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Abstract 

The surge in air traffic increases the workload experienced by air traffic controllers (ATC) while 
they organise traffic-flow and prevent conflicts between aircraft. Even though several factors 
influence the complexity of ATC tasks, keeping track of the aircraft and preventing collision are 
the most crucial. We have designed tracking and collision prediction tasks to elucidate the 
differences in the physiological response to the workload variations in these basic ATC tasks to 
untangle the impact of workload variations experienced by operators working in a complex ATC 
environment. Physiological measures, such as electroencephalogram (EEG), eye activity, and 
heart rate variability (HRV) data, were recorded from 24 participants performing tracking and 
collision prediction tasks with three levels of difficulty. The mental workload in the tracking task 
was found to be positively correlated with the frontal theta power and negatively correlated with 
the occipital alpha power. In contrast, for the collision prediction task, the frontal theta, parietal 
theta, occipital delta, and theta power were positively correlated, and parietal alpha power was 
negatively correlated with the increases in mental workload. The pupil size, number of blinks 
and HRV metric, root mean square of successive difference (RMSSD), also varied significantly 
with the mental workload in both these tasks in a similar manner. Our findings indicate that 
variations in task load are sensitively reflected in physiological signals, such as EEG, eye activity 
and HRV, in these basic ATC-related tasks. Furthermore, the markedly distinct neurometrics of 
workload variations in the tracking and collision prediction tasks indicate that neurometrics can 
provide insights on the type of mental workload. These findings have applicability to the design 
of future mental workload adaptive systems that integrate neurometrics in deciding not just 
‘when’ but also ‘what’ to adapt. Our study provides compelling evidence in the viability of 
developing intelligent closed-loop mental workload adaptive systems that ensure efficiency and 
safety in ATC and beyond. 
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Introduction 

People tend to avoid performing tasks that push their capabilities beyond their limits as they find 
it frustrating and stressful (Ahlstrom, 2010). However, not all work environments offer that 
luxury, which makes it crucial to establish good interaction between the human operator abilities 
and work environment (Wickens et al., 2015). Even though human operators can easily adapt to 
diverse work environments and perform several tasks and use different equipment 
simultaneously, poorly designed work environments cause an overload of sensory information 
resulting in excess workload. Air traffic controllers operate in such a complex environment to 
ensure a safe and efficient air traffic flow by organising traffic flow in a way that aircraft reach 
their destination in a well-organized and expeditious manner. It is their job to anticipate and 
prevent conflicts between aircraft by monitoring whether aircraft adhere to the International Civil 
Aviation mandated separation standards (Rodgers and Drechsler, 1993), and managing the 
resulting complexity. They routinely manage a significant number of aircraft, coming from 
different directions and heading to various destinations at diverse speeds and altitudes (Gronlund 
et al., 1998). However, as the air traffic increases, there is a growing need to study the mental 
factors that ensure the efficiency of air traffic controllers.  
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Mental workload is one of the most crucial factors that affects the efficiency of air traffic 
controllers as they operate in complex interactive work environments. In recent years ATCs roles 
have transitioned to a supervisory level, and they must now integrate multiple streams of 
information. This demands more cognitive resources (Pashler, 1994), resulting in a higher 
workload for operators (Kompier et al., 2001; Niosh, 2002; Landsbergis, 2003). Wickens and 
Tsang, 2015 defined mental workload as the dynamic relationship between the cognitive 
resources demanded by a task and the capability of the operator to afford those resources. Human 
operators have limited information processing abilities as they have finite resources with limited 
capacity (Kahneman, 1973; Kramer and Spinks, 1991). 

The theory of limited cognitive resources states that exposure to demanding task conditions 
impairs performance due to resource depletion (PA Van Dongen et al., 2011) or compromised 
access to resources (Borragan Pedraz, 2016). As mental workload has a negative influence on the 
performance of the operator, it results in human error commission (Reason, 2000), 
compromising system efficiency and safety (Xie and Salvendy, 2000). The mental workload of 
the operator should be at optimal level avoiding both underload and overload (Hancock, 1989, 
Borghini et al., 2014) as the performance of the operator is known to fall at both overload and 
underload conditions (Yerkes and Dodson, 1908, Calabrese, 2008, Van Acker et al., 2018, 
Hancock and Matthews, 2019). As the dynamic adaptive theory states, the brain seeks resource 
homeostasis and cognitive comfort and extremely high and low task demands degrades 
adaptability and thereby, performance (Hancock and Warm, 2003). Predicting the mental 
workload of the operator, and thereby adapting system behaviour by modifying task allocation 
can avoid this loss of situational awareness, maintaining high performance. Accurate and reliable 
measurement of mental workload of the operator is crucial especially in a safety-critical work 
environment by providing better work environments and human-machine interactions (Byrne and 
Parasuraman, 1996, Scerbo, 2001, Aricò et al., 2017).  

Researchers have relied on multiple strategies, such as self-assessment, performance measures 
and physiological metrics, to assess mental workload; however, each of these methods has their 
benefits and drawbacks (O’Donnell, 1986, Wierwille and Eggemeier, 1993). The assessment 
from these different mental workload measurement methods is often dissociated (Yeh and 
Wickens, 1988) as the sensitivity of these measures are heavily dependent on the operator’s 
workload (De Waard and Groningen, 1996). Several subjective measures such as the 
Instantaneous self-assessment (ISA) questionnaire (Brennan, 1992, Jordan, 1992, Kirwan et al., 
1997), NASA Task Load Index (Hart and Staveland, 1988), the Subject Workload Assessment 
Technique (Reid et al., 1988), are used to access the workload of the operator. Mental workload 
is a complex construct, which reflects the available cognitive resources and cannot be accurately 
assessed using subjective measurements alone (de Waard and Lewis-Evans, 2014). Moreover, 
the mental workload assessment method should not disrupt the task at hand or influence the 
mental state of the operator, which might be the case of subjective assessment strategies using 
questionnaires. Another widely used workload assessment method is the performance-based 
workload measurement, which will, like the subjective assessment method, provide a 
retrospective workload assessment. Moreover, performance-based measures can only tell part of 
the story as operators can achieve the same performance experiencing higher workload (Aricò et 
al., 2019). Over the years, physiological metrics have been used to assess workload (Casali and 
Wierwille, 1984, Matthews et al., 2015, Charles and Nixon, 2019) as it offers high sensitivity, 
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diagnostic ability and is mostly non-intrusive (Parasuraman and Rizzo, 2008, Zhao et al., 2018), 
providing an accurate and real-time assessment of the operator’s workload. The use of 
physiological data such as neurophysiological signals can assess mental workload online without 
influencing the task as there is no explicit output (Parasuraman, 2001, Gevins and Smith, 2003, 
Parasuraman, 2015). Neurophysiological measures can also assess the changes in the mental 
state that are not merely discernible in overt task performance (Parasuraman, 2015, Wickens and 
Tsang, 2015, Aricò et al., 2016, Blankertz et al., 2016). 

Neurophysiological measures, such as the electroencephalogram (EEG) signal has been widely 
employed to estimate mental workload as the effects of task demand are clearly visible in EEG 
rhythm variations (Brookings et al., 1996, Gevins and Michael Smith, 2003, Borghini et al., 
2014, Borghini et al., 2014, Di Flumeri et al., 2014, Lopez-Gordo et al., 2014, Matthews et al., 
2015, Radüntz, 2018, Radüntz and Meffert, 2019; Lin and Do, 2021). Researchers have also used 
EEG to reliably predict performance degradation from workload variations (Matousek and 
Petersén, 1983, Gevins et al., 1990) and noted that it is correlated with an increase in the frontal 
theta power and a change in parietal alpha power, which relates to cognitive and memory 
performance (Gale et al., 1977, Sterman and Mann, 1995, Pfurtscheller, 1997, Gevins et al., 
1998, Gevins and Smith, 2000). Many EEG-based workload indices, such as the ratio of frontal 
theta to parietal alpha power (Fritz et al., 2014, Holm et al., 2009), the ratio of beta to theta and 
alpha (Freeman et al., 1999), theta-beta ratio (Montgomery et al., 1998) reliably reflect 
workload. However, EEG features of the mental workload are found to be task-dependent, 
therefore, adding other modalities like eye activity data and heart rate data can help achieve far 
superior outcomes (Ke et al., 2014, Popovic et al., 2015). Pupil size and blink rate have recently 
attracted attention as a reliable indicator of workload (Marquart et al., 2015). Heart rate 
variability (HRV) is yet another highly sensitive physiological index to mental workload 
variations (Kamath and Fallen, 1993, Nickel and Nachreiner, 2003, Hjortskov et al., 2004, Murai 
et al., 2004, Murphy et al., 2004). Root mean square of successive differences (RMSSD) is the 
most robust time-domain HRV measure of workload (Mehler et al., 2011).  

Once the mental workload of the operator can be reliably assessed, it can be used to drive a 
mental workload adaptive system (Prinzel et al., 2000; Schmorrowe et al., 2006). In such 
adaptive systems, the physiological measures of mental workload can be used to trigger the 
adaptive automation that will adapt its behaviour to the current mental workload of the operator 
(Scerbo, 1996; Kaber and Endsley, 2004). A mental workload adaptive automation system 
should be able to conform to the variations in the mental workload of the operator without them 
having to explicitly state their needs or triggering the automation. When human operators and 
automation team up to achieve better performance and efficiency, the operator expects 
automation to behave like a human coworker (Aricò et al., 2017). Therefore, adaptive 
automation should be timely, stepping in at the right time and cognitively empathetic with the 
operator, helping where it is needed, taking over the task that is currently overwhelming the 
operator. However, currently, physiological correlates of the mental workload are only used to 
decide ‘when’ to adapt and not ‘what’ to adapt, keeping the strategies employed by the adaptive 
automation system still primitive. There is a need to develop intelligent adaptive systems that can 
identify what form of automation to use depending on the type of mental workload experienced 
by the operator. Nonetheless, there is still a dearth in evidence that physiological metrics of 
mental workload can direct to the tasks contributing to workload.  
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In this paper we investigated whether the multimodal physiological metrics of mental workload 
can provide more information about the task contributing to the workload experienced by the 
ATC operator. Even though several factors influence the complexity of ATC tasks (Mogford et 
al., 1995, Cummings and Tsonis, 2005), such as environmental, display, traffic and 
organisational factors, the main functions for ATC operator are tracking and collision prediction. 
Therefore, we designed tracking and collision prediction tasks to elucidate the physiological 
effects of workload variations in these basic ATC tasks. The experiment was fashioned as a 
classical cognitive paradigm with a manipulation of workload (low, medium, high) and repeated 
stimuli to study whether physiological data such as EEG, eye activity and HRV can reliably 
assess the mental workload of the operator while they perform these basic tracking and collision 
prediction tasks. We formulated the following four research hypotheses for our study: 

H1. The three distinct levels of workload defined in both tracking and collision prediction 
tasks can yield significant performance degradation with the increasing levels of 
workload. 

H2. Workload variation in tracking and collision prediction tasks can be reliably assessed 
using EEG, eye activity and HRV metrics. 

H3. The performance in tracking and collision prediction tasks can be predicted based on the 
measured physiological signals. 

H4. Physiological response to the workload variations in the tracking and collision prediction 
tasks will be distinct across tasks. 

 

Methods  

Participants 

Twenty-four participants (age 25 ± 5, 17 males and 7 females, all right-handed) participated in 
this experiment after giving written informed consent. All the participants had a normal or 
corrected vision and no history of any psychological disorder that might affect the results.  The 
experimental protocol was approved by the University of Technology Sydney Human Research 
Ethics Expedited Review Committee (ETH19-4197).  

The EEG data were collected using SynAmps2 Express system (Compumedics Ltd., VIC, 
Australia) with 64 Ag/AgCl sensors system. The placement of these electrodes was consistent 
with the extended 10% system (Chatrian and Nelson, 1985) and the impedance of each electrode 
was ensured to be below 10 kΩ before each session. The data were collected at a sampling rate 
of 1000 Hz. Eye activity data was collected using Pupil Labs Pupil Core (Berlin, Germany). This 
wearable eye-tracking headset has three cameras, two of which record the eyes activity at 200 Hz 
sampling rate, and the other one records the participant’s field of view at 30 Hz sampling rate 
(Kassner et al., 2014). The Blood Volume Pulse (BVP) data was recorded using infrared 
plethysmography-based Empatica E4 (Empatica Srl, Milano, Italy). The real-time 
synchronisation of events from the task scenario to the EEG, eye activity and BVP data was 
achieved by the Lab Streaming Layer (Kothe, 2015). 
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Experimental Procedures 

Our experimental design included two tasks – multiple objects tracking task (Innes et al., 2019) 
and collision prediction task. As shown in Figure 1(A), in the tracking task, during the initial 3 
seconds, participants look at a fixation cross on the screen followed by a freeze phase, where the 
dots, some of which are blue, and the rest are red, remain stationary. The blue dots are the dots 
that need to be tracked (hence, ‘targets’). After three seconds of freeze, the blue targets also turn 
red so that they are no longer distinctive from the other dots and all the dots start moving. Each 
dot has a diameter of 14 pixels, and they move randomly in the display area at a frame rate of 15 
frames/second. The participant is asked to keep track of the targets (dots that were initially blue) 
for 15 seconds. After this time window all dots stop moving and the participants should indicate 
the target dots by clicking on the dots that they have kept track of. The workload levels in this 
tracking task are manipulated by varying the number of blue dots and the total number of dots. 
As shown in Table 1, for the low workload condition, there are 10 dots with one blue dot. In 
medium workload, there are 12 dots with three blue dots, and for high workload, there are 15 
dots with five blue dots. 

As shown in Figure 1(B), in the collision prediction task, there is a fixation cross on the screen 
for three seconds. Then there is a three-second-long freeze phase where the dots remain 
stationary, after which all the dots start moving. Unlike the tracking tasks, all dots are of the 
same color (pink). The participant is required to predict the trajectory of the dots and identify 
which pair of dots would collide. Dots move in a predefined uniform direction, and we have 
manipulated the trajectory of the dots such that there will be only one collision in each trial. The 
participants were asked to identify the pair of dots that would collide and click on both dots 
before the collision happens, which usually occurs in the last 3 seconds of the trial. In order to 
prevent random guesses, the number of dots the participants can select is limited to two, and 
once the participant clicks on the dot, it changes from pink to red colour. The levels of workload 
were manipulated by varying the number of dots. The low workload condition had six dots while 
the medium workload had 12 dots and 18 dots for high workload conditions, as shown in Table 
1. A 15-inch monitor with 1920 x 1080 resolution was used to display both these tasks. 

Each participant had to perform 108 trials of each task with 36 trials of each workload level. The 
entire experiment was divided into four blocks and each block had 27 trials of the tracking task 
and 27 trials of the collision prediction task. The type of workload condition in the trials was 
randomised within a block to avoid any habituation or expectation effects. At the end of each 
trial, the participant received feedback on their performance with the following message on the 
screen– “You have correctly tracked x dots out of y dots to track” for the tracking task and “You 
have correctly detected this collision” or “You have missed this collision” for the collision 
prediction task. They could move to the next trial after reading the performance feedback by 
pressing the spacebar key. After each block, the participants were advised to rest for 5 minutes 
before proceeding to the next block by pressing the spacebar key. All participants were trained in 
a training session which usually lasted approximately ten minutes, where they performed six 
trials of each task to familiarise themselves with the tasks and develop strategies for successfully 
executing the tasks. The participants were asked to continue the training until they felt 
comfortable with the tasks. After the training, all participants performed the tasks for ~ 1.5 hours 
during which EEG, eye activity and HRV data were collected.  
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Figure 1: The experimental design of the tasks. (A) the experimental design of the tracking task and (B) shows the
design of the collision prediction task. The number of dots shown in these diagrams is just for representation
purposes. 

Table 1: Workload Manipulations in the tracking and collision prediction tasks 

TASK WORKLOAD 
LEVEL 

WORKLOAD MANIPULATION 
Tracking Dots Total Number of Dots 

 
Tracking Task 

Low 1 10 
Medium 3 12 

High 5 15 
                                  WORKLOAD MANIPULATION 

Total Number of Dots 
Collision 

Prediction 
Task 

Low 6 
Medium 12 

High 18 
 

Data Analysis 

Behavioural and Performance Data Analysis 

For the tracking task, each participant's performance was evaluated by examining the tracking
accuracy. Tracking accuracy for each trial was defined as the ratio of the number of correctly
tracked dots to the total number of dots to track.  

the 
on 

ng 
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In case of the collision prediction trials, the performance was determined using the time before 
collision and collision miss proportion rate. The time before collision is the time period between 
when the participant clicks on either one of the colliding dots and when the collision happens 
(see Supplementary Figure 1). The collision miss proportion rate for a particular workload level 
of the collision prediction task is the ratio of the number of collision prediction misses to the 
total number of collisions in that specific workload level. A collision miss was considered to 
happen when the participant was unable to identify which pair of dots would collide and, hence, 
did not click on either of the dots before the collision. 

��������� ���������� ���� ���������� ����  ������ �	 ������ 
������ �����������

���� ������ �	 
�������
  (2) 

EEG Preprocessing 

EEG data were preprocessed using EEGLAB v2020.0 toolbox (Delorme and Makeig, 2004) in 
MATLAB R2019a (The Mathworks, Inc., Natick, MA, USA), and adapted from Do et al., 2020 
(see Supplementary Figure 2). EEG data were down-sampled to 250 Hz, and a band-pass filter of 
2–45 Hz was applied. Channels with three seconds or more flat line were removed using the 
clean_flatline function.  Noisy channels were identified and removed using the clean_channels 
function in EEGLAB. On an average 3±1 channels were removed and these channels were 
restored by interpolating the data from neighbouring channels using the spherical spline method 
from the EEGLAB toolbox. Continuous artifactual regions were removed using the EEGLAB 
function, pop_rejcont. The data was divided into epochs of length 0.5 seconds, with an overlap 
of 0.25 seconds and the frequency threshold considered was 1 to 100 Hz. Each selected 
artifactual region consisted of at least four contiguous epochs with high-frequency data 
(spectrum over 10 dB). Then window cleaning was performed using the clean_windows function 
in EEGLAB. This function computes the power of each sliding window of one second length and 
transforms it to z-score to reject all windows in which the computed value lies outside 5 standard 
deviations. After these artifact removal steps, two EEG datasets were extracted, one comprising 
tracking trials and one with the collision prediction trials. Each participant had 34±2 high 
workload, 35±1 medium workload and 34±1 low workload tracking trials, and 32±2 high 
workload, 33±2 medium workload and 33±1 low workload collision prediction trials. 

The tracking epochs were 21 seconds long and included the 3 seconds of the fixation period 
followed by 3 seconds of freeze, after which the tracking task was commenced. The collision 
prediction task epochs were of 15 seconds length and included the initial 3 seconds of fixation 
period followed by 3 seconds of freeze phase and then, the collision prediction task. Both 
tracking and collision prediction datasets were decomposed using Independent Component 
Analysis (ICA), performed using EEGLAB’s runica algorithm (Delorme and Makeig, 2004). 
Finally, we employed ICLabel (Pion-Tonachini et al., 2019), an automatic IC classifier to 
identify components related to brain, heart, line noise, eye, muscle, channel noise and other 
activities. This tool was adopted to generate class labels for each component and all the 
components with labels other than brain activity were rejected.  
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IC Clustering 

EEGLAB STUDY structure (Delorme et al., 2011) was used to manage and process data 
recorded from multiple participants as it provides component clustering to cluster similar 
independent components across participants and allows statistical comparisons of component 
activities for different workload conditions. Clustering functions were used to examine the 
contributions of frontal and parietal clusters of independent components (ICs) to the workload 
dynamics. Frontal and parietal brain regions have been reported to reflect the changes in 
workload (Brookings et al., 1996; Shou et al., 2012; Matthews et al., 2015; Aricò et al., 2016; 
Aricò et al., 2017; Radüntz et al., 2017; Di Flumeri et al., 2018), and as both our tasks also 
manipulate the visual load, we particularly focused on the frontal, parietal and occipital clusters 
of brain activity. 

A Study was created for each task, and each Study had one group (with 24 participants) with 
three conditions corresponding to the three levels of workload. Since the dataset of each 
participant was recorded in a single session, the resulting independent component maps were the 
same across all the three conditions for each participant. For each participant, only those ICs that 
had a residual variance (RV) less than 15% and inside the brain volume were chosen, which was 
achieved using Fieldtrip extension (Oostenveld et al., 2011). The k-means clustering algorithm 
(Hartigan and Wong, 1979) was used to cluster independent components across all participants 
to clusters based on two equally weighted (weight=1) criteria: (1) scalp maps and (2) their 
equivalent dipole model locations, which was performed using DIPFIT routines (Oostenveld and 
Oostendorp, 2004) in EEGLAB. Talairach coordinates (Lancaster et al., 2000) of the fitted 
dipole sources of these clusters were identified to select frontal, parietal and occipital clusters.  

The grand-mean IC event-related spectral power changes (ERSPs) for each condition was 
subsequently calculated for each cluster. ERSPs (Makeig, 1993) shows the relative change in 
power at components with respect to a baseline period before the stimulus. The three seconds of 
fixation phase in each tracking and collision prediction epoch was taken as the baseline to see the 
changes in power spectra during the task. ERSPs for frontal, parietal and occipital clusters for 
both tracking and prediction tasks were examined. To compare the ERSP of different workload 
conditions, permutation-based statistics, implemented in EEGLAB, was used with Bonferroni 
correction and significance level set to p = .05. Also, for the frontal, parietal and occipital cluster, 
each ICs' spectral powers were calculated using EEGLAB’s spectopo function, which uses 
Welch’s periodogram method (Welch, 1967) on each 2-s segment using a Hamming window 
with 25% overlap for a range of frequencies from 2 to 45 Hz. For each IC, the power spectral 
density (PSD) at different frequency bands were examined to identify the correlates of mental 
workload. 

Eye Activity data 

Pupil Core software, Pupil Capture provides the pupil size for the left and right eye separately 
along with the associated confidence value, which represents the quality of the detection result. 
All data points where the confidence of the pupil size was less than 0.8 were removed from the 
data. The pupil size data was low pass filtered (using a minimum order finite impulse response 
filter) at 4 Hz (Privitera et al., 2010). As pupil size is a continuous measurement which is 
idiosyncratic and varies across participants, the raw pupil size data was normalised using the 
baseline data (defined as the three seconds of fixation period in each tracking and collision 
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prediction epoch). The number of blinks during each trial was also extracted from the pupil size 
measurement when the pupil size and confidence of the measurement, reported by the Pupil 
Capture software, suddenly dropped to zero. 

Heart Rate Variability  

Inter-beat-interval (IBI) time series was computed from the Blood Volume Pulse (BVP) data of 
each tracking and collision prediction trial. Root Mean Square of the Successive Differences 
(RMSSD) was computed by detecting peaks of the BVP using PeakUtils Python package (Negri, 
2018) and calculating the lengths of the intervals between adjacent beats. 

�����  ��

�
∑ �������  ����!��

���             (3) 

RMSSD data was also normalised by considering the three seconds of fixation period in each 
tracking and collision prediction epoch as the baseline.  

Statistical Analysis 

Statistical analyses were carried out using the SPSS (IBM SPSS 26.0; Chicago, IL, U.S.A.) 
statistical tool. In order to investigate the differences in the performance, EEG, eye activity and 
HRV parameters across participants in the three workload levels of tracking and collision 
prediction tasks, one-way repeated-measures analysis of variance (ANOVA) was conducted with 
workload level (low, medium or high) as the within-subjects factor. Mauchly’s test was 
implemented to test for sphericity. We performed Greenhouse-Geisser correction if sphericity 
was not satisfied (p < .05). If the main effect of the ANOVA was significant, post-hoc 
comparisons were made to determine the significance of pairwise comparisons, using Bonferroni 
correction. Finally, multiple linear regression was performed to relate EEG, eye activity and 
HRV metrics to the performance in the tracking and collision prediction tasks. EEG power, eye 
activity and HRV metrics were all entered as predictors using the enter method, and the 
performance in the task was the dependent variable. 

Results 

Behavioural and Performance Measures 

In the tracking task, tracking accuracy decreased significantly with increasing levels of 
workload, as shown in Figure 2(A). A repeated-measures ANOVA showed that tracking 
accuracy differed significantly between workload conditions [F(2, 54) = 239.910, p < .001, ηp

2 = 
.899]. Tracking accuracy during low workload was significantly higher than medium (p < .001) 
and high workload condition (p < .001). The tracking accuracy during medium workload was 
considerably higher than the high workload condition (p < .001). 

For the collision prediction task, the time before collision and collision prediction miss 
proportion rate was considered. The time before collision decreased with increasing workload, as 
shown in Figure 2(B1). A repeated-measures ANOVA was conducted to study the effect of 
workload variations on time before collision, and the results showed that time before collision 
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varied significantly between workload conditions [F(1.497, 40.406) = 132.688, p < .001,  ηp
2 =

.831]. The time before collision decreased considerably in the medium (p < .001) and high (p <

.001) workload conditions as compared to low workload condition. The time before collision
during medium workload was also significantly greater than that during high workload condition
(p = 0.001). 

 

Figure 2: (A) shows the tracking accuracy of all the participants in the tracking task for the three levels of workload.
(B) shows the performance of all participants in the collision prediction task for the three levels of workload. (B1)
shows the mean time before collision for all the participants in the low, medium, and high workload conditions. (B2)
shows the collision prediction miss proportion rate for the three levels of workload.  

 

The collision prediction miss proportion rate increased with increasing levels of workload, as
shown in Figure 2(B2). One-way repeated-measures ANOVA showed that the collision
prediction miss proportion varied significantly between workload conditions [F(1.593, 43.009) =
116.338, p < .001, ηp

2 = .812]. The prediction miss proportion rate was markedly higher in the
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medium (p < .001) and high (p < .001) workload conditions as compared to low workload 
condition. The collision prediction miss proportion rate during high workload was also 
significantly greater than that during medium workload condition (p < .001). 

EEG Results 

Independent Source Clusters 

The frontal, parietal and occipital clusters were selected based on the location of fitted dipole 
sources (Oostenveld and Oostendorp, 2004). For the tracking task (refer Figure 3), the Talairach 
coordinate of the frontal cluster centroid was at (-1, 41, 27), the Talairach coordinate of the 
parietal cluster centroid was at (4, -51, 39) and the Talairach coordinate of the occipital cluster 
centroid was at (30, -70, 15). For the collision prediction task (see Figure 4), the Talairach 
coordinate of the frontal cluster centroid was at (-10, 17, 46), the Talairach coordinate of the 
parietal cluster centroid was at (5, -47, 47) and the Talairach coordinate of occipital cluster 
centroid was at (-3, -69, 20).  

ERSP Changes with Mental Workload 

Figures 5 illustrates frontal, parietal and occipital clusters’ ERSP changes for three workload 
conditions: low, medium and high during the tracking task. Statistical analysis on ERSP changes 
of the frontal cluster (Figure 5(A1)) revealed a significant increase in theta power from the low 
level to the high level (p < .05). Figure 5(A2) shows the significant increase in theta power at the 
frontal cluster during high workload condition as compared to the medium workload condition. 
The frontal theta power was significantly greater than the low workload condition, as shown in 
Figure 5(A3).  

However, no significant spectral power variations were observed at the parietal cluster. Figure 
5(B1) shows the ERSP changes at the occipital cluster, which revealed a significant decrease in 
alpha power from the low level to the high level (p < .05). Figure 5(B2) shows the significant 
decrease in alpha power at the occipital cluster during high workload condition as compared to 
the medium workload condition. The occipital alpha power was significantly lesser than the low 
workload condition, as shown in Figure 5(B3).  
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Figure 3. Frontal [Talairach coordinate: (-1, 41, 27)], Parietal [Talairach coordinate: (4, -51, 39)] and Occipital 
[Talairach coordinate: (30, -70, 15)] clusters selected in the tracking task (A) spatial scalp maps; (B) dipole source 
locations.  

       

 

Figure 4. Frontal [Talairach coordinate: (-10, 17, 46)], Parietal [Talairach coordinate: (5, -47, 47)] and Occipital 
[Talairach Coordinate: (-3, -69, 20)] clusters selected in the collision prediction task (A) spatial scalp maps; (B) 
dipole source locations.  
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Figure 5: ERSP changes during the tracking task at the (A) Frontal and (B) Occipital Cluster. (A1) shows the ERSP 
changes at the frontal cluster during high (first panel) and low (second panel) workload conditions and the third 
panel shows the statistically significant difference between high and low workload conditions (p < .05). (A2) shows 
the ERSP changes at the frontal cluster during high (first panel) and medium (second panel) workload conditions 
and the third panel shows the statistically significant difference between high and medium workload conditions (p < 
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.05). (A3) shows the ERSP changes at the frontal cluster during medium (first panel) and low (second panel) 
workload conditions and the third panel shows the statistically significant difference between medium and low 
workload conditions (p < .05). (B1) shows the ERSP changes at the occipital cluster during high (first panel) and 
low (second panel) workload conditions and the third panel shows the statistically significant difference between 
high and low workload conditions (p < .05). (B2) shows the ERSP changes at the occipital cluster during high (first 
panel) and medium (second panel) workload conditions and the third panel shows the statistically significant 
difference between high and medium workload conditions (p < .05). (B3) shows the ERSP changes at the occipital 
cluster during medium (first panel) and low (second panel) workload conditions and the third panel shows the 
statistically significant difference between medium and low workload conditions (p < .05).  
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Figure 6: ERSP changes during the collision prediction task at the (A) Frontal, (B) Parietal, (C) Occipital Cluster. 
(A1) shows the ERSP changes at the frontal cluster during high (first panel) and low (second panel) workload 
conditions and the third panel shows the statistically significant difference between high and low workload 
conditions (p < .05). (A2) shows the ERSP changes at the frontal cluster during high (first panel) and medium 
(second panel) workload conditions and the third panel shows the statistically significant difference between high 
and medium workload conditions (p < .05). (A3) shows the ERSP changes at the frontal cluster during medium (first 
panel) and low (second panel) workload conditions and the third panel shows the statistically significant difference 
between medium and low workload conditions (p < .05). (B1) shows the ERSP changes at the parietal cluster during 
high (first panel) and low (second panel) workload conditions and the third panel shows the statistically significant 
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difference between high and low workload conditions (p < .05). (B2) shows the ERSP changes at the parietal cluster 
during high (first panel) and medium (second panel) workload conditions and the third panel shows the statistically 
significant difference between high and medium workload conditions (p < .05). (B3) shows the ERSP changes at the 
parietal cluster during medium (first panel) and low (second panel) workload conditions and the third panel shows 
the statistically significant difference between medium and low workload conditions (p < .05). (C1) shows the ERSP 
changes at the occipital cluster during high (first panel) and low (second panel) workload conditions and the third 
panel shows the statistically significant difference between high and low workload conditions (p < .05). (C2) shows 
the ERSP changes at the occipital cluster during high (first panel) and medium (second panel) workload conditions 
and the third panel shows the statistically significant difference between high and medium workload conditions (p < 
.05). (C3) shows the ERSP changes at the occipital cluster during medium (first panel) and low (second panel) 
workload conditions and the third panel shows the statistically significant difference between medium and low 
workload conditions (p < .05).  

Figure 6 illustrates the frontal, parietal and occipital clusters’ ERSP changes for three workload 
conditions in the collision prediction task. Statistical analysis on ERSP changes of the frontal 
cluster showed a significant increase in theta power during high workload condition as compared 
to low workload condition (Figure 6(A1)). The frontal power during high workload condition 
was also significantly greater than that of medium workload, as shown in Figure 6(A2). Further, 
Figure 6(A3) shows that there was a significant increase in the frontal theta power during 
medium workload as compared to low workload condition in the collision prediction task. The 
ERSP changes at the parietal cluster (Figure 6(B1)) revealed a significant increase in the theta 
power in high workload as compared to low workload condition (p < .05) and a significant 
decrease in the alpha power (p < .05). Figure 6(B2) shows that there was a significant increase in 
the theta power and significant decrease in the alpha power at the parietal cluster during the high 
workload condition as compared to the medium workload condition. In the medium workload 
condition, the parietal theta power was significantly higher than the low workload condition 
while the parietal alpha power was significantly lower than that in the low workload condition 
(Figure 6(B3)). The ERSP changes at the occipital cluster (Figure 6(C1)) revealed a significant 
increase in the delta and theta power in the high workload as compared to the low workload 
condition (p < .05). Figure 6(C2) shows that there was a significant increase in the delta and 
theta power at the occipital cluster during the high workload condition as compared to the 
medium workload condition. In the medium workload condition, the occipital delta and theta 
power was significantly higher than the low workload condition (Figure 6(C3)). 

Power Spectral Density Changes with Mental Workload 

Figure 7(A1) illustrates the frontal cluster’s ICs’ spectral power for low, medium and high 
workload conditions of the tracking task. The results of the one-way repeated-measures ANOVA 
showed that frontal theta power varied significantly across workload conditions [F(2, 46) = 
50.931, p < .001, ηp

2 = .822]. Frontal theta PSD was higher during the high workload as 
compared to the low workload (p < .001) and medium workload condition (p < .001). The 
medium workload condition has significantly higher frontal theta PSD as compared to the low 
workload condition (p = .006). As shown in Figure 7(A2), the results of one-way repeated-
measures ANOVA showed that occipital alpha power varied significantly across workload 
conditions [F(2, 46) = 24.780, p < .001, ηp

2 = .693]. Occipital alpha PSD was lower during high 
workload as compared to low workload (p < .001) and medium workload condition (p = .005). 
The medium workload condition had significantly lower occipital alpha PSD as compared to low 
workload condition (p = .018). 
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For the collision prediction task, the frontal cluster’s ICs showed significant variation in theta 
power across different workload conditions according to the one-way repeated-measures 
ANOVA [F(2, 46) = 8.570, p = .001, ηp

2 = .271]. As shown in Figure 7(B1), frontal theta PSD 
was higher during high workload as compared to low workload (p = .002); however, it was not 
significantly greater than that of the medium workload condition (p = .051). The increase in 
frontal theta power during the medium workload condition was also not statistically significant 
as compared to the low workload condition (p = .336). However, the parietal cluster’s IC's 
spectral power for low, medium and high workload conditions showed a significant increase in 
the theta frequency bands and a significant decrease in the alpha band, as shown in Figure 7(B2) 
and Figure 7(B3).  

 

 

Figure 7: (A) Normalized Power Spectral Density at the Frontal and Occipital ICs selected in the Frontal and 
Occipital clusters for the tracking task. (A1) shows the normalised frontal theta PSD in the low, medium, and high 
workload conditions. (A2) shows the normalised occipital alpha PSD for low, medium, and high workload condition 
for the tracking task. (B) shows the normalized Power Spectral Density at the Frontal, Parietal and Occipital ICs 
selected in the Frontal, Parietal and Occipital cluster for the collision prediction task. (B1) shows the mean frontal 
theta PSD in the low, medium, and high workload conditions. (B2) shows the mean parietal theta PSD for the three 
levels of workload. (B3) shows the mean parietal alpha power for different workload conditions and (B4) shows the 
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mean occipital delta PSD in the low, medium, and high workload conditions. (B5) shows the mean occipital theta 
PSD for the three levels of workload condition in collision prediction task. 

One-way repeated-measures ANOVA results showed that parietal theta [F(2, 46) = 47.764, p < 
.001, ηp

2 = .675] and alpha [F(2, 46) = 38.639, p < .001, ηp
2 = .627] power varied significantly 

across workload conditions. Parietal theta PSD during low workload was significantly lower than 
medium (p < .001) and high workload conditions (p < .001) and the medium workload had lower 
parietal theta PSD as compared to high workload condition (p < .001). There was also a 
significant decrease in the parietal alpha PSD during the medium (p = .002) and the high 
workload conditions (p < .001) as compared to the low workload condition. The parietal alpha 
PSD was significantly less in the high workload condition as compared to the medium workload 
(p < .001). One-way repeated-measures ANOVA results showed that occipital delta [F(1.563, 
35.951) = 35.321, p < .001, ηp

2 = .606] and theta [F(2, 46) = 39.101, p < .001, ηp
2 = .630] power 

varied significantly across workload conditions. The occipital delta PSD was significantly higher 
during the medium (p < .001) and the high workload (p < .001) as compared to the low 
workload. Further, occipital delta PSD during the high workload condition was significantly 
higher than the medium workload condition (p = .001). Occipital theta PSD during low workload 
was significantly lower than the medium (p < .001) and high workload conditions (p < .001) and 
the medium workload had lower occipital theta PSD as compared to the high workload condition 
(p = .001). 

Eye activity changes with mental workload 

As shown in Figure 8(A), pupil size increased with the increasing workload for both tracking and 
collision prediction tasks. For the tracking task, there was a significant change in the pupil size 
for different workload conditions as shown by one-way repeated-measures ANOVA [F(2, 38) = 
13.205, p < .001,ηp

2 = .410]. There was a significant increase in the pupil size for the medium (p 
= .0001) and the high workload condition (p = .001) as compared to the low workload condition. 
However, the increase was not statistically significant for the high workload as compared to the 
medium workload condition (p = .313) in the tracking task.  

The results of one-way repeated measures ANOVA shows that in the collision prediction task, 
there was a significant change in the pupil size for different workload conditions [F(2, 46) = 
9.276, p < .001, ηp

2 = .287]. There was a significant increase in the pupil size for the medium (p 
= .011) and the high workload condition (p < .001) as compared to the low workload condition 
and no significant increase in pupil size for high workload as compared to the medium workload 
condition (p = .180). 

The number of blinks during tracking and collision prediction tasks decreased with the 
increasing workload, as shown in Figure 8(B). One-way repeated-measure ANOVA was 
conducted to study the effect of workload variations on the number of blinks, which revealed 
significant variations in the number of blinks during the tracking task for different workload 
conditions [F(2, 46) = 3.624, p = .035, ηp

2 = .136]. The number of blinks in the low workload 
condition of the tracking task was significantly greater than that of high workload condition (p = 
.015) but not significantly greater than that of medium workload (p = .328). There was no 
significant decrease in the number of blinks in the high workload condition as compared to 
medium workload (p = .106).  
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Figure 8: (A) shows the normalized pupil size of all the participants shows a positive trend with the increasing
workload. (A1) Normalised pupil size in the three workload conditions of the tracking task. (A2) Normalised pupil
size during low, medium, and high workload conditions for the collision prediction task. (B) shows the negative
trend in the number of blinks with the increasing workload. (B1) Number of blinks during different workload
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conditions of the tracking task. (B2) Number of blinks during the collision prediction task decreases with increasing 
level of workload. (C) shows the declining trend in the normalized RMSSD of all the participants with the 
increasing workload. (C1) Normalised RMSSD all the participants in the low, medium, and high workload 
conditions of the tracking task. (C2) Normalised RMSSD during collision prediction task for the three levels of 
workload.  

The effect of workload on the number of blinks in the collision prediction task was analysed 
using one-way repeated-measure ANOVA. It showed a significant variation in the number of 
blinks [F(2, 46) = 18.586, p < .001, ηp

2 = .447]. In the low workload condition, the number of 
blinks was significantly greater in the medium (p < .001) and the high workload conditions (p < 
.001). However, the number of blinks in the medium workload condition was not significantly 
higher when compared to the high workload condition (p = .604). 

Heart Rate Variability (RMSSD) changes with Mental Workload 

Figure 8(C) shows the RMSSD variation for different workload conditions in the tracking and 
collision prediction task. For the tracking task, there was a significant change in the RMSSD for 
the different workload conditions, as shown by the one-way repeated-measures ANOVA [F(2, 
34) = 10.171, p < .001, ηp

2 = .374]. There was a significant decrease in the RMSSD for the 
medium (p = .001) and the high workload condition (p = .009) as compared to the low workload 
condition. The RMSSD during medium and high workload of the tracking task was not 
significantly different (p = .440). Results from one-way repeated-measures ANOVA shows that 
in the collision prediction task, there was a significant change in the RMSSD for different 
workload conditions [F(2, 44) = 4.279, p = .022, ηp

2 = .201]. RMSSD during the low workload 
condition was significantly greater than the medium (p = .077) and high workload conditions (p 
= .006) of the collision prediction task. There was no significant variation in RMSSD for the 
medium and high workload conditions (p = .326) of the collision prediction task. 

Multiple Regression Results 

Multiple regression was carried out to investigate whether EEG, eye activity and HRV metrics of 
workload could significantly predict the performance in the tracking task. The results of the 
regression indicated that the model explained 54.3% of the variance and that the model was a 
significant predictor of the tracking performance, F(3, 67) = 26.543, p < .001. While EEG 
metrics (B = .067, p = .001) and eye activity (B = -.089, p < .001) contributed significantly to the 
model, HRV metrics did not (B = -.152, p = .125). The final predictive model was: 

���"��#���� �� �������� ���� 
0.725  0.067 * ++, #������  0.089 * +�� ������� #������  0.152 * 0�1 #������ 
     (4) 

In order to determine whether EEG, eye activity and HRV metrics could significantly predict the 
performance in collision prediction task, we conducted multiple regression analysis. The results 
of the regression indicated that the model explained 61.7% of the variance and that the model 
was a significant predictor of the performance in the collision prediction task, F(3, 68) = 24.324, 
p < .001. While eye activity (B = -.276, p = .02) and EEG metrics (B = -.532, p < .001) 
contributed significantly to the model, HRV metrics did not (B = .444, p = .443). The final 
predictive model was: 
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���"��#���� �� ��������� ���������� ����  0.055  0.532 * ++, #������  0.276 *
+�� ������� #������ 3 0.444 * 0�1 #������       (5) 

Discussion 

In this study, we designed two simplified tasks based on ATC: tracking and collision prediction 
tasks. Although both these tasks represent the basic tasks that ATC operators routinely perform, 
we considered them separately to untangle the differences in the physiological response to 
workload variations in these tasks.   

In order to study workload effects of increasing air traffic, the mental workload in both these 
tasks was manipulated by varying the number of dots. It was observed that the performance in 
the tracking task, assessed by the tracking accuracy, degrades significantly with the increasing 
workload. Similarly, for the collision detection task, the time before collision decreased 
significantly and collision prediction miss proportion also significantly increased with increasing 
levels of workload. Together, this indicated an overall decrease in performance with the 
increasing levels of workload for the collision detection task as participants took longer to 
identify collisions and were less accurate in identifying collisions when workload increased.  
Hence, we can confirm that the workload manipulation (by varying the number of dots) in both 
tracking and collision prediction tasks was successful in eliciting significant performance 
variations (H1). 

In order to assess the mental workload, EEG, eye activity and BVP data were recorded while the 
participants performed the tasks. For all participants, the component data was disentangled from 
the scalp EEG signal using independent component analysis. Significant correlations between 
mental workload and the spectral powers of frontal, parietal and occipital clusters were 
successfully elucidated.  

The tracking task demands allocation of attentional resources to keep track of one, three or five 
tracking dots moving randomly among distractor dots. Working memory load is sensitive to 
increased allocation of attentional resources and is reflected by increases in frontal theta power 
(Klimesch et al., 1998; Klimesch, 1999; Gevins and Smith, 2000). In the tracking task, we 
observed an increase in the frontal theta power, which confirms that increased working memory 
load was experienced with increasing workload levels. Tracking dots moving among distractor 
dots also entails working memory mechanisms related to relevant item maintenance and 
increases in the memory load. This working memory mechanism was reflected by a decrease in 
the alpha power (Gevins et al., 1997; Wilson, 2002; Capilla et al., 2014 and Puma et al., 2018). 
The alpha power is also known to decrease with increased memory load (Fournier et al., 1999; 
Smith et al., 2001; Fairclough et al., 2005; Ryu and Myung, 2005; Fairclough and Venables, 
2006) and task difficulty (Sterman and Mann, 1995; Ota et al., 1996). Our findings also 
substantiate this working memory mechanism as the occipital alpha power decreases with 
increasing workload levels in the tracking task. 

In the collision prediction task, anticipating the trajectory of the dots and predicting whether the 
dots would collide requires attention and internal concentration. Delta power is an indicator of 
attention or internal concentration in mental tasks, and it has been reported to increase with the 
increase in workload (Sterman and Mann, 1995; Harmony et al., 1996; Wilson, 2002). Our 
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results demonstrate an increase in the delta power at the occipital sites, which validates that there 
is an increased allocation of attentional resources with increasing levels of workload in the 
collision prediction task. Additionally, keeping a tab on the trajectory of six, 12 or 18 eight dots 
adds to the memory load in the participants. Several studies have shown that theta power is 
correlated with memory load (Jensen and Tesche, 2002; Jacobs et al., 2006) and working 
memory capacity (Klimesch, 1996; Klimesch, 1999; Sauseng et al., 2010). In collision prediction 
task, our results reveal a significant increase in the theta power at the frontal, parietal and 
occipital clusters, confirming an increase in memory load with increasing levels of workload. 
Furthermore, our results indicate that with increasing levels of workload, there is a crease in 
parietal alpha power. This observed alpha band desynchronisation with the increasing workload 
is related to relevant item maintenance in the working memory (Sterman and Mann, 1995; 
Gevins et al., 1997; Wilson, 2002; Capilla et al., 2014; Puma et al., 2018) and is known to 
decrease with increased memory load (Fournier et al., 1999; Smith et al., 2001; Fairclough et al., 
2005; Ryu and Myung, 2005; Fairclough and Venables, 2006) and task difficulty (Sterman and 
Mann, 1995; Ota et al., 1996). However, in the collision prediction task, the most significant 
decrease in the parietal alpha power was observed a few seconds before the collision. It might be 
related to the increase in the experienced time pressure (Slobounov et al., 2000) as the 
participants attempt to identify and click on the colliding pair of dots before the collision 
happens. 

We also explored eye-related metrics and HRV metrics during workload variations. Eye activity 
data was transformed to pupil size and blink rate information. Pupil size increased significantly 
with the increasing workload in both tracking and collision prediction tasks. The number of 
blinks also reduced considerably with the increasing workload in both tasks. Pupil size is a 
reliable measure of workload (Beatty, 1982, Marquart, 2015, Marquart and Winter, 2015, 
Mandrick et al., 2016) as it dilates with increasing workload (Batmaz and Ozturk, 2008, Kosch et 
al., 2018, Truschzinski et al., 2018, Bernhardt et al., 2019, Kearney et al., 2019, Marinescu et al., 
2018, Wanyan et al., 2014). Recarte et al., 2008 show that blink inhibition happens in higher 
workload conditions and so, the blink rate is inversely correlated with the attentional levels and 
workload experienced by the operator (Veltman and Gaillard, 1996, Brookings et al., 1996, 
Wilson, 2002, Borghini et al., 2014, Widyanti et al., 2017, Wanyan et al., 2018). RMSSD was 
found to be negatively correlated with the mental workload in both tasks. This decrease in 
RMSSD with the increasing workload is widely reported in the literature (Mehler et al., 2011, 
Cinaz et al., 2010, Cinaz et al., 2013, Parsinejad et al., 2014, Fallahi et al., 2016, Heine et al., 
2017, Tjolleng et al., 2017). 

Our results show that EEG power spectra at the frontal, parietal and occipital areas, eye activity 
and HRV metrics can reliably and accurately assess the mental workload of the participants in 
both tasks. Hence, our second hypothesis (H2) is proved to be true for both tracking and collision 
prediction tasks. Relating to our third hypothesis (H3), the multiple regression results showed 
that the performance in the tracking and collision prediction tasks could be predicted from the 
EEG, eye related and HRV metrics. 

Even though EEG, eye activity and HRV measures were able to differentiate between low and 
high levels of workload sensitively, some of these measures were not able to accurately discern 
the medium workload from low/high workload conditions. There are two possible reasons for 
this incoherence reported in the literature: experiment design issue (Kramer, 1991) or inter-
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individual differences (Beatty, 1977; Beatty and O’Hanlon, 1979 and Valentino et al., 1993). In 
our experimental design, the medium workload condition might have required nearly comparable 
cognitive resources and hence, not qualifying for a significant variation from the low/high 
workload condition. However, our results showed a significant drop in the performance with 
increasing workload levels in both the tracking and collision prediction tasks. 

Therefore, it is more plausible to reason that this incoherence might be due to the influence of 
inter-individual differences. It is well understood that the relationship between workload and task 
demand is not straightforward (Athènes et al., 2002; Chatterji and Sridhar, 2001). Sperandio, 
1971 claims that the relationship can be better understood by investigating the strategies 
employed by human operators to manage their cognitive resources and workload and many 
researchers agree with this view (Cullen, 1999, Athènes et al., 2002, Averty et al., 2002, Hilburn, 
2004, Majumdar et al., 2004). Different participants might reflect workload variations differently 
based on their cognitive resources and the strategies that they employ for performing the tasks. 

Our results also indicate that even though eye activity and HRV metrics are sensitive to task load 
variations, they may not provide any valuable information on the task that causes the variations 
in workload. However, the EEG measures were found to be not just sensitive to the workload 
variations but also the task type. The increases in workload in the tracking task was reflected by 
the increase in frontal theta power and decrease in occipital alpha power. No significant changes 
were observed in the parietal theta, alpha, occipital delta, or theta power with the increasing 
workload in the tracking task. In the collision prediction task, the increase in workload was 
correlated with the increases in frontal theta, parietal theta, occipital delta and theta power and a 
decrease in parietal alpha power. No significant variation was observed in the occipital alpha 
power during the collision prediction task. The neurometrics correlated with the variations in the 
workload of tracking and collision prediction tasks are different, which proves that our fourth 
hypothesis (H4) is true. Therefore, neurometrics can help identify the task contributing to the 
increase in workload in complex ATC environments at a time instant and define the strategies 
that can be used by the workload adaptive system to mitigate this increase. These results provide 
evidence that the use of EEG measures in a closed-loop adaptive system can not only aid the 
decision of ‘when’ but also ‘what’ form of automation to deploy to mitigate the workload 
variations in operators. Hence, the results presented here contribute to the development of 
adaptive strategies essential for the design of intelligent closed-loop mental workload adaptive 
ATC systems. 

While we have systematically studied the effect of workload variations, the main limitation of 
this study is that different variables were controlled for the purpose of elucidating the impact of 
workload variations based on the differences in traffic load in the basic ATC tasks. Our 
experiment scenario was not very realistic as several environmental factors contribute to the 
workload experienced by ATC even while they perform these basic tasks. Another limitation is 
that a prior gaming experience can influence the strategies employed by the participants, thereby, 
significantly affect the experienced workload. We did not explore the inter-individual differences 
between participants in this study. Finally, this is a work in progress. We are in the process of 
building an intelligent mental workload adaptive closed-loop system based on the reported 
preliminary results where the workload mitigation strategy employed at any time instant will be 
decided based on the real-time neurometrics of the operator.  
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Conclusion 

The performance and efficiency of a system can be improved by maintaining the operator’s 
workload in the optimal range. In order to elucidate the impact of basic task load variations that 
comprise the load variations in complex ATC tasks, we separately designed two basic ATC 
tasks: tracking and collision prediction tasks. EEG spectral power, eye and HRV correlates to 
mental workload variations for tracking and collision prediction tasks of air traffic controllers are 
successfully unravelled and provide a comprehensive picture of the workload demands in ATC 
tasks. Our results demonstrate that EEG, eye and HRV metrics can provide a sensitive and 
reliable measure to predict the mental workload and performance of the operator. The differences 
in neural response to increased workload in the tracking and collision prediction task indicate 
that these neural measures are sensitive to variations and type of mental workload and their 
potential utility in not just deciding ‘when’ but also ‘what’ to adapt, aiding the development of 
intelligent closed-loop mental workload aware systems. This investigation of physiological 
indices of workload variation in the basic ATC tasks has applicability to the design of future 
adaptive systems that integrate neurometrics in deciding the form of automation to be used to 
mitigate the variations in workload in complex ATC systems. 
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Supplementary Material 
 

 

Figure 1. A schematic diagram describing how time before collision was calculated in the collision prediction task 

 

     Figure 2. The EEG preprocessing and processing pipeline used for tracking and collision prediction tasks. 
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