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Abstract 

Motivation 

Modern methods of whole transcriptome sequencing accurately recover nucleotide 

sequences of RNA molecules present in cells and allow for determining their 

quantitative abundances. The coding potential of such molecules can be estimated 

using open reading frames (ORF) finding algorithms, implemented in a number of 

software packages. However, these algorithms show somewhat limited accuracy, are 

intended for single-molecule analysis and do not allow selecting proper ORFs in the 

case of long mRNAs containing multiple ORF candidates. 

Results 

We developed a computational approach, corresponding machine learning model 

and a package, dedicated to automatic identification of the ORFs in large sets of 

human mRNA molecules. It is based on vectorization of nucleotide sequences into 

features, followed by classification using a random forest. The predictive model was 

validated on sets of human mRNA molecules from the NCBI RefSeq and Ensembl 

databases and demonstrated almost 95% accuracy in detecting true ORFs. The 

developed methods and pre-trained classification model were implemented in a 

powerful ORFhunteR computational tool that performs an automatic identification of 

true ORFs among large set of human mRNA molecules. 

Availability and implementation 

The developed open-source R package ORFhunteR is available for the community at 

GitHub repository (https://github.com/rfctbio-bsu/ORFhunteR), from Bioconductor 

(https://bioconductor.org/packages/devel/bioc/html/ORFhunteR.html) and as a web 

application (http://orfhunter.bsu.by). 
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Introduction 

High-throughput technologies allow capturing sequence information about whole 

transcriptomes in a reasonable time and cost. A number of high-performance 

computational approaches has been developed to restore the structure of full-length 

RNA molecules (or transcripts) from short RNA-Seq reads and to get qualitative and 

quantitative characteristics of these molecules (Mardis, 2017; Reuter, et al., 2015). 

One of the most important properties of transcripts is their coding potential that can 

be estimated using numerous algorithms. Methods implemented in NCBI ORFfinder 

(Sayers, et al., 2019), CPC2 (Kang, et al., 2017), OrfPredictor (Min, et al., 2005), 

ORFik (Tjeldnes and Labun, 2019), getORF (Rice, et al., 2000) are based on the 

selection of the longest open reading frame (ORF) from all possible candidates. 

Other tools, often used for metagenomics analysis, are based on vectorization of 

sequence features of ORF-candidates, which is an efficient conversion of nucleotide 

sequence into a vector of sequence features (Al-Ajlan and El Allali, 2018; Al-Ajlan 

and El Allali, 2019; El Allali and Rose, 2013; Hoff, et al., 2008; Trimble, et al., 2012; 

Zhang, et al., 2017). These features can be evaluated by a machine learning models 

in order to select true ORFs. Alternatively, statistical methods can be used to identify 

the most probable ORFs (Rainey and Repka, 2013). There is a spectrum of diverse 

algorithms implemented in the existing tools, such as ORF Investigator (Dhar and 

Kumar, 2018), GetOrf (Artimo, et al., 2012), OrfM (Woodcroft, et al., 2016), 

TransDecoder (Haas, 2018), findorf (Krasileva, et al., 2013), ORF Finder (Stothard, 

2000), OrfPredictor Server (Min, et al., 2005), StarORF (Shubert, et al.), EasyGene 

(Nielsen and Krogh, 2005), FramePlot (Bibb, et al., 1984) or Third Position GC Skew 

Display (Ishikawa and Hotta, 1999). However, these tools have several limitations. 

First, they do not allow making a reasonable choice of one of the ORFs, if multiple 

candidates exist in the considered RNA molecule. Second, they usually work with 

individual molecules, and do not provide automated computational tools for a 

high-throughput analysis of large data sets. Finally, they show low accuracy 

predicting ORFs, require significant computing resources, considerably long 

computation time, and lack of integration with software aimed at the analysis of 

structural and functional characteristics of RNA molecules. 

A promising way that could wave the main drawbacks of existing algorithms, is to 

select the informative parameters describing candidate ORF fragments using 

advanced algorithms of nucleotide sequence vectorization (Bao, et al., 2014; Mao, 

et al., 2014), and then to apply an optimal prediction algorithm and identify the most 

probable or true ORF sequence among candidates. This approach needs only a 
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limited set of input features (here we used 104), which is significantly less than 

4000-5000 considered earlier (Al-Ajlan and El Allali, 2018). The use of a random 

forest classifier (Breiman, 2001) has several advantages over more complex deep 

learning techniques (Al-Ajlan and El Allali, 2019; Wen, et al., 2019). A classical random 

forest classifier requires less computation power and a smaller training set, is less 

prone to an overfitting problem, and is much more interpretable. 

Here we present a computational approach and its implementation, an 

ORFhunteR – R/Bioconductor package, aimed at automatic determination of true ORFs 

in mRNA molecules. The proposed method is based on i) vectorization of nucleotide 

sequences into sequence-dependent features and ii) a random forest classifier. 

 

Methods 

Data 

We downloaded sequences of well-annotated 128161 mRNA molecules of 

protein-coding genes and 4235 long non-coding RNA (lncRNA) molecules from the 

manually curated NCBI RefSeq database (NCBI RefSeq release 109 based on 

GRCh38.p12 reference assembly of human genome). Coordinates and extracted 

sequences of highly confident true ORFs in mRNA molecules were collected, 

resulting in 113085 records in total. Additionally, we calculated coordinates and 

extracted 108800 sequences of pseudo-ORFs from lncRNA molecules. Similar to 

real ORFs, pseudo-ORFs begin with ATG start codon and end in-frame with one of 

the stop codons, but are not translated into proteins. These two sets of ORFs were 

combined into a single well-balanced discovery data set of true ORFs and 

pseudo-ORFs (imbalance index of 1.04) (Orriols-Puig and Bernadó-Mansilla, 2008). 

In addition, we downloaded Ensembl annotations of human genes (Ensembl release 

97 based on GRCh38.p12 reference assembly of human genome) and extracted the 

sequences of mRNA and lncRNA molecules. To avoid artifacts of Ensembl 

annotation algorithm, we excluded: i) mitochondrial transcripts, ii) 5’ incomplete 

transcripts, containing canonical stop codon but lacking a start codon inside the 

sequence, iii) 3’ incomplete transcripts containing canonical start codon ATG but 

lacking a stop codon inside the sequence, iv) both 5’ and 3’ incomplete transcripts 

lacking start and stop codons inside the sequence, v) and transcripts with 

non-canonical start codons CTG, GTG or TTG. We combined filtered Ensembl 

mRNAs (56765 records in total) and lncRNAs (74980 records in total) into a single 

test data set of RNA molecules. 
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training of the 
classification model 

identification of the true 
ORFs in a set of RNA 
molecules of interest 

annotation of the 
identified ORFs 

Overview of the computational approach 

The proposed computational approach for the automatic identification of the true 

ORFs integrates algorithms for vectorization (Zakirava, et al., 2019) and random 

forest-based classification (Breiman, 2001). Our pipeline is presented in Figure 1, 

and includes the following five steps: building a discovery data set of ORFs, 

vectorization of discovery data set ORFs into sequence features, training of the 

classification model, identification of the true ORFs in a set of mRNA molecules, and 

(optionally) annotation of the identified ORFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The main stages for automatic identification of ORFs in RNA molecules. 

 

The discovery data set of ORFs was developed as described in previous section. 

These ORFs were vectorized into 104 sequence features: frequency of mono-, 

di- and trinucleotides (84 features) (Zakirava, et al., 2019), nucleotide correlation 

factors (Mao, et al., 2014), sequence lengths (8 features in total), and parameters of 

the Category-Position-Frequency (CPF) model representing the local 

frequency-based entropy values of sequences (12 features) (Bao, et al., 2014). As was 

shown in numerous studies, these features are indeed informative for classification of 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429963doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429963
http://creativecommons.org/licenses/by/4.0/


 - 6 - 

coding and non-coding regions of RNA molecules (Bao, et al., 2014; Mao, et al., 2014; 

Zakirava, et al., 2019). Below the 104 features are considered in details. 

The frequency parameters of mono-, bi- and trinucleotides were calculated by the 

standard algorithms, integrated in the R/Bioconductor package Biostrings. 

When calculating the parameters of the nucleotide correlation factors, the sequence 

is divided into m sections with a length of 20 base pairs. The probabilities 

  
    

    
    

 , or abovementioned frequencies, of four mononucleotides A, C, T, G in 

each i-th section are calculated. Six correlation factors of nucleotide pairs are: 
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The sequence length-dependent features are represented by both the number of 

nucleotide between the start and the stop codons and its logarithm. 

In the CPF model (Bao, et al., 2014), the nucleotide sequence is served as a parent 

of three sequences of the same length, containing two possible symbols instead of 

four bases. The transformation is carried out according to the chemical structure of 

nucleotides: the substitution in the first sequence is based on the fact that the 

nucleotides A and G contain a purine group, and the bases T and C – a pyrimidine 

group. The second sequence takes into account that the nucleotides A and C involve 

an amino group and T and G – a ketamine group. When constructing the third 

sequence, the features of complementary bonds are taken into account: the 

A-T bond is weak, and the G-C bond is strong. Further, from each sequence, 4 new 

binary sequences are generated (Bao, et al., 2014). The binary sequences are 

translated into the sequences of the local frequencies LFw
r: 

   
  

 

     
       

  ,    (7) 

where r is the order of occurrence of a word w, r = 1, 2, .., n, n is the binary sequence 

length, lwr denotes the position of the r-th occurrence of the w, and lw0 is defined as 0. 
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The sequence of local frequencies is converted into a sequence of a partial sum: 

   {  }  {∑    
  

   },   (8) 

where i = 1, 2, .., n. The entropy is calculated as: 

    ∑         
 
   ,   (9) 

where 

   
  

∑   
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The resulting entropy is the feature value of the binary sequence. Entropy is 

calculated for each of 12 binary sequences, representing 12 features generated by 

the CPF model. 

With above developed and vectorized discovery data set of ORFs, the 

104 parameters for a random forest classifier were calculated. The random forest 

classification algorithm was selected since it has a high classification accuracy, quite 

stable against overfitting, provides estimation of a feature informativity based on a 

selected criterion, it is fast and requires less computational resources comparing to 

advanced deep learning algorithms (Wen, et al., 2019). 

Next, the trained classification model was applied for identification of the true ORFs 

among ORF candidates extracted from mRNA molecules of interest. For each mRNA 

molecule, ORF candidates were inferred as sequences beginning from ATG start 

codon and ending in-frame with one of the stop codons. These ORF candidates were 

vectorized into 104 sequence features and used as input in classification model for 

identification of the true ones. Finally, identified ORFs could be annotated using 

various metrics implemented in our software. 

Computations and program package realization 

We implemented computational algorithms in the R and C++ programming 

languages using R/Bioconductor and CRAN packages. Usage of C++ with Rpp 

package increased the performance of the analysis by almost 100-fold. 

To develop the classifier, based on the random forest method, the R package 

randomForest was used (Breiman, 2001). One of the advantages of this 

implementation is its ability to assess the significance of the features by the Gini 

index (Hastie, et al., 2009). We tested random forests composed of 200, 300, 400, 

500, and 5000 trees. The classification error for these trees varied less than by 0.5%. 

The computation time increased almost linearly with an increase of the number of 

trees. This also led to increase of the file size, obtained when saving the model. A 
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decision was made by voting among 500 trees, which provides high accuracy with 

reasonable computation time. 

All computations and data analyzes were carried out on a PC with a 12-core Intel i9 

processor (3.9 GHz), 64 Gb DDR4 RAM. The most time consuming step was training 

of the classification model, which took about 5 hours. 

The developed algorithms are integrated into an ORFhunteR package (identification 

of the Open Reading Frames by hunting with R codes). Several versions of 

ORFhunteR software packages were implemented, including the basic R-package 

deposited in GitHub repository (https://github.com/rfctbio-bsu/ORFhunteR) and online 

application (http://orfhunter.bsu.by). 

The functional structure of the ORFhuneR package is shown in Figure 2. From this 

package, the function loadTrExper loads a set of input transcripts. In the uploaded 

transcripts, ORF candidates are identified using the functions codonStartStop and 

findORFs. These ORF candidates are vectorized into sequence features using the R 

function vectorizeORFs in conjunction with the C++ functions getBaoMetrics and 

getCorrelationFactors. The vectorized ORF candidates are classified into true ORFs 

and pseudo-ORFs by function predictORFs. If necessary, the nucleotide sequence of 

the true ORFs can be obtained using the function getSeqORFs. Finally, identified 

true ORFs can be annotated by function annotateORFs in conjunction with the 

functions findPTCs and translateORFs. Herewith, the function findPTCs identifies 

premature termination codons in transcripts of interest while function translateORFs 

translates ORFs to proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The functional structure of ORFhunteR package. 
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Results and discussion 

For training of the classification model, we utilized sequence data from NCBI RefSeq 

database due to a number of minimal technical artifacts comparing to alternative 

sources of sequence information. Collected sequences were used for development of 

the discovery data set of ORFs. We next vectorized these ORFs into 104 sequence 

features and randomly divided them into training (75% of records) and validation 

(25% of records) sub-sets of sequences. Internal evaluation of the classification 

accuracy was performed on the validation sub-set. 

To assess the classification accuracy of true ORFs and pseudo-ORFs, the accuracy 

was calculated as the percentage of correctly classified ORFs to the total number of 

inputted ORFs. In our classification model, the classification accuracy of the 

validation sub-set of ORFs reached 99.4%. Nearly the same value was obtained for 

the entire discovery data set. These results were in a very good agreement with 

principal component analysis, according to which the two classes of ORFs are well 

separated (Figure 3a). Herewith the parameters of the CPF model and ORF length 

turned out the most important sequence features in the class determination of ORFs 

(Figure 3b). The less informative sequence features are the nucleotide frequencies 

and nucleotide correlation factors. 

 

 

 

 

 

 

 

 

 

 

Figure 3. The sequences features of the discovery data set of ORFs. 

(a) LncRNAs and mRNAs derived references ORFs in the space of the first three principal 

components.For each class of RNA molecules, only 1000 ORFs were randomly selected for 

compact representation. 

(b) The importance of sequence features in determining the class of ORF. The importance of 

features was assessed with Gini index in a random forest-based classification procedure. The 

higher mean decrease in the Gini index characterizes the quality of the tree node partitioning 

(the lower the value, the better the node partitioning), the more informative the feature is. The 

HSS, HMK and HKK features are the examples of CPF model parameters (Bao, et al., 2014). 
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To validate our classification model further, we calculated coordinates and extracted 

the sequences of all possible variants of ORF candidates from NCBI RefSeq and 

Ensembl human mRNA molecules as described above. 

Our classification model demonstrated 98.3% accuracy in identification of true ORFs 

in NCBI RefSeq data. Understanding that the classification model was constructed 

based on the true ORFs and pseudo-ORFs generated from the NCBI RefSeq RNAs 

that might lead to an overfitted model, we then analyzed the Ensembl RNA data. On 

this dataset, the approach allows to identify the true ORFs with an accuracy of 

94.9%. In fact, 91.9% of ORFs that were identified in Ensembl human mRNA 

molecules demonstrates probability  0.9 for the “winning” class of true ORFs 

(Figure 4a, b; the probability of the ORF to be coding is calculated by the random 

forest classifier). At the same time, distribution of probability values for pseudo-ORFs 

from long non-coding RNA molecules differs (Figure 4c). 

However, choosing of a suitable threshold of probability to discriminate true ORFs 

and pseudo-ORFs in mRNA molecules is still challenging. We suggest two 

approaches for solving this problem. The first approach is to choose an adaptive 

probability threshold at which the rate of detection of true ORFs is maximized and the 

rate of detection of pseudo-ORFs is minimized. With the Ensembl dataset, this 

threshold value can be 0.9 (Figure 5). Alternative approach combines classifying the 

coding RNA molecules at first and then determining the ORFs for those coding RNAs 

at second, meaning no needs for using a probability threshold. The first step of this 

combined approach can be done in independently using, for example, convolutional 

neural networks (Wen, et al., 2019). 

Conclusion 

The efficient computational approach for the identification of unknown ORFs in 

mRNA molecules was developed and integrated into the corresponding 

R/Bioconductor package ORFhunteR. It is based on vectorization of the sequence 

features of ORFs candidates and predicting the most evident by a random forest 

classifier. Our numerical tests resulted the accuracy of ORFs identification 98.3% 

and 94.9% on the discovery and test data sets. In our mind, the developed approach 

has three advantages over the competing strategies based on neural networks 

(Al-Ajlan and El Allali, 2019; Wen, et al., 2019): i) it requires less computing resources 

and works out much faster; ii) it is less prone to overfitting as a neural network and 

uses a limited set of vectorized features (unlike the statistical approaches using 

thousands of features); iii) finally, random forest classifiers show way better 

interpretability compared to deep learning or boosting models. 
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Figure 4. Distribution of probability values on identification of true ORFs and pseudo-ORFs in 

different human RNA molecules (Ensembl release 97, GRCh38.p12 human reference 

genome assembly). 

(a) Empirical cumulative distribution of probability values for ORFs that were identified in 

mRNAs (‒) and lncRNAs encoded by lncRNA genes (‒), protein-coding genes (‒), 

transcribed processed pseudogenes (‒), transcribed unprocessed pseudogenes (‒) and 

transcribed unitary pseudogenes (‒). 

(b) Frequency of probability values for ORFs that were identified in mRNAs and lncRNAs 

encoded by lncRNA genes. 

(c) Boxplot demonstrating the distribution of probability values for ORFs that were identified in 

mRNAs and lncRNAs different gene biotypes. 

 

 

 

 

 

 

 

 

 

Figure 5. Relationship between fraction size of ORFs and probability of true ORF class for 

Ensembl-based human mRNAs and lncRNAs. 
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Code availability 

Code developed in this study is freely available via GitHub project ORFhunteR at 

https://github.com/rfctbio-bsu/ORFhunteR. 
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