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Abstract

A key step in the cellular adaptive immune response is the presentation of antigen to T cells. Dur-

ing this process short peptides processed from self or  foreign proteins may be presented on the

surface bound to MHC molecules for binding to T cell  receptors. Those that bind and activate an

immune response are called epitopes. Computational prediction of T cell epitopes has many appli-

cations in vaccine design and immuno-diagnostics. This is the basis of immunoinformatics which

allows in silico screening of peptides before experiments are performed. The most effective  ap-

proach is to estimate the binding affinity of a given peptide fragment to MHC class I or II molecules.

With the availability of whole genomes for many microbial species it is now feasible to computa-

tionally screen whole proteomes for candidate peptides. epitopepredict is a programmatic frame-

work and command line tool designed to aid this process. It provides access to multiple binding

prediction algorithms under a single interface and scales for whole genomes using multiple target

MHC alleles. A web interface is provided to assist visualization and filtering of the results. The soft-

ware  is  freely  available  under  an  open  source  license  from  https://github.com/dmnfarrell/  epi  -  

topepredict

Background

An essential step in provoking adaptive immunity, delivered by the activated CD8+ or CD4+ T cells,

is the recognition of T cell receptor (TCR) to T cell epitopes. The ‘epitope’ is the peptide-MHC com-

bination resulting from the binding of antigenic peptides to MHC proteins. This is the major determi-

nant  step and is computationally predictable. Algorithms that can identify MHC-class I ot MHC-

class II binding peptides rapidly and accurately are essential in for vaccine development, neo-epi-

tope discovery  and immunogenicity screening of protein therapeutics. Many MHC binding predic-
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tion methods exist for both class I and II and have been comprehensively reviewed [1]. Currently

the most effective are machine learning (ML) based approaches which are trained on existing bind-

ing affinity data for a given MHC molecule. To do this the peptide sequence is encoded and these

features fit against the known affinity. To date artificial neural networks (ANN) preform better at this

task than other models such as linear regression. This is likely because the hidden layers in such

networks are better able to account for the contribution of intrapeptide residue-residue interactions

to the binding affinity. All methods vary in accuracy over MHC alleles depending on the availability

of quality datasets. Pan-allele tools have been developed to deal with this issue  [2]. These ap-

proaches can impute affinities for unknown alleles on the basis of neighboring MHC with the high-

est sequence similarity and which have sufficient training data.

By convention, selection of peptides is done using an arbitrary score threshold. For affinities, a

threshold value of 500nM is considered a binder and 50nM a strong binder. The algorithms perform

best at this classification task rather than re-producing exact affinities. This problem is intrinsic to

ML-based  approaches:  the  effect  of  the  most  dominant  features  is  penalized  intentionally  to

achieve better generalization on blind test data [3]. Another source of the inaccuracy is the loss of

sensitivity of experimental assays at either very high or low binding affinity regimes. As a conse-

quence, epitope candidates for subsequent experimental validation selected by ranking the affini-

ties may not necessarily be the best approach. Percentage ranking is now often the recommended

method [4]. However the exact approach probably depends on the study in question. For example,

searching a small number of proteins might mean taking the top ranked percentile from each se-

quence regardless of score. Threshold selection is discussed later in the examples.

Strategies for epitope selection

A typical approach to binder selection is to select the top n th percentile per protein rather than using

an absolute threshold value; however for whole proteome studies this is likely to introduce multiple

false positives from peptides in proteins that would otherwise score very low globally. We therefore

include in our method a global standardization of the score over the entire proteome, similar to that

used by  Bremel et al.  [5] and others, by  setting a global cut-off based on the top  percentage of

scores from the entire proteome. In addition, some alleles have a significantly higher score distribu-

tion and will dominate the results if a uniform score cut-off is applied; this applies in general to

MHC binding predictors. Thus  separate global cut-off per allele so that low scoring alleles would

be better represented is also advisable. This approach is consistent with recent work by Paul et al.

[6] regarding allele-specific thresholds in MHC-I prediction. Three alternative such threshold strate-

gies are provided in this library and discussed below.

Binding promiscuity
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Promiscuous MHC binders are defined in this context as those above the cutoffs in more than a

given number of alleles. The rationale for this is that a peptide is more likely to be immunogenic in

your target population if it is a binder in multiple alleles. 

Tools for epitope selection

Software for T cell vaccine development or neoepitope prediction currently concentrates on using

the binding prediction or eluted ligand likelihood as the main selection methods. Typically when a

binding prediction tool is published, the authors will provide a binary that can be used on the com-

mand line or via a web interface. Some tools provide both. Command line tools offer better control

and perhaps higher throughput but may be harder to use for a general user. Virtually all of these

require users separately input each sequence and it’s allele. It is then difficult or impossible to inte-

grate results from multiple sequences and alleles. The results are often in different formats and it is

not possible to compare between algorithms, for example. 

There are several computational pipelines that help a researcher to do epitope prediction  [7,8].

Other commercial desktop software applications for epitope discovery are EpiMatrix [9]. Commer-

cial tools may be of high quality but are neither free nor open source, raising issues of reproducibil-

ity for academics. Therefore there is a limited choice for users in readily available and easy to use

tools.

Implementation

This software is  implemented entirely  in  Python.  To achieve some level  of  uniformity between

prediction  methods a standardized programmatic  interface for  executing  the binding prediction

methods and processing the results was designed. The results from each method can then be

processed  and  visualized  in  a  consistent  manner.  Prediction  methods  are  implemented  by

inheriting from a Predictor object. Each predictor may wrap methods from other python packages

or  call  command  line  predictors.  For  example  the  TepitopePredictor uses  the

epitopepredict.tepitope module provided with this package. This approach allows us to integrate a

new  prediction  method  in  a  relatively  straightforward  and  consistent  manner.  The  prediction

methods always return a Pandas DataFrame  [10] in a standard format.  The  predict_sequences

method is used for multiple protein sequences and can be run in parallel. This can take a GenBank

or fasta file as input. For large numbers of sequences the prediction function should be called with

save=True so that the results are saved as each protein is completed to avoid memory issues,

since  many  alleles  might  be  called  for  each  protein. Results  are  saved  with  one  file  per

protein/sequence in csv format. More details on how to use the Python API are given in the online

documentation and in the example notebooks referencing the examples below.

The web application is implemented in Tornado [11] using the Bokeh [12] visualization library for
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making interactive plots.

Supported MHC binding prediction tools

The following MHC binding prediction methods are supported though the API. This means they can

be utilized via the command line tool. The first two are built-in to the package, the others require

installation  of  external  software  by  the  user.  NetMHC tools  in  particular  have  to  be  installed

separately  as  they  have  a  more  restrictive  academic  license  that  does  not  allow them to  be

distributed by a third party or via a repository. Only the ‘pan specific’ versions of these tools are

supported as they provide the best allelic coverage.

• TEPITOPEpan [13] is a position specific scoring matrix (PSSM) based algorithm. It uses 11

scoring matrices derived from combinatorial  competitive  binding assays on 11 HLA-DR

alleles [14]. This method is pan specific and covers 700 HLA-DR molecules with unknown

binding specificities based on pocket similarity  to the original set of 11 library sequences.

We have implemented this algorithm as a Python module, thus it comes with the package.

It is fast but not as accurate in benchmarks as netMHCIIpan with less alleles covered.

• The BasicMHC1 predictor is a built-in method MHC-I prediction method further detailed

below.  It  is  implemented using the scikit-learn  [15] package.  It  only  covers 103 MHC-I

alleles and cannot currently be extrapolated to use with similar alleles (i.e. not pan specific)

but provides a convenient alternative to the external tools.

• MHCflurry [16] is an MHC-I predictor also using ANNs trained on affinity measurements. It

currently covers 112 human alleles. This is an open source tool available via pip and thus

easy  to  install.  It  is  recommended  for  MHC-I  predictions  unless  there  are  alleles  not

covered. The latest supported version is 2.0.1.

• NetMHCpan [17] is an artificial neural network algorithm covering many human and animal

MHC-I alleles.  This is trained on both MS eluted ligand data and binding affinity data. It

therefore  returns  two  properties:  either  the  likelihood  of  a  peptide  becoming  a  natural

ligand, or the predicted binding affinity. Version 4.1 is currently supported. 

• NetMHCIIpan  [18] is  also  an ANN, trained on binding data  for  multiple  MHC-II  alleles.

Predictions  are  now extended  to  all  HLA-DR,  DQ  and  DP known  sequences  as  from

version 3.0 [19]. Both this tool and netMHCpan have the broadest species support of any

algorithms. They both  have good web interfaces but are covered by free non-commercial

academic  licenses  and  the  local  versions  must  be  installed  separately.  Version  3.0  is

supported.

Available threshold methods
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Thresholds for considering a peptide to be a binder are somewhat arbitrary. This tool provides

three threshold methods. The results from each will overlap but will not be identical. These are ap-

plied per sequence/protein and per each allele using the currently loaded data. These three thresh-

old methods are also available when calculating promiscuous binders. Ultimately these are simply

alternative methods of achieving the same result - reducing the set of predicted peptides.

rank – Selects the top ranking peptides in each sequence above a rank cutoff. This is the most 

frequently recommended method of binder selection in general.

score - Uses a single score cutoff for all peptides. Most binding predictors produce a binding affin-

ity score (ic50) and a cutoff of 500nM is common. There is no rule over which score cutoff is opti-

mal however. Some alleles will tend to produce higher scores. Also unless some limit is placed on

the number of  peptides,  large proteins will  produce a lot  of  peptides compared to smaller  se-

quences.

global - Allele specific ‘global’ cutoffs, this uses a percentile cutoff to select peptides using pre-cal-

culated quantile scores for each allele. The global quantile scores were calculated for each predic-

tion method using a set of sequences from known human antigens such as apical membrane anti-

gen, Tetanus toxin, thrombopoietin and  interferon beta. Therefore  peptides can be selected as

measured against a standard scale as opposed to their ‘within protein’ ranking. A typical value

would be using the top 5% in each allele across all sequences.  This technique is designed for se-

lection of a small set of candidates from very large numbers of proteins such as across a bacterial

proteome. There is limited evidence to suggest this is superior to the other methods but we have

used it for selection of a small set of candidates from large numbers of proteins, detailed in exam-

ple 2 below.

A basic MHC-I predictor

This section details the built-in method for MHC-I binding prediction. It is implemented in Python

using scikit-learn. The typical method of building such an algorithm is to encode the peptide amino

acid sequences numerically in a manner that captures the properties important for binding. Then

these features can be fit  against  their  known binding affinities  (or  eluted ligand data)  using a

regression model of some kind. Several peptide encoding schemes were tested, including the NLF

encoding scheme [20], OETMAP [21], a Blosum62 matrix or a simple ‘one hot’ encoding method.

One hot encoding was found to be adequate and the more complex schemes did not appear to

offer any significant advantage. This may require further testing. For now it is possible to instantiate

and  train  the  predictor  with  any  of  these  encoders.  The  regression  model  used  is  the

MLPRegressor from  sklearn, an  implementation  of  a  multilayer  perceptron  (MLP),  a  class  of

artificial neural network. The data used for training was primarily from the IEDB and was curated by
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the authors of MHCflurry [16] from various sources. The regression model must be trained for each

allele. When this is done the model is persisted with the joblib module and can be re-loaded for

new predictions for that allele. All of this functionality is encapsulated in the BasicMHCIPredictor

class in epitopepredict. The predictor only supports 103 alleles currently and is not pan specific as

of yet. This feature is still to be added.

To test performance, a separate evaluation set of peptides originally created by Kim et al. [22] was

downloaded from the IEDB. The training set sequences were subtracted from this leaving 25948 9-

mer peptides. Only alleles for which there were more than 200 peptides were evaluated to give a

reasonable performance estimate. This left 40 HLA alleles for testing. Both the Pearson correlation

coefficient and the roc auc metric (with a threshold of below 500nM set as a positive binder) were

used as metrics. The results in Figure 1 show that our predictor gives similar performance to the

others with this test set. It is not meant to provide a definitive benchmark since these other tools

have been more comprehensively benchmarked elsewhere. In particular it can be hard to obtain a

benchmark set of peptides that has not been used for training in one or more of the models. 

In practical use this predictor can be run directly from the API or command line without installing

any other program. Models are trained once as needed for each allele/length combination using

the current installed versions of scikit-learn and joblib. Once trained each model is saved and can

be re-used. Training only takes a matter of seconds for each model.

Figure 1: Performance of the basicmhc1 predictor compared to netMHCpan and MHCflurry for 40
human alleles. (a) Mean Pearson r and (b) mean AUC scores over all alleles. Only alleles with
evaluation data for over more than 200 peptides were used. This test dataset used 9-mer peptides
only.

Results
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In the following we use several examples to illustrate the use of this package in practice with real

data.  These  are available  as  Jupyter  notebooks  stored  at

https://github.com/dmnfarrell/epitopepredict/tree/master/examples.  They  are  also  archived

permanently  on  Zenodo  and  the  latest  version  can  be  found  using  the  DOI:

10.5281/zenodo.593878. Some of these notebooks are also reproducible using the epitopepredict

examples Code Ocean capsule (DOI: 10.24433/CO.5815986.v1).

Example 1: Predictions for selected antigens in Mycobacterium Tuberculosis – comparison with 

experimental data

A typical use of epitope prediction tools is to select a candidate list of peptides for testing from a

large  sequence  space  representing  multiple  potential  antigens.  This  example  provides  a

comparison of the three different selection methods in epitopepredict using a realistic example. It

uses a set of known CD4 epitopes discovered in a study by measuring IFN-γ T cell responses to

M. tuberculosis (Mtb) antigens in a healthy South African cohort [23]. The test data is available as

supplementary tables in that paper. It comprises 75 15-mer epitopes selected from a set of known

Mtb antigens. Here we perform a simple benchmark to find the percentage coverage of predicted

MHC-II binders in two predictors, netMHCIIpan and Tepitope, using the three threshold methods

for selecting promiscuous binders described above. These are then compared across a selection

of cut-offs that each yield a certain number of binders. Ideally we would want to produce as small a

number of predicted binders as possible to reduce the number to be experimentally tested. 

The sequences of all 29 proteins represented in the target set where retrieved and split into 15-

mers. Then predictions were made for each of the 27 alleles in the target population tested in the

study.  This  produces  a  list  of  9,299  peptides  predicted  for  each  allele.  With  epitopepredict

selection of promiscuous binders can be done easily with a single command. Binders promiscuous

above thresholds in at least five alleles were selected.

The results are shown in Figure 2, with the plots showing the percentage of experimental peptides

covered versus the number of predicted binders, corresponding to a certain cut-off in each method.

It is seen that the ‘rank’ method is superior in both cases as it achieves a higher coverage with the

lowest number of binders. All the curves level off at about 80% coverage. The ‘rank’ method may

work better in this case partly because some of the epitopes were originally selected by prediction

algorithms using a similar approach. 
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Figure  2:  Performance of  three binder selection methods showing the percentage coverage of
experimental positive peptides by predicted binders at different cutoff levels. The higher the cutoff
the more binders are predicted until the curves level off. Results are shown for (a) netMHCIIpan
and (b) Tepitope.

Example   2  : Scanning the proteome of Mycobacterium bovis for CD4+ epitopes  

We have previously used this package to  prioritize  CD4+ epitopes in the proteome of M. bovis

(Mycobacterium  tuberculosis variant  bovis  AF2122/97)  for  potential  use  in  novel  antigens  for

bovine tuberculosis  [24]. The results are documented in the paper. Briefly, we performed binding

predictions over the entire M. Bovis proteome using two different binding predictors, netMHCIIpan

[19], Tepitope  [13]. For each set of results we found only promiscuous binders above an allele

specific cutoff using the ‘global’ selection strategy. In addition clusters of binders were detected to

find areas of high binder density in each sequence. The assumption underlying this method is that

~20mer peptides covering these regions will  be  more likely  to  yield at  least  one true positive

epitope and hence elicit  a T-cell  response. The results are a set of clusters for both prediction

methods,  ranked by number of  binders per unit  length.  This  has also been referred to as the

‘epitope  density’  method  [25].  We  further  contrasted  this  cluster  selection  with  the  more

conventional ranking of top scoring binders.  We also included random non high scoring peptides

as a control.  20-mer  peptides  derived from these sets were synthesized and tested for  IFN-γ

responses in M.bovis naturally infected cattle. Approximately 24% out of 270 peptides had high

responses  (using  known  epitopes  as  the  baseline  response).  The  random  controls  had  no

responses above this threshold.

This  workflow was performed using an older version of  this  software.  A newer and somewhat

simplified form of the same analysis is now available as a notebook in the examples folder. Results

from this output will be slightly different to our previous analysis since some of the extra steps have

been removed but the methodology is the same.
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E  xample   3  :   Predicting cross-reactive T cell epitopes in Sars-CoV-2  

Eight months after the initial outbreak, puzzles remain about the human immune response to the

SARS-CoV-2 virus.  By now a significant proportion in some large cities, such as New York, will

have been exposed. However antibody tests have often revealed lower than expected rates of

seropositivity  in  populations  where  the  virus  has  spread  [26].  It  is  almost  certain  that  other

components of the immune system are important in protecting individuals just as in other infectious

diseases. Robust  innate  immune  responses  are  one  candidate.  Another  possibility  is  T  cells.

SARS-CoV-2 reactive CD4+ T cells have been reported in unexposed individuals, suggesting pre-

existing cross-reactive T cell memory in 20-50% of people [27]. It is possible these are memory T

cells generated from previous exposures to the human common cold coronaviruses (HCoVs) which

circulate widely.

Mateus et al. [28] have identified such cross-reactive CD4+ epitopes by generating 42 short term T

cell  lines  specific  to  previously  identified  epitopes  in  PBMCs  from  unexposed  donors.  Then

homologs to these peptides in the HCoVs were tested against these cell  lines for a response.

These tests were done in both unexposed and convalescent COVID19 patients. Cross reactivity

was found in 10/42 of the T cell lines. Responding cells in unexposed donors were predominantly

found  in  the  effector  memory  CD4+  T  cell  population,  though  the  consequences  of  this  for

protective immunity are not yet known.

Here we show how it’s possible to predict such potential cross-reactive CD4+ epitopes just using

the sequences. 

The method used is as follows:

•Predict MHC-binders in each SCoV2 protein sequence and selected the top scoring candidates. 

Here we use epitopepredict to predict the most promiscuous binders across the 8 most 

representative human MHC-II alleles. Each protein sequence is split into 15-mer peptides and 

scored. 

•Select the top scoring peptides in each protein. In this case we select the peptides using the 

global cutoff method in the top 5% percentile for each allele. We also limit the total for each 

protein to 70 to prevent a very long protein like ORF1ab from dominating the selection.

•Calculate conservation of each peptide with it’s closest homologous sequence in each of the 

other four HCoVs. Then rank them by percentage identity.

Using a limit of 70 peptides per protein we found 282 predicted peptides. Out of these, 162 were 

conserved with >67% identity in at least one HCoV (most commonly with Sars). Note that for a 

peptide to be cross-reactive it does not necessarily have to share all residues in common with it’s 

homolog. The 9-mer core binding sequence could be conserved with perhaps similar residues at 
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ends. We finally checked our 162 peptides against the 10 epitopes identified by Mateus et al. We 

found a hit in 6/10 cases, shown in Table 1. Some hits are two peptides in our set overlapping 

which probably indicates the same core epitope.

Sequence Protein Start Hit from Predicted Set

PSGTWLTYTGAIKLD N 326 GTWLTYTGAIKLDDK

SFIEDLLFNKVTLAD S 816 FIEDLLFNKVTLADA, DLLFNKVTLADAGFI

YEQYIKWPWYIWLGF S 1206 None

VLKKLKKSLNVAKSE nsp8 3976 VVLKKLKKSLNVAKS, EVVLKKLKKSLNVAK

KLLKSIAATRGATVV nsp12 4966 RQFHQKLLKSIAATR

EFYAYLRKHFSMMIL nsp12 5136 NEFYAYLRKHFSMMI, YLRKHFSMMILSDDA

LMIERFVSLAIDAYP nsp12 5246 None

TSHKLVLSVNPYVCN nsp13 5361 None

NVNRFNVAITRAKVG nsp13 5881 VNRFNVAITRAKVGI

Table  1:  Matches to the 10 cross reactive peptides found by Mateus et al.  from our predicted

binders shows hits in 6/10 cases.

Usage

Command Line Interface

Installing the package provides a command line tool that is run from a terminal. It is envisaged that

most users will utilize the package using this tool since it requires no programming knowledge.  It

provides pre-defined functionality with all inputs and settings specified in a text configuration file.

One advantage of using configuration files is in avoiding long commands with multiple arguments

that may be prone to causing errors. Also configuration files can be kept to recall what setting was

used for a particular workflow. Using this you can make MHC predictions with your chosen alleles

and predictors in one run. If settings are left out generally defaults will be used so one can use a

minimal file, simplifying usage. Other useful features of the tool are the ability to run predictions in

parallel using multiple processing cores, the use of preset lists of alleles and resuming runs that

have been interrupted without overwriting previous predictions. Results are saved to disk as text

files and can be re-read in a subsequent run of the tool without having to re-calculate binding

predictions.

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2021. ; https://doi.org/10.1101/2021.02.05.429892doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429892
http://creativecommons.org/licenses/by-nc-nd/4.0/


By default the command line tool will calculate the promiscuous binders to give you a unique list of

peptides and include the number of alleles in which it is a binder. The table is ranked by this value

and the maximum score over the alleles tested.

API usage

A very basic example of how to use the library from the Python API is given here. More complex

usage is detailed in the documentation.

import epitopepredict as ep

P = ep.get_predictor('basicmhc1')

from epitopepredict import peptutils

#get some random peptides, returns a list

seqs = peptutils.create_random_sequences(10)

#run predictions

res = P.predict_peptides(seqs, alleles='HLA-A*01:01')

The above code returns a pandas DataFrame sorted by allele and rank.

Plotting

The  API  includes  the  ability  to  plot  results  for  individual  protein  sequences  for  one  or  more

predictor. In such plots binders are shown as colored blocks at their position in the protein with

multiple  tracks,  one  per  allele/method.  This  allows  ready  comparisons  between  methods.  An

example is shown in Figure 3. This shows binders for three MHC-class I predictors for an antigenic

Mtb protein, Rv3875. Six HLA alleles are shown. We can see that each method has some overlap

with the others.

Testing

The command line tool can be tested by calling  epitopepredict -t which runs a set of sample

Ebola virus sequences with the available prediction methods. Outputs are saved to a folder called

zaire_test. It should be noted that this is not used as a benchmark test since the algorithms used

have all been tested independently. This is an example run for the user to check that the command

line workflow is working and to inspect the outputs.
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Figure 3: Predicted ‘promiscuous’ binders in a sample sequence for three methods. Each method
will have some overlapping peptides but they are usually likely to differ.

Web Application

A web interface that is launched from the command line can be used to view results from a set of

predictions that have been previously made. This is an improved and much easier to use form of a

previous web interface called epitopemap  [29] and replaces it.  Widgets can be used to select

thresholds and the kind of plot shown. Currently two kinds of plots can be viewed, a sequence view

and one that shows the peptides as colored blocks in tracks along the sequence, as shown in

Figure 4. This web interface can be tested by running the test command above and then launching

the web app using the zaire_test folder as input.

Figure 4: Web application showing results for a single protein sequence. Widgets can be used to
select protein, cut-off levels and plot display.
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Conclusions

This software provides a programmatic framework and command line interface for running multiple

MHC binding prediction algorithms. This will be especially useful for performing high throughput

calculations in many sequences and alleles.  It  is  designed to scale for  proteome scanning by

allowing multiple processing threads to be used with any of the prediction methods. The API can

also be easily applied to single sequences or small numbers of antigens. A web interface allows

users to readily review results if they wish.

Availability and requirements

Project name: epitopepredict

Project home page:  https://github.com/dmnfarrell/  epitopepredict  

Archived version: v0.5.0 (DOI: 10.5281/zenodo.4056421)

SciCrunch Identifier: SCR_019221

Operating system(s): Linux, Unix

Programming language: Python

Other requirements: biopython, pandas, numpy, matplotlib, scikit-learn, bokeh

License: GNU General Public License v 3.0

Any restrictions to use by non-academics: None
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Availability of data and materials

All computational work described here was implemented using Python. The code is provided as a

Python package called epitopepredict under the Apache license. Extensive use was made of the

IPython (Jupyter) notebook environment [30] in prototyping the codebase.

Documentation for users is available at http://epitopepredict.readthedocs.io
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Installation

This software should be run on a Linux operating system. Ubuntu is recommended but most major

distributions will work well. Windows is not supported. If using Windows or macOS (OS X), users

can  simply  install  Linux  using  virtual  machine  software  such  as  Oracle  VM  VirtualBox

(https://www.virtualbox.org).  Software  is  then  installed  using  the  online  documentation.  The

installation process is very simple, requiring only a single typed command. Externally used MHC

binding prediction algorithms do need to be installed separately, these are all freely available.

Installing netMHCpan and netMHCIIpan

Due to license restrictions these programs must be installed separately. They are free for academic

users. You can go to http://www.cbs.dtu.dk to fill in the forms that will give you access to the install

file for the respective programs. The install instructions can then be found in the readme files when

you untar the downloaded file e.g. netMHCpan-4.1.readme. There are four steps detailed and the

process  is  relatively  simple.  Remember  to  test  the  software  is  working  before  you  use  it  in

epitopepredict.
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