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Abstract 12 

A major challenge for the estimation of crop traits (biophysical variables) from canopy 13 

reflectance is the creation of a high-quality training dataset. This can be addressed by using 14 

radiative transfer models (RTMs) to generate training dataset representing ‘real-world’ data in 15 

situations with varying crop types and growth status as well as various observation 16 

configurations. However, this approach can lead to “ill-posed” problems related to assumptions 17 

in the sampling strategy and due to uncertainty in the model, resulting in unsatisfactory 18 

inversion results for retrieval of target variables. In order to address this problem, this research 19 

investigates a practical way to generate higher quality ‘synthetic’ training data by integrating a 20 

crop growth model (CGM, in this case APSIM) with an RTM (in this case PROSAIL). This 21 

allows control of uncertainties of the RTM by imposing biological constraints on distribution 22 

and co-distribution of related variables. Subsequently, the method was theoretically validated 23 

on two types of synthetic dataset generated by PROSAIL or the coupling of APSIM and 24 

PROSAIL through comparing estimation precision for leaf area index (LAI), leaf chlorophyll 25 

content (Cab), leaf dry matter (Cm) and leaf water content (Cw). Additionally, the capabilities 26 

of current deep learning techniques using high spectral resolution hyperspectral data were 27 

investigated. The main findings include: (1) Feedforward neural network (FFNN) provided 28 

with appropriate configuration is a promising technique to retrieve crop traits from input 29 

features consisting of 1 nm-wide hyperspectral bands across 400-2500 nm range and 30 

observation configuration (solar and viewing angles), leading to a precise joint estimation for 31 

LAI (RMSE=0.061 m2 m-2), Cab (RMSE=1.42 µg cm-2), Cm (RMSE=0.000176 g cm-2) and Cw 32 

(RMSE=0.000319 g cm-2); (2) For the aim of model simplification, a narrower range in 400-33 

1100 nm without observation configuration in input of FFNN model provided less precise 34 

estimation for LAI (RMSE=0.087 m2 m-2), Cab (RMSE=1.92 µg cm-2), Cm (RMSE=0.000299 35 

g cm-2) and Cw (RMSE=0.001271 g cm-2); (3) The introduction of biological constraints in 36 
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training datasets improved FFNN model performance in both average precision and stability, 37 

resulting in a much accurate estimation for LAI (RMSE=0.006 m2 m-2), Cab (RMSE=0.45 µg 38 

cm-2), Cm (RMSE=0.000039 g cm-2) and Cw (RMSE=0.000072 g cm-2), and this improvement 39 

could be further increased by enriching sample diversity in training dataset. 40 

Keywork: model integration; neural network; hyperspectral data; variable retrieval 41 

1. Introduction 42 

Since the 1960s, using satellite imagery to measure reflectance of surfaces at a scale of tens of 43 

metres has been utilised to monitor vegetation health and to attempt to estimate and forecast 44 

changes in vegetation cover and condition (Thenkabail et al., 2019). More recently, these 45 

imagery methods have been deployed in more proximal sensors (planes, drones, vehicles) that 46 

allow analysis of vegetation at higher resolutions (to sub-centimetre scales) in a research field 47 

that is sometimes referred to as ‘high-throughput phenotyping’ (HTP) (Chapman et al., 2018). 48 

The aim is to indirectly retrieve crop traits such as water and chlorophyll content, with 49 

estimation of integrative traits like leaf area index (LAI) gaining the most attention (e.g. Bacour 50 

et al., 2002; Jay et al., 2019; Shibayama and Watanabe, 2007; Xu et al., 2019; Yu et al., 2017). 51 

HTP methods based on sensor and imaging technologies can rapidly measure a large number 52 

of crop traits across time and space in a cost- and labour-efficient way, which can benefit 53 

applications in precision agriculture and plant breeding. 54 

Existing retrieval methods can be classified into two major categories depending on where the 55 

source of the training data for establishing relationship between target crop trait and spectral 56 

signal (canopy reflectance and its derived variables such as vegetation index): (1) statistical 57 

methods use observation data collected from practical experiments to build relationship; (2) 58 

physical methods either directly use established cause-effect relationship expressed in radiative 59 

transfer models (RTMs) or use simulation (synthetic) data generated by these models to rebuild 60 
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relationship. Compared to statistical methods, the main advantage of physical methods is to 61 

allow construction of a training dataset that represents the entire range of possible situations 62 

varying in crop types and growth status as well as observation configurations (Baret and Buis, 63 

2008; Dorigo et al., 2007) and consequently provides an easier way to develop more general 64 

relationships unrestricted to situations for variable retrieval. There is an increasing interest of 65 

the application of ‘model inversion methods’ to RTMs, among of which PROSAIL is the most 66 

popular one and has been widely used for variable retrieval (Berger et al., 2018). Within a RTM 67 

such as PROSAIL, canopy reflectance across 400-2500 nm range as model output is regulated 68 

by input variables including leaf properties, canopy architecture, soil background and 69 

observation geometry (viewing and illumination conditions) via radiation absorption and 70 

scattering (Jacquemoud et al., 2009). Theoretically, only crop traits presented as input variables 71 

in RTMs could be retrieved from model inversion; however, by treating these retrieved 72 

variables as intermediate mediums, model inversion can be extended to broader applications, 73 

i.e., estimation of leaf properties at canopy level (Campos-Taberner et al., 2018), phenology 74 

prediction (J. Xu et al., 2019), land quality evaluation (Wu et al., 2019) and stress detection 75 

(Xia et al., 2019).  76 

Model inversion methods are generally subdivided into three sub-categories: numerical 77 

optimization approach (e.g., Bacour et al., 2002; Eon et al., 2019; Lunagaria and Patel, 2019), 78 

look-up table approach (e.g., Weiss et al., 2000; X. Xu et al., 2019; Zhu et al., 2019), machine 79 

learning approach including use of neural networks (e.g., Bacour et al., 2006; García-Haro et 80 

al., 2018; Upreti et al., 2019). As summarized in reviews of variable estimation from remote 81 

sensing data, different methods have advantages and limitations with no obvious global solution 82 

(Baret and Buis, 2008; Dorigo et al., 2007; Verrelst et al., 2015). Although neural networks did 83 

not outperform the other approaches for variable retrieval in previous studies (e.g., Combal et 84 

al., 2003; Dhakar et al., 2019; Upreti et al., 2019), this may have been due to the low quality of 85 
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the training dataset without correction using prior knowledge, and/or insufficient utilization of 86 

spectral data and/or limitations of the selected neural network algorithms. Compared with other 87 

methods, neural networks are theoretically superior in inverting models with massive input 88 

variables (such as using hundreds of hyperspectral bands as input to infer canopy variables) and 89 

are computationally efficient once the network is fully trained. Thanks to recent developments 90 

in deep learning techniques, in this research, we attempted to explore the use of deep learning 91 

approach in model inversion for canopy variable retrieval by optimizing network architecture 92 

(hyperparameter tuning) and improving training data quality.  93 

Although model inversion methods provide a reasonable way for estimating variables from 94 

remote sensing data, none of them can avoid the “ill-posed” problem, namely, the same model 95 

output may result from different combination of model input variables. Essentially, the problem 96 

is caused by the model uncertainty which results from its simplification of the structure and 97 

biochemistry of a canopy, so that more than one state situations of a canopy could result in 98 

exactly the same reflectance profile. In practical applications, this problem is aggravated by the 99 

poor input parameter selection, i.e. not accounting for bio-physical limitations in the 100 

combinations of parameters physically existing in the real-world.  However, this problem can 101 

be alleviated by using prior knowledge to strengthen constraints on individual variables or 102 

between variables. The simplest way is to define the lower and upper values between which the 103 

target trait can be retrieved from based on prior information, for example, field measurement 104 

data was used for defining input parameter range in the study of Lunagaria and Patel (2019). 105 

M. Xu et al. (2019) indirectly introduced constraints between leaf chlorophyll content and LAI 106 

by establishing a 2-dimensional matrix-based relationship between leaf chlorophyll content and 107 

two vegetation indices (VIs) for VI-based look-up table inversion, which resulted in a better 108 

estimation precision than using individual VI.  In addition, the utilization of multi-angular 109 

observation data in numerical optimization inversion was reported to improve estimation 110 
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precision of LAI and leaf chlorophyll content (Roosjen et al., 2018) by reducing possible 111 

solutions of variable combination via solutions interception.  112 

Linking crop growth model (CGM) to RTM provides a more straightforward solution to address 113 

this “ill-posed” problems by directly constraining the sets of RTM input parameters that 114 

contribute to canopy reflectance. Theoretically, such an integration method can be implemented 115 

in two ways to improve variable retrieval from remote sensing data. The first way is to 116 

calibrate/parameterize CGM using canopy reflectance and then using the calibrated CGM to 117 

predict target crop traits.  Such an application mode can directly retrieve those variables not 118 

included in RTMs such as crop yield  and also provide variable estimation across the whole 119 

growth season (e.g., Guo et al., 2019; Huang et al., 2019; Thorp et al., 2012). The other way is 120 

to convert CGM output variables into input variables of RTM and then apply model inversion 121 

method on these constrained input variables and corresponding canopy reflectance. This 122 

approach has been rarely discussed or explored. 123 

This research focused on estimation of leaf area index (LAI), leaf chlorophyll content (Cab), 124 

leaf dry weight (Cm) and leaf water content (Cw) of wheat in four locations across Australia 125 

wheatbelt. The overall objective was to investigate inversion procedures based on a deep 126 

learning approach (feedforward neural network, FFNN) for crop trait estimation, with a special 127 

focus on alleviating the “ill-posed” problem in model inversion through linking a CGM 128 

(APSIM) and a RTM (PROSAIL) to generate a higher quality training dataset. Firstly, a 129 

baseline FFNN model was established to evaluate the use of FFNN for crop trait retrieval. 130 

Secondly, this baseline model was used to explore possibility of reduction of hyperspectral 131 

bands and effect of observation configuration (solar and viewing angles) for the aim of model 132 

simplification. Finally, this simplified model was trained using different datasets generated by 133 

PROSAIL or the coupling of APSIM and PROSAIL to investigate the function of model 134 

integration by comparing performance of trained FFNNs. 135 
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2. Methods 136 

2.1 Overview 137 

This research contains several key steps as shown in Figure 1. APSIM and PROSAIL models 138 

were integrated by passing variables from the former to the latter based on variable 139 

transformation relationships. A defined wheat growing space (characterized by genotype, 140 

environment and management) and observation conditions (determined by local latitude, day 141 

of year and day time) were set up to run APSIM and PROSAIL for simulation of crop traits and 142 

canopy reflectance, which resulted in two types of synthetic datasets. The first dataset 143 

(PROSAIL dataset) uses the ranges of the input parameters converted from APSIM outputs but 144 

allows PROSAIL to be run using samples from full parameter space for any combination of 145 

inputs. The second dataset (APSIM-PROSAIL dataset) directly uses input data converted from 146 

APSIM outputs to explore a sub-space of input parameters (i.e. limited by the APSIM biology) 147 

to run PROSAIL. According to research objectives, these synthetic datasets were reconstructed 148 

and used for FFNN training and evaluation in order to explore the possibility of hyperspectral 149 

bands reduction, the effect of observation configuration (solar and viewing angles), and the 150 

effect of limiting the PROSAIL input parameters to the sub-space as determined by the APSIM. 151 
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  152 

Figure 1 Research flowmap. APSIM-NG denotes Agricultural Production Systems sIMulator (APSIM) Next Generation, which 153 

is a crop model. PROSAIL is a radiative transfer model, coupling a leaf optical property model (PROSPECT-D) and a canopy 154 

bidirectional reflectance model (4SAIL). 155 

2.2 Models and their integration 156 

Agricultural Production System Simulator (APSIM) Next Generation 157 

(https://www.apsim.info/apsim-next-generation/) is the new version of APSIM, which is 158 

simpler and faster than the classic version (i.e. 7.10., D. Holzworth et al., 2018). APSIM Next 159 

Generation  or APSIM is driven by major processes in crop physiology and interactions with 160 

environment factors and management practices, and widely is used to simulate dynamics of 161 

many crop traits (e.g. leaf area index, dry weight of organ parts (i.e. grain, leaf, spike, stem and 162 

root)) during growth season at daily scale. APSIM has been validated in many regions around 163 

the world (Holzworth et al., 2014). 164 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.02.02.429471doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429471
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

PROSAIL is the combination of PROSPECT (a leaf optical property model) and SAIL (a 165 

canopy bidirectional reflectance model). PROSAIL links the spectral variation of canopy 166 

reflectance (mainly related to leaf biochemical contents) with its directional variation (primarily 167 

related to canopy architecture and soil/vegetation contrast), which is key to simultaneously 168 

estimate canopy biophysical/structural variables such as leaf chlorophyll content and LAI 169 

(Jacquemoud et al., 2009). The current version of the PROSAIL model  couples PROSPECT-170 

D (see Féret et al., 2017) and 4SAIL (see Berger et al., 2018) and can be downloaded from 171 

http://teledetection.ipgp.jussieu.fr/prosail/. Both input and output variables of this PROSAIL 172 

model are presented in Table 1.  The 14 input parameters can be divided into four categories: 173 

leaf properties (N, Cw, Cm, Cab, Car, Cant, Cbrown), background soil properties (rsoil), 174 

canopy architecture (LAI, LIDF, hspot) and solar-object-sensor observation geometry (SZA, 175 

VZA, RAA). PROSAIL can output directional canopy reflectance, which is also represented 176 

using canopy reflectance or model output without explicit specification in the following 177 

sections. For further details about PROSPECT and SAIL model, refer to the original papers 178 

(Féret et al., 2017; Jacquemoud and Baret, 1990; Verhoef, 1998, 1984). 179 

Table 1 Description of input parameters and output of PROSAIL (PROSPECT-D + 4SAIL) 180 

Variable Unit Description 

Input 

N unitless Leaf mesophyll structure parameter, relates to the cellular arrangement within the leaf. 

Cw g cm-2 or cm Leaf water content (g cm-2) or leaf equivalent water thickness (cm) 

Cm g cm-2 Leaf dry matter content per leaf area 

Cab µg cm-2 Leaf chlorophyll-a and -b content per leaf area 

Car µg cm-2 Leaf carotenoid content per leaf area 

Cant µg cm-2 Leaf anthocyanins content per leaf area 

Cbrown unitless Leaf brown pigment concentration 
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Variable Unit Description 

rsoil unitless 

Reflectance of soil as a libertarian surface. It is usually adjusted by a soil brightness factor: 

asoil (to be multiplied with single rsoil spectrum) or psoil (scaling factor between the two 

model-implemented rsoil spectra - wet versus dry). 

LAI m2 m-2 Leaf area index 

LIDF - 

Leaf inclination distribution function. There are two methods provided in 4SAIL to calculate 

LIDF: use two parameters LIDFa and LIDFb or single parameter – ALA (average leaf angle, 

degree) 

hspot m m-1 

Hot spot size parameter. It is primarily designed to correct the canopy reflection regarding 

bidirectional effects. Hot spot effect is the case that a spot displays maximum reflectivity and 

appears brighter than surroundings because of no visible shadows at the hot spot position 

where the sensor is in direct alignment between the sun and the ground target.  

SZA degree Solar zenith angle (from vertical) 

VZA degree Viewing (or observing) zenith angle (from vertical) 

RAA degree Relative azimuth angle. It is equal to viewing azimuth angle minus solar azimuth angle. 

Output 

resv unitless Directional reflectance of canopy 

 181 

The coupling of APSIM and PROSAIL is realized by passing output variables of APSIM to 182 

PROSAIL as input variables. This permits the coupling model to estimate canopy reflectance 183 

from 400 to 2500 nm in 1 nm interval at defined observation conditions (determined by latitude, 184 

day of year, and day time) given that required parameters are specified. The transformation of 185 

variables is based on a series of equations (Table 2) and more details could be found in Section 186 

1 of supplementary materials. 187 

 188 

 189 
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Table 2 Variable transformation from APSIM output to PROSAIL input 190 

APSIM output variable Transformation formula PROSAIL input variable 

LAITotal, LDW  N=(0.9∗SLA+0.025)/(SLA−0.1) 

where 

SLA=10∗LAITotal/LDW 

N 

Zs, LAITotal, LAIDead 
𝐶𝑤 = {

−0.000196 𝑍𝑠 + 0.0298 (𝑓𝑑𝑒𝑎𝑑 = 0)
0.0223 exp (−1.90 𝑓𝑑𝑒𝑎𝑑) (𝑓𝑑𝑒𝑎𝑑 > 0)

 

where 

fdead=LAIDead/LAITotal 

Cw 

LDW, LAITotal Cm=10-4*LDW/LAITotal Cm 

CNC, LAITotal Cab=26∗LNC 

where 

LNC=CNC/LAITotal 

Cab 

CNC, LAITotal Car=0.216∗Cab Car 

/ Fixed Cant to 0 Cant 

/ Fixed Cbrown to 0 Cbrown 

/ Fixed psoil to 1 psoil 

LAITotal LAI = LAITotal LAI 

/ Fixed ALA to 50˚ ALA 

LAITotal hspot=a/LAITotal 

 (a is an empirical parameter and is set as 0.5) 

hspot 

L, DOY cos(SZA)=sin(L)sin(δ)+cos(L)cos(δ)cos(h) 

given 

δ=23.45sin(360365(284+DOY)) 

h=15(AST−12) 

SZA 

/ Fixed VZA to 0 VZA 

L, DOY RAA = SAA – VAA 

given  

VAA=0 (when VZA=0) 

sin(SAA)=cos(δ)sin(h)cos(90°−SZA) 

RAA 

Notes:  

“/” denotes no output for equivalent input; 

SLA (cm2 mg-1): leaf area per unit leaf dry weight; 
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APSIM output variable Transformation formula PROSAIL input variable 

LAITotal (m2 m-2): total leaf area index;  

LDW (g m-2): leaf dry weight per unit planting area; 

Zs: decimal zadok score for the growth stage; 

fdead: the fraction of dead leaves; 

LAIDead (m2 m-2): leaf area index of senesced or dead leaves; 

LNC (g m-2): leaf nitrogen content per unit leaf area; 

CNC (g m-2): canopy nitrogen content per unit planting area; 

L (°): local latitude; 

δ (°): solar declination angle;  

DOY: day of year; 

h (°): hour angle; 

AST (h): apparent solar time for phenotyping crops and here is set at three levels: 10:00, 12:00 and 14:00. 

 191 

2.3 Synthetic dataset generation 192 

At four sites used to represent diverse conditions across the Australia wheatbelt (Table 3),  193 

simulations were run with historical weather records from 2000-2019, the typical soil condition 194 

with best initial soil water and local management practices (i.e. fertilization, Table 3, (Chenu et 195 

al., 2013)). For each site at each year, 9 cultivars (varying in habit and/or development speed) 196 

and 9 sowing dates (from 1-May to 30-June in 1-week interval) were selected to characterize 197 

different wheat growth patterns (Table 3). In total, 6 480 simulation seasons were performed 198 

using APSIM Next Generation. Major crop traits (Table 2) were output in daily step from 199 

emergence to harvest, resulting in 1 080 680 daily records. Based on three defined observation 200 

times, these APSIM output records were converted into 3 243 040 PROSAIL input records 201 

using variable transformation formulas presented in Table 2, which were then used to determine 202 

variation range of each PROSAIL input variable (Table 4). 203 
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Table 3 Information of genotype, environment and management used for simulation to represent Australia wheatbelt 204 

Cropping 

Area 

Site Latitude Longitude 
Soil 

Classification 

PAWC at 

sowing (mm) 

Nitrogen 

(kg ha-1) 

Sowing 

Date 

Genotype (habit / 

development speed) 

West Merredin -31.48 118.28 

Shallow 

loamy duplex 
86 20-20-30 

1-May; 

8-May; 

15-May; 

22-May; 

29-May; 

5-Jun; 

12-Jun; 

19-Jun; 

26-Jun 

Young  

(Spring / Very-fast); 

Gauntlet  

(Spring /Fast); 

Ellison  

(Spring / Mid-fast); 

Wills  

(Spring / Mid); 

Lancer  

(Spring / Slow); 

Forrest  

(Spring / Very-slow); 

Longsword  

(Winter / Fast); 

Kittyhawk  

(Winter / Mid);  

Manning  

(Winter / Slow) 

South-east Yanco -34.61 146.42 

Brown 

sodosol 

191 

40-40a-

40b 

East Narrabri -30.34 149.76 Grey vertosol 218 130-0-0 

East Gatton -27.54 152.33 
Black 

vertosol 

225 20-30-0 

Notes: The first three sites (Merredin, Yanco and Narabri) are Managed Environment Facilities of Australia and Gatton is an 

experimental station in the University of Queensland. Plant available water content (PAWC) at sowing is indicated for each soil at its 

best level of initial soil water (referring to (Chenu et al., 2013)). Applied nitrogen is represented by ‘x-y-z’: x, nitrogen (urea for the East 

and nitrate for the rest areas) applied at sowing; x, y, nitrogen (nitrate) applied at stage of ‘beginning of stem elongation’ and ‘flag leaf 

just visible’, respectively. a applied only if more than 100 mm rainfall from sowing to stage of ‘beginning of stem elongation’; b applied 

only if soil PAWC > 60% of maximum. 

   205 

Table 4 Setting of PROSAIL input parameters used for sensitivity analysis and synthetic dataset generation 206 

Parameters 

Local sensitivity analysis (OAT) 

Global sensitivity analysis (EFAST) 

/ PROSAIL dataset 

Baseline Levels Lower Bound Upper Bound Distribution 

N 2.25 1, 1.6, 2.3, 2.9, 3.5 1 3.5 Uniform 

Cw 0.017 0.003, 0.01, 0.017, 0.023, 0.03 0.003 0.03 Uniform 

Cm 0.006 0.002, 0.004, 0.006, 0.008, 0.01 0.002 0.01 Uniform 
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Parameters 

Local sensitivity analysis (OAT) 

Global sensitivity analysis (EFAST) 

/ PROSAIL dataset 

Baseline Levels Lower Bound Upper Bound Distribution 

Cab 48 5, 26, 48, 79, 90 5 90 Uniform 

Car 10 1, 5, 10, 15, 20 1 20 Uniform 

Cant 0 0 0 0 Fixed 

Cbrown 0 0 0 0 Fixed 

psoil 1 1 1 1 Fixed 

LAI 3.5 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5 0.01 7 Uniform 

ALA 50 50 50 50 Fixed 

hspot 1.7 0, 0.8, 1.7, 2.6, 3.5 0 3.5 uniform 

SZA 35 0, 18, 35, 52, 70 0 70 Uniform 

VZA 0 0 0 0 Fixed 

RAA 45 0, 22, 45, 68, 90 0 90 Uniform 

 207 

The synthetic dataset was a set of data pairs constructed from PROSAIL input variables and 208 

corresponding outputs. It is an ideal means to use synthetic dataset to demonstrate the 209 

application of PROSAIL inversion for estimation of crop traits in theoretical dimensionality, 210 

since such a synthetic dataset represents the whole range of possible situations varying in crop 211 

types and growth status as well as observation conditions. Based on combination mode of 212 

PROSAIL input parameters, the synthetic dataset can be classified into two types: PROSAIL 213 

dataset and APSIM-PROSAIL dataset. For PROSAIL dataset, the entire parameter space of 214 

input variables consists of arbitrary combination of each parameter changing in their 215 

ranges defined in Table 4. The input variables of this type of datasets were generated by 216 

sampling a subset from this parameter space based on EFAST’s resampling scheme with given 217 

minimum sample size (n). EFAST sensitivity analysis was undertaken multiple times to 218 

determine the appropriate n size. Our results show that sensitivity indices can converge to a 219 

relative robust value where n ≥ 5000 (Figure S3 in supplementary materials), indicating a subset 220 
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with sample number of 45000 (=5000*9) is sufficient to reflect relationships between model’s 221 

input and output. Compared with input variables of PROSAIL dataset, input variables 222 

of APSIM-PROSAIL dataset are not combined arbitrarily but are constrained to wheat growth 223 

pattern. The input variables of APSIM-PROSAIL dataset were those directly converted from 224 

ASPIM output variables, which contained 2 149 226 unique records after omitting 1 092 814 225 

duplicated ones from the total 3 242 040 records. To our objectives, several synthetic datasets 226 

were generated in the way mentioned above (Table 5) and the density distribution and spatial 227 

co-distribution of PROSAIL input variables of these datasets in one- or two-dimensional space 228 

are presented in Figure 2.  229 

Table 5 Information of synthetic dataset’s name, type, number and description 230 

Dataset 

Name 

Dataset Type Sample 

Number 

Description 

p_initialTrain PROSAIL 45 000 Sampling from parameter space based on EFAST's resampling 

scheme with n=5000; used to determine FFNN model's 

hyperparameters in initial training 

p_test PROSAIL 10 000 Selecting from p_initialTrain; used as test set to evaluate performance 

of trained FFNN models (trained by p_train1) in experiments SE1-

SE7 (see Table 6) 

p_train1 PROSAIL 90 000 Sampling from parameter space based on EFAST's resampling 

scheme with n=10000; used as train set in in experiments SE1-SE7 

(see Table 6) 

ap_test APSIM-PROSAIL 10 000 Selecting from total 2 149 226 unique samples; used as test set to 

evaluate performance of trained FFNN models (trained by ap_train1 

or ap_train2) in experiment SE8-SE9 (see Table 6) 

ap_train1 APSIM-PROSAIL 90 000 Selected from the remaining 2 139 226 samples; used as train set in 

experiment SE8 (see Table 6) 

ap_train2 APSIM-PROSAIL 2 139 226 The remaining 2 139 226 samples; used as train set in experiment SE9 

(see Table 6) 

 231 
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 232 

Figure 2 Density distribution and spatial co-distribution of PROSAIL input variables of two types of dataset. Black symbol 233 

represents PROSAIL dataset (p_train1) while red symbol represents APSIM-PROSAIL dataset (ap_train1). 234 

2.4 Sensitivity analysis 235 

For the PROSAIL model, not all canopy reflectance at wavelength from 400 to 2500 nm are 236 

sensitive to variation of input parameters. A simplified model with fewer insensitive outputs is 237 

superior to the full model for variable retrieval through inversion against a spectral image. For 238 

example, inverting variable from a parameter space with fewer possible solutions can improve 239 

inversion efficiency and mitigate the ill-posed problem (Verrelst and Rivera, 2017). In order to 240 
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generate a more representative synthetic dataset used for variable retrieval, a sensitivity analysis 241 

was conducted to evaluate the relative importance of each input variable in PROSAIL model 242 

and subsequently identify the most influential variables and most sensitive wavelength range. 243 

Sensitivity analysis includes local and global sensitivity analysis. Local sensitivity analysis is 244 

commonly referred to “one-at-a-time (OAT)”, which changes one input variable at a time while 245 

holding others at their central values for measurement of variation in the model outputs 246 

compared with outputs at central point (Verrelst and Rivera, 2017).  In contrast, global 247 

sensitivity analysis explores the entire variable space and simultaneously changes all variables. 248 

The "extended-FAST" (EFAST) method (Saltelli et al., 1999) is a variance-based method and 249 

is frequently used in global sensitivity analysis. This method allows the estimation of the first-250 

order and total effect indices for all the input parameters at a total cost of n × p simulations (p 251 

is the number of parameters, n is the sample size). First-order effect indices (S1i) represent the 252 

isolated contribution of ith parameter to the variance of the model output (i.e. canopy reflectance 253 

in this study). Total effect indices (Sti) represent the total contribution of ith parameter: the 254 

isolated contribution of a parameter plus its interactions with other input parameters. The 255 

normalized total effect indices (RC_Sti) are appropriate to represent the relative contribution of 256 

ith input parameter to variation of model output and the normalized first-order effect indices 257 

(RC_S1i) represent the relative isolated contribution. 258 

𝑅𝐶_𝑆𝑡𝑖 =
𝑆𝑡𝑖

∑ 𝑆𝑡𝑖
𝑝
𝑖=1

× 100% 
(1) 

𝑅𝐶_𝑆1𝑖 =
𝑆1𝑖

∑ 𝑆1𝑖
𝑝
𝑖=1

× 100% 
(2) 

 259 

2.5 In this research, OAT analysis was undertaken to present how canopy reflectance responds 260 

to variation of each input variable in the wavelength range from 400 nm to 2500 nm. In 261 
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addition, EFAST was chosen as the global sensitivity analysis method to quantify relative 262 

contribution of each input variable on canopy reflectance in 400-2500 nm range. Values 263 

and ranges of PROSAIL input parameters used for sensitivity analysis were set as shown in 264 

Table 4. Feedforward neural network (FFNN)  265 

Feedforward neural networks (FFNNs), also called deep feedforward networks, or multilayer 266 

perceptrons, are the quintessential deep learning models (Goodfellow et al., 2016). A FFNN 267 

defines a mapping y=f(x;θ) and learns the value of the parameters θ that result in the best 268 

function approximation for a prediction: either a classification (discrete) or a regression 269 

(continuous). Within this network structure, data passes from the input “x” corresponds to the 270 

raw data, which goes through intermediate computations in the function “f” with the parameters 271 

“θ”, to the output “y” in a single pass without any feedbacks or cycles.  272 

As presented in Figure 3, FFNN has a multilayer structure consisting of an input layer (the first 273 

layer of a network), an output layer (the final layer of a network), and one or more hidden layers 274 

(the remaining layers of a network). The total number of layers is called the depth of a network, 275 

and each hidden layer of the network consists of many neurons (or units). The dimensionality 276 

of these hidden layers determines the width of the network. According to the universal 277 

approximation theorem (Cybenkot, 1989; Hornik et al., 1989), a feedforward network can 278 

approximate an arbitrary function even with only one hidden layer that is sufficiently wide. 279 

However, simply increasing the number of neurons can easily lead to over-parameterization, 280 

hence increasing depth seems to be an alternative as experiences from previous studies showed 281 

greater depth typically resulted in better generalization (Lin et al., 2014; Zhang et al., 2017). In 282 

addition to depth and width, a FFNN has other necessary components: activation, optimizer and 283 

loss function. The activation function is a function used to transform data, which allows the 284 

layer to learn not only the linear transformation but also the non-linear transformations of the 285 

input data and to increase the capacity for better learning of the complex mapping from the 286 
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input to the output. The optimizer specifies how the training (learning) proceeds through 287 

updating model parameters θ (weights) towards a better prediction based on feedback signal 288 

from loss function. The magnitude of the move of weights update in training is controlled by 289 

learning rate. The loss function quantifies the accuracy of a model on the training data and is 290 

used to navigate the training process so as to minimize the training loss. Since a network is 291 

trained by iteratively going through the training data, the loss score decreases as training 292 

proceeds and finally, it yields a trained network that can accurately estimate the output y with 293 

f(x;θ) when consistent minimal loss is observed.  294 

The FFNN model was implemented using Keras in TensorFlow 2.3.0 295 

(https://www.tensorflow.org/). Based on research objectives, the PROSAIL and APSIM-296 

PROSAIL datasets generated in previous steps were reconstructed and several simulation 297 

experiments were designed to facilitate other steps in the method (Table 1). In the following 298 

sections, we demonstrated how to build, train and evaluate FFNN. 299 

 300 

Figure 3 Feedforward neural network working roadmap (adapted from (Chollet, 2017)).  ‘Activation’ coloured in black is 301 

necessary while that one coloured in grey is unnecessary. 302 
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2.5.1 Hyperparameter tuning 303 

Hyperparameters denote variables that govern the training process and the architecture of an 304 

FFNN model. Hyperparameters include model hyperparameters (influencing model basic 305 

architecture such as the number and width of hidden layers) and algorithm hyperparameters 306 

(influencing the speed and quality of training process such as learning rate, activation and 307 

optimizer). The process of determining the optimal hyperparameters is called hyperparameter 308 

optimization or hyperparameter tuning. For a regression task presented here, the most common 309 

loss function is mean squared error (MSE).  310 

 In the initial training experiment ‘hypertuning’, dataset ‘p_initialTrain’ (Table 6) was used for 311 

hyperparameter tuning, and the best combination of hyperparameters was determined via a two-312 

step optimization process. At the first step, the best combination of learning rate, activation and 313 

optimizer was selected by changing these three hyperparameters and holding the number and 314 

width of hidden layers to default values (3 hidden layers with 256 units for each layer). At the 315 

second step, the best combination of depth and width was chosen based on the algorithm 316 

hyperparameters selected at the first step. During this hyperparameter tuning, 3 common values 317 

of learning rate, 10 activation functions, 9 optimizers, 5 levels of hidden layer number and 8 318 

levels of unit number were evaluated. In the end, the model structure with 3 hidden layers and 319 

512 units for each hidden layer and using 0.001 as learning rate, ‘softplus’ as activation, 320 

‘Adamax’ as optimizer, was selected as the optimal FFNN structure (Figure S4 and Figure S5) 321 

used in later training experiments. 322 

2.5.2 Training and evaluation 323 

The best model architecture determined in experiment ‘hypertuning’ was used in the following 324 

experiments SE1 to SE9. Experiment SE1 was designed to check how well PROSAIL inversion 325 

based on FFNN can retrieve target crop traits (i.e. LAI, Cab, Cm and Cw) from canopy 326 

reflectance. Experiments SE2 to SE6 were used to check whether it is possible to reduce 327 
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hyperspectral bands used in FFNN’s input on the base of ensuring model’s prediction precision 328 

by comparing performance of models using different wavelength range in input. Experiments 329 

SE5 and SE7 were used to check whether observation geometry information is necessary to 330 

achieve good prediction of crop traits by comparing performance of models including or 331 

excluding this information from the input. In order to verify the hypothesis that APSIM-332 

PROSAIL dataset outperforms PROSAIL dataset when being used for traits retrieval, 333 

experiments SE7 to SE9 were designed to use different types of datasets for training model. 334 

Loss, the total mean squared error of all output variables after normalization, was used to 335 

evaluate FFNN model’s overall performance for joint estimation of all target variables: a 336 

smaller loss indicates a higher precision. Absolute error (AE, including its variation range (AE 337 

range), standard deviation (std AE) and mean (MAE)) and root mean squared error (RMSE) 338 

were used for measurement of each target variable after de-normalization. In particular, AE 339 

range and std AE were used to evaluate model’s stability for estimating each target variable 340 

while MAE and RMSE were used to evaluate model’s average precision for this variable: a 341 

narrower AE range, a smaller std AE, MSE and RMSE indicate a better performance.  342 

Table 6 Details of simulation experiment’s name, original and reconstructed synthetic dataset, and evaluation metric 343 

Experiment 

name 

Original synthetic 

dataset 

Reconstructed synthetic dataset Evaluation 

metric 

Original Dataset Reconstructed input Reconstructed output 

Hypertuning p_initialTrain 

2101 reflectance bands (400-2500 nm), 

SZA, RAA 

LAI, Cab, Cm, Cw 

Loss 

SE1 p_train1, p_test 

2101 reflectance bands (400-2500 nm), 

SZA, RAA 

Loss, AE, 

RMSE 

SE2 p_train1, p_test 

351 reflectance bands (400-750 nm), 

SZA, RAA 

SE3 p_train1, p_test 

351 reflectance bands (750-1100 nm), 

SZA, RAA 
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Experiment 

name 

Original synthetic 

dataset 

Reconstructed synthetic dataset Evaluation 

metric 

Original Dataset Reconstructed input Reconstructed output 

SE4 p_train1, p_test 

1401 reflectance bands (1100-2500 nm), 

SZA, RAA 

SE5 p_train1, p_test 

701 reflectance bands (400-1100 nm), 

SZA, RAA 

SE6 p_train1, p_test 

1751 reflectance bands (750-2500 nm), 

SZA, RAA 

SE7 p_train1, p_test 701 reflectance bands (400-1100 nm) 

SE8 ap_train1, ap_test 701 reflectance bands (400-1100 nm) 

SE9 ap_train2, ap_test 701 reflectance bands (400-1100 nm) 

Notes: The description of original synthetic datasets refers to Table 5 and the meaning of SZA, RAA, LAI, Cab, Cm and 

Cw refers to Table 1.   

 344 

3. Results and Discussion 345 

3.1 Sensitivity analysis of PROSAIL 346 

By applying a local sensitivity analysis (OAT), we characterised a baseline situation for mid-347 

season wheat crop and typical measurement scenario in order to demonstrate the impacts of 348 

independently varying input variables on canopy reflectance in 400-2500 nm range (Figure 4). 349 

An EFAST analysis qualified relative importance of each variable to total variability of 350 

reflectance across 400-2500 nm range in the entire input variable space (Figure 5).  351 

In the OAT, the variables N, hspot, Cm and SZA had a consistent either negative or positive 352 

effect on reflectance across the whole range (although with small effect of Cm in visible region) 353 

(Figure 4). Increasing N and hspot resulted in increases in canopy reflectance (Figure 4A, G) 354 

while increasing Cm and SZA resulted in decreases in canopy reflectance (Figure 4E, H).  355 

Increases of two pigment variables Cab and Car only decreased reflectance in the visible region 356 

(Figure 4B, C) where Cab accounted for more than 60% of total variability around 560 nm and 357 
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710 nm while influence of Car was much less and only in 400-550 nm range (Figure 5). 358 

Increasing Cw only decreased reflectance in 750-2500 nm range (Figure 4D) and its influence 359 

appeared larger at wavelength > 1200 nm (Figure 5), making it become another important driver 360 

except for LAI in this range. Compared with variables mentioned above, influence of LAI was 361 

more important and complicated: contributing more than 60% of the total variability especially 362 

in range of 400-500 nm, 750-1200 nm as well as 1400-2500 nm (Figure 5) and its increases 363 

only increased reflectance in the range around 750-1350 nm but decreased reflectance in the 364 

remaining range (Figure 4F). In particular, the contribution of RAA was negligible and it only 365 

influenced reflectance through interaction with other variables (Figure 5). 366 

Overall, our sensitivity analysis indicated that LAI dominated variability of canopy reflectance 367 

across 400-2500 nm spectral range, while Cab and Cw played a key role only at visible range 368 

(400-750 nm) and shortwave infrared range (1100-2500 nm), respectively. Similar findings 369 

could also be found in other publications (e.g., Danner et al., 2019; Verrelst and Rivera, 2017), 370 

although the magnitude of relative contribution of these variables were slightly different due to 371 

various method or variables used for sensitivity analysis. The dominance of LAI across the 372 

whole range is realised via its leaf elements which results in LAI. LAI indirectly controls the 373 

soil reflectance propagating to canopy in low ground cover and controls light absorption in 374 

different ranges via leaf optical properties (pigment and water content). Nevertheless, the 375 

influence from soil background can be neglected for a canopy with LAI > 3 (Atzberger et al., 376 

2003) in which situation canopy generally reaches a high ground cover (Ramirez-Garcia et al., 377 

2012). The fact that increasing LAI decreased total reflectance in 400-750 nm and 1100-2500 378 

nm indicates that photosynthetic pigments (chlorophyll and carotenoid) strongly absorb visible 379 

light at wavelengths around 450 nm and 680 nm with leaf water having an influence on light 380 

absorption coefficient at wavelength > 1200 nm (Feret et al., 2008). 381 
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 382 

Figure 4 Response of canopy reflectance to change of each parameter. Except for the study parameter changing at different 383 

levels, the others are fixed to the baseline according to setting of OAT in Table 3 (Baseline: N=2.25, Cab=48, Car=10, Cant=0, 384 

Cbrown=0, psoil=1,Cw=0.017, Cm=0.006, LAI=3.5, ALA=50, hspot=1.7, SZA=35, VZA=0, RAA=45). 385 
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 386 

Figure 5 Relative contribution of total effect (A) and first-order effect (B) for each input parameter on canopy reflectance 387 

computed by PROSAIL using EFAST global sensitivity analysis 388 

3.2 PROSAIL inversion based on FFNN can predict crop traits from spectral reflectance 389 

To investigate the precision of PROSAIL inversion for variable retrieval, we applied FFNN as 390 

model inversion method to retrieve target variables from PROSAIL dataset (p_train1) which 391 

was generated by PROSAIL with samples from full parameter space for arbitrary combination 392 

of input variables (Figure 1). Performance of the trained FFNN model for target variable 393 

retrieval from canopy reflectance in 400-2500 nm range and observation geometry information 394 

(here is SZA and RAA) is reported in Table 7 (results of SE1), Figure 6 and Figure 7. The small 395 

values of MAE and RMSE show the trained FFNN reached high precision for joint estimation 396 

of LAI, Cab, Cm and Cab when the input variables were allowed to explore all combinations 397 

across valid physiological ranges. However, the uncertainty range of estimations were 398 

occasionally large, for instance, the absolute error of 95% samples for Cab estimation was 399 

within 2.19 µg cm-2 while the maximum error was more than 10 times bigger up to 26.92 µg 400 

cm-2 (see SE1 in Table 7). The same issue occurred to estimation for the other three variables. 401 
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Additionally, the trained FFNN continued to make good estimations at different levels of the 402 

true value, although larger true values tended to have a higher probability of larger absolute 403 

errors (Figure 6).  404 

The trained model might not perform as well as presented here when it was applied to retrieve 405 

variables from real observation data due to measurement and model uncertainties. Thus, it 406 

would be unfair to compare our results with those from real observation data and should be 407 

more reasonable to compare with those also from simulation data. As presented in Table 8, our 408 

results were favourable, with approximately 10 times smaller RMSE for estimation of LAI, Cab, 409 

Cm and Cw, compared with simulated results from other model inversion studies. Reasons for 410 

such a good estimation exhibited in our research are likely due to the use of better architecture 411 

and algorithm used in neural network as well as more complete information included in massive 412 

hyperspectral bands as other studies inverted variables from only a few broad/narrow bands 413 

(Atzberger, 2004; Baret et al., 2007; Upreti et al., 2019) or derived VIs (le Maire et al., 2008; 414 

M. Xu et al., 2019). This result highlights the advantages of new deep learning techniques 415 

applied to high spectral resolution hyperspectral data and, demonstrate that it is viable to use 416 

deep learning approach to invert hyperspectral data to retrieve variables.417 
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Table 7 Statistical information of model’s prediction error for each variable in each experiment 418 

Experiment 

Name 

Crop Trait min AE 5% AE 25% AE 50% AE 75% AE 95% AE max AE std AE MAE RMSE 

SE1 LAI 0.000 0.003 0.014 0.031 0.060 0.123 0.666 0.042 0.044 0.061 

Cab 0.00 0.07 0.32 0.63 1.10 2.19 26.92 1.12 0.88 1.42 

Cm 0.000000 0.000007 0.000034 0.000072 0.000122 0.000242 0.003911 0.000146 0.000099 0.000176 

Cw 0.000000 0.000014 0.000071 0.000153 0.000291 0.000583 0.005438 0.000235 0.000216 0.000319 

SE2 LAI 0.000 0.006 0.027 0.057 0.106 0.246 1.810 0.095 0.083 0.126 

Cab 0.00 0.09 0.45 0.96 1.67 3.20 41.42 1.39 1.25 1.87 

Cm 0.000000 0.000012 0.000067 0.000143 0.000265 0.000561 0.004661 0.000251 0.000206 0.000324 

Cw 0.000000 0.000100 0.000515 0.001215 0.002872 0.011521 0.028487 0.003829 0.002675 0.004671 

SE3 LAI 0.000 0.006 0.031 0.067 0.127 0.311 1.382 0.112 0.101 0.151 

Cab 0.00 0.10 0.54 1.23 2.38 5.87 55.44 2.70 1.94 3.33 

Cm 0.000000 0.000012 0.000063 0.000142 0.000274 0.000620 0.003094 0.000224 0.000208 0.000306 

Cw 0.000000 0.000036 0.000186 0.000412 0.000811 0.002139 0.013600 0.000876 0.000671 0.001103 

SE4 LAI 0.000 0.005 0.027 0.060 0.107 0.214 1.105 0.080 0.080 0.113 

Cab 0.00 0.48 2.33 5.55 12.20 33.66 87.15 11.02 9.53 14.57 

Cm 0.000000 0.000009 0.000042 0.000095 0.000175 0.000388 0.003169 0.000159 0.000136 0.000209 

Cw 0.000000 0.000023 0.000124 0.000263 0.000483 0.001086 0.007668 0.000416 0.000377 0.000561 

SE5 LAI 0.000 0.005 0.024 0.051 0.104 0.235 0.828 0.077 0.077 0.109 

Cab 0.00 0.04 0.22 0.49 0.92 1.97 32.71 0.89 0.70 1.13 

Cm 0.000000 0.000007 0.000037 0.000076 0.000129 0.000268 0.003600 0.000126 0.000101 0.000161 

Cw 0.000000 0.000027 0.000139 0.000300 0.000519 0.001162 0.009210 0.000557 0.000426 0.000701 

SE6 LAI 0.000 0.003 0.016 0.034 0.062 0.129 0.558 0.045 0.046 0.064 

Cab 0.00 0.07 0.34 0.76 1.53 5.30 50.26 3.14 1.57 3.51 

Cm 0.000000 0.000007 0.000034 0.000074 0.000136 0.000304 0.003580 0.000165 0.000111 0.000199 

Cw 0.000000 0.000016 0.000080 0.000170 0.000319 0.000728 0.009617 0.000329 0.000255 0.000416 

SE7 LAI 0.000 0.004 0.020 0.044 0.080 0.180 1.093 0.063 0.061 0.087 
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Experiment 

Name 

Crop Trait min AE 5% AE 25% AE 50% AE 75% AE 95% AE max AE std AE MAE RMSE 

Cab 0.00 0.05 0.24 0.51 0.93 2.28 42.17 1.72 0.85 1.92 

Cm 0.000000 0.000007 0.000037 0.000077 0.000141 0.000383 0.005052 0.000267 0.000135 0.000299 

Cw 0.000000 0.000021 0.000108 0.000231 0.000459 0.001689 0.020608 0.001164 0.000511 0.001271 

SE8 LAI 0.000 0.000 0.002 0.004 0.006 0.012 0.041 0.004 0.005 0.006 

Cab 0.00 0.01 0.03 0.06 0.13 0.78 6.89 0.41 0.18 0.45 

Cm 0.000000 0.000001 0.000006 0.000012 0.000019 0.000065 0.000549 0.000034 0.000020 0.000039 

Cw 0.000000 0.000003 0.000016 0.000034 0.000062 0.000141 0.001721 0.000054 0.000048 0.000072 

SE9 LAI 0.000 0.000 0.001 0.003 0.004 0.008 0.031 0.003 0.003 0.004 

Cab 0.00 0.00 0.02 0.05 0.11 0.28 3.14 0.19 0.10 0.22 

Cm 0.000000 0.000000 0.000002 0.000005 0.000008 0.000025 0.000181 0.000012 0.000008 0.000014 

Cw 0.000000 0.000002 0.000013 0.000026 0.000044 0.000083 0.000317 0.000026 0.000032 0.000041 

Notes: For experiments SE1 to SE7, models were evaluated with dataset p_test, while models in experiments SE8 and SE9 were evaluated with dataset ap_test. Both p_test and ap_test 

contains 10 000 examples. Values with ‘% ‘symbol (i.e. 5%, 25%, 50%, 75%, 95%) represent absolute error (AE) at corresponding quantile level. ‘min AE’, ‘max AE’ and ‘std AE’ 

represents the minimum, maximum, standard deviation of AE, respectively. MAE and RMSE represents mean absolute error and root mean squared error, respectively. Unit of AE (MAE, 

RMSE) for LAI, Cab, Cm, Cw is m2 m-2, µg cm-2, g cm-2, and g cm-2, respectively. 

419 
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 420 

Figure 6 Heatmap of model performance at different levels (SE1). Numbers in cells of the figure show the number of samples 421 

whose prediction absolute errors of true values in a range were within a specific range. Numbers less than 100 are shown to 422 

differ small values from zero. The unit of absolute error (true value) of LAI, Cab, Cm and Cw is m2 m-2, µg cm-2, g cm-2 and g 423 

cm-2, respectively. 424 

Table 8 Root mean squared error (RMSE) of target variable estimation from this and other inversion studies 425 

LAI (m2 m-2) 

Cab  

(µg cm-2) 

Cm (g cm-2) Cw (g cm-2) Inversion method Reference 

0.81 (0.59) 9.94 (7.84) / 0.0037 (0.0028) Neural network Atzberger, 2004 

1.10 / / / Neural network Baret et al., 2007 

1.31 9.84 0.001414 / VI empirical regression le Maire et al., 2008 

/ 10.5 (7.9) / / VI-based look-up table M. Xu et al., 2019 

0.99 11.4 / / Bagging trees 

Upreti et al., 2019 

1.04 11.02 / / Neural network in ARTMO 

1 11.55 / / Random forest tree bagger 

1.18 11.16 / / 

Partial least square 

regression 
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LAI (m2 m-2) 

Cab  

(µg cm-2) 

Cm (g cm-2) Cw (g cm-2) Inversion method Reference 

1.18 11.15 / / 

Least square linear 

regression 

1.14 11.61 / / Boosting trees 

1.3 14.99 / / Regression trees 

1.4 16.03 / / Random forest fit ensemble 

0.94 10.55 / / Gaussian process regression 

0.061 1.42 0.000176 0.000319 

Feedforward neural 

network 

SE1 in Table 7 

0.087 1.92 0.000299 0.001271  SE7 in Table 7 

Notes: Figures in brackets are the RMSEs after improvement by using a more novel estimation approach. In Atzberger’s 

study, an object-based method was introduced to add spatial constraints on variables. In the study of M. Xu et al, a matrix-

based method was used to constrain co-distribution of LAI and Cab. 

426 

3.3 FFNN could still achieved compatible prediction after reducing wavelength bands and 427 

excluding observation geometry in model input 428 

We have demonstrated trained FFNN can well predict crop traits from input features consisting 429 

of spectral reflectance in 400-2500 nm range and observation configuration (solar and viewing 430 

angles) and in this section, we explored the possibility of hyperspectral bands reduction and 431 

effect of observation configuration in order to simplify FFNN model (Figure 1).  432 

There are two main reasons to investigate effects of the use of reflectance bands in different 433 

ranges for variable retrieval. Firstly, most sensors used currently only cover part of the whole 434 

400 to 2500 nm wavelength range. Secondly, a large number of reflectance bands used as input 435 

to FFNN model results in a complicated model structure, which might make it less suitable for 436 

practical application. Considering both the wavelength range classification and ranges covered 437 

in current hyperspectral sensors, the model was retrained using five sets of wavelength ranges: 438 

400-750 nm, 750-1100 nm, 1100-2500 nm, 400-1100 nm, and 750-2500 nm. Performance of 439 
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trained FFNN using reflectance bands in these ranges alone are shown in Table 6 (results of SE 440 

2 to S6) and Figure 7. It is clear that reflectance bands in 400-750 nm and 1100-2500 nm were 441 

not suitable for joint estimation of target variables (Figure 7). That is because the use of 442 

reflectance bands in these two ranges produced poor estimation for Cab and Cw, respectively, 443 

in which ranges canopy reflectance was insensitive to variation of Cab or Cw as demonstrated 444 

in Section 3.1. For joint retrieval of four target variables, the range of 400-1100 nm could be 445 

used as an alternative to replace the whole range for the aim of model simplification: the use of 446 

reflectance bands in this narrower range provided nearly same good estimation for Cab and Cm 447 

but less precise estimation for LAI and Cw by comparing SE1 and SE5. 448 

The reason to attempt to exclude observation configuration (solar and viewing angles) from 449 

input of FFNN model is based on two considerations. One consideration is about information 450 

necessity and redundancy: the influence of observation configuration on canopy reflectance is 451 

likely to be implicitly reflected in hundreds of reflectance bands, so the observation 452 

configuration is unnecessary if a large number of reflectance bands are used in FFNN inputs. 453 

The other consideration is about information acquisition and availability: observation condition 454 

(solar and viewing angles) varies across pixels for an image, so observation configuration of 455 

each pixel must be calculated alone from this pixel’s latitude, DOY and day time for 456 

phenotyping this pixel if precise retrieval using this method is expected at pixel-level. However, 457 

the gaining of observation configuration for every pixel is normally inaccessible especially for 458 

an image with large cover consisting of massive number of pixels. By comparing results of SE5 459 

(400-1100 nm with solar/viewing angles) and SE7 (400-1100 nm without angles), it shows that 460 

exclusion of observation configuration in input of FFNN model just slightly decreased 461 

estimation precision for retrieval of Cab, Cm and Cw and even slightly increased overall 462 

estimation for LAI (RMSE was 0.109 µg cm-2 for SE5 and 0.087 µg cm-2 for SE7). Regardless, 463 

the results show that the trained FFNN model with input only including reflectance bands in 464 
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400-1100 nm range without angles still produced much smaller RMSE than those in previous 465 

model inversion studies for variable retrieval (see Table 8).  466 

 467 

Figure 7 Total performance and its empirical distribution for models with different input features. Loss is a unitless indicator 468 

and represents the total mean squared error of joint estimation of four model output variables after normalization. Absolute 469 

error (AE) is the difference between the true value of each variable and its prediction after de-normalization. The unit of AE 470 

of LAI, Cab, Cm and Cw is m2 m-2, µg cm-2, g cm-2 and g cm-2, respectively.   471 

3.4 Coupling APSIM and PROSAIL can further improve FFNN’s prediction precision 472 

While the FFNN model was able to perform well when trained across sets of variables that 473 

explore the entire ranges of realistic values, the key part of this paper was to investigate the 474 

impact of constraining the input variables to be limited to ‘physiologically realistic’ 475 

combinations (Figure 1). Figure 8 indicates that the use of APSIM-PROSAIL dataset (ap_train1 476 

and ap_train2) generated by coupling APSIM and PROSAIL significantly improved FFNN’s 477 

performance for estimation of all target variables using reflectance bands in 400-1100 nm 478 

without observation configuration (solar/viewing angles). This improvement of model 479 
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performance presented in both average precision (smaller MAE and RMSE) and stability 480 

(narrower uncertainty range, smaller standard deviation of AE) according to statistical results 481 

in Table 7. For instance, compared with results using PROSAIL dataset (p_train1, SE7), the 482 

use of APSIM-PROSAIL dataset (ap_train1, SE8) for LAI estimation narrowed the uncertainty 483 

range of AE from 0~1.093 m2 m-2 to 0~0.041 m2 m-2 and also reduced standard deviation of AE 484 

(from 0.063 to 0.004 m2 m-2), MAE (from 0.061 to 0.005 m2 m-2) and RMSE (from 0.087 to 485 

0.006 m2 m-2). The magnitude of improvement resulting from model integration is much larger 486 

than that resulting from adding spatial constraints on related variables as demonstrated in the 487 

study of Atzberger (2004) where RMSE reduced from 0.81 to 0.59 m2 m-2 for LAI estimation 488 

as exhibited in Table 8. It deserves to emphasize that this improvement is irrelevant to the 489 

number of samples used for training (sample size of p_train1 and ap_train1 is the same) and 490 

increasing sample size of training set tended to improve model performance in further (sample 491 

size of ap_train2 (2 139 226) is larger than ap_train1 (90 000)).  492 

The success of this integration in building improved inverse models seems to lie in providing a 493 

higher quality training dataset as FFNN totally learns from data provided. CGMs are powerful 494 

to predict crop growth and development characterised by a series of physiological processes, 495 

thus using CGM to produce sets of input variables of RTM can create a distribution and co-496 

distribution of related variables closer to real situations defining canopy architecture and 497 

potentially remove cases that can be simulated but  may not be actually observed (sampled) in 498 

a real-world from training dataset. Figure 2 clearly shows difference of variable distribution in 499 

two types of training dataset whose input parameters vary in the same range. It should be 500 

noticed that the difference of distributions projected in low-dimensional space of two datasets 501 

can indicate that their distributions projected in high-dimensional space must be different, but 502 

that a similarity between distributions in low-dimensional space does not guarantee that their 503 

distributions in high-dimensional space are also the same.  504 
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The continuous improvement in model performance as sample size increased, it is likely 505 

associated to a richer diversity of samples rather than growing number of same samples. Adding 506 

more existing samples in training dataset does not enhance learning of relationships between 507 

variables within a network. It is reported that a uniform distribution of the variables may obtain 508 

a more even distribution of the uncertainties in spite of a poor RMSE (Baret and Buis, 2008). 509 

However, our results show a non-uniform distribution closer to true distribution (variables in 510 

APSIM-PROSAIL dataset) can also obtain a relative even uncertainty distribution (see Figure 511 

S6 and Figure S7) and a better RMSE (see SE8 and SE9 in Table 8) compared with results from 512 

PROSAIL dataset with uniform distribution variables (see Figure 6 and SE7 in Table 8). A 513 

small consequence is that there is a higher probability of larger error when estimating larger 514 

true value. Overall, these findings offered evidence to support that integrating CGM and RTM 515 

is a promising way for variable retrieval from hyperspectral data in theoretical dimensionality. 516 

 517 

Figure 8 Total performance and its empirical distribution for models trained using different datasets. Loss is a unitless 518 
indicator and represents the total mean squared error of joint estimation of four model output variables after normalization. 519 
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Absolute error (AE) is the difference between the true value of each variable and its prediction after de-normalization. The 520 
unit of AE of LAI, Cab, Cm and Cw is m2 m-2, µg cm-2, g cm-2 and g cm-2, respectively. 521 

4. Conclusion 522 

In general, a completed workflow of integrating APSIM and PROSAIL was demonstrated in 523 

this research, resulting in an applicable coupling APSIM-PROSAIL model. Additionally, this 524 

research also illustrated the process of choosing appropriate hyperparameter for FFNN model 525 

and presented the advantages of using FFNN for crop traits retrieval. It was also demonstrated 526 

that the model could be applied to subsets of different wavelength ranges in order to suit 527 

different types of instrumentation and applications. However, the major contribution of this 528 

research is to demonstrate a practical way to generate higher quality training data which can 529 

better characterise the real canopy realization and, prove its practicability in theory. Although 530 

this trained FFNN model might not perform as well as presented here when it is applied to 531 

retrieve variables from real observation data due to measurement and model uncertainties, it is 532 

expected to be able to make relative good performance according to difference of estimation 533 

precision on simulated and observed data from other model inversion studies. In future, we are 534 

going to investigate the performance of trained FFNN model using simulation data in different 535 

simulated situations as well as practical production environments. 536 
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