 0.014). b) Body weight for individual 

subjects; while the average weight of males was significantly higher 

than that of females (CTRL male = 26.09 ± 37, female = 20.96 ±0.39, 

OXY male = 25.57 ± 0.41, female = 22.07 ± 0.46), drug treatment did 

not have a significant effect on body weight (Fsex = 107.174, p< 0.0001, 

FDrug = 0.474, p = 0.493, Fsex*drug = 3.837, p = 0.054). (c-d) Daily dose 

escalation curves for individual subjects (n = 20 M, 20 F). (c-d)

Preference for oxycodone for individual mice; preference is defined as 

[consumed volume of oxycodone / total volume of fluid consumption]. (e-

f) Escalation of oxycodone dose for individual mice; dose is defined as 

[mg oxycodone consumed / body weight]. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.02.08.430180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430180
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.02.08.430180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430180
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 2. Individual data for sipper counts over two-bottle 

choice phase in control and oxycodone self-administering mice.

Individual cumulative lickometer photo-interrupter counts for each subject 

are shown. Counts made on the left and right bottles are shown for controls 

are shown separately (left, right, respectively). Counts made on the 

oxycodone-filled and water-filled bottles are shown separately (oxycodone, 

water, respectively).
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Supplemental Figure 3. Home cage drinking monitoring confirms 

altered circadian rhythm of oxycodone intake. Circadian index for 

Sipper Counts on each bottle (Dark Cycle Counts/Light Cycle Counts). 

Circadian index for both water and oxycodone drinking was significantly 

lower in OXY-self administering mice (CTRL female Left/Right = 0.740 ±

0.030/0.783 ± 0.029, male Left/Right = 0.737 ± 0.021/0.768 ± 0.029, FDrug

= 28.617 p < 0.001, FBottle = 0.899, p = 0.345). 
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Figure 2. Oral oxycodone self-administration induces hyperactivity 

and persistent physical withdrawal signs. (a) Experimental schematic. 

Home cages were equipped with PIR sensors to monitor activity during the 

single- and two-bottle choice phases of OXY-self administration.  

Withdrawal symptoms were assayed after 24h and after 3 weeks of 

withdrawal. (b-c) Both male and female mice exhibited significantly higher 

home cage activity during OXY self-administration than control mice (CTRL: 

2072.189 ± 196.455, OXY = 4530.370, Fsex = 0.956, p = 0.333, FDrug=19.549, 

p<0.001). (d) There was a significant effect of drug and time point, with 

OXY mice exhibiting higher levels of movement relative to control mice at 

acute (CTRL: 473.18 ± 20.18, OXY: 570.65 ± 43.45 cm) and protracted (CTRL: 

555.56 ± 27.62, OXY: 689.67 ± 29.00 cm) withdrawal time points 

(FTimePoint=10.938, p = 0.002, FDrug = 13.343, p=0.001). (e) OXY mice 

exhibited greater numbers of jumps at both early (CTRL: 0.778 ± 0.298, 

OXY: 6.824 ± 2.254) and late withdrawal points (CTRL: 2.400 ± 0.498, OXY: 

7.735 ± 1.523, FDrug = 15.284, p < 0.001). (f) OXY mice exhibited increased 

paw tremors at both early (CTRL: 4.053 ± 1.217, OXY: 9.132 ± 2.423) and 

late time points (CTRL: 2.420 ± 0.590, OXY: 6.025 ± 1.763, FDrug = 7.155, p = 

0.010). (g-h) While there was a significant effect of time point on both 

rearing and grooming behavior (Rearing FTimePoint = 46.380, p < 0.001, 

Grooming FTimePoint = 7.757, p = 0.007), these behaviors were not different 

between control and OXY-self-administering mice. (i) There was a 

significant effect of drug on climbing time at the acute time point only 

(CTRL: 7.862 ± 1.269, OXY: 21.092 ± 6.080 sec, FDrug = 5.065, p =0.028). (h-i) 

*p<0.05, **p<0.01, ***p<0.001.
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Supplemental Figure 4. Oxycodone-induced activity patterns did 

not differ between male and female mice. PIR counts during the 

single bottle and two-bottle choice phases of the self-administration 

protocol are shown for male mice (a) and female mice (b). **P < 0.01

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.02.08.430180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430180
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.02.08.430180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430180
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Drug seeking behavior persists into protracted withdrawal. 

(a) Experimental timeline (CTRL n = 10M/10F, OXY n = 10M/10F). 24h 

(early seeking) and 24 days (late seeking) after the two-bottle choice 

protocol, drinking counts were measured under extinction conditions. (b)

Time course of photobeam breaks (sipper counts) made on empty bottles 

over the 60 minute probe trial; mice that had self-administered OXY 

showed more seeking interactions relative to controls (Fdrug = 51.062 p < 

0.0001), with no difference between early and late seeking (FTimePoint = 

0.227, p = 0.653, Fdrug●TimePoint = 0.927, p=0.339). (c-e) Both male and 

female mice that had self-administered OXY exhibited higher sipper 

counts in early withdrawal (CTRL female = 17.3 ± 3.50, male = 6.5 ± 2.50, 

OXY female = 62.9 ± 12.33, male = 82.6 ± 20.87, Fdrug = 24.427, p<0.001). 

(f-h) Both male and female mice that had self-administered OXY 

exhibited higher sipper counts in early withdrawal (CTRL female = 15.2 ±

5.64, male = 15.9 ± 3.55, OXY female = 59.4 ± 13.58, male = 64.5 ± 8.12, 

Fdrug = 29.220, p<0.001).   
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Supplemental Figure 5. Individual data for sipper counts 

during early and late seeking tasks. Individual photobeam 

breaks made during the 60 minute probe test made under 

extinction conditions in both the early (a) and late (b) withdrawal 

time points. Data from males (left) and females (right) is shown.
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Figure 4. Oral OXY self-administration is resistant to quinine adulteration. 

(a) Experimental schematic. After seven days of two-bottle choice, the OXY-

containing bottle (or one H2O bottle in CTRL mice) was adulterated with 

increasing concentrations of quinine. CTRL = 7M/8F, OXY n=8M/7F. (b-c)

Normalized volume consumed from the quinine-adulterated bottle over the final 

three days of two bottle choice (before quinine adulteration) and for 6 days of 

quinine adulteration. (d-e) Area under the curve of adulterated quinine drinking 

volumes. There was a significant effect of Drug (Fdrug = 27.908, p<0.001), of day 

(Fday = 66.767, p<0.001) and interaction (Fdrug●day = 7.485, p<0.001), with both 

male and female OXY mice exhibiting significantly higher AUC relative to CTRL 

mice (Fsex = 0.6896, p = 0.414, CTRL female = 0.862 ± 0.130, male = 0.989 ±

0.201, OXY female = 3.495 ± 0.662, male = 2.704 ± 0.415).  
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Figure 5. Excitatory transmission onto NAc MSNs is increased after 

withdrawal from OXY self-administration. (a) experimental schematic 

and representative alexofluor-488 filled MSN (green), DAPI nuclear stain 

shown in blue. (b) Location of recorded cells in control (above) and 

oxycodone-self administering groups (bottom); AP coordinates relative to 

bregma are indicated (mm) (c) representative traces showing calculation of 

AMPA/NMDA and paired pulse ratio in control (top) and OXY withdrawn 

(bottom) groups; scale bar = 50 pA, 50 ms. (d) There was a significant 

increase in A/N following OXY withdrawal (CTRL = 1.79 ± 0.13, OXY = 3.46 ±

0.33; Fdrug = 21.07, p<0.0001), and a significant drug by sex interaction 

(Fdrug●sex = 4.98, p = 0.030). (e) PPR was not different between groups (CTRL 

= 1.06 ± 0.06, OXY = 0.945 ± 0.07; Fdrug = 1.37, p=0.36). (f-g) There was a 

significant increase in mEPSC amplitude following OXY withdrawal 

(Kolmogorov–Smirnov test statistic = 2.89, p < 0.05) but no difference in 

mEPSC frequency between groups (Kolmogorov–Smirnov test statistic = 

1.12, p = 0.16). Scale bar = 20 pA, 1 sec. 
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