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Abstract: 

Purpose: The objective of this study is to introduce a new quantitative data-driven analysis (QDA) 

framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult 

age on resting-state functional connectivity (RFC).  

Methods Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 

healthy adult volunteers (N=227, aged 18-74 years old, male/female=99/128).  With the proposed 

QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index 

(CSI) and connectivity density index (CDI) utilizing the convolutions of the cross-correlation (CC) 

histogram with different kernels. Furthermore, we assessed the negative and positive portions of 

these metrics separately.  

Results: With the QDA framework we found age-related declines of RFC metrics in the superior and 

middle frontal gyrus (MFG), posterior cingulate cortex (PCC), right insula and inferior parietal lobule 

(IPL) of the default mode network (DMN), which resembles previously reported results using other 

types of RFC data processing methods. Importantly, our new findings complement previously 

undocumented results in the following aspects: 1) the PCC and right insula are anti-correlated and 

tend to manifest simultaneously declines of both the negative and positive connectivity strength with 

subjects’ age; 2) separate assessment of the negative and positive RFC metrics provides enhanced 

sensitivity to the aging effect; 3) the sensorimotor network depicts enhanced negative connectivity 

strength with the adult age. 

Conclusion: The proposed QDA framework can produce threshold-free, voxel-wise analysis of R-

fMRI data the RFC metrics. The detected adult age effect is largely consistent with previously 

reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of 

the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and 

clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network 

involvement in adult aging.   
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Highlights 
1. A quantitative data-driven analysis (QDA) framework was proposed to analysis resting-state 

fMRI data. 

2. Threshold-free resting-state functional connectivity (RFC) metrics were derived to assess 

brain changes with adult age.  

3. Separate assessment of the positive and negative correlations improve sensitivity of the RFC 

metrics.  

4. The posterior cingulate and right insula cortices are anti-correlated and tend to manifest 

declines in both the negative and positive connectivity strength with adult age. 

5. Negative connectivity strength enhances with adult age in sensorimotor network. 

 

Keywords 

Quantitative data-driven analysis (QDA), resting-state functional magnetic resonance imaging (R-

fMRI), resting-state functional connectivity (RFC), connectivity strength index (CSI), connectivity 

density index (CDI), adult age. 

 

A short list of abbreviations 

QDA: Quantitative data-driven analysis 

RFC: Resting-state functional connectivity 

CSI: Connectivity strength index 

CSIP: Positive connectivity strength index 

CSIN: negative connectivity strength index 

CDI: connectivity density index 

CDIP: positive connectivity density index 

CDIN: negative connectivity density index 
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1. Introduction 

Among the different analysis approaches for resting-state fMRI (R-fMRI) data, the anatomic region-

of-interest (ROI)-based and data-driven independent component analysis (ICA) methods are 

probably the most commonly used [1]. Resting-state functional connectivity (RFC) results from the 

ROI-based and ICA derived methods are generally similar but conceptually different. The 

quantitative relationship between ROI-based and ICA derived measures of RFC has been 

investigated with computer simulation and experiment approaches [2, 3]. In theory, the ROI-based 

RFC measures can be shown to be the sum of the ICA derived RFC both for the within and between 

networks [2, 3].  

 

With ROI-based analysis the brain is first parcellated into pre-defined anatomical regions, the mean 

time course for each ROI is then determined. By calculating the temporal correlations in a pairwise 

fashion between the defined ROIs, for each R-fMRI dataset a correlation coefficient matrix of the 

ROIs can be obtained for further statistical assessment. Therefore, connectivity between specific 

regions is explicitly tested in a model-driven framework by using the average time course of the 

selected ROIs as a temporal model. Since the RFC patterns do not necessarily coincide precisely 

with the atlas-based ROI definition, all voxels within predefined ROIs are not necessarily a part of the 

network-of-interest and functionally connected. This can potentially affect the accuracy and 

sensitivity of the ROI-based analysis [4]. On the other hand, ICA can reveal dynamics and spatially 

distributed brain networks in a data-driven fashion without the need of a temporal model. Despite the 

growing consensus regarding the ICA-derived intrinsic RFC networks in the healthy brain with stable 

spatial components reproduced across studies [5-7], the precise number of independent components 

(NIC), as a prerequisite input parameter for ICA, is not known a priori. NIC can substantially 

influence the ICA outcomes [8]. Moreover, there is lack of gold standard for the selection of 

meaningful components to exclude non-interesting noise resources, such as ventricular, vascular, 

susceptibility or motion-related artifacts [9].  

 

In this study we refined further of our quantitative data-driven analysis (QDA) framework based on 

the time course of individual voxel inside the brain. The QDA approach is data-driven as ICA and can 

generate two types of quantitative RFC metrics for each voxel inside the brain without the need for 

specifying a particular threshold, model or mode. Since it uses the time course of each voxel within 

the brain as the seed reference in turn to compute voxel-wise whole-brain correlational coefficient 

matrix, the size of the correlation matrix is equal to the number of voxels inside the brain. It is typical 

N>104 for whole-brain R-fMRI datasets with 4 mm voxel size. To facilitate further statistical 
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assessment of the whole-brain correlation matrix, we derive two types of voxel-wise RFC metrics 

from the correlation matrix, namely the connectivity strength index (CSI) and connectivity density 

index (CDI). As indicated by the names, CSI and CDI provide metrics for the local voxel connectivity 

strength and density with rest of the brain, respectively. These metrics can be used for 

straightforward statistical comparison to assess differences between groups and longitudinal 

changes of individuals. This is a basic requirement for radiological diagnosis in clinical practice. 

 

It should be pointed out that there are several voxel-based RFC metrics that have been proposed in 

the literature to characterize the brain’s resting-state activities. Among other things, the regional 

homogeneity [10-12], measures of low frequency oscillation including the amplitude of low frequency 

fluctuations (ALFF) and the fractional amplitude of low frequency fluctuations [13-18], measurements of 

complexity, such as the Hurst exponent [19-21] and brain entropy [22-25] have been used for studying the 

RFC in normal and diseased brains. These methods have yielded somewhat interesting results. 

However, there remains still some methodological issues to be addressed, such as the arbitrariness 

in the selection of cut-off frequency [13-18], loss of information [19-21], and computation difficulty [22-25]. 

These technical difficulties may contribute to the inconsistent findings in the published literature.  

Moreover, the different RFC metrics portray different aspects of R-fMRI signal and may be differently 

affected by the physiological activities and pathology [12, 26]. 

 

Both ICA and ROI-based approaches have previously been applied to study age-related changes in 

RFC [27-33]. A number of R-fMRI studies have reported that reduced RFC in healthy aging in the 

default mode network (DMN) is correlated with cognitive deficit [29, 34-37]. There is accumulating 

evidence to support the notion that elderly adults typically have reduced RFC across most parts of 

the DMN, particularly in the dorsal medial prefrontal cortex (mPFC) and the ventral and posterior 

cingulate cortex (PCC) [34, 37]. However, in the reported results there is also considerable variability 

concerning age-related RFC differences in the limbic and other DMN subsystems. For example, 

some studies have found age-related RFC reduction in the hippocampal [34, 35, 37] and subcortical 

regions [38], whereas others reported either no significant decline or elevated RFC in some of the 

specific hippocampal [39] and DMN regions [40, 41]. The discrepancies in the reported findings among 

the different R-fMRI studies of normal aging may reflect not only variability in the sample 

characteristics, but also diversity in the data processing methods for deriving the different RFC 

metrics for connectivity of specific pathways.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.04.429600doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429600


 6 

The main objective of this study is to develop a QDA framework to analyze R-fMRI data and derive 

intuitive and threshold-free RFC metrics, which are sensitive to physiological and pathological 

changes in the central nervous systems. As an application example, we used the proposed metrics 

to assess if and how adult age in healthy subjects influences these RFC metrics. With the proposed 

QDA framework we aim to provide reduced methodological complication by using a quantitative, 

model-free approach and more precise definitions of the RFC metrics.  

 

2. Experimental and Methods 

2.1 Participants 

A total of 227 volunteers (aged 18-76 years old, male/female=99/128) completed the study and were 

recruited into the study through the local media advertisement in the Stockholm region. All 

participants were right-handed, and native Swedish speakers with normal or corrected-to-normal 

vision. They all reported being free of a history of neurological, psychiatric and cardiovascular 

diseases. None of the participants reported any use of psychotropic drugs.  Each individual signed 

informed consent before completing the MRI examination protocol. They were financially 

compensated for their participation. The regional ethics committee approved the study, which was 

conducted in line with the declaration of Helsinki. 

2.2 MRI data acquisition protocol 

The MRI data acquisition was conducted on a whole-body 3T clinical MRI scanner (Magnetom Trio, 

Siemens Medical Solutions, Erlangen, Germany) equipped with a 32-channel phased-array receiving 

head coil. All data was acquired at Karolinska University Hospital, Huddinge, Stockholm, between 

noon and 5:00 PM. The MRI data acquisition protocol included the following scanning sessions: (1) 

3-plane localizer; (2) Conventional clinical MRI scans including 3D T1-weighted MPRAGE, T2 and 

FLAIR scans; (3) A session of 375 s long R-fMRI measurements. The main acquisition parameters 

for the R-fMRI data included the following: TE/TR 35/2500 ms, flip angle = 90°, 34 slices of 3.5 mm 

thick, FOV = 225 mm, matrix size = 76 × 76, data acquisition acceleration with GRAPPA parallel 

imaging method (iPAT = 2), and 150 dynamic timeframes.  The T1-weighted MPRAGE images used 

for co-registration with functional images were acquired with the following parameters: TR = 1900 

ms, TE = 2.52 ms, FA = 9 degrees, FOV = 256, voxel size 1 ×1 × 1 mm. The acquisition parameters 

for the FLAIR image were the following: TE/TR=89/9000 ms, flip angle=130°; inversion time 

(TI)=2500 ms, slice thickness=4.0 mm, FOV=199 × 220 mm. An experienced radiologist inspected 

both the FLAIR and T1-weighted images for potential signs of neuropathology. 
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2.3 R-fMRI data pre-processing 

The R-fMRI datasets underwent a preprocessing procedure, which was performed with AFNI 

(Version Debian-16.2.07~dfsg.1-3~nd14.04+1, http://afni.nimh.nih.gov/afni) and FSL 

(http://www.fmrib.ox.ac.uk/fsl) programs with a bash wrapper shell [8, 42]. After temporal de-spiking, 

six-parameter rigid body image registration was performed for motion correction. The average 

volume for each motion-corrected time series was used to generate a brain mask to minimize the 

inclusion of the extra-cerebral tissues. Spatial normalization to the standard MNI template was 

performed using a 12-parameter affine transformation and mutual-information cost function. During 

the affine transformation the imaging data were also re-sampled to isotropic resolution using a 

Gaussian kernel with 4 mm full width at half maximum (FWHM). The co-registered average image 

volume for the cohort has 28,146 non-zero voxels inside the brain and was used to generate the 

average brain mask for the preprocessed whole-brain R-fMRI data with 4 mm spatial resolution.  

Nuisance signal removal was performed by voxel-wise regression using 14 regressors based on the 

motion correction parameters, average signal of the ventricles and their 1st order derivatives. After 

baseline trend removal up to the third order polynomial, effective band-pass filtering was performed 

using low-pass filtering at 0.08 Hz. Local Gaussian smoothing up to FWHM = 4mm was performed 

using an eroded gray matter mask [8].  

 

Pearson’s correlation coefficients (CC) were computed between the time courses of all pairs of 

voxels inside the brain, leading to a whole-brain functional connectivity matrix for each subject. This 

computation was performed for all voxels located within the brain mask, which was generated by 

overlapping the registered brains of all participants. This brain mask contained 28146 voxels and 

each voxel inside the brain was used as the seed voxel in turn. Therefore, the size of the CC matrix 

size is 28146 x 28146. Each row or column of the CC matrix corresponds to the CC image volume 

for the seed voxel with rest of the brain. That is the connectivity map for the seed voxel. As 

schematically illustrated in Fig. 1, based on the CC histogram for each row of the matrix we derived 

the following two types of threshold-free voxel-wise RFC metrics: the connectivity strength index 

(CSI) and connectivity density index (CDI). As we are interested in investigating systematically all 

relevant synchronized activities in the whole-brain, we quantify the negative and positive portions of 

the CC histogram separately to avoid information cancelation, sensitivity reduction, and statistical 

interference. From here on, the subscripts “N” and “P” are used to indicate the negative and positive 

portions of the RFC metrics, respectively.  The metrics without subscripts refer to the mixed 

measures without distinction of the negative and position correlations.  
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Fig. 1: A schematic overview to illustrate the QDA framework. With QDA the time course of each 

voxel is used in turn to compute the whole-brain CC matrix. For each row of the CC matrix, we 

compute a CC histogram with 200 evenly binned intervals within [-1, 1]. The histogram shown in the 

graph is the cohort’s average CC histogram for a voxel within the PCC, whose location was marked 

with the red square. In QDA, two types of RFC images are derived from the CC matrix: 1) CSIP and 

CSIN whose voxel values are the averages of the positives and negatives in each row of the CC 

matrix, respectively. 2) CDIP and CDIN whose voxel values are the positive and negative parts of the 

convolution between the CC histogram and the kernel, respectively. 

 

As shown in Fig. 1, the voxel value for the CSIP and CSIN are defined as the averages of the 

positives and negatives in each row of the CC matrix, respectively. That is 

   CSIP =(∑ 𝐶𝐶𝑟𝑜𝑤𝐶𝐶>0 )/𝑛𝑝   [1] 

CSIN=(∑ 𝐶𝐶𝑟𝑜𝑤𝐶𝐶<0 )/𝑛n  [2] 

Where 𝐶𝐶𝑟𝑜𝑤 refers to a row in the CC matrix. np and nn refer to the number of positive and negative 

correlation coefficients in a row of the CC matrix, respectively. The voxel values for CDI are defined 

as the convolution between the CC histogram and a kernel function. That is  

CDI =Hist(𝐶𝐶𝑟𝑜𝑤)kernel  [3] 
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Similar to the CSIP and CSIN, the CDIP and CDIN correspond to the positive and negative portions of 

the convolution defined in eq. [3], respectively. To facilitate statistical comparison, it is useful to 

transform the raw RFC metrics into standard Z-score using the following formula: 

𝑍 = (RFC − u)/σ   [4] 

Where  and σ are the mean and standard dilation of the corresponding RFC metrics, respectively. 

Fig. 2 shows an axial slice of the average CSIN and CSIP for the cohort before and after the Z-score 

transform. For optimization of the CDI sensitivity, we investigated 6 different kernel functions, 

including  

ki=1,2,…4=xi,     [5] 

k5=sin2(/2x),    [6] 

k6=step(x-0.3),   [7] 

where x [-1,1] corresponding to the interval of the correlation coefficients. The kernels are also 

graphically depicted in Fig. 3. It is obvously that a kernel weights the higher correlation coefficients 

more than the lower ones.  The widely used threshold approach can be considered as the case of 

the square-well kernel function k6. For illustration, an arbitrary threshold of 0.3 was used here. The 

CSI metrics can also be considered as a special case of CDI corresponding to a kernel of the sign 

function.   

 

 

Fig. 2: An axial slice of the average CSIN (a) and CSIP (b) for the cohort before (a, b) and after the Z-

score transformation (c, d).  
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Fig. 3: The six different kernel functions investigated in the study to derive the CDIP and CDIN 

metrics. The widely used threshold method can be considered as the case for the square-well kernel 

function (k6).  

2.4 Statistical analyses 

To investigate if and how the RFC metrics are influenced by the adult age for the studied cohort we 

performed voxel-wise linear regression analyses of the CSI and CDI metrics versus the subject’s 

age, while the gender was treated a covariate by using the AFNI program 3dRegAna to extract the 

regression parameter  and linear coefficient r. The statistical significance was assessed by using a 

two-step approach. Firstly, we imposed a voxel-wise threshold p<0.001 (uncorrected corresponding 

t-score >=3.34) to form the initial cluster candidates. Secondly, we performed permutation 

simulations without assuming a particular form of probability distribution for the voxel values in the 

statistic images to identify the brain regions of interest (ROI) out of the initially detected clusters at 

family-wise error rate (FWER) p≤0.05. Using the detected ROIs as masks, we evaluated the mean 

values of the RFC metrics for each ROI and made scattered plot against the subjects’ age. Besides 

linear regression analysis with age, we performed also verification using student t-test between the 

young and elderly subgroups. For this, we selected all subjects aged 18-30 years old as the young 

subgroup (n=124, males/females=51/73), and all subjects aged 64-76 years old as the elderly 

subgroup (n=76, males/females=35/41). To keep sufficient age gap between the young and elderly 

subgroups the remaining 27subjects in the age range of 31-63 years old were excluded from the t-

tests.  
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3. Results 

3.1 The QDA framework 

As expected, the characteristics of the CC histogram for each seed voxel in the brain is dependent 

on its location in the brain. Fig. 4 shows the average CC histogram of the cohort for a seed voxel in 

the PCC as illustrated by the green cross and red square in Fig. 1. The histogram is somewhat 

asymmetric and shifted toward the positive side. This is quite typical at least for voxels within gray 

matter. Selecting different threshold values along the histogram allows us to observe the RFC 

networks of different connection strengths associated with the selected PCC seed voxel. As shown 

in Fig. 4, at high negative CC threshold (Figs. 4a and b) we observe the DMN. At low negative and 

positive CC thresholds we observe its association with cerebral spinal fluid (CSF) space and white 

matter (Figs. 4c and d). At moderately high positive CC threshold, the PCC is not only a part of the 

DMN, but also connected to most of the cortical gray matter (Fig. 4e). At high positive CC threshold 

the PCC is associated with the posterior portion of the DMN and the visual cortex (Fig. 4f). For 

further illustration, we selected 4 seed voxels located in different brain regions (see Fig. 5 and Table 

1) and tissue types for further investigation.   

 

 

Fig. 4: The average CC histogram of the cohort for a seed voxel in the posterior cingulate cortex 

(PCC) as indicated by the green cross. Selecting different threshold values along the histogram 

allows us to detect the functional connection networks of different strengths (a-f) associated with the 

seed voxel in the PCC. 
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Fig. 5: Anatomic locations for 4 different seed voxels of different tissue types including white matter 

(WM), cerebral spinal fluid (CSF), PCC and motor cortex (MC). 

 

Fig. 6: The average CC histograms of the cohort for the 4 different seed voxels shown in Fig. 5.  

 

As shown in Fig. 6, the histogram for the seed voxel in the MC is quite similar to that for the PCC 

with a long positive tail, whereas the histograms for the seed voxels in white matter and CSF regions 

are overall narrower and the peak is slightly shifted toward the negative side. The convolutions of 

thse CC histograms are depicted in Fig. 7. For the white matter and CSF seeds, the negative 

portions are more dominant, while the positive parts of the convolutions are larger for the grey matter 

seed voxels in the PCC and MC. For the polynomial kernels, increasing the order of the polynomial 

shifts the peak values of the convolutions away from “0”. Selecting different kernels can, therefore, 

adjust the contrast and sensitivity of the derived CDIP and CDIN metrics. Fig. 8 shows an axial slice of 

CDIP and CDIN images for a typical R-fMRI dataset acquired from a 36 years old male subject. A 

number of brain regions depict disproportionally high CDIP including the bilateral medial prefrontal 

cortex (mPFC), superior and middle temporal gyri (MTG), inferior and superior parietal lobule (SPL), 

precuneus and PCC. As suggested in previously published studies, these regions have been 

described as RFC hubs so as to imply their important role in neural signaling and communication 
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across the brain [43, 44]. On the other hand, the PCC, insula cortex. White matter and CSF regions 

have usually high CDIN metric. The contrast and intensity variations across the rows in Fig. 8 

demonstrate that the kernel function can influence the contrast and signal-to-noise ratio (SNR) of the 

CDI metrics.  

 

Fig. 7: The convolutions of the CC histograms shown in Fig. 6 for the 4 different seed voxels located 

in WM (a), PCC (b), CSF(c) and MC (d). 

 

Fig. 8: An axial slice of the CDIP (upper row) and CDIN (lower row) metrics derived from a typical R-

fMRI dataset (a male subject of 36 years’ age). The images from left to right depict the results for the 

following 6 kernel functions |x|, |x2|, |x3|, |x4|, sin2(π/2x) and step(|x| -0.3), respectively. 
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Fig. 9: The average CDIP (a) and CDIN (b) histograms for the cohort derived by using the 6 different 

kernels k1-k6. 

 

A more quantitative comparison of the kernel effect can be better appreciated in the average CDIP 

and CDIN histograms for the cohort shown in Fig. 9. It is clear that the kernel functions can influence 

the distributions of the RFC metrics and therefore the statistics based on it.  

 

3.2 Overall trends of the RFC metrics with the adult age 

To compare the overall trend of advanced age effect on the RFC, we analyzed the RFC histograms 

for the young and elderly subgroups. Fig. 10 depicts the histogram differences between the young 

and elderly subgroups for the CDIP and CDIN metrics. Positive peaks above the “0” horizontal line 

indicate that the young subgroup has more voxel populations than the elderly subgroup for the z-

score ranges corresponding to the peaks, whereas the negative peaks indicate the opposite. As 

expected, the kernel functions affect the number of peaks, the shapes and positions. Fig. 11 shows 

the total area of the peaks both above and below the horizontal line as a function of the kernels. The 

CDIP histogram differences between the young and elderly subgroups are systematically larger than 
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those for the CDIN metrics, indicating CDIP metrics may have higher sensitivity to the aging effect. 

Especially for the polynomial based kernels (k1-k4), increasing the order of the polynomials improves 

the sensitivity for the CDIP metrics and also the contrast between the CDIP and CDIN metrics, as 

demonstrated by the increased gaps between the CDIP and CDIN results shown in Fig. 11. 

 

Fig. 10: The differences in CDI histograms between the young and elderly sub-groups. The CDIN 

and CDIP results for the 6 different kernels are shown. 

 

Fig. 11: The CDIP and CDIN histogram differences between the young and elderly sub-groups as a 

function of the kernels. Each data point corresponds to the total area above and below the ‘0’ 

horizontal line of the histogram differences shown in Fig. 10. 
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3.3 RFC changes associated with the adult age 

Fig. 12 and Table 2 shows the linear regression results for the CSI, CSIN and CSIP data versus 

subjects’ age. The CSI metric without separation of the negative and positive correlations shows 

decline of the functional connectivity strength with age in the superior and middle prefrontal gyrus 

(MFG) and increase of connectivity strength in the precuneus and right inferior parietal lobule (r-IPL). 

The more specifically defined CSIN and CSIP metrics are more sensitive to the adult age effect and 

the detected brain volumes with significant aging effect are nearly tripled compared with that for the 

CSI metric. With CSIN and CSIP we observe also a more intricate pattern of change with the adult 

age, which are summarized as follows:  

(1) The CSIP shows mainly decline trend with adult age (negative  and r) in the extended DMN 

including superior and MFG, PCC, bilateral insula cortex and left middle temporal gyrus (l-MTG) 

except for putamen where up-regulation of CSIP was observed.   

(2) The CSIN depicts a more complicated pattern of dependence on the adult age. The negative 

connectivity strength was reduced (positive  and r) with the adult age in the PCC, right insula 

cortex and IPL, while enhancement (negative  and r) was detected in the sensorimotor network 

(paracentral lobule, bilateral postcentral gyri), bilateral para hippocampal cortices (PHC), and right 

superior temporal gyrus (r-STG).  

(3) There are two brain regions where both the CSIN and CSIP demonstrated significant reduction 

trend with the adult age, which were detected by applying the logical “AND” operation to the 

regression results for the CSIP and CSIN. As shown in Table 2 and Fig. 13, the two overlapping 

ROIs in the PCC and r-insula cortex depict significant down-regulation of CSIP and CSIN metrics 

with the subjects’ age.  

 

Using the above overlapping ROIs as the seed masks, we computed the Pearson’s 

correlation maps for the time courses of the seeds, which are displayed in in Fig. 13. As expected, 

the associated RFC network for the ROI in the PCC is obviously the well-known DMN and include 4 

negatively correlated brain regions, which are the bilateral IPL and insula cortices. On the other 

hand, the associated RFC network for the ROI in the right insular cortex includes the PCC and 

bilateral precuneus as the negatively correlated brain regions. Fig 14. Shows the anti-correlated 

brain regions between the above 2 RFC networks obtained by applying a multiplication of the above 

two correlation maps associated with the 2 overlapping ROIs and thresholding at CC(-0.5). It is 

clear that the mutually inclusive anti-correlation between the PCC and the right insular cortex are 

likely the reason why both CSIP and CSIN metrics in these regions depict declines with the adult age.  
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Fig. 12: Brain regions with significant correlation (p<0.05, corrected) between the connectivity 

strength metrics and the subject’s age. The results for the CSI (a), CSIN (b) and CSIP (c) are depicted 

separately. The Color bar shows the t-score level. 
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Fig. 13: The overlapping ROIs in the PCC and right insula cortex where both the CSIP and CSIN 

metrics depict significant decline with the adult age (a). The average Pearson’s correlation maps of 

the cohort associated the overlapping ROI seeds in the PCC (b) and insula cortex (c).  

 

 

Fig. 14: Cross-sectional display of the anti-correlation networks associated with the 2 overlapping 

ROIs as derived from the product of the maps shown in Figs. 13b and 13c at CC(-0. 5). The 

crossing points of green lines depict the center of mass for each ROI. 
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Fig. 15: The ROI average of the CSIN metric against the subject’s age for the overlapping ROI in the 

PCC (a). The ROI average for the CSIN metric against the subject’s age for the overlapping ROI in 

the right insula cortex (b). The ROI average for the CSIP metric against the subject’s age for the 

overlapping ROI in the PCC (c). The ROI average for the CSIP metric against the subject’s age for 

the overlapping ROI in the insula cortex (d). The lines show the linear regression results of the RFC 

metrics against the subject’s ages. 

 

Fig. 15 shows the ROI average of the CSIN and CSIP metrics in the PCC and right insula cortex as a 

function of the subject’s age. With normal aging, both the CSIP and CSIN are reduced in these 

overlapping brain regions. Therefore, the PCC and right insula are particularly sensitive to the adult 

age effect. However, the aging effect is barely detectable by the unseparated CSI metric (see Table 

2). Fig. 16 shows the detected brain volumes where the CDIP and CDIN metrics are significantly 

associated with the adult age. As expected, the CDIP and CDIN metrics derived by using the different 

kernels differ in their sensitivity in detecting the adult age effect. The trend shown in Fig. 16a is quite 

similar to that of the histogram result shown in Fig. 11b, although the effect shown in Fig. 11b are 

overall larger (nearly doubled). This is because the histogram results in Fig. 11b did not impose any 

statistical criterion, while the linear regression results shown in Fig. 16a are subjected to statistical 

criterion for significance and accidental noise contributions are excluded. The sensitivity difference of 

the kernels is also manifested in the regression parameter  which are detailed in Table 3 and Fig 

16b. 
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Fig. 16: The total volumes of the detected brain regions with significant correlation (p<0.05, 

corrected) between the connectivity density index (CDIP and CDIN) and the subject’s age as a 

function of the kernels (a). The average regression parameter  for the detected brain regions as a 

function of the kernels (b). The negative and positive correlations were assessed separately. 

 

To compare the similarity of the detected aging effects among the CDI metrics of different kernels, 

we assessed the joint overlapping brain regions detected by the different CDIN metrics of different 

kernels. This was also performed for the CDIP results of different kernels. The observed overall 

trends of RFC enhancement or decline with age are quite similar. The joint overlapping volumes for 

the CDIP and CDIN metrics of different kernels are 733 and 671 voxels, respectively. Moreover, there 

is also a reasonable anatomic consistency between the results of the connectivity strength metrics 

and connectivity density metrics. As detailed in Tables 2 and 3, the anatomical locations of the joint 

overlapping regions for the different CDIP metrics match those for the 3 largest ROIs identified by the 

CSIP results (see Table 2). Similarly, the brain regions of the joint overlapping for the different CDIN 

metrics are largely the same as those identified by the CSIN data (see Table 2). However, it should 

be noted that the  parameters for the CDIN and CSIN have opposite signs even through the trend of 

change with the adult age is the same. This is because the negative connectivity strength (CSIN) is 

negative in nature, while the connectivity density corresponding to the negative correlation (CDIN) is 

always positive. Therefore, the enhancement of the negative connectivity strength (CSIN) with age 

(for example in the sensorimotor network) corresponds to a negative  while the connectivity density 

result corresponds to a positive value. 
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4. Discussion 

4.1 Effects of adult age on RFC 

Age is an important risk factor for declines of neural cognitive functions and pathology of 

neurodegenerative diseases. It is also a complex metric that is difficult to interpret precisely the 

involved physiology. Healthy individuals of similar age may have quite different vascular and brain-

health status. It follows that age is not a single strongest predictor for the RFC in the brain. This is 

likely to be the reason why the linear regressions of the RFC metrics with the adult age depict 

substantial scatters and relative low correlation coefficients. The impact of the potential confounds 

and pre-processing strategies that can mitigate them have been extensively investigated in the 

published literature [27-33, 45, 46]. Here we focus on comparing our findings in the context of 

documented literature results, particularly the adult age effect in the DMN, dorsal attention network 

(DAN), sensorimotor network and subcortical brain regions. 

With QDA, we found support for RFC decline with advancing adult age in multiple brain 

regions of the DMN and DAN, including superior and MFG, PCC, MTG, and IPL. Age-related RFC 

decrements in the DMN and DAN have previously been reported in numerous R-fMRI studies using 

ROI and ICA based analysis [27, 35, 37, 47, 48]. Our findings regarding to the RFC changes in the DMN 

are overall in agreement with previous reported results [35, 38, 40, 41, 49-53]. Besides the DWMN and DAN, 

normal aging was associated with RFC increase in the sensorimotor, subcortical network, and para-

hippocampal cortex. This has also been reported previously [40, 45, 46, 48, 51, 54]. We didn’t find significant 

age-related RFC declines in precuneus and specific sub-regions of the hippocampal cortex as 

reported in previous studies [40, 41]. Since we assessed the negative and positive correlation 

separately, this may allow us to detect more intricate age-related RFC changes in the brain. To 

illustrate this point, we analyzed further the 3 ROIs with significant correlation between the CSI and 

the subject’s age. As shown in Tables 2 and 4 and Fig. 17, the detected ROI in the precuneus 

depicted significant positive linear correlation between CSI and the subject’s age (=9.50x10-3, 

r=0.459), even though the CSIP and CSIN in the same ROI showed only a slight (not significant) 

increment and decrement with age, respectively. i.e., contribution from a non-significant CSIP 

increment and a non-significant CSIN decrement resulted in a significant increment trend in the CSI 

metric. With the same line of reasoning, we can explain why the MFG ROI detected by the CSI 

metric is much smaller than that detected by the CSIP metric, because the decremental trend in the 

CSIP metric was partially canceled by the CSIN contribution. This can also explain why we didn’t 

detect significant CSI decrement with the adult age in the PCC and R-insula, because both the CSIP 

and CSIN metrics exhibited significant decremental trends with age and their contributions annulled 
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each other. Therefore, it is important to pay attention to the precise definition of the RFC when 

comparing the results of different studies. 

 

Fig. 17: The ROI average of the CSIP, CSIN and CSI metrics against the subject’s age for the 3 ROIs 

with significant correlation between CSI and the subject’s age. The columns 1 to 3 are the results for 

the ROIs in the precuneus, MFG, and R-IPL, respectively. The rows 1 to 3 are the results for the 

CSIP, CSIN and CSI metrics, respectively. The ROI masks are solely based on the CSI metric only.  

 

4.2 Methodological issues  

The QDA framework proposed in the study is a voxel-wise and data-driven approach. It has the 

following two unique features: 1) It can avoid confounding caused by the cancellation of the negative 

and positive correlations by assessing the negative and positive portions of the CC histogram 

separately; 2) It derives different RFC metrics based on the connectivity strength and density by 

utilizing the concept of convolutions with different kernels.  The metrics weight all the correlations of 

a given voxel with the rest of the brain according to the amplitudes of the correlation coefficients and 

disregard the anatomical distance between the correlation pairs. This permits a comprehensive 

characterization of the intrinsic activities of each voxel without the use of an arbitrary threshold. The 

QDA approach can encapsulate the widely used threshold approach as a special case of the square-

well kernel function. Even the CSI metrics can be encapsulate under the convolution concept for a 
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special kernel of the sign function. This provides a unified view for RFC and can facilitate its further 

optimization.  

 

The current results based on the QDA framework should be interpreted in the context of some 

technical and biological limitations. Firstly, at a TR of 2500 ms, the cardiac and respiratory fluctuation 

effects might be aliased into the low frequency R-fMR signal fluctuations. The regression up-to the 

1st order derivative of the head motions and lowpass filtering could not completely eliminate the 

effects of these physiological noises [55-58]. Thus, these aliasing effects could reduce the specificity of 

the RFC metrics, or even might further confound the detected RFC differences between the young 

and elderly sub-groups. With the more up-to-date acquisition techniques, such as multi-band 

simultaneous acquisition of multiple slices and compress-sensing with high under-sampling factor, it 

is possible to use a shorter TR (e.g., 500 ms) and higher spatial resolution for the data acquisition. 

Therefore, these physiological effects may be further mitigated.   

Secondly, the resting state is associated with spontaneous thoughts and cognitive 

processing, we cannot exclude the possibility that differences in spontaneous thoughts may exist 

between the young and elderly subjects [59]. However, considering the overall consistency of our 

results with the previous studies, particularly the results form the longitudinal studies [60-63], it is 

unlikely that these differences have major influence on our findings. These initial findings encourage 

the future use of QDA as a tool to analyze longitudinal R-fMRI data aimed to develop a 

comprehensive understanding of age- or pathology-related brain functional changes.  

Thirdly, the generalizability, or external validity issue should be considered. This is due to the 

non-random recruitment procedures and relying on a sample of convenience. The sample size used 

in this study (N=227) is moderate, includes unbalanced young and elderly subgroups reflecting the 

difficulties to recruit elderly healthy subjects. The ages of the participants range from young to old 

adulthood (reflecting the age of participants in most neuroimaging studies). The age-related RFC 

differences observed in this study were relatively small but quite robust. However, the results from 

this cross-sectional study of the cohort cannot distinguish whether the RFC changes in the brain 

regions are due to gradual changes throughout the adulthood or a more sudden change at later 

stage in life.  

 

4.3 Negative cross correlation, white matter and CSF  

As discussed above negative correlation is an important fraction of the CC histogram irrespective of 

the tissue type and anatomical location of the voxel in question. In published literature, there is also a 

rapid growing interest in studying the negative correlations between the voxels [64-72]. It is clear that 
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the negative portion of the CC histogram is more dominant for voxels in CSF [73] and white matter [74-

77]. However, the negative portion cannot be ignored even for voxels in the grey matter. To avoid 

confound caused by inappropriate preprocessing pipelines, we have carefully tested and updated 

our preprocessing pipeline. We did not implement the global signal regression (GSR) which removes 

the mean signal averaged over the entire brain. GSR removal via linear regression is one of the most 

controversial procedures in the analysis of R-fMRI data [71, 72]. On one hand, the global mean signal 

contains variance associated with respiratory, scanner-, and motion-related artifacts. Its removal by 

GSR can improve various quality control metrics, which enhances the anatomical specificity of RFC 

networks, and increase the explained behavioral variance. On the other hand, GSR alters the 

distribution of regional signal correlations in the brain, can induce artefactual anti-correlation 

patterns, may remove real neural signal, and can distort RFC metrics. The brain masked ‘global 

signal’ is usually misunderstood, because it is not ‘global’ and its variance contains dominant 

contributions from different domains of the voxels with temporally coherent signal variation.  

To limit the study in a reasonable scope, in the discussion of the adult age effect on RFC we 

focused on grey matter and did not discuss white matter and CSF related issues. However, it should 

be pointed out that aging effects in white matter [74-77] and CSF [73, 78] are also worth exploring.  There 

is indeed a rapid growing interest in these arenas in published literature [73-78], particularly in the 

context of the age effect for the glymphatic system. 

 

5 Conclusions 

The proposed QDA framework can data-drive, provide threshold-free and voxel-wise analysis of R-

fMRI data and offer a unified view for RFC metrics which can facilitate further development and 

optimization of the RFC metrics by choosing appropriate kernel functions. The QDA results for the 

adult age effect are largely consistent with previously published results based on other analysis 

methods. Moreover, our new findings based on the separate assessment of the negative and 

positive correlations can improve the sensitivity of the RFC metrics to physiological changes 

associated with the advancing adult age and may clarify some of the confounding reports in the 

literature regarding to the DMN and sensorimotor network involvement in normal aging.  
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Table 1: The MNI coordinates for the 4 voxels of different tissue types illustrated in Fig. 5. 

Tissue Xcm Ycm Zcm 

CSF +26 +48 +8 

WM -22 -16 +43 

MC -56 -12 +43 

PCC  0 +56 +26 
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Table 2: The brain regions where the connectivity strength metrics are significantly (p<0.05) 

correlated with the subjects’ ages. The volume, center of mass coordinates in MNI space, regression 

parameter (), linear correlation coefficient (r), statistical significance (p), and anatomic annotations 

are specified. The default is bilateral, while R and L- indicate the right and left hemisphere of the 

brain, respectively. CSINP indicates the overlapping results between CSIN and CSIP. 

RFC voxel Xcm Ycm Zcm (103) r p(10-3) Annotation 

 

CSI 

239 +2.1 +63.0 +47.9    9.50 0.459 <0.01 precuneus 

152 +3.4   -47.3 +30.1    -9.72 -0.389 <0.01 Superior and MFG 

62 -38.5   +55.3 -35.5   9.57 0.354 <0.01 R-IPL 

CSIN 

237 +0.0 +53.1 +27.3 12.29 0.413 <0.01 PCC 

171 -42.6 -10.4 +11.0 12.36 0.411 <0.01 R-insula cortex 

161 -2.3 +28.2 +59.4 -11.05 -0.371 <0.01 paracentral lobule  

153 -49.1 +47.6 +41.2 11.62 0.441 <0.01 R- IPL 

133 -39.8 +25.7 +55.5 -10.99 -0.325 <0.01 R- postcentral gyrus 

75 -27.3 -3.8 -34.0 -9.99 -0.450 <0.01 R-PHC 

67 -56.8 +14.6 +5.9 -9.28 -0.400 <0.01 R-STG 

58 +18.4 +0.4 -18.9 -9.36 -0.441 <0.01 L-PHC 

56 +42.0 +25.9 +57.1 -10.38 -0.309 <0.01 L-postcentral gyrus 

 713 +2.0 -45.4 +23.6 -10.37 -0.487 <0.01 Superior and MFG 

CSIP 

157 -1.1 +14.7 -17.8 7.96 0.506 <0.01 putamen 

110 +55.7 +13.1 -19.5 -9.49 -0.433 <0.01 L-MTG 

75 +2.7 +48.5 +31.1 -9.01 -0.336 <0.01 PCC  

53 -40.0 -8.7 +0.8 -8.48 -0.361 <0.01 R-insula cortex 

52 +45.1 -10.5 -8.9 -8.36 -0.376 <0.01 L-insula cortex 

CSIN ∩CSIP 

70 +2.8 +49.0 +31.0 14.15 0.374 <0.01 PCC (CSIN) 

-9.04 -0.334 <0.01 PCC (CSIP) 

34 -40.8 -10.0 +0.0 13.37  0.362 <0.01 R-Insula cortex(CSIN) 

-8.63 -0.336 <0.01 R-Insula cortex(CSIP) 
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Table 3: The joint overlapping brain regions where the connectivity density medics of different 

kernels are all significantly (p<0.05) correlated with the subjects’ ages. The volume, center of mass 

coordinates in MNI space, and anatomic annotations, regression parameters (), linear correlation 

coefficient (r), statistical significance (p), and anatomic annotations are specified. The default is 

bilateral, while R and L- indicate the right and left hemisphere of the brain, respectively.  ∩CDIN and 

∩CDIP indicate the joint overlaps among the CDIN and CDIP metrics of the different kernels, 

respectively. The r and p are the average results for the 6 different kernels. 

RFC voxel Xcm Ycm Zcm (103) r p(10-3) Notations 

 

 

 

 

 

∩CDIN 

 

 

 

216 +0.1 +51.9 +29.2 -13.81 -0.376 <0.01 PCC 

103 +0.5 +28.2 +57.6 12.16 0.366 <0.01  paracentral lobule 

92 -48.2 +47.0 +42.1 -13.32 -0.431 <0.01  R-IPL 

72 -38.7 +26.2 +57.2 11.91 0.326 <0.01  R-post central gyrus 

44 +21.2 -4.7 -20.6 9.95 0.430 <0.01 L-PHC 

38 -41.9 -12.4 +5.0 -15.16 -0.374 <0.01 R-insula cortex 

29 +20.8 -4.0 -20.0 8.75 0.371 <0.01 L-STG 

29 -1.5 -14.4 +39.5 -11.66 -0.355 <0.01 Anterior cingulate cortex 

28 +44.0 +24.1 +57.1 10.37 0.297 <0.01 L-post central gyrus 

20 -45.2 +18.4 +9.6 9.20 0.364 <0.01 R-STG 

 

∩CDIP 

 

567 +4.2 -46.9 +24.8 -12.20 -0.480 <0.01 Superior and MFG 

136 -9.4 +21.2 -22.3     8.53 0.452 <0.01 Putamen 

30 +57.0 +15.8 -15.8 -10.09 -0.387 <0.01 L-MTG 
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Table 4. The linear regression results for the 3 ROIs with significant correlation between CSI and the 

subject’s age. The CSIP and CSIN results are based on the masks determined solely by the CSI 

results. 

 

  ROI 
CSIP 

       r 

CSIN 

    r 

CSI 

      r 

precuneus 4.93 0.283 3.17  0.175 9.50    0.459   

MFG -11.46 -0.441 3.77 0.136 -9.72 -0.389 

R-IPL 0.73 0.031 8.03   0.299 9.57    0.354   
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Figure Captions 

Fig. 1: A schematic overview to illustrate the QDA framework. With QDA the time course of each 

voxel is used in turn to compute the whole-brain CC matrix. For each row of the CC matrix, we 

compute a CC histogram with 200 evenly binned intervals within [-1, 1]. The histogram shown in the 

graph is the cohort’s average CC histogram for a voxel within the PCC, whose location was marked 

with the red square. In QDA, two types of RFC images are derived from the CC matrix: 1) CSIP and 

CSIN whose voxel values are the averages of the positives and negatives in each row of the CC 

matrix, respectively. 2) CDIP and CDIN whose voxel values are the positive and negative parts of the 

convolution between the CC histogram and the kernel, respectively. 

 

Fig. 2: An axial slice of the average CSIN (a) and CSIP (b) for the cohort before (a, b) and after the Z-

score transformation (c, d).  

 

Fig. 3: The six different kernel functions investigated in the study to derive the CDIP and CDIN 

metrics. The widely used threshold method can be considered as the case for the square-well kernel 

function (k6).  

 

Fig. 4: The average CC histogram of the cohort for a seed voxel in the posterior cingulate cortex 

(PCC) as indicated by the green cross. Selecting different threshold values along the histogram 

allows us to detect the functional connection networks of different strengths (a-f) associated with the 

seed voxel in the PCC. 

 

Fig. 5: Anatomic locations for 4 different seed voxels of different tissue types including white matter 

(WM), cerebral spinal fluid (CSF), PCC and motor cortex (MC). 

 

Fig. 6: The average CC histograms of the cohort for the 4 different seed voxels shown in Fig. 5.  

 

Fig. 7: The convolutions of the CC histograms shown in Fig. 6 for the 4 different seed voxels located 

in (a) WM, (b) PCC, (c) CSF and (d) MC. 

 

Fig. 8: An axial slice of the CDIP (upper row) and CDIN (lower row) metrics derived from a typical R-

fMRI dataset (a male subject of 36 years’ age). The images from left to right depict the results for the 

following 6 kernel functions |x|, |x2|, |x3|, |x4|, sin2(π/2x) and step(|x| -0.3), respectively. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.04.429600doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429600


 35 

Fig. 9: The average CDIP (a) and CDIN (b) histograms for the cohort derived by using the 6 different 

kernels k1-k6. 

 

Fig. 10: The differences in CDI histograms between the young and elderly sub-groups. The CDIN 

and CDIP results for the 6 different kernels are shown. 

 

Fig. 11: The CDIP and CDIN histogram differences between the young and elderly sub-groups as a 

function of the kernels. Each data point corresponds to the total area above and below the ‘0’ 

horizontal line of the histogram differences shown in Fig. 10. 

 

Fig. 12: Brain regions with significant correlation (p<0.05, corrected) between the connectivity 

strength metrics and the subject’s age. The results for the CSI (a), CSIN (b) and CSIP (c) are depicted 

separately. The Color bar shows the t-score level. 

 

Fig. 13: The overlapping ROIs in the PCC and right insula cortex where both the CSIP and CSIN 

metrics depict significant decline with the adult age (a). The average Pearson’s correlation maps of 

the cohort associated the overlapping ROI seeds in the PCC (b) and insula cortex (c).  

 

Fig. 14: Cross-sectional display of the anti-correlation networks associated with the 2 overlapping 

ROIs as derived from the product of the maps shown in Figs. 13b and 13c at CC(-0. 5). The 

crossing points of green lines depict the center of mass for each ROI 

 

Fig. 15: The ROI average of the CSIN metric against the subject’s age for the overlapping ROI in the 

PCC (a). The ROI average for the CSIN metric against the subject’s age for the overlapping ROI in 

the right insula cortex (b). The ROI average for the CSIP metric against the subject’s age for the 

overlapping ROI in the PCC (c). The ROI average for the CSIP metric against the subject’s age for 

the overlapping ROI in the insula cortex (d). The lines show the linear regression results of the RFC 

metrics against the subject’s ages. 

 

Fig. 16: The total volumes of the detected brain regions with significant correlation (p<0.05, 

corrected) between the connectivity density index (CDIP and CDIN) and the subject’s age as a 

function of the kernels (a). The average regression parameter  for the detected brain regions as a 

function of the kernels (b). The negative and positive correlations were assessed separately. 
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Fig. 17: The ROI average of the CSIP, CSIN and CSI metrics against the subject’s age for the 3 ROIs 

with significant correlation between CSI and the subject’s age. The columns 1 to 3 are the results for 

the ROIs in the precuneus, MFG, and R-IPL, respectively. The rows 1 to 3 are the results for the 

CSIP, CSIN and CSI metrics, respectively. The ROI masks are solely based on the CSI metric only.  
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