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SUMMARY 
 

Although the contents of working memory (WM) can be decoded from activity in visual 
cortex, these representations may play a limited role if they are not robust to distraction. 
Here, we used model-based fMRI to estimate the impact that a distracting visual task had 
on WM representations in several visual field maps in visual and frontoparietal association 
cortex. Distraction caused the fidelity of WM representations in all maps to briefly dip when 
both the memorandum and distractor were jointly encoded by the population activities. 
Moreover, distraction induced small biases in memory errors which were predicted by 
biases in neural decoding in early visual cortex, but not other regions. Although distraction 
briefly disrupts WM representations, the widespread redundancy with which WM 
information is encoded may protect against catastrophic loss. In early visual cortex, 
nonetheless, the neural representation of information in WM and behavioral performance 
were intertwined, solidifying its importance in memory.  
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INTRODUCTION 

Higher cognition depends on working memory (WM), the ability to maintain and perform 

operations on internal representations of information no longer available in the environment. Early 

studies focused on a primary role of prefrontal cortex in supporting WM representations based on 

sustained activation over delay periods (Curtis and D’Esposito, 2003; Funahashi et al., 1989; 

Fuster and Alexander, 1971; Miller et al., 1993). However, recent studies have repeatedly 

demonstrated that the contents of WM can be decoded from the multivariate patterns of activity 

in early visual cortex (Christophel et al., 2012, 2017; Harrison and Tong, 2009; Jerde et al., 2012; 

Riggall and Postle, 2012; Serences et al., 2009; Sprague et al., 2014). This putative dichotomy 

between regions coordinating WM processes, located in a frontoparietal network, and regions 

storing remembered information, located within the sensory cortex, has led to the development of 

the sensory recruitment model of WM (Albers et al., 2013; Christophel et al., 2017; Curtis and 

D’Esposito, 2003; Emrich et al., 2013; Harrison and Tong, 2009; Postle, 2006; Rahmati et al., 

2018; Riggall and Postle, 2012; Serences, 2016; Serences et al., 2009; Theeuwes et al., 2005). 

This model hypothesizes that feedback signals from frontoparietal cortex recruit the mechanisms 

used for perceptual encoding in sensory cortex for precise memory storage. 

 

Yet, the idea that visual cortex plays a critical role in working memory continues to be met with 

skepticism (Leavitt et al., 2017; Xu, 2017, 2020), and major aspects of the sensory recruitment 

theory remain underspecified. For instance, it is unclear how neural circuitry in early visual cortex 

is able to simultaneously maintain WM representations while encoding incoming percepts (Xu, 

2017). To address this, several recent studies have evaluated how WM representations might be 

maintained in the presence of behaviorally irrelevant sensory distraction. In each of these studies, 

participants remembered a visual stimulus over a delay while simultaneously viewing an irrelevant 

visual stimulus. The results are highly inconsistent. WM representations in visual cortex were 

eliminated (Bettencourt and Xu, 2016, Exp. 1), disrupted (Rademaker et al., 2019, Exp. 2), biased 

(Lorenc et al., 2018), or spared (Rademaker et al., 2019, Exp. 1; (Bettencourt and Xu, 2016, Exp. 

3) when viewing different types of distracting stimuli under slightly different conditions. Because 

visual cortex does not always contain a representation of remembered information during 

distraction, its role in WM representation has been considered unimportant (Xu, 2017). 

 

In contrast, the contents of WM remain decodable from parietal cortex activation patterns even 

when those in visual cortex are lost (Bettencourt and Xu, 2016; Lorenc et al., 2018; Rademaker 

et al., 2019; Xu, 2020), and in some cases the parietal WM representations are stored in a 

different format from that used to represent sensory information (Rademaker et al., 2019, Exp. 2). 

Based on these results, one might conclude that parietal cortex, and not visual cortex, maintains 

distractor-resistant memory representations. But, in addition to the inconsistency of the results in 

visual cortex, several outstanding issues prevent such a conclusion. For instance, behavioral 

performance on WM tasks can be biased by distracting stimuli, suggesting that  interference 

between the mechanisms used for perceptual encoding and memory storage may underlie these 

effects (Magnussen and Greenlee, 1992; Magnussen et al., 1991; Rademaker et al., 2015; Smyth, 

1996; Smyth and Scholey, 1994). In these behavioral studies, only distracting stimuli that are 

closely matched to remembered stimuli impact behavioral recall performance (e.g., viewing an 
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irrelevant oriented grating while remembering an oriented grating). Additionally, maintaining 

information in visual WM impacts visual perception and visual motor selection in a manner 

consistent with low level sensory interference (Gayet et al., 2013; Hollingworth et al., 2013). 

However, previous studies have not been able to link behavioral evidence of distraction to 

distortions in encoded WM representations, as distraction either had no impact on behavior 

(Bettencourt and Xu, 2016; Rademaker et al., 2019, Exp. 1) or only a group-level worsening 

(Rademaker et al., 2019, Exp. 2) or biasing of WM performance (Lorenc et al., 2018) following 

distraction. If the neural representation of WM in visual cortex is disrupted by distraction while 

behavior is spared, then its role in WM is likely to be very limited, for instance to artificial laboratory 

conditions with simple blank retention intervals. On the other hand, if biases in WM performance 

were predicted by biases in neural WM representations in some regions, this would demonstrate 

a crucial role for the WM representations carried by those regions. Currently, critical evidence 

linking behavioral performance on individual WM trials and the neural representation of 

information within WM is lacking. Here, we tested the hypothesis that distractor-induced 

distortions in WM may stem from corresponding distortions in the most critical population-encoded 

WM representations in the visual and association cortices.  

 

Participants precisely maintained position of a single WM target over a 12 s delay period, which 

previous studies show are encoded in retinotopically-organized visual field maps (Jerde et al., 

2012; Rahmati et al., 2018; Saber et al., 2015; Sprague et al., 2014) . The distractors, placed at 

controlled geometric distances from the WM targets, provided a feedforward stimulus drive while 

requiring a voluntary withdrawal of attention from the WM target so participants could make a 

difficult perceptual discrimination. We reasoned that such a distractor should have effects both at 

lower (e.g., visual cortex) and higher (e.g., association cortex) levels impacting both memory 

storage and control functions. These task features enabled us to measure WM representations 

before, during, and after distraction along with conjoint distractor representations. Consistent with 

prior reports, we found that during distraction, the fidelity of WM representations briefly dipped in 

visual, parietal, and frontal cortex. However, the WM representation quickly recovered before the 

end of the delay period. Critically, the offset in represented spatial location in recovered WM 

representations in visual cortex, but not in parietal cortex, correlated with trial-by-trial biases in 

WM behavior, demonstrating that WM reports may depend on the read-out of these specific WM 

representations. Together, these results point to a primary role for sensory regions in WM 

maintenance, supporting a key prediction of sensory recruitment theory.  
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RESULTS 

 

Attention Drawn to a Distractor Impacts Working Memory Performance 

Participants performed a memory-guided saccade task in which they precisely remembered the 

location of a target on each trial (12° eccentricity, random polar angle; Figure 1A-B). On 70% of 

trials, a distractor task occured in the middle of the memory delay where participants reported the 

direction of rotational motion of a random dot motion stimulus. To test our main hypothesis, we 

performed a series of analyses designed to estimate the effect of distraction on WM. First, we 

asked if the distractor impacted the quality of WM (Figure 1C-D). Memory-guided saccades were 

less precise on distractor-present compared to distractor absent trials (Figure 1D, p=0.039; two-

tailed t-test). Similarly, the initiation of memory-guided saccades was slower on distractor-present 

trials (Figure 1E; p=0.011; two-tailed t-test). The magnitude of these distrator-induced 

perturbations to memory-guided saccades were similar to those induced by transcranial magnetic 

stimulation applied to frontal and parietal cortex (Mackey et al., 2017). Moreover, as previous 

work indicates that distractors that are more similar to memoranda are most disruptive 

(Magnussen and Greenlee, 1992; Magnussen et al., 1991; Pasternak and Greenlee, 2005; 

Rademaker et al., 2015; Smyth, 1996; Smyth and Scholey, 1994), we tested whether the impact 

of distraction depended on how close the distractor was to the WM target. These follow-up 

analyses found no significant evidence that WM precision (p=0.310; one-way repeated-measures 

ANOVA) or response times (p=0.149; one-way repeated-measures ANOVA) varied by their 

locations relative to the WM target on distractor-present trials (Figure S1A). Overall, we observed 

that a brief behaviorally-relevant distractor impacted WM performance similar to previous studies 

that reported unattended distractors interfered with WM performance (Lorenc et al., 2018; 

Rademaker et al., 2015; Rademaker et al., 2019, Exp. 2; but see Rademaker et al., 2019, Exp. 1, 

and Bettencourt and Xu, 2016 for reports that distraction has no effect on WM performance).   
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Figure 1. Attending a distractor stimulus impairs working memory performance.  
 A. Participants (n = 7) performed a memory-guided saccade task while brain activity and gaze were recorded inside 
the scanner. Each trial began with a condition cue, reliably indicating whether a distractor would appear (70% of trials) 
or not (30%). On each trial, participants maintained the precise spatial position of a briefly-presented visual target (12° 
eccentricity, random polar angle) over an extended 12 s memory delay. At the end of the delay, they executed a 
memory-guided saccade to the remembered position. The memory target was then re-presented, and participants 
fixated this location before returning to central fixation.  During distractor-present trials, participants discriminated 
whether dots presented within a 2° diameter aperture were rotating clockwise or counterclockwise with a button press. 
Across runs, motion coherence was varied to achieve ~75% correct performance (mean ± SEM,  73%). The distracting 
stimulus could appear within one of seven position bins (24° polar angle wide) around the screen relative to the WM 
target, evenly presented across trials, denoted by blue intervals relative to an example WM target position (inset). B. 
Timing of task events and example gaze data. Top: Trial events (start of delay, distractor, response) were synchronized 
to the beginning of 750 ms imaging volumes. We defined three trial epochs for further analyses (Figures 5-7) assuming 
~4 s hemodynamic delay (PRE: volumes before distractor, DIST: volumes during distractor, POST: volumes after 
distractor). Bottom: Eye-trace of all trials of each condition for an example participant (p02). Eye position eccentricity is 
plotted as a function of time; distractor-absent trials are plotted with positive values, and distractor-present trials are 
plotted with negative values. Note that gaze remains at fixation during distraction keeping the retinal position of the 
memory target constant. C. Aligned final saccadic endpoints (all participants) for trials in which distractors were absent 
or present.  All endpoints are aligned by rotating to a common spatial position (along the horizontal meridian at 12° 
eccentricity). D. Memory error (standard deviation of the polar angle of saccade endpoints) varied with distractor 
presence (t-test, two-tailed, p=0.039). Gray lines show individual participants; colored circles show group mean (±SEM). 
E. Response time also varied based on distractor presence (t-test, two-tailed, p=0.011). Analysis of behavioral 
performance across individual distractor location bins shown in Figure S1. 
 
 

Spatially-Selective BOLD Activations Persist During WM and Respond to Distraction 
All fMRI analyses focused on retinotopic regions of interest identified using maps of polar angle 

and eccentricity computed from independent retinotopic mapping data using a compressive 

spatial summation voxel receptive field model (Mackey et al., 2017; Figure 3A). We analyzed data 

from all retinotopic ROIs previously reported in fMRI studies of visual WM and distraction (V1, V2, 

V3, V3AB, IPS0, IPS1, IPS2, IPS3, sPCS, LO1, hV4; (Bettencourt and Xu, 2016; Rademaker et 

al., 2019), and combined regions which share a foveal confluence (V1, V2 and V3; IPS0 and 

IPS1; IPS2 and IPS3; Mackey et al., 2017; Wandell et al., 2005, 2007). To index WM-related 

sustained activation within voxels tuned to remembered locations, we took advantage of the 

receptive field parameters and averaged BOLD responses across voxels in each visual field map 
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whose receptive field matched that of the WM target location (RF in). We chose RFin voxels with 

eccentricities between 2-15 degrees and polar angles within 15 degrees on either side of the WM 

target’s polar angle. For comparison, we also averaged BOLD responses in the voxels with 

receptive fields 165-195 degrees opposite the WM target (RFout) using the same range of 

eccentricity limits.  Focusing on the distractor-absent trials, we saw two patterns across the visual 

field map ROIs that can be seen in Figure 2A. First, the amplitude of persistent activity during the 

delay period increases moving anterior in the dorsal stream ROIs from early visual cortex (V1-V3; 

V3AB) to parietal cortex (IPS0/1, IPS2/3) to frontal cortex (sPCS), consistent with previous reports 

(Emrich et al., 2013; Harrison and Tong, 2009; Jerde et al., 2012; Saber et al., 2015; Serences et 

al., 2009; Sprague et al., 2014). Second, the spatial selectivity of the persistent activity varied 

among the ROIs, which is apparent when comparing the RF in and RFout responses. Note how the 

amplitudes of delay period activity between the RFin and RFout conditions diminish from early visual 

cortex, to parietal cortex, to frontal cortex. These differences are consistent with the increasing 

size of receptive fields of neurons as one moves up the visual hierarchy from early visual cortex 

to parietal and frontal cortex (Felleman and Van Essen, 1991; Mackey et al., 2017; Wandell et al., 

2007). We quantified these effects by testing whether delay-period activation (averaged over the 

period spanning 3.75 to 12 s after delay period onset) differed across position-sorted voxels and 

ROIs with a 2-way repeated measures ANOVA against a shuffled null distribution with factors 

of ROI and RF condition (RFin vs. RFout). The 2-way interaction was significant (p=0.01), as 

were each of the main effects of ROI (p<0.001) and RF (p< 0.001; individual ROI statistics in 

Table S2). On distractor-present trials, the attended distractor evoked a phasic response in all 

ROIs, but this response was especially strong in parietal and frontal cortex (Figure 2B). Finally, 

we averaged the BOLD responses in voxels whose RFs were aligned to the distractor position, 

regardless of the position of the WM target, to better visualize the effect of the distractor (Figure 

2C). The phasic distractor responses were robust in voxels with RFs that matched (RF in) 

compared to opposite to the distractor (RFout), especially in early visual cortex. Next, we used 

these BOLD responses to model how WM targets are encoded within the population activity of 

each ROI, and how distraction may disrupt such encoding across the duration of each trial.  
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Figure 2. BOLD responses sorted by voxel RF position during WM delay period.  
A. During distractor-absent trials, the average (±SEM) amplitude of BOLD responses was greater in voxels whose 

receptive fields - estimated using nonlinear population receptive field mapping (Mackey et al., 2017, see Fig. 3A for an 

example hemisphere) aligned with the WM target (RFin) compared to when the target was 180 degrees away from 

voxels’ receptive fields (RFout). The inset to the right depicts an example of the RFin and RFout regions of the visual field 

with respect to the WM target location (see STAR Methods for more details). The amplitudes of persistent activity 

increased moving anterior in the dorsal stream ROIs from early visual cortex (V1-V3; V3AB) to parietal cortex (IPS0/1) 

to frontal cortex (IPS2/3), while the spatial selectivity (difference between RFin and RFout) decreased. Data from ventral 

(hV4) and lateral retinotopic regions (LO1) is also included for completeness. Time series were baseline-corrected by 

removing the mean activation from -2.25 - 0 s prior to delay period onset from each time series. B. During distractor-

present trials, we observed an additional phasic response time-locked to the distractor onset across all ROIs. C. To 

further illustrate the distractor response, we averaged the BOLD responses in voxels whose RFs were aligned to the 

distractor position, regardless of the position of the WM target. The phasic responses were more robust in voxels with 

RFs that matched (RFin) compared to opposite to the distractor (RFout). The shaded areas denote the pre-distractor, 

distractor, and post-distractor epochs that are the target of later analyses. Results for individual ROIs shown in Figure 

S2, and all p-values available in Table S1. 

 

Reconstructed Population Response Encodes WM Targets and Distractors 

To test our hypothesis that an attended distractor stimulus disrupts neural WM representations, 

we implemented an inverted encoding model (IEM) of polar angle to visualize and quantify spatial 

WM representations along an isoeccentric ring of target positions. We trained the encoding model 

using delay-period data from a single-item memory-guided saccade task collected over 2-3 fMRI 

sessions independent of the main experimental task. Then, using this fixed encoding model 

(Sprague et al., 2018a), we reconstructed 1D spatial representations from each timepoint of each 

trial (Figure 3A-B). Evident even in single trials, the location of the WM target emerged in the 

reconstructions shortly after the appearance of the stimulus and persisted throughout the entire 
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delay period, while on distractor-present trials the position of the distractor briefly appeared and 

disappeared in the reconstruction (Figure 3B).  

 

Testing our hypothesis requires visualizing WM representations independent of distractor 

representations. To accomplish this, we aligned reconstructions across trials based on the 

remembered target location, which averages over all relative distractor locations (Figure 3C-D). 

Similarly, to visualize the representations of the visual distractor, we aligned the same data based 

on the distractor location, which averages over all relative target locations (Figure 3E-F, as in 

Rademaker et al., 2019). Importantly, because distractors were presented with equal likelihood 

at one of seven location bins relative to the WM target (Figure 1A), we were able to independently 

visualize and assay WM representations and distractor representations on distractor-present 

trials.  

 

 
Figure 3. IEM-based reconstruction of WM and distractor representations.  
A. Each participant underwent retinotopic mapping to define ROIs in visual, parietal, and frontal cortex (V1-V3, V3AB, 
hV4, LO1, IPS0-3, sPCS). Example hemisphere and participant shown (p02, LH). Each voxel’s time course is fit with a 

receptive field model (Mackey et al., 2017). Color depicts preferred polar angle; thresholded at R2≥10%. B. We 

estimated an inverted encoding model (IEM) for polar angle for each participant and ROI using a dataset reserved for 
this purpose (single-item memory-guided saccade task, 3-4.5 hrs/participant). Each timepoint of the spatial distractor 
dataset was reconstructed using this independently-estimated model (Sprague et al., 2018a, 2019). Two example trials 
shown. C. In the example participant, reconstructions were aligned based on WM target positions (orange triangle), 
and separately averaged for each distractor bin position (cyan triangle at onset time). Note that both target and 
distractor representations can be seen in the reconstructions. D. WM target reconstruction averaged over all distractor 
location bins. Because distractors are evenly presented around the screen with respect to WM locations (Figure 1A), 
averaging across relative distractor positions reveals target-related spatial representations because distractor 
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representations are ‘washed out’ during the averaging procedure. E. The same data as (C-D) now aligned to each 
trial’s distractor position (cyan triangles), and averaged separately for each relative distractor location bin (WM targets 
are at different locations relative to distractor; orange triangles). F. Distractor location reconstruction averaged over all 
relative WM target location bins.  
 

 
Figure 4. Impact of distraction on the dynamics of WM representations.  
Average reconstruction of WM target locations on distractor-absent (A) and distractor-present trials (B) across all 
participants (n=7). C. Reconstruction of distractor locations on distractor-present trials, where all trials were aligned to 
a fixed distractor location. Note that B and C include the same data, just aligned to different locations (see Fig. 3). 
Reconstruction strength is greatest at the aligned location in each instance, and represents the polar angle location of 
the WM target maintained over the entire delay period or the briefly-presented distractor. (D & E). Fidelity of the neural 
representation of WM targets (D) and distractors (E). When activation peaks in the direction of the remembered target 
(after alignment), fidelity is positive; when there is no consistent activation peak, fidelity is near zero. Target fidelity on 
distractor-absent trials is robust and statistically significant throughout the delay period in all ROIs.  When the distractor 

is present, fidelity drops, but remains significantly above zero for all ROIs except for one 750 ms TR in sPCS. Distractor 
fidelity is also statistically significant in all regions, and is qualitatively most robust across extrastriate visual cortex (e.g., 
V3AB). Closed and open circles denote significance of p<0.05, one-sided, FDR corrected and p<0.05, one-sided, FDR 
uncorrected, respectively (one-sample t-test using null distribution derived from shuffled IEM; see STAR Methods). 
Error bars ±SEM.  

 

Across all participants, the WM target locations were robustly encoded in the modeled population 

responses in all visual, parietal, and frontal ROIs during distractor-absent trials (Figure 4A). This 

demonstrates the robustness of our model, experimental data, and procedures, and replicates 

previous results (Rahmati et al., 2018; Sprague et al., 2014, 2016). Turning to the distractor-
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present trials, the strength of WM representations took a noticeable ‘dip’ following the distractor 

presentation (Figure 4B). This dip, however, was brief and the WM target representation returned 

shortly after the distractor disappeared, prior to the response period at the end of the trial. 

Additionally, by aligning the same data to the distractor location rather than the WM target location 

(Figure 4C), one can see strong representations of the distractor locations encoded in the 

population response of all ROIs.  

 

Distraction Impacts WM Representations 

Thus far, qualitative examination of WM reconstructions suggests WM target representations are 

transiently disrupted by an attended distractor stimulus across visual, parietal, and frontal cortex. 

To quantify and test this hypothesis, we computed a ‘fidelity’ metric (Rademaker et al., 2019; 

Rahmati et al., 2020; Sprague et al., 2016), which measures the strength of the representation 

within the reconstruction. Reconstructions of correct WM target locations result in larger positive 

fidelity values, while poorly matched reconstructions produce low values. Importantly, fidelity can 

be computed independently for both the WM target and distractor locations because their relative 

locations were carefully counterbalanced and distributed (i.e., the average distractor location 

relative to an aligned WM target location has a fidelity of zero). On distractor-absent trials, the 

fidelity values in all ROIs grew significantly time-locked to the WM target presentation and 

remained above chance throughout the delay indicating accurate and sustained WM target 

encoding (Figure 4D). On distractor-present trials, we observed a phasic increase in fidelity values 

for the distractor location time-locked to the onset of the distractor in all ROIs (Figure 4E). 

Moreover, the fidelity of the WM target representation dropped in all ROIs in the time-points 

corresponding to the phasic distractor response (Figure 4D). Nonetheless, even during this dip in 

target fidelity, the values for the WM target remained significantly greater than zero indicating that 

the population response still contained information about the WM target location (Figure 4D-E, 

one-sided t-test at each timepoint compared against a null distribution computed with a model 

estimated using shuffled trial labels; FDR-corrected within each ROI) .  

 

Recovery From the Effects of Distraction 

To further characterize the temporal dynamics of how WM representations are impacted by and 

recover from distraction, we computed reconstructions and associated fidelity values 

corresponding to epochs before, during, and after distraction (Figure 5; see Figure 1B and 4D-E 

for epochs). First, to test for differences in WM target fidelity across ROIs, task conditions, and 

trial epochs, we performed a 3-way repeated-measures ANOVA against a shuffled null distribution 

with factors of ROI, epoch, and condition (see Methods: statistical procedures). The 3-way 

interaction was significant (p=0.041), as well as 2-way interactions of epoch × condition (p=0.001), 

epoch × ROI (p<0.001), and additionally, main effects of epoch, condition, and ROI (p<0.001; 

p=0.001; p<0.001). These results suggest that attending a distractor stimulus differentially 

impacts the WM representation across ROIs and across the delay period. Following up on the 3-

way ANOVA and motivated by the dip in fidelity time-locked to the distractor onset (Figure 4D), 

we performed a 2-way repeated-measures ANOVA (factors of condition and epoch) within each 

ROI to formally test if the distractor disrupted the fidelity of the WM target representations. We 

observed a significant main effect of condition in all ROIs (all p’s <0.037), main effect of epoch in 

V1-3, V3AB, hV4, LO1, and IPS0/1 (all p’s<0.014), and interaction in V1-V3, V3AB, and IPS0/1 
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(all p’s<0.005; tests FDR-corrected across ROIs; p-values computed against a shuffled null; see 

Methods; Figure 5B).   

 

 
Figure 5.  WM representations are transiently disrupted by an attended distractor.   
A. Independently trained model-based reconstructions of the WM target locations on distractor-absent (magenta) and 
distractor-present trials (blue) each averaged over three epochs of the memory delay. The epochs were composed of 
TRs before the distractor (3.75-5.25s), during the distractor (8.25-9.75s), and after the distractor (10.5-12s), accounting 
for the hemodynamic delay. Error bars ±SEM. Note that during the distractor epoch, the reconstructions of the WM 
target locations appear weaker on distractor-present compared to distractor-absent trials. In some regions, this effect 
of the distractor lasts into the post-distractor epoch. B. Average (±SEM) fidelity of reconstructed WM targets on 
distractor-absent (magenta) and distractor-present (blue) trials separately for the pre-distraction, distraction, and post-
distraction epochs. Thin gray lines connect mean distractor-absent (small magenta dots) and distractor-present (small 
blue dots) fidelity for individual participants for each delay epoch. The results from 2-way ANOVAs for each ROI (epoch 
and condition as factors; compared against a shuffled null) are marked by symbols to denote the significant main effects 
of condition (C), epoch (E), and the interaction between epoch and condition (X). The significant results of paired t-
tests between distractor-present and distractor-absent reconstructions per epoch, for each ROI, are marked with 
asterisks. In both cases, gray symbols denote p<0.05, uncorrected, and black p<0.05, FDR corrected across ROIs 
within test. Results for individual ROIs shown in Figure S4, and all p-values available in Table S4. 

 

To unpack these ANOVAs, we performed follow-up t-tests within epochs comparing target fidelity 

on distractor-present and distractor-absent trials. First, WM target representations were 

significantly disrupted during the distractor epoch in all ROIs (Figure 5B, DIST: p’s<0.01; FDR-

corrected across all ROIs for each epoch independently). Second, WM target fidelity remained 

lower following distraction compared to the same late epoch on distractor-absent trials in V1-V3, 

V3AB, IPS0/1, and IPS2/3 (Figure 5B, POST: p’s<=0.03). This suggests that the distractor 

degraded the quality of the WM target representations, which were not completely restored after 
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distraction. Third, immediately following the cue that indicated whether the trial would contain a 

distractor, WM target fidelity was lower on distractor-present trials even prior to distractor onset 

in hV4, LO1, and IPS2/3 compared to distractor-absent trials (Figure 5B, PRE: p’s<0.027). This 

suggests that, when participants know a distractor will appear during a trial, they may be adopting 

a strategy whereby they encode WM representations in a different format during distractor-

present trials than that used for distractor-absent trials (see also Bettencourt and Xu, 2016). Next, 

we test this possibility. 

 

Representational Format of WM Does Not Change During Distraction 

Previous research (Bettencourt and Xu, 2016; Lorenc et al., 2018; Rademaker et al., 2019; 

Serences, 2016) suggests that participants may proactively insulate WM representations from the 

deleterious effects of sensory distraction by representing WM features in distinct formats in 

association cortex compared to visual cortex. Unique representational formats would thus protect 

at least some WM representations (those in parietal cortex) from sensory interference, while WM 

representations held in a static or fixed format would be susceptible to sensory interference. To 

test this hypothesis, we analyzed distractor-present trials using a modified model training/testing 

procedure. Rather than estimating a model using several independent sessions of independent 

mapping data, we instead trained the model using distractor-present trials only, using leave-one-

run-out cross-validation. Additionally, to evaluate the possibility of a shifting/dynamic code over 

the delay interval (Spaak et al., 2017; Stokes et al., 2013), we repeated this procedure for each 

pair of timepoints during the delay period such that each time point was reconstructed with a 

model trained at each timepoint (King and Dehaene, 2014). If, during distraction, the dip in WM 

representation fidelity we observe is explained by a ‘reformatting’ or ‘recoding’ of information 

during distraction, this matched model training/testing procedure should show less evidence for 

distractor interference (Figure 6A: Stable Code). Other possible results (nonexhaustive 

possibilities) are qualitatively shown in Figure 6A. For example, the code may ‘morph’ following 

distractor presentation, resulting in a new - but incompatible - WM representation format (Figure 

6A: Morphed code; Parthasarathy et al., 2017). Alternatively, if the distractor presentation 

transiently or permanently disrupts the WM representation, we would observe a brief (or 

sustained) dip in WM reconstruction fidelity, but no change in its format (Figure 6A: Stable, with 

transient/permanent disruption). 

 

Using these procedures, WM target fidelity was very stable with variations in the training or testing 

time points having little effect on our ability to reconstruct WM representations (Figure 6B), 

Additionally, this approach still resulted in apparent loss of WM target information following 

distraction in visual (V1-V3, V3AB, hV4, LO1) and posterior parietal (IPS0/1) cortex, counter to 

what would be predicted if the WM representations were transiently transformed into a different 

format (Figure 6C-D). These results are therefore incompatible with the hypothesis that WM 

representations are dynamically recoded into more durable representations as a means to resist 

the effects of distraction, and are most aligned with the ‘Stable, with transient disruption’ model 

depicted in Figure 6A.  
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Figure 6. Loss of WM fidelity during distraction cannot be explained by a different coding format.  
A. To evaluate the format of WM representations throughout distractor-present trials, we conducted a temporal 
generalization analysis using distractor-present trials to estimate an IEM (each timepoint in turn) which was used to 
reconstruct held-out distractor-present trials (each timepoint in turn; leave-one-run-out cross-validation). For each 
combination of training and testing timepoints, we compute the WM target representation fidelity. Four cartoon 
examples illustrate predicted results from this analysis under various (non-exhaustive) coding schemes. B. Fidelity is 
strong across a large combination of training/testing timepoints during the delay period with no evidence of a transition 
to a new coding format during or after the distractor. In many ROIs (e.g., V3AB), results are consistent with a transient 
disruption in WM representation, but no change or morphing in representational format following distraction. White bars 
indicate epochs used for analyses in C-D. C. Model-based reconstructions from a cross-temporal generalization 
analysis in which training and testing was performed on corresponding epochs of the delay (i.e., train IEM with PRE 
timepoints, reconstruct using PRE timepoints from trials in held-out run). Rows show reconstructions from each ROI 
from each epoch (error bars ±SEM). Qualitatively, a substantial dip in WM reconstruction strength is apparent during 
the DIST epoch, as in Figure 5A. D. Comparison of mean fidelity during each trial epoch across model estimation 
procedures. Blue line shows data computed using an independent model (replotted from Figure 5B); orange line shows 
data computed using the leave-one-run-out cross-validation procedure. Gray lines show individual participants. We 

performed a 2-way repeated measures ANOVA against a shuffled null for each ROI (factors model and trial epoch). 
Main effects of model are indicated by M, main effects of epoch are indicated by E, and interactions are indicated by 
X. Significant tests are shown in black (p<0.05, FDR corrected across ROIs within test); trends are shown in gray 
(p<0.05, no correction). Error bars ±SEM. No ROIs show a significant interaction between model and epoch (though a 
trend is seen in V3AB, which is largely driven by stronger WM target representations measured using the independent 
model). Data from all individual ROIs available in Figure S5; p-values for all tests available in Table S6.  
 

Next, we quantitatively tested whether the evolution of fidelity of WM representations over the trial 

differed across model estimation procedures. We computed fidelity for reconstructions generated 

using a leave-one-run-out cross-validation scheme where a model is trained and tested on 
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matched timepoints (Figure 6D, orange) and compared these values to those computed using the 

independent model estimation procedure (same data as in Figure 5C replotted; blue). First, we 

performed a 3-way repeated-measures ANOVA (factors of ROI, model estimation procedure, 

epoch; compared against a shuffled null): there were significant main effects of ROI (p<0.001), 

model estimation procedure (p=0.01), and epoch (p<0.001), interactions between ROI × epoch 

(p<0.001) and model estimation procedure × epoch (p=0.029), and a 3-way interaction (p=0.018; 

all p-values available in Table S6). Next, we performed 2-way repeated-measures ANOVAs for 

each ROI (factors of model estimation procedure, epoch; compared against a shuffled null, FDR-

corrected across ROIs within test). We observed a significant main effect of epoch in V1-V3, 

V3AB, hV4, LO1, and IPS0/1 (p<0.001), and a main effect of model estimation procedure in 

IPS0/1 (p=0.004). We did not observe any significant interactions between model estimation 

procedure and epoch, as would be predicted if WM representations are dynamically insulated 

from disruption via a distinct coding scheme (all p’s>0.079), though a trend for this interaction 

(p<0.05, no correction for multiple comparisons) was observed in V3AB. Altogether, these results 

do not provide evidence in support of the hypothesis that WM representations are dynamically re-

coded into a novel format to protect against adverse effects of distraction.  

 

Distractor-Induced Offsets in Neural Representations Predict WM Errors 

Our results thus far indicate that an attended distractor impacts both the quality of WM (decrease 

in precision and increase in RT; Figure 1D-E) and the quality of neural WM representations in 

visual, parietal, and frontal cortex (Figures 4-5). Next, we ask: to what extent are changes in WM 

performance related to distractor-induced perturbations in neural representations? We predict 

that memory errors (i.e., memory-guided saccade endpoints relative to the true WM target 

locations) will be attracted towards the location of the distractor stimulus. Moreover, we predict 

trial-by-trial variability in neural representations of WM targets will correlate with the direction and 

amplitude of memory errors. In order to test this hypothesis, we restricted our analyses to trials in 

which the target and distractor were near one another (within 12° polar angle), where the angle 

of attraction towards the distractors would align with the polar angle component of the encoding 

model (far distractors, instead, would predominantly align with the unmodeled eccentricity 

component).  

 

We first tested whether memory errors were attracted to the nearby distractor stimulus. We 

quantified distractor-induced bias as the mean polar angle of memory-guided saccade endpoints 

flipped and rotated such that the nearby distractor was always clockwise. Indeed, WM errors were 

significantly biased in the direction of the attended distractor (two-tailed t-test compared to 

shuffled null, p=0.006; Figure 7A). Next, we tested if trial-by-trial biases in the neural 

representations of WM targets predicted the behavioral memory errors attracted to the distractor 

locations. To do so, we decoded the WM target location represented by each ROI’s WM 

reconstructions by taking the circular mean of the reconstruction on each trial (see Methods). 

Then, for each participant, we correlated each trial’s decoded WM location with the memory error 

on the corresponding trial (Figure 7B; all participants shown in Figure S5). Finally, we aggregated 

correlation values across participants and compared each ROI’s sample against 0 (one-tailed t-

test against shuffled null). Strikingly, biases in the V1-V3 representations of the WM targets 

significantly predicted memory errors (p=0.005; corrected for multiple comparisons via FDR), but 
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no such correlations were found in other ROIs (all p’s >0.104 and do not survive FDR correction; 

individual ROI analyses Figure 7C), and a shuffled 1-way repeated-measures ANOVA with ROI 

as the factor was non-significant (p=0.078). These results indicate that WM representations 

encoded in the population activity of visual cortex are not only susceptible to interference from an 

attention-demanding distractor task, but that the distractor distorts the neural representation 

causing systematic errors in memory.  

 

 
Figure 7. Memory errors correlate with distractor-induced biases in WM representations in visual cortex.   
A. On distractor-present trials in which the distractor was presented within 12º polar angle from the WM target, we 
found an attractive bias such that behavioral WM responses were drawn toward the distractor (positive values indicate 
errors in the same direction as distractor; two-tailed permutation t-test, p=0.006).  B. We quantified the trial-by-trial error 
of each WM reconstruction based on its circular mean (see STAR Methods) during the post-distractor epoch on 
distractor-present trials when the distractor was presented near the WM location. To determine whether behavioral WM 
responses were impacted by any offsets in these neural WM representations, for each ROI and participant we 
correlated each trial’s decoded WM representation error with the corresponding behavioral memory error. Example 
scatterplots shown for one participant; trend line shows least squares linear fit (all participants and ROIs are plotted in 
Figure S6). C. Average (±SEM) neural/behavioral error correlation across participants based on decoded error from 
each ROI. Behavioral responses significantly correlated with errors in neural representations in V1-V3, but not other 
ROIs (p=0.005, FDR-corrected across ROIs; trial-level permutation test; see Methods). There was no significant main 
effect of ROI (p=0.08, permuted 1-way ANOVA). All p-values available in Table S8. 
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DISCUSSION 

We tested how distraction interferes with working memory (WM) representations to address the 

debated roles of early visual cortex versus association cortex. Within a widely distributed 

collection of visual retinotopic maps that encoded spatial WM targets, diverting attention to a 

salient visual stimulus caused a transient disruption, but not loss, of information about the 

memorandum. WM representations in parietal cortex were impacted in anticipation of distraction 

but showed no evidence of undergoing any transformation into a new format. Moreover, 

distraction caused systematic biases in memory errors, which correlated with trial-by-trial errors 

in the WM representations encoded in early visual cortex, but not association cortex. Based on 

these results, we conclude that the neural mechanisms housed in early visual cortex play a central 

role in WM storage, confirming key tenets of sensory recruitment theory. This conclusion that 

visual cortex WM representations play a critical role in WM behavior may be surprising as the 

functions of early visual cortex have historically been limited to visual perception. Cognitive 

functions like attention clearly modulate neuronal activity in visual cortex measured with fMRI 

(Gandhi et al., 1999; Kastner et al., 1999) or intracranial electrophysiology in humans (Martin et 

al., 2018) and nonhuman primates (Luck et al., 1997; Moran and Desimone, 1985; Treue and 

Maunsell, 1996). The sources that control attention, however, are thought to originate in frontal 

and parietal association cortex (Moore and Fallah, 2001). Moreover, based on 

electrophysiological studies, the evidence that neurons in visual cortex show persistent activity 

during memory delays is highly inconsistent (e.g., (van Kerkoerle et al., 2017; Mendoza-Halliday 

et al., 2014; Supèr et al., 2001a) recently reviewed in (Leavitt et al., 2017). Notably, WM 

impairments caused by PFC lesions were instrumental in establishing the link between PFC 

integrity and WM theory (Curtis and D’Esposito, 2004; Mackey et al., 2016), but no such evidence 

can be obtained in the case of visual cortex because visual impairments would confound any 

conclusions about memory.  

The absence of evidence leaves equivocal the role of visual cortex in WM, but studies comparing 

the effects of distraction have yielded the most damaging evidence against the importance of WM 

representations in visual cortex. Neural activity in monkey inferotemporal cortex is less robust 

during memory delays and the selectivity of activity appears to be disrupted by intervening 

distractors, while PFC representations appear resistant to distraction (Miller et al., 1993, 1996). 

Similarly, memoranda-specific delay period activity of neurons in the monkey PFC resists the 

effect of distractors, unlike neurons in posterior parietal cortex (Constantinidis and Steinmetz, 

1996; di Pellegrino and Wise, 1993; Qi et al., 2010; Suzuki and Gottlieb, 2013). The results from 

these distractor studies of single neurons are widely cited to support the claim that the PFC, rather 

than posterior cortical areas, is critical for WM storage. In contrast to these results, here we report 

that WM representations in frontal, parietal, and early visual cortex all survive distraction. The 

distractor does cause dips in the fidelity of the memory representations, but they are quickly 

restored to pre-distractor levels throughout the cortex. Indeed, the contents of WM may be 

protected, not by some specialized control process unique to PFC, but by the widely distributed 

nature of the WM representations.  

More generally and in contrast to the electrophysiological studies in monkey cortex, a decade of 

model-based fMRI studies have demonstrated that the patterns of activity in visual cortex, 

including V1, can be used to decode and reconstruct the contents of WM (Albers et al., 2013; 
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Christophel et al., 2012; Ester et al., 2009, 2013; Harrison and Tong, 2009; Rahmati et al., 2018; 

Serences et al., 2009; Sprague et al., 2014) recently reviewed in (Christophel et al., 2017). 

Moreover, memory-specific activity persists in V1 neurons (van Kerkoerle et al., 2017; Supèr et 

al., 2001b) and V1 voxels  (Saber et al., 2015) whose receptive fields match the visual field 

location of WM targets (Fig. 2). Although these results together provide positive evidence in 

support for the sensory recruitment theory of WM (Curtis and D’Esposito, 2003; Postle, 2006; 

Theeuwes et al., 2005), several aspects of the theory remain controversial. One common criticism 

(Bettencourt and Xu, 2016; Xu, 2017) points out that, if visual cortex is maintaining WM 

information, how can it simultaneously process retinal input? Specifically, it remains unclear if the 

neural circuitry in early visual cortex is able to simultaneously maintain WM representations while 

encoding incoming percepts, like distracting stimuli. Also, if distraction disrupts WM 

representations encoded in early visual cortex without impacting the quality of WM, then visual 

cortex’s role in WM might be limited, for instance, to artificial laboratory experiments with blank 

memory delays.  

Much of the recent debate regarding the impact of distraction has specifically involved the relative 

roles of parietal cortex and visual cortex in WM. Consistent with the previous fMRI studies of 

distraction (Bettencourt and Xu, 2016; Lorenc et al., 2018; Rademaker et al., 2019), visually-

engaging or, in our case, attention-demanding distractors have a more reliable adverse impact 

on behavior and a disruptive effect on WM representations encoded in early visual cortex. Our 

results differ from those previously reported in several important ways. Previous studies drew 

conclusions based in part on the absence of significant WM decoding in visual cortex (Bettencourt 

and Xu, 2016; Lorenc et al., 2018; Rademaker et al., 2019). Here, we generate positive evidence 

that provides strong support for a critical role for visual cortex in WM. First, we find that visual 

cortex maintains joint representations of both sustained WM targets and transient attended 

distractors. These representations were impacted by, but were ultimately robust to, distraction as 

they were fully restored before the response period (Fig. 3, 4). Second, and most importantly, 

trial-by-trial distortions in these restored WM representations in visual cortex were positively 

correlated with errors in memory reports (Fig. 7). The positive relationship between neural 

representations of WM measured with BOLD fMRI and the quality of WM performance measured 

later in time is difficult to explain away. In contrast, the studies that have only shown disrupted 

WM representations during distraction rely on an absence of evidence, which may not be 

evidence of an absence of WM representation. Below we discuss the impact of these new findings 

in the context of the theoretical mechanisms by which early visual cortex and association cortex 

might support WM.  

Previous fMRI studies suggest that WM representations in parietal cortex are resistant to 

distraction and therefore support the resilience of WM (Bettencourt and Xu, 2016; Lorenc et al., 

2018; Rademaker et al., 2019). Presumably, parietal cortex stores WM representations in a format 

distinct from the sensory code used for perception, otherwise the visual input during distraction 

would interfere with the WM representation. Indeed, Rademaker et al. (2019) showed that parietal 

cortex encodes the remembered orientation, but that the representation can be in a distinct format 

from that of an attended oriented grating. Our results are inconsistent with this explanation. First, 

we find that distraction does impact WM representations in parietal cortex, if only for a brief period 

of time (Figs. 4-5). Second, decoding errors in the parietal representations do not predict behavior, 
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like they do in visual cortex, indicating they may not be critically linked to the quality of WM (Fig. 

7). Third, based on different training/testing procedures over time, we find no evidence that WM 

target representations are anything but stable codes of the visually presented WM targets (Fig. 

6). Perhaps the type of memorized stimulus matters. Stimulus features that can be condensed or 

compressed could very well undergo recoding to minimize the demands on memory. For instance, 

it is unlikely that memory for dot motion is a replay of hundreds of dots moving over time, but 

instead a single vector representing the compressed bit of task relevant information. Therefore, 

the absence of motion-related activity during a memory delay in area MT is unsurprising 

(Mendoza-Halliday et al., 2014; Zaksas and Pasternak, 2006). A spatial location, however, may 

not be compressible and therefore does not necessitate any transformations.  

Even if WM representations in parietal cortex are more distractor-resistant, it remains unclear 

why. The WM code might be less sensory in nature making it in turn less similar to incoming 

percepts, or control processes might actively protect their contents (Lorenc et al., 2021). In our 

data, we find that WM representations in parietal cortex were affected by the mere anticipation of 

distraction. Following the cue indicating the trial would contain distraction, the fidelity of the WM 

representation was lower compared to trials with no distraction. As discussed above, we ruled out 

the possibility that the WM representations dynamically morphed over time (Fig. 6). We 

hypothesize that storage of the target position and covert attention needed to rapidly detect the 

distractor share a common mechanism akin to the control of spatial attention. The drop in WM 

fidelity we observed in parietal cortex may stem from interference with the control of attention, 

rather than the storage of WM (Awh and Jonides, 2001; Awh et al., 1998; van Moorselaar et al., 

2018; Yu et al., 2020). Regardless, WM representations in parietal cortex had no bearing on the 

changes in WM behavior induced by the distractor. A strong test of the importance of a neural 

WM representation lies in its ability to predict WM behavior. In this study, we measured neural 

and behavioral biases on each trial and found a strong positive correlation between the two in 

visual cortex alone. These results at the trial-level provide positive evidence for a critical role of 

visual cortex in WM, and extend previous demonstrations linking the quality of WM decoding to 

individual differences in WM performance  (Albers et al., 2013; Christophel et al., 2018; Emrich et 

al., 2013; Ester et al., 2013) and differences averaged over conditions (Emrich et al., 2013; 

Sprague et al., 2016). 

There are a number of properties that may constrain the mechanisms by which visual cortex 

supports WM storage. Theoretically, microcircuits that support WM through memory-specific 

persistent activity are supported by excitatory recurrent connections (Compte et al., 2000; Wang, 

1999). The slow kinetics of NMDA receptor mediated currents in PFC support persistent activity 

(Wang et al., 2013), while theoretical models suggest that the faster decay rates, like those in V1 

(Wang et al., 2008), would limit persistent activity (Wang, 2001). In general, intrinsic neural 

dynamics slow as one moves from visual, to parietal, to frontal cortex (Murray et al., 2014). 

Interestingly, this trend can be seen in our average BOLD time courses, where delay period 

activity increased systematically along the dorsal visual stream, consistent with our previous 

reports (Jerde et al., 2012; Saber et al., 2015). Beyond the temporal domain, relative differences 

in anatomical properties also suggest association cortex may have advantages over visual cortex 

in its capacity for WM storage. The density of NMDA receptors are less expressed in V1 than 

PFC (Wang et al., 2008). Pyramidal neurons in association cortex, compared to visual cortex, 
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have larger and more complex dendritic branching with a greater number of spines (Oga et al., 

2017), and have more extensive horizontal collaterals in Layers II and III (Kritzer and Goldman-

Rakic, 1995). Together, these anatomical features may better equip association cortex with an 

increased capacity to integrate inputs, including the excitatory connections theorized to form 

positive feedback loops to sustain WM representations (Goldman-Rakic, 1995).  

Then what role does early visual cortex play in the maintenance of WM representations? First, 

consider that the differences between visual cortex and association cortex in temporal dynamics 

and anatomy are all relative. In fact, when the recurrent network theory of WM was first proposed 

(Goldman-Rakic, 1995), several of the hypothesized features of PFC circuitry were unknown and 

were simply extrapolated from V1 (e.g., recurrence supported by horizontal connectivity between 

similarly tuned neurons; Gilbert and Wiesel, 1979). In theory, the same type of recurrent network 

could sustain WM representations in V1 as long as the rate of excitatory feedback inputs are 

greater than the rate of decay. Perhaps a critical source of the feedback is not local, but originates 

from frontal or parietal cortex. Such a mechanism is central to the sensory recruitment theory of 

WM, where top-down attention signals are proposed to target and boost sensory neurons to 

prevent memory decay (Curtis and D’Esposito, 2003). Second, the factors that presumably make 

visual cortex less than ideally suited for WM storage do not preclude it from being a necessary 

node in a larger WM network. The great precision of our visual WM likely depends on interactions 

between control mechanisms stemming from the association cortices and the precise encoding 

mechanisms in early visual cortex, and not separate systems specialized for perception and 

memory. Beyond WM, such concepts are supported by a growing appreciation of the critical role 

of visual cortex in reinstating visual percepts retrieved from episodic memory (Breedlove et al., 

2020; Favila et al., 2019; Johnson and Rugg, 2007; Polyn et al., 2005; St-Yves and Naselaris, 

2018) and imagery recalled from semantic memory (Pearson et al., 2015; Slotnick et al., 2005; 

Thirion et al., 2006).  

With these ideas in mind, we designed our distractor task to not only inject noise into the 

population-based representation through bottom-up visual stimulation but to also interfere with 

the top-down signals that might be necessary to sustain WM representations in visual cortex. We 

found that nearby distractors had an attractive pull on memory, biasing memory errors towards 

the distractor, similar to previous studies (Magnussen and Greenlee, 1992; Magnussen et al., 

1991; Rademaker et al., 2015; Smyth, 1996; Smyth and Scholey, 1994). Critically, when the 

distractor was near the WM target, fluctuations in trial-by-trial neural decoding errors in early 

visual cortex, but not association cortex, predicted WM errors (Fig. 7B-C). Previous studies have 

only reported that WM decoding errors in visual cortex predict whether distractors were clockwise 

or counterclockwise relative to the memoranda (Lorenc et al., 2018) and that individual differences 

in WM performance can be predicted by average decoding accuracy of delay period activity in 

visual cortex (Albers et al., 2013; Christophel et al., 2018; Emrich et al., 2013; Ester et al., 2013; 

Sprague et al., 2014). Our results are consistent with bump attractor models of WM that assume 

WM representations are self-sustained by the collective response of populations of neurons 

whose tuning varies along a stimulus dimension (Compte et al., 2000; Standage and Paré, 2018; 

Wang, 2001). Most relevant, these models predict that small random drifts in the bumps of activity 

cause the seemingly random inaccuracies in memory. Evidence for this hypothesis exists, as 

clockwise or counterclockwise biases in population estimates of delay activity in macaque PFC 
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neurons predict small angular errors in memory-guided saccades (Wimmer et al., 2014). Using 

model-based fMRI in humans, we also find direct evidence to support this hypothesis but in early 

visual cortex, where angular decoding errors in V1-V3 predicted memory-guided saccade errors, 

but those in parietal or frontal cortex did not. This coupling strongly suggests that the overt report 

of one’s memory depends on the read-out of the population’s encoded representation in visual 

cortex. Ultimately, the question of whether early visual cortex is essential for visual WM, wherever 

one draws that line, is less relevant than trying to understand the mechanisms by which visual 

cortex contributes to WM.   
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FIGURES 

 
Figure 1. Attending a distractor stimulus impairs working memory performance.  
 A. Participants (n = 7) performed a memory-guided saccade task while brain activity and gaze were 
recorded inside the scanner. Each trial began with a condition cue, reliably indicating whether a distractor 
would appear (70% of trials) or not (30%). On each trial, participants maintained the precise spatial position 
of a briefly-presented visual target (12° eccentricity, random polar angle) over an extended 12 s memory 
delay. At the end of the delay, they executed a memory-guided saccade to the remembered position. The 
memory target was then re-presented, and participants fixated this location before returning to central 
fixation.  During distractor-present trials, participants discriminated whether dots presented within a 2° 
diameter aperture were rotating clockwise or counterclockwise with a button press. Across runs, motion 
coherence was varied to achieve ~75% correct performance (mean ± SEM,  73%). The distracting stimulus 
could appear within one of seven position bins (24° polar angle wide) around the screen relative to the WM 
target, evenly presented across trials, denoted by blue intervals relative to an example WM target position 
(inset). B. Timing of task events and example gaze data. Top: Trial events (start of delay, distractor, 
response) were synchronized to the beginning of 750 ms imaging volumes. We defined three trial epochs 
for further analyses (Figures 5-7) assuming ~4 s hemodynamic delay (PRE: volumes before distractor, 
DIST: volumes during distractor, POST: volumes after distractor). Bottom: Eye-trace of all trials of each 
condition for an example participant (p02). Eye position eccentricity is plotted as a function of time; 
distractor-absent trials are plotted with positive values, and distractor-present trials are plotted with negative 
values. Note that gaze remains at fixation during distraction keeping the retinal position of the memory 
target constant. C. Aligned final saccadic endpoints (all participants) for trials in which distractors were 
absent or present.  All endpoints are aligned by rotating to a common spatial position (along the horizontal 
meridian at 12° eccentricity). D. Memory error (standard deviation of the polar angle of saccade endpoints) 
varied with distractor presence (t-test, two-tailed, p=0.039). Gray lines show individual participants; colored 
circles show group mean (±SEM). E. Response time also varied based on distractor presence (t-test, two-
tailed, p=0.011). Analysis of behavioral performance across individual distractor location bins shown in 
Figure S1. 
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Figure 2. BOLD responses sorted by voxel RF position during WM delay period.  
A. During distractor-absent trials, the average (±SEM) amplitude of BOLD responses was greater in voxels 
whose receptive fields - estimated using nonlinear population receptive field mapping (Mackey et al., 2017) 
see Fig. 3A for an example hemisphere) aligned with the WM target (RFin) compared to when the target 
was 180 degrees away from voxels’ receptive fields (RFout). The inset to the right depicts an example of the 
RFin and RFout regions of the visual field with respect to the WM target location (see STAR Methods for 
more details). The amplitudes of persistent activity increased moving anterior in the dorsal stream ROIs 
from early visual cortex (V1-V3; V3AB) to parietal cortex (IPS0/1) to frontal cortex (IPS2/3), while the spatial 
selectivity (difference between RFin and RFout) decreased. Data from ventral (hV4) and lateral retinotopic 
regions (LO1) is also included for completeness. Time series were baseline-corrected by removing the 
mean activation from -2.25 - 0 s prior to delay period onset from each time series. B. During distractor-
present trials, we observed an additional phasic response time-locked to the distractor onset across all 
ROIs. C. To further illustrate the distractor response, we averaged the BOLD responses in voxels whose 
RFs were aligned to the distractor position, regardless of the position of the WM target. The phasic 
responses were more robust in voxels with RFs that matched (RFin) compared to opposite to the distractor 
(RFout). The shaded areas denote the pre-distractor, distractor, and post-distractor epochs that are the 
target of later analyses. Results for individual ROIs shown in Figure S2. 
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Figure 3. IEM-based reconstruction of WM and distractor representations.  
A. Each participant underwent retinotopic mapping to define ROIs in visual, parietal, and frontal cortex (V1-
V3, V3AB, hV4, LO1, IPS0-3, sPCS). Example hemisphere and participant shown (p02, LH). Each voxel’s 
time course is fit with a receptive field model (Mackey et al., 2017). Color depicts preferred polar angle; 

thresholded at R2≥10%. B. We estimated an inverted encoding model (IEM) for polar angle for each 

participant and ROI using a dataset reserved for this purpose (single-item memory-guided saccade task, 
3-4.5 hrs/participant). Each timepoint of the spatial distractor dataset was reconstructed using this 
independently-estimated model (Sprague et al., 2018a, 2019). Two example trials shown. C. In the example 
participant, reconstructions were aligned based on WM target positions (orange triangle), and separately 
averaged for each distractor bin position (cyan triangle at onset time). Note that both target and distractor 
representations can be seen in the reconstructions. D. WM target reconstruction averaged over all distractor 
location bins. Because distractors are evenly presented around the screen with respect to WM locations 
(Figure 1A), averaging across relative distractor positions reveals target-related spatial representations 
because distractor representations are ‘washed out’ during the averaging procedure. E. The same data as 
(C-D) now aligned to each trial’s distractor position (cyan triangles), and averaged separately for each 
relative distractor location bin (WM targets are at different locations relative to distractor; orange triangles). 
F. Distractor location reconstruction averaged over all relative WM target location bins.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.01.429259doi: bioRxiv preprint 

https://paperpile.com/c/2t26As/IqxM
https://paperpile.com/c/2t26As/cjWoW+7jhG6
https://doi.org/10.1101/2021.02.01.429259
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

 
Figure 4. Impact of distraction on the dynamics of WM representations.  
Average reconstruction of WM target locations on distractor-absent (A) and distractor-present trials (B) 
across all participants (n=7). C. Reconstruction of distractor locations on distractor-present trials, where all 
trials were aligned to a fixed distractor location. Note that B and C include the same data, just aligned to 
different locations (see Fig. 3). Reconstruction strength is greatest at the aligned location in each instance, 
and represents the polar angle location of the WM target maintained over the entire delay period or the 
briefly-presented distractor. (D & E). Fidelity of the neural representation of WM targets (D) and distractors 
(E). When activation peaks in the direction of the remembered target (after alignment), fidelity is positive; 
when there is no consistent activation peak, fidelity is near zero. Target fidelity on distractor-absent trials is 
robust and statistically significant throughout the delay period in all ROIs.  When the distractor is present, 
fidelity drops, but remains significantly above zero for all ROIs except for one 750 ms TR in sPCS. Distractor 
fidelity is also statistically significant in all regions, and is qualitatively most robust across extrastriate visual 
cortex (e.g., V3AB). Closed and open circles denote significance of p<0.05, one-sided, FDR corrected and 
p<0.05, one-sided, FDR uncorrected, respectively (one-sample t-test using null distribution derived from 
shuffled IEM; see STAR Methods). Error bars ±SEM.  
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Figure 5.  WM representations are transiently disrupted by an attended distractor.   
A. Independently trained model-based reconstructions of the WM target locations on distractor-absent 
(magenta) and distractor-present trials (blue) each averaged over three epochs of the memory delay. The 
epochs were composed of TRs before the distractor (3.75-5.25s), during the distractor (8.25-9.75s), and 
after the distractor (10.5-12s), accounting for the hemodynamic delay. Error bars ±SEM. Note that during 
the distractor epoch, the reconstructions of the WM target locations appear weaker on distractor-present 
compared to distractor-absent trials. In some regions, this effect of the distractor lasts into the post-
distractor epoch. B. Average (±SEM) fidelity of reconstructed WM targets on distractor-absent (magenta) 
and distractor-present (blue) trials separately for the pre-distraction, distraction, and post-distraction 
epochs. Thin gray lines connect mean distractor-absent (small magenta dots) and distractor-present (small 
blue dots) fidelity for individual participants for each delay epoch. The results from 2-way ANOVAs for each 
ROI (epoch and condition as factors; compared against a shuffled null) are marked by symbols to denote 
the significant main effects of condition (C), epoch (E), and the interaction between epoch and condition 
(X). The significant results of paired t-tests between distractor-present and distractor-absent 
reconstructions per epoch, for each ROI, are marked with asterisks. In both cases, gray symbols denote 
p<0.05, uncorrected, and black p<0.05, FDR corrected across ROIs within test. Results for individual ROIs 
shown in Figure S4, and all p-values available in Table S4. 
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Figure 6. Loss of WM fidelity during distraction cannot be explained by a different coding format.  
A. To evaluate the format of WM representations throughout distractor-present trials, we conducted a 
temporal generalization analysis using distractor-present trials to estimate an IEM (each timepoint in turn) 
which was used to reconstruct held-out distractor-present trials (each timepoint in turn; leave-one-run-out 
cross-validation). For each combination of training and testing timepoints, we compute the WM target 
representation fidelity. Four cartoon examples illustrate predicted results from this analysis under various 
(non-exhaustive) coding schemes. B. Fidelity is strong across a large combination of training/testing 
timepoints during the delay period with no evidence of a transition to a new coding format during or after 
the distractor. In many ROIs (e.g., V3AB), results are consistent with a transient disruption in WM 
representation, but no change or morphing in representational format following distraction. White bars 
indicate epochs used for analyses in C-D. C. Model-based reconstructions from a cross-temporal 
generalization analysis in which training and testing was performed on corresponding epochs of the delay 
(i.e., train IEM with PRE timepoints, reconstruct using PRE timepoints from trials in held-out run). Rows 
show reconstructions from each ROI from each epoch (error bars ±SEM). Qualitatively, a substantial dip in 
WM reconstruction strength is apparent during the DIST epoch, as in Figure 5A. D. Comparison of mean 
fidelity during each trial epoch across model estimation procedures. Blue line shows data computed using 
an independent model (replotted from Figure 5B); orange line shows data computed using the leave-one-
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run-out cross-validation procedure. Gray lines show individual participants. We performed a 2-way repeated 
measures ANOVA against a shuffled null for each ROI (factors model and trial epoch). Main effects of 
model are indicated by M, main effects of epoch are indicated by E, and interactions are indicated by X. 
Significant tests are shown in black (p<0.05, FDR corrected across ROIs within test); trends are shown in 
gray (p<0.05, no correction). Error bars ±SEM. No ROIs show a significant interaction between model and 
epoch (though a trend is seen in V3AB, which is largely driven by stronger WM target representations 
measured using the independent model). Data from all individual ROIs available in Figure S5; p-values for 
all tests available in Table S6.  
 
 

 
 
Figure 7. Memory errors correlate with distractor-induced biases in WM representations in visual 
cortex.   
A. On distractor-present trials in which the distractor was presented within 12º polar angle from the WM 
target, we found an attractive bias such that behavioral WM responses were drawn toward the distractor 
(positive values indicate errors in the same direction as distractor; two-tailed permutation t-test, p=0.006).  
B. We quantified the trial-by-trial error of each WM reconstruction based on its circular mean (see STAR 
Methods) during the post-distractor epoch on distractor-present trials when the distractor was presented 
near the WM location. To determine whether behavioral WM responses were impacted by any offsets in 
these neural WM representations, for each ROI and participant we correlated each trial’s decoded WM 
representation error with the corresponding behavioral memory error. Example scatterplots shown for one 
participant; trend line shows least squares linear fit (all participants and ROIs are plotted in Figure S6). C. 
Average (±SEM) neural/behavioral error correlation across participants based on decoded error from each 
ROI. Behavioral responses significantly correlated with errors in neural representations in V1-V3, but not 
other ROIs (p=0.005, FDR-corrected across ROIs; trial-level permutation test; see Methods). There was no 
significant main effect of ROI (p=0.08, permuted 1-way ANOVA). All p-values available in Table S8.  
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SUPPLEMENTARY FIGURES 
 

 
Figure S1. Behavioral performance does not vary across distractor offsets.  
A. Memory error on distractor absent trials (magenta) and memory error per each pseudo-randomized 
distractor offset bin (blue; each bin 24° wide): bin 1, 0° mean offset; bin 2, 51.42°; bin 3, 102.9°, bin 4, 
154.3°, shown at inset. Gray lines depict individual participant performance across distractor-absent (30% 
of trials) and each distractor present condition (each offset comprised 20% of trials, with the exception of 
bin 1, which was 10%). To determine if the distractor-present offsets differed from one another significantly, 
we performed a one-way RM ANOVA on only the distractor-present conditions, and found no significant 
effect of memory error (F(3,6)=0.84, p=0.49). B. Saccadic reaction time, measured from the onset of the 
initial ballistic saccade from the start of the response cue period, was greater in each distractor condition 
(blue) as compared to distractor-absent trials. To determine whether reaction time with respect to each 
distractor offsets differed significantly from one another, we performed a one-way RM ANOVA. RT did not 
vary across distractor bins (F(3,6) = 2.01,p=0.15).  
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Figure S2. BOLD responses sorted by voxel RF position during WM delay period.  
A. During distractor-absent trials, the average (±SEM) amplitude of BOLD responses was greater in voxels 
whose receptive fields aligned with the WM target (RFin) compared to when the target was 180 degrees 
away from voxels’ receptive fields (RFout). The inset to the right depicts an example of the RFin and RFout in 
respect to the WM target (see STAR Methods for more details). The amplitudes of persistent activity 
increased moving anterior in the dorsal stream ROIs from early visual cortex to parietal cortex to frontal 
cortex, while the spatial selectivity decreased. B. During distractor-present trials, we observed an additional 
phasic response time-locked to the distractor onset across all ROIs. C. To further illustrate the distractor 
response, we averaged the BOLD responses in voxels whose RFs were aligned to the distractor position, 
regardless of the position of the WM target. The phasic responses were more robust in voxels with RFs 
that matched (RFin) compared to opposite to the distractor (RFout). The shaded areas denote the pre-
distractor, distractor, and post-distractor epochs that are the target of later analyses.  
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Figure S3. Impact of distraction on the dynamics of WM representations in individual ROIs.  
Data presented as in Figure 3, but for individual ROIs. Average reconstruction of WM target positions on 
distractor-absent trials (A) and distractor-present trials (B) across all participants (n=7). C. Reconstruction 
of distractor position on distractor-present trials, where all trials were aligned to a fixed distractor position. 
Note that B and C are reconstructions of the same data, just aligned to different positions. Reconstruction 
strength is greatest at the aligned position in each instance, and represents the polar angle position of the 
WM target maintained over the entire delay period or the briefly-presented distractor. (D & E). Fidelity of 
the neural representation of WM targets (D) and distractors (E). When activation peaks in the direction of 
the remembered target (after alignment), fidelity is positive; when there is no consistent activation peak, 
fidelity is near zero. Target fidelity on distractor-absent trials is robust and statistically significant throughout 
the delay period in all ROIs.  When the distractor is present, fidelity drops, but remains significantly above 
zero for all ROIs except sPCS. Distractor fidelity is also statistically significant in all regions, and is 
qualitatively most robust across extrastriate visual cortex (e.g., V3AB). Closed and open circles denote 
significance of p<0.05, one-sided, FDR corrected and p<0.05, one-sided, FDR uncorrected, respectively 
(one-sample T-test using null distribution derived from shuffled IEM; see Methods). Error bars ±SEM.  
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Figure S4. WM representations are transiently disrupted by an attended distractor stimulus in 
individual ROIs.  
Data presented as in Figure 5, but for individual ROIs.  A. Independently trained model-based 
reconstructions of the WM target locations on distractor-absent (magenta) and distractor-present trials 
(blue) estimated separately for three epochs of the memory delay. The epochs were composed of TRs 
before the distractor (3.75-5.25s), during the distractor (8.25-9.75s), and after the distractor (10.5-12s). 
Error bars SEM. Note that during the distractor epoch, the reconstructions of the WM target locations 
appear weaker on distractor-present compared to distractor-absent trials. In some regions, this effect of the 
distractor lasts into the post-distractor epoch. B. Average (+/-SEM) fidelity of reconstructed WM targets on 
distractor-absent (magenta) and distractor-present (blue) trials separately for the pre-distraction, 
distraction, and post-distraction epochs. Thin gray lines connect mean distractor-absent (small magenta 
dots) and distractor-present (small blue dots) for individual participants for each delay epoch. The results 
from 2-way ANOVAs for each ROI (epoch and condition as factors; compared against a shuffled null) are 
marked by symbols to denote the significant main effects of condition (C), epoch (E), and the interaction 
between epoch and condition (X). The significant results of paired t-tests between distractor-present and 
distractor-absent reconstructions per epoch, for each ROI, are marked with asterisks. In both cases, gray 
symbols denote p<0.05, uncorrected, and black p<0.05, FDR corrected across ROIs. All p-values available 
in Table S3. 
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Figure S5. Loss of WM fidelity during distraction cannot be explained by a different coding format 
in individual ROIs. 
Data presented as in Figure 6, but for individual ROIs. A. Model-based reconstructions from a cross-
temporal generalization analysis in which training and testing was performed on corresponding epochs of 
the delay (i.e., train IEM with PRE timepoints, reconstruct using PRE timepoints from trials in held-out run). 
Rows show reconstructions from each ROI from each epoch (error bars ±SEM). Qualitatively, a substantial 
dip in WM reconstruction strength is apparent during the DIST epoch, as in SFigure 6A. B. Comparison of 
mean fidelity during each trial epoch across model estimation procedures. Blue line shows data computed 
using an independent model (replotted from SFigure 6B); orange line shows data computed using the leave-
one-run-out cross-validation procedure. Gray lines show individual participants. We performed a 2-way 
repeated measures ANOVA against a shuffled null for each ROI (factors model and trial epoch). Main 
effects of model are indicated by M, main effects of epoch are indicated by E, and interactions are indicated 
by X. Significant tests are shown in black (p< 0.05, FDR corrected across ROIs within test); trends are 
shown in gray (p<0.05, no correction). Error bars ±SEM. IPS0 & IPS0 show a significant main effect of 
‘model’, though the independently trained model out-performs the leave-one-run-out model.  No ROIs show 
a significant interaction between model and epoch (though a trend is seen in V3 & V3AB, which is largely 
driven by stronger WM target representations measured using the independent model). p-values for all 
tests available in Table S6.   
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Figure S6.  Comparison between behavioral errors and neural errors for single ROIs.  
A. Correlation between decoded WM representation error and behavioral WM response for each participant 
and individual ROI separately for distractor-present trials with distractor presented within 12° polar angle of 
WM target location. B. We aggregated the trial-by-trial correlation of each participants’ behavioral error with 
their corresponding neural error across participants (Fisher Z transformed) and compared these values 
against 0 (1-way t-test against a shuffled null). At the individual ROI level, no significant correlations were 
found after correction for multiple comparisons (FDR), but trends were observed in V1 and V2 (uncorrected, 
p< 0.05). A 1-way repeated-measures ANOVA did not identify a significant main effect of ROI on 
neural/behavioral error correlations (p=0.12; comparison against shuffled null). All p-values available in 
Table S7. 
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SUPPLEMENTARY TABLES 
 
Table S1. Non-parametric p-values characterizing differences in mean delay period 
amplitude and RF conditions across grouped ROIs, Figure 2. A. To test for differences in 
amplitude across ROIs and reliable differences in RF conditions across dorsal ROIs, a 2-way 
shuffled ANOVA was performed on mean delay-period amplitude from distractor-absent trial with 
ROI and RF conditions as main effects. B. A follow-up 1-way shuffled ANOVA was performed 
within each ROI with RF condition (in vs. out) as factors.  
A. 

ROI RF ROI x RF 

<0.001 0.001 0.035 

B.  

ROI RF  

V1-V3 0.005 

V3AB 0.019 

hV4 0.009 

LO1 0.012 

IPS0/1 0.016 

IPS2/3 0.016 

sPCS 0.008 

FDR Thresh 0.019 
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Table S2. Non-parametric p-values characterizing differences in mean delay period 
amplitude and RF conditions in individual ROIs, Figure S2. A. To test for differences in 
amplitude across ROIs and reliable differences in RF conditions across dorsal ROIs, a 2-way 
shuffled ANOVA was performed on mean delay-period amplitude from distractor-absent trial with 
ROI and RF conditions as main effects. B. A follow-up 1-way shuffled ANOVA was performed 
within each ROI with RF condition (in vs. out) as factors. Significant tests are marked in bold, 
trends (p<0.05, uncorrected) are marked in italics. 
A. 

ROI RF ROI x RF 

<0.001 0.001 0.035 

B.  

ROI RF  

V1 0.030 

V2 0.006 

V3 0.006 

V3AB 0.017 

hV4 0.003 

LO1 0.007 

IPS0 0.028 

IPS1 0.064 

IPS2 0.008 

IPS3 0.015 

sPCS 0.011 

FDR Threshold 0.030 
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Table S2. Non-parametric p-values characterizing BOLD Z-score averages in individual 
ROIs, Figure 2. A. 3-way ANOVA was performed on RF-in data with ROI, condition, & epoch as 
main effects. B. 2-way permuted ANOVA tests on RF-in data per ROI with condition (distractor 
absent vs. present) and epoch as main effects. C. 3-way ANOVA was performed in RF-in-out 
data with ROI, condition, & epoch as main effects. D. 2-way permuted ANOVA tests on RF-in-out 
data per ROI with condition (distractor absent vs. present) and epoch as main effects. Significant 
tests are marked in bold, trends (p<0.05, uncorrected) are marked in italics. 
A. 

ROI COND EPOCH ROI X 
COND 

ROI X 
EPOCH 

COND X 
EPOCH 

ROI X 
COND X 
EPOCH 

0 0.042 0 0 0 0 0 

 
B.  

ROI COND  EPOCH COND X EPOCH 

V1 0.007 0 0 

V2 0.262 0 0.039 

V3 0.135 0 0.1 

V3AB 0.046 0 0.008 

hV4 0.065 0 0.003 

LO1 0.121 0 0.001 

IPS0 0.022 0 0 

IPS1 0.037 0 0.002 

IPS2 0.012 0 0 

IPS3 0.077 0.019 0 

sPCS 0.006 0.014 0 

FDR THRESH 0.012 0.019 0.039 

 
C. 

ROI COND EPOCH ROI X 
COND 

ROI X 
EPOCH 

COND X 
EPOCH 

ROI X 
COND X 
EPOCH 

0 0.041 0 0.927 0 0.061 0.067 

 
D. 

ROI COND  EPOCH COND X EPOCH 
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V1 0.097 0.06 0.09 

V2 0.002 .001 0.009 

V3 0.027 0 0 

V3AB 0.285 0 0 

hV4 0.357 0 0.004 

LO1 0.856 0 0.654 

IPS0 0.143 0 0.051 

IPS1 0.432 0.01 0.981 

IPS2 0.244 0.015 0.328 

IPS3 0.148 0.312 0.654 

sPCS 0.645 0.065 0.479 

FDR THRESH 0.002 0.015 0.009 
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Table S3. Non-parametric p-values characterizing effect of distraction on WM 
representation fidelity (individual ROIs), Figure S4. 
p-values for 3-way, 2-way, and t-tests per each ROI from Figure S4. For each test, test statistics 
(F- or T-scores) computed using intact data labels were compared against those computed using 
data labels shuffled within each participant 1000x.  
 
A.  P-values from permuted 3-way ANOVA. Bold indicates significant tests. 

Epoch Cond ROI Epoch × 
Cond 

Epoch × 
ROI 

Cond × 
ROI 

Epoch × 
Cond × 

ROI 

< 0.001 0.002 < 0.001 0.001 < 0.001 0.479 0.028 

  
B. P-values from permuted 2-way ANOVA with distractor condition (absent / present) and delay 
epoch (pre,dist,post) as main effects for each ROI. FDR corrections were applied across ROIs 
for each effect. Bold indicates significant tests (FDR-corrected); italics indicates trends, defined 
as p < 0.05, uncorrected. 

 Epoch Condition Epoch x Condition 

V1 

0.689 0.004 0.202 

V2 

0.05 0.007 0.006 

V3 

0.001 0.005 < 0.001 

V3AB 

< 0.001 0.005 < 0.001 

hV4 

0.001 0.008 0.048 

LO1 

0.003 0.017 0.722 

IPS0 

< 0.001 0.005 0.004 

IPS1 

0.023 0.017 0.031 

IPS2 

0.109 0.001 0.358 

IPS3 

0.388 0.004 0.272 
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sPCS 

0.361 0.033 0.089 

FDR Threshold 

0.023 0.033 0.006 

  
C. To directly compare WM representation fidelity between distractor present vs distractor absent 
trials, we computed fidelity for each condition averaged across all trials within each run, then 
averaged across runs within participant and performed a T-test on the resulting set of data points 
per participant. To generate a null t-distribution, we randomly shuffled condition labels per run 
before averaging 1000x. The T-score estimated using intact data was compared against these 
shuffled null distributions (two-tailed) to derive a p-value (listed below). Bold values indicate 
significant tests (FDR-corrected within each epoch), italics indicates trends defined as p < 0.05, 
uncorrected. 

 Epoch 1 (PRE) Epoch 2 (DIST) Epoch 3 (POST) 

V1 0.0260 0.0120 0.0060 

V2 0.1160 0.0020 0.0080 

V3 0.1600 < 0.001 0.0360 

V3AB 0.2340 0.0020 0.0360 

hV4 0.0160 0.0040 0.0500 

LO1 0.0040 0.0180 0.0420 

IPS0 0.1940 < 0.001 0.0460 

IPS1 0.0660 0.0020 0.0140 

IPS2 0.0020 < 0.001 0.0300 

IPS3 0.0020 < 0.001 0.0500 

sPCS 0.0820 0.0020 0.1420 

FDR THRESH 0.03 0.03 0.03 
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Table S4. Non-parametric p-values characterizing effect of distraction on WM 
representation fidelity, Figure 5B. p-values for 3-way, 2-way, and t-tests per each ROI from 
Figure 5B. For each test, test statistics (F- or T-scores) computed using intact data labels were 
compared against those computed using data labels shuffled within each participant 1000x.  
  
A. P-values from permuted 3-way ANOVA. Bold indicates significant tests. 

Epoch Condition ROI Epoch x 
Condition 

Epoch x 
ROI 

Cond x 
ROI 

Epoch x 
Condition x 
ROI 

< 0.001 0.001 < 0.001 0.001 < 0.001 0.551 0.041 

  
B. P-values from permuted 2-way ANOVA with distractor condition (absent / present) and delay 
epoch (pre,dist,post) as main effects for each ROI. FDR corrections were applied across ROIs 
for each effect. Bold indicates significant tests (FDR-corrected); italics indicates trends, defined 
as p<0.05, uncorrected. 

 Epoch Condition Epoch x Condition 

V1-V3 

0.013 0.011 0.002 

V3AB 

0 0.004 0.001 

hV4 

0.001 0.008 0.044 

LO1 

0.002 0.011 0.747 

IPS0/1 

0.001 0.002 0.004 

IPS2/3 

0.187 0.002 0.181 

sPCS 

0.334 

0.036 0.087 

FDR THRESH 

0.013 

0.036 0.004 

  
C. To directly compare WM representation fidelity between distractor present vs. distractor absent 
trials, we computed fidelity for each condition averaged across all trials within each run, then 
averaged across runs within participant and performed a T-test on the resulting set of data points 
per participant. To generate a null t-distribution, we randomly shuffled condition labels per run 
before averaging 1000x. The T-score estimated using intact data was compared against these 
shuffled null distributions (two-tailed) to derive a p-value (listed below). Bold values indicate 
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significant tests (FDR-corrected within each epoch), italics indicates trends defined as p < 0.05, 
uncorrected. 

 Epoch 1 (PRE) Epoch 2 (DIST) Epoch 3 (POST) 

V1-V3 

0.076 0.004 0.012 

V3AB 

0.218 0.002 0.022 

hV4 

0.026 0.004 0.056 

LO1 

0.006 0.01 0.042 

IPS0/1 

0.096 0.002 0.006 

IPS2/3 

< 0.001 < 0.001 0.03 

sPCS 

0.124 < 0.001 0.112 

FDR THRESH 

0.03 0.03 0.03 
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Table S5. Non-parametric p-values quantifying impact of model estimation procedures 
(individual ROIs), Figure S5.  
Statistics for Figure S5C (comparison of WM fidelity on distractor-present trials across model 
estimation procedures). A. A 3-way ANOVA was performed with ROI, model, & epoch as factors 
B. For each ROI, we performed a 2-way repeated measures ANOVA against a shuffled null (within 
each participant, shuffle datapoint labels 1000x). For each test (main effect of model, main effect 
of epoch, interaction), we compute an FDR threshold. Significant tests are marked in bold, trends 
(p<0.05, uncorrected) are marked in italics. 
 
A. All ROIs 3-way ANOVA: 

ROI Model  Epoch ROI × 
Model  

ROI × 
Epoch 

Model × 
Epoch 

ROI × 
Model × 
Epoch 

 < 0.001 0.005 <0.001 0.326 <0.001 0.055 0.001 

 
B. 2-way repeated measures ANOVA: 

Figure S5C Model Epoch  Interaction 

V1 0.147 0.259 0.934 

V2 0.031 0.003 0.238 

V3 0.023 <0.001 0.015 

V3AB 0.054 <0.001 0.021 

hV4 0.02 <0.001 0.179 

LO1 0.018 <0.001 0.075 

IPS0 0.009 0.001 0.121 

IPS1 <0.001 0.010 0.866 

IPS2 0.239 0.036 0.288 

IPS3 0.226 0.146 0.335 

sPCS 0.065 0.084 0.176 

FDR THRESHOLD 0.009 0.036 <0.001 
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Table S6. Non-parametric p-values quantifying impact of model estimation procedures, 
Figure 6. Statistics for Figure 6D (comparison of WM fidelity on distractor-present trials across 
model estimation procedures). For each ROI, we performed a 2-way repeated measures ANOVA 
against a shuffled null (within each participant, shuffle datapoint labels 1000x). For each test (main 
effect of model, main effect of epoch, interaction), we compute an FDR threshold. Significant tests 
are marked in bold, trends (p< 0.05, uncorrected) are marked in italics. Related to Figure 6D.  
 

ROI Model  Epoch ROI × 
Model  

ROI × 
Epoch 

Model × 
Epoch 

ROI × 
Model × 
Epoch 

 < 0.001 0.010 <0.001 0.641 <0.001 0.029 0.018 

 
 

Figure 6D Model Epoch Model x Epoch 

V1-V3 0.037 0.001 0.127 

V3AB 0.047 <0.001 0.017 

hV4 0.023 <0.001 0.145 

LO1 0.015 <0.001 0.079 

IPS0/IPS1 0.004 <0.001 0.097 

IPS2/IPS3 0.248 0.047 0.196 

sPCS 0.048 0.086 0.212 

FDR thresh 0.004 0.001 <0.001 
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Table S7. P-values characterizing neural-behavioral correlations (individual ROIs), Figure 
S6B. 
Shuffled correlations were performed on an individual basis and subjected to t-test on Fisher r-to-
Z transformed correlation values, 1000x. No ROIs pass FDR correction. Italics indicates trends, 
defined as p < 0.05, uncorrected. 

ROI V1 V2 V3 V3AB hV4 LO1 IPS0 IPS1 IPS2 IPS3 sPCS 

p-value 0.017 0.008 0.161 .389 .465 .105 .095 .717 .732 .119 .853 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.01.429259doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429259
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

50 

Table S8. P-values characterizing neural-behavioral correlations, Figure 7C.  
Shuffled correlations were performed on an individual basis and subjected to t-test on Fisher r-to-
Z transformed correlation values, 1000x. FDR threshold is p=0.005. Bold indicates significant 
ROIs, corrected for multiple comparisons. 

ROI V1-V3 V3AB hV4 LO1 IPS0/1 IPS2/3 sPCS 

p-value 0.005 0.4104 0.4710 0.1040 0.4310 0.3130 0.8670 
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STAR METHODS 
 
Key Resource Table 
KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

MATLAB 2018a MathWorks https://www.mathworks.com 

PsychToolBox psychtoolbox.org http://psychtoolbox.org/ 

      

   

   

 
 
RESOURCE AVAILABILITY 
 
Lead Contact 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the Lead Contact, Dr. Clayton Curtis (clayton.curtis@nyu.edu) 

 
Materials Availability 
This study neither used any reagents nor generated any new materials 
 
Data and Code Availability 
All data supporting conclusions in this report [will be made] freely available on the Open Science 
Framework (URL), and code used to present stimuli, analyze data and produce figures will be 
made freely available on GitHub (github.com/clayspacelab). For participant privacy reasons, for 
fMRI data we only publicly provide extracted activation timecourses from each ROI for each 
participant, as well as each voxel’s best-fit pRF parameters and extracted timecourses. Stimulus 
presentation code for retinotopic mapping using Psychtoolbox is available on GitHub 
(github.com/clayspacelab/vRF_stim). Additionally, code used to preprocess raw data can be 
inspected on GitHub. We preprocessed fMRI data using shell scripts and custom MATLAB 
functions available on GitHub (github.com/tommysprague/preproc_shFiles and 
github.com/tommysprague/preproc_mFiles), and we fit voxel receptive fields using a GPU-
accelerated branch of mrVista, available on GitHub (github.com/tommysprague/vistasoft_ts), 
which implements GPU-accelerated gridfits (github.com/tommysprague/gridfitgpu). 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Participants  
Seven neurologically healthy volunteers (3 female; 25-50 years old) with normal or corrected-to-
normal vision participated in this study after giving informed consent, using procedures approved 
by New York University IRB (protocol IRB-FY2017-1024). Each participant completed 1-2 
sessions of retinotopic mapping and anatomical scans (~2hrs), between 2-3 independent 
mapping sessions for model training (~1.5hrs each), and two experimental sessions (~1.5hrs 
each).  Sample size was chosen based on similar sample sizes recruited for similar studies 
employing deep, multi-session imaging per participant (Rademaker et al., 2019, n=6; Sprague et 
al., 2016, n=6). 
 
METHOD DETAILS 
 
Stimulus 
Stimuli were generated via PsychToolBox in Matlab 2018b on a PC and presented via a contrast-
linearized ViewPixx ProPixx projector, with resolution 1280x1024 and refresh rate 120Hz. 
Participants viewed the stimuli through a mirror attached to the head coil at a viewing distance of 
63cm. The projected image spanned 36.3cm height, resulting in a maximum field of view of 32.14º 
visual angle. 
 
Experimental task 
Participants performed a modified version of the memory guided saccade task (Hikosaka and 
Wurtz, 1983) (Figure 1A-B). All stimuli were presented within a 15o radius circular grey aperture 
on a black background. Throughout the whole experiment, a 0.075o radius light gray fixation point 
was presented in the center of the aperture. We tested two conditions, randomly interleaved: 
distractor-absent trials required participants to precisely remember a target location over an 
extended delay interval, and distractor-present trials required participants to additionally perform 
a visual motion discrimination task based on a peripheral visual stimulus. Each trial began with a 
pre-cue (1000ms; 0.55o circle centered at the fixation point) reliably informing participants whether 
a distractor would (cyan) or would not (magenta) be presented during the delay period. This 
controlled for possible impacts of distractor predictability on cognitive control of WM 
representations (Bettencourt and Xu, 2016; Rademaker et al., 2019) . Next, a light gray target dot 
(0.65o diameter) was presented at a randomly-chosen position along an invisible ring 12o around 
fixation for 500ms. Participants precisely remembered the target location over the subsequent 
12s delay interval. On distractor-absent trials, no further stimuli appeared during the delay period. 
On distractor-present trials, 4,500ms into the delay period a distracting stimulus appeared at one 
of seven positions relative to the WM target position around the invisible 12o eccentricity ring for 
1,000ms. On each distractor-present trial, distractor positions were randomly chosen 
(counterbalanced within a run), and were further jittered by ±12o polar angle. The distractor 
stimulus was a random dot kinematogram (RDK) containing equal numbers of black and white 
dots (100% contrast; 17 dots/deg2, 0.075° dot radius, 1° radius of dot patch; 0.1s dot lifetime), 
with a subset of dots rotating either clockwise or counterclockwise about the center of the dot 
patch (~100° polar angle/s). Participants responded within 2.5s of the distracting stimulus onset 
whether the coherently moving dots rotated clockwise (right button) or counterclockwise (left 
button).  The coherence of the dot patch was fixed within a run, and was adjusted between runs 
based on behavioral accuracy to achieve ~75% performance (mean = 73%, SEM = 6.74%) . Non-
coherent dots each moved in a random direction. The remainder of the delay (6,500ms) was 
identical to the distractor-absent trials.  
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On all trials, at the end of the full 12s delay period, the fixation point was replaced with a filled 
light gray circle, cueing participants to make a saccade towards the remembered position. After 
800ms, the target dot was re-presented for 1,000ms, which participants were instructed to fixate. 
Each trial ended with a 7 to 13s ITI (in 750ms steps), randomly chosen. In addition, on distractor-
present trials, participants received feedback on their discrimination performance at the beginning 
of the ITI (red or green circle at fixation for correct or incorrect response, respectively). Across 
two sessions, participants performed between 25-36 runs (12-18 runs per session, 279s per run), 
where each run consisted of seven distractor-present and three distractor-absent trials, randomly 
ordered. This resulted in between 250 and 360 total experimental trials per participant. 
 
Independent model estimation task 
We acquired a separate, independent dataset used only to estimate the inverted encoding model 
for spatial position. Participants performed a simple memory-guided saccade task over a 12s 
delay using a nearly identical stimulus display, but with no distractor stimulus. Within each 16-trial 
run, target locations were chosen from a discrete set of positions spaced evenly around an 
invisible ring (12° eccentricity), with the set of positions staggered every other run, for 32 unique 
positions overall. No pre-cue was presented at the beginning of each trial. Participants performed 
between 20 and 31 runs, across 2-3 separate scanning sessions, where each run was composed 
of 16 trials and lasted 396s. 
 
Retinotopic mapping task 
To identify regions of interest (ROIs) for all reported analyses, we acquired retinotopic mapping 
data using an adaptation of a previously-reported task and procedure (Mackey et al., 2017) and 
computed polar angle and eccentricity maps using the population receptive field (pRF) method 
(Dumoulin and Wandell, 2008). During each retinotopy run, subjects completed a difficult 
discrimination task within bars that swept across 26.4o of the visual field in twelve 2.6s steps. Bar 
widths and sweep directions were pseudo-randomly chosen from three different widths (2.5o, 5.0o, 
and 7.5o) and four directions (left-to-right, right-to-left, bottom-to-top, top-to-bottom), respectively. 
Each bar was split into three equally-sized rectangular patches along its long axis. Each of the 
three patches contained an RDK moving in one of the two possible directions perpendicular to 
the bar’s swipe direction (parallel to the long axis). During each step of the swipe, the RDK 
direction in one of the peripheral patches matched the RDK direction in the central patch. Subjects 
were instructed to report, via a button press, which peripheral patch matched the central patch’s 
RDK direction, at each step of the swipe. After each report, participants received accuracy 
feedback (red or green fixation point), and a three-down/one-up staircase was implemented to 
maintain task difficulty ~80%. The coherence of the RDK in two peripheral patches was always 
50% while a variable RDK coherence was used in the central patch to adjust the difficulty of the 
task. Stimulus presentation code is available at github.com/clayspacelab/vRF_stim 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
fMRI acquisition 
All functional MRI images were acquired at the NYU Center for Brain Imaging 3T Siemens Prisma 
Scanner. fMRI scans for experimental, model estimation, and retinotopic mapping were acquired 
using the CMRR MultiBand Accelerated EPI Pulse Sequences (Release R015a) (Moeller et al., 
2010); (Feinberg et al., 2010); (Xu et al., 2013). All functional and anatomical images were 
acquired with the Siemens 64 channel head/neck coil. 
 
Experimental & model estimation scans  
For the experimental and model estimation scans, BOLD contrast images were acquired using a 
Multiband (MB) 2D GE-EPI with MB factor of 4, 44 2.5mm interleaved slices with no gap, isotropic 
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voxel size 2.5mm and TE/TR: 30/750ms. We measured field inhomogeneities by acquiring spin 
echo images with normal and reversed phase encoding (3 volumes each), using a 2D SE-EPI 
with readout matching that of the GE-EPI and same number of slices, no slice acceleration, 
TE/TR: 45.6/3537ms.  
 
Retinotopic mapping scans 
For the retinotopic mapping scans, BOLD contrast images were acquired using a Multiband (MB) 
2D GE-EPI with MB factor of 4, 56 2mm interleaved slices with no gap, isotropic voxel size 2mm 
and TE/TR: 42/1300ms. Distortion mapping scans were acquired with normal and reversed phase 
encoding, using a 2D SE-EPI with readout matching that of the GE-EPI and same number of 
slices, no slice acceleration, TE/TR: 71.8/6690ms. 
 
Anatomical and bias images 
T1- and T2-weighted images were acquired using the Siemens product MPRAGE and Turbo 
Spin-Echo sequences (both 3D) with 0.8 mm isotropic voxels, 256 × 240 mm slice FOV, and 
TE/TR of 2.24/2400 ms (T1w) and 564/3200 ms (T2w). We collected 192 and 224 slices for the 
T1w and T2w images, respectively. We acquired between two and five T1 images, which were 
aligned and averaged to improve signal-to-noise ratio. In addition, to correct functional images for 
inhomogeneities in the receive coil sensitivity and improve the motion correction and 
coregistration process, we collected two fast 3D GRE sagittal images (resolution: 2mm isotropic, 
FoV: 256 × 256 × 176 mm; TE/TR: 1.03/250 ms), one with the body coil and the other with the 64 
ch head/neck coil. 
 
fMRI preprocessing  
We used all intensity-normalized high-resolution anatomical scans (for each participant, 2-5 T1 
images and 1 T2 image) as input to the ‘hi-res’ mode of Freesurfer’s recon-all script (version 6.0) 
to identify pial and white matter surfaces. We edited these surfaces by hand using Freeview as 
necessary and converted surfaces to SUMA format. The processed anatomical image for each 
participant acted as the alignment target for all functional datasets. Our aim for functional 
preprocessing was to put functional data from each run into the same functional space at the 
same voxel size acquired during the task sessions (2.5mm isovoxel), account for run- and 
session-specific distortions, incur minimal volume-wise smoothing by minimizing spatial 
transformations, and apply a marginal amount of smoothing along the direction orthogonal to the 
cortical surface. This allowed us to optimize SNR and minimize smoothing, ensuring ROI data 
remains as near as possible to its original dimensionality. Moreover, because the distortion field 
can depend on the exact position of the head within the main field, we divided functional sessions 
into 3-5 ‘mini-sessions’ consisting of 1-4 task runs split by a pair of spin-echo images acquired in 
opposite phase encoding directions, used for anatomical registration and computing distortion 
fields for distortion correction. We applied all preprocessing steps described below to each mini-
session independently, and inspected motion correction, coregistration and distortion correction 
to ensure the procedures worked as intended. Preprocessing was performed using a combination 
of scripts generated with AFNI’s afni_proc.py and custom scripts implementing AFNI functions 
(version 17.3.09, pre-compiled Ubuntu 16 64 bit distribution). We performed all analyses on a 
LINUX workstation running Ubuntu v16.04.1 using 8 cores for most OpenMP accelerated 
functions.  

 
First, we corrected functional images for intensity inhomogeneity induced by the high-density 
receive coil by dividing all images by a smoothed bias field (15mm FWHM), computed as the ratio 
of signal in the receive field image acquired using the head coil to that acquired using the in-bore 
‘body’ coil. To improve coregistration of functional data to the target T1 anatomical image, we 
used distortion-corrected and averaged spin-echo images (which were used to compute distortion 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.01.429259doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429259
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

55 

fields restricted to the phase-encode direction) to compute transformation matrices between 
functional and anatomical images. Then, we used the rigorous distortion-correction procedure 
implemented in afni_proc.py to undistort and motion-correct functional images. Briefly, this 
procedure involved first distortion-correcting all images in each run using the distortion field 
computed from the spin-echo image pair, then computing motion-correction parameters (6-
parameter affine transform) using these unwarped images. Next, we used the distortion field, 
motion correction transform for each volume, and the functional-to-anatomical coregistration 
simultaneously to render functional data from native acquisition space into unwarped, motion 
corrected, and coregistered anatomical space for each participant at the same voxel size as data 
acquisition in a single transformation and resampling step. For retinotopic mapping data, this was 
a 2mm isovoxel grid; and for task data, this was 2.5mm isovoxel grid. For both task and retinotopy 
data, we projected this volume-space data onto the reconstructed cortical surface. For retinotopy 
data, we made a smoothed version of the data by smoothing on the cortical surface (5mm 
FWHM). We then projected surface data (for task data, only the ‘raw’ data; for retinotopy data, 
the raw and smoothed data) back into volume space for all analyses. For unsmoothed data, this 
results in a small amount of smoothing for each voxel along a vector orthogonal to the surface in 
volume space. 
 
To compute pRF properties (see below) in the same voxel grid as task data, we projected 
retinotopy time series data onto the surface from its native space (2mm iso), then from the surface 
to volume space at the task voxel resolution (2.5mm iso). This ensured that variance explained 
estimates faithfully reflect goodness of fit and are not impacted by smoothing incurred from 
transforming fit parameter values between different voxel grids.  We linearly detrended activation 
values from each voxel from each run and converted signal to percent signal change by dividing 
by the mean over the entire run. For multivariate analyses on task data, we subsequently Z-scored 
each voxel across all volumes for each run independently.   
 
Retinotopic mapping and ROI definition 
We averaged time series from each voxel across all retinotopy runs (9-12 per participant) in 
volume space and fit a pRF model for each voxel using a GPU-accelerated extension of vistasoft 
(github.com/clayspacelab/vistasoft). We fit a compressive spatial summation isotropic Gaussian 
model (Kay et al., 2013); (Mackey et al., 2017) as implemented in mrVista (see (Mackey et al., 
2017) for detailed description of the model). We created a high-resolution stimulus mask (270 × 
270 pixels) to ensure similar predicted response within each bar size across all visual field 
positions (to mitigate the effects of aliasing with a lower-resolution stimulus mask grid), and began 
with an initial high-density grid search, followed by subsequent nonlinear optimization. Note that, 
in these analyses, because we conduct a grid search on all voxels independently, there is no 
smoothing of parameter estimates applied after this step before nonlinear optimization. For all 
analyses described below, we used best-fit pRF parameters from this nonlinear optimization step.  
 
After estimating pRF parameters for every voxel in the brain, ROIs were delineated by projecting 
pRF best-fit polar angle and eccentricity parameters with variance explained ≥10% onto each 
participant’s inflated surfaces via AFNI and SUMA. ROIs were drawn on the surface based on 
established criteria for polar angle reversals and foveal representations (Mackey et al., 2017); 
(Wandell et al., 2007); (Winawer and Witthoft, 2015); (Amano et al., 2009); (Swisher et al., 2007). 
Finally, ROIs were projected back into volume space to select voxels for analysis. In this report 
we consider data from V1, V2, V3, V3AB, hV4, LO1, IPS0, IPS1, IPS2, IPS3, and sPCS, which 
are all retinotopic regions described in previous reports examining the impact of visual distractors 
on WM representations (Bettencourt and Xu, 2016; Lorenc et al., 2018; Rademaker et al., 2019). 
Only voxels with ≥10% variance explained in pRF model fits were included in subsequent fMRI 
analyses. Additionally, we group ROIs V1-V3, IPS0-1, and IPS2-3 by concatenating voxels before 
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multivariate analyses for results presented in Figs 3-7 because they belong to clustered defined 
by overlapping foveal representations (Wandell et al., 2007), and for consistency with a prior 
report (Lorenc et al., 2018); see Supplementary Material for analyses reported for each ROI 
individually). 
 
Oculomotor Processing 
Monocular eye-tracking data were recorded using an MR-compatible Eyelink 1000 infrared eye 
tracker (SR Research). Eye position (X,Y) and pupil size were recorded at 500 Hz. Prior to the 
beginning of the experiment, eye position was calibrated with a 13-, or 9-point calibration. Eye 
data were transformed from raw pixel screen coordinates into degrees of visual angle utilizing the 
freely available iEye toolbox (github.com/clayspacelab/iEye_ts). First, the data was rescaled 
given known screen resolution and viewing distance. Next, the data was inspected for extreme 
values and blinks, which were removed. It was then smoothed with a Gaussian kernel (5ms SD). 
Saccades were identified by identifying periods with velocity in excess of 30°/s for at least 7.5ms, 
and resulting in at least a 0.25° amplitude gaze shift. Then, the data for an entire trial was drift 
corrected by taking the mean over known epochs when the participant is fixating and subtracting 
that value from the entire trial. Finally, the data is recalibrated to the target position on a run-wise 
basis by fitting a 3rd order polynomial to X and Y eye positions independently to best approximate 
the true target location on each trial. On a given trial, if the initial saccade did not meet the following 
additional criteria, that trial was also excluded from behavioral analysis, and from correlations with 
neural data (Figure 7): less than a total duration of 150ms, at least 5° in amplitude, and within at 
least 5° error from the target location. Trials could additionally be removed from analysis if the 
participant exhibited a fixation break of at least 2.5° during the WM delay or did not make a 
saccade within the specific response epoch.  
 
Oculomotor Analysis 
Once saccades were preprocessed, we used the last endpoint of the memory-guided saccade 
before the reappearance of the target, after any corrective saccades, as a measure of the 
participant’s behavioral WM report in our analyses. For all analyses, we realigned all visual fie ld 
coordinates of both memory-guided saccade and distractor locations with reference to the 
saccade target location. We subtracted the polar angle of the memory target from the polar angle 
of the memory-guided saccade while keeping the radius of each location untouched (to preserve 
the eccentricity of the reported position). For our precision analysis, we calculated each 
participant’s saccade standard deviation (SD) by computing the across-trial standard deviations 
of saccadic polar angle. We calculated reaction times by taking the time from the onset of the 
response cue to the onset of the initial saccade.  
 
fMRI: univariate analysis 
To assess the mean response across spatially-selective voxels subtending relevant locations 
(target/distractor) in all ROIs, we computed an event-related average of measured BOLD 
response for each condition separately. After extracting Z-scored BOLD signal (see 
Preprocessing) from each voxel, we sorted voxels on each trial according to their best-fit pRF 
parameters and the known location(s) of the target and/or distractor. RF-in responses 
(corresponding to voxels tuned nearby the relevant location) were determined by  selecting voxels 
with  ≥ 10% variance explained, eccentricity between 2 and 15 degrees, and polar angle difference 

between the WM target (or distractor) and pRF center of each voxel ≤ 15 degrees. RF-out 

responses were determined by selecting voxels with  ≥ 10% variance explained, eccentricity 
between 2 and 15 degrees, and a polar angle difference between the WM target (or distractor) 
and pRF center of each voxel ≥ 165 degrees. We averaged responses across such selected 
voxels within each ROI, then across all trials within a condition (Figure 2, all ROIs in Figure S2). 
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Additionally, we removed the baseline response measured between -2.25 and 0 s relative to delay 
onset. 
 
fMRI: multivariate inverted encoding model  
To reconstruct the representation of visual polar angle carried by the neural population activity of 
each ROI at any given time, we implemented an inverted encoding model (IEM) (Brouwer and 
Heeger, 2009; Sprague et al., 2018b) which maps between a modeled encoding space and the 
measured response across a set of fMRI voxels using a simplified set of information channels (or 
basis functions) each with a preferred stimulus value. The model assumes that the activation of 
each voxel in response to a stimulus can be described as a simplified encoding model built via a 
linear combination of all modeled channel responses to that stimulus. Based on this assumption, 
the activation of these modeled channels most likely to give rise to an observed activation pattern 
can be estimated using the inverse of the encoding model. Thus, we can map one space to the 
other by estimating the strength of the links (i.e. regression weights) between all voxels in a given 
region and all of the modeled information channels. Note that this analysis framework does not, 
and cannot, infer ‘tuning’ properties of neurons within the regions analyzed (Gardner and Liu, 
2019). Instead, it recovers region-level representations of a feature space (here, spatial position 
parameterized by polar angle). See (Sprague et al., 2018b) and (Sprague et al., 2019) for a 
detailed discussion. 
 
To build an IEM for each ROI, we first obtained an independent dataset which we used to calculate 
the regression weights that describe the encoding model for each voxel (one weight for each 
channel for each voxel). Model estimation data was always the average delay-period activation 
between 5.25-12s following delay onset (average over 9 TRs, each 750ms). While these 
regression weights enable us to map the stimulus space to the voxel space, we used inverted 
weights to estimate each channel’s response and used them to reconstruct the stimulus space 
given the population activity pattern at each timepoint. Through this method, we were able to 
reconstruct the spatial representation of the memory target and the distractor location from the 
neural population activity during WM. The linear mapping between the voxel space and the 
stimulus space is defined as:  
 

B=CW (Eq. 1) 

 
Where, B is a matrix (n trials × m voxels) consisting of the activity of all voxels in a given ROI 
across trials, C is a matrix (n trials × k channels) containing the response of all channels across 
the same trials, and W is a matrix (k channels × m voxels) of regression weights describing how 
much each modeled channel contributes to the BOLD signal measured in each voxel. As the 
stimuli always appeared along a fixed annulus of 12° in this experiment, we modeled the 
information channels as 1-D smooth tuned filters centered at 8 uniformly distributed polar angles 
(𝜓) around the 360° polar space (Figure 2):  

 

𝑓𝑖(𝜃)  =  0.5 +  0.5 ∗ 𝑐𝑜𝑠(180 ∗
𝜃−𝜓𝑖

2𝑠
)8 𝑓𝑜𝑟 |𝜃 − 𝜓𝑖|  <  𝑠;  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (Eq. 2) 

 
We used a size constant (s) of 180°. To calculate each channel output from the population activity 
in response to a given stimulus, we first need to calculate the regression weights (W) in (Eq. 1). 
We can do this using measured activation patterns (Btrn) and corresponding predicted channel 
responses (Ctrn) for model estimation data: 
 

�̂�  =  (𝐶𝑡𝑟𝑛
𝑇𝐶𝑡𝑟𝑛 )−1𝐶𝑡𝑟𝑛

𝑇𝐵𝑡𝑟𝑛 (Eq. 3) 
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Where Btrn is a matrix of BOLD activity in response to our training stimuli (trials × voxels) and Ctrn 
is a matrix containing the corresponding predicted channel outputs calculated from (Eq. 2), given 
the training stimulus locations (polar angle). For the IEM, we used these regression weights 
calculated from an independently collected training set to estimate channel outputs from the 
measured BOLD signal at any given epoch in our WM task. We estimated these channels outputs 
as: 

𝐶𝑡𝑠𝑡 = 𝐵𝑡𝑠𝑡�̂�𝑇(�̂��̂�𝑇)−1 (Eq. 4) 
 

Where Btst contains the measured BOLD signal on each time point of experimental trials, �̂� 

contains the regression weights (estimated using an independent dataset, Eq. 3), and Ctst is the 
estimated channel responses.  
 
Finally, to reconstruct the stimulus space, given a set of computed channel responses (per 
timepoint, epoch, or trial), we calculate the sum of all channel sensitivity profiles, each weighted 
by its corresponding estimated channel response. For visualization, we align each trial based on 
the known target location (Figures 2C-D, 3A-B) or the known distractor location (Figures 2E-F, 
3C) by circularly shifting the reconstruction such that the aligned position is denoted as 0°. Note 
that for distractor-present trials, the reconstruction necessarily contains both a representation of 
the distractor and a representation of the target location. But, because these were randomized 
with respect to one another, aligning to one results in the other representation ‘averaging out’ 
(Figure 2).  
 
Model training 
For Figures 2-5, we estimated the IEM using delay-period activation (5.25-12 s) measured from 
an independent mapping dataset in which participants performed a single-item MGS task (see 
above). Additionally in Figure 5, we tested whether a model estimated using distractor-present 
trials contains WM information in a neural format different from that used in the independent 
mapping dataset. We performed a leave-one-run-out cross-validation procedure whereby all 
distractor-present trials from all runs but one (concatenated across sessions) are used to estimate 
the IEM, and this IEM is used to reconstruct WM representations from the held-out run. We repeat 
this procedure over all runs, until each distractor-present trial has served as a ‘test’ trial. 
 
Moreover, to establish whether the format of WM representations transforms over the delay period 
following disruption by a distractor (e.g., (Parthasarathy et al., 2017; Spaak et al., 2017), we 
performed this leave-one-run-out analysis for each pair of training/testing timepoints during the 
trial (Figure 5A), and for each trial epoch (pre-distractor, distractor, post-distractor; Figure 5B-C). 
 
Fidelity 
To quantify the presence of information about a remembered or viewed stimulus location in IEM-
based reconstructions, we computed a model-free index of ‘fidelity’ (Rademaker et al., 2019; 
Rahmati et al., 2020; Sprague et al., 2016). Conceptually, this metric measures whether the 
reconstruction, on average, ‘points’ in the correct direction, along with how ‘strong’ the 
representation is. Accordingly, we compute the vector mean of the reconstruction in polar 
coordinates. When reconstructions are rotated and aligned to 0°, projecting this vector mean on 
the horizontal axis captures energy in the reconstruction consistent with the aligned location. Each 
reconstruction r(θ), where θ is the polar angle of each point and r(θ), is the reconstruction 
activation) when plotted as a polar plot, was projected along the x-axis (reconstructions were 
rotated such that the target was presented at 0°): 
 

F = mean(r(θ)*cos(θ)) (Eq. 5) 
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If F is reliably greater than zero, this quantitatively demonstrates that the net activation over the 
entire reconstruction carries information above chance about the target position. This measure is 
independent of baseline activation level in the reconstruction, as the mean of r(θ) is removed by 
averaging over the full circle. We computed fidelity for each timepoint of each trial in the 
experiment after aligning reconstructions to the target position, and, on distractor-present trials, 
the distractor position. Because the non-aligned stimulus type (target or distractor) was located 
at a random and symmetric position with respect to the aligned stimulus type (Figure 1A), we 
could independently assay information about both stimulus types on the same set of trials (see 
also (Rademaker et al., 2019) ). 
 
Quantifying decoded position  
We also used single-trial reconstructions on trials with distractor locations nearby the WM target 
location to decode the position (polar angle) represented by the population activation pattern. We 
defined the decoded position (WMest) as the circular mean of the reconstruction, which we 
computed by summing over unit vectors pointing in each direction weighted by the reconstruction 
activation in that direction, then taking the inverse tangent of the resulting vector: 
 

𝑊𝑀𝑒𝑠𝑡 = 𝑡𝑎𝑛−1(
𝛴𝑟(𝜃)𝑠𝑖𝑛(𝜃)

𝛴𝑟(𝜃)𝑐𝑜𝑠(𝜃)
) (Eq. 6) 

 
Statistical Procedures  
To test whether behavioral performance was impacted by distractor presence or absence, we 
performed one-way repeated measures ANOVAs on memory error and saccadic reaction times. 
Memory error was defined as the standard deviation of target-aligned saccadic polar angle 
(degrees).  Reaction time was defined as time at which an initial ballistic saccade was made in 
the response period, as measured from the onset of the response period (milliseconds).  
To demonstrate the presence of information about the target/distractor location in an IEM-based 
reconstruction, we computed t-statistics on each fidelity timepoint (Figure 3D-E) by first creating 
an empirical null t-distribution from shuffling trial labels of the training dataset within each 
participant 1000x. The sample of fidelity values computed using an intact model at each timepoint 
was then compared against the T distribution computed using shuffled data. We compared the T-
score computed using intact trial labels to this null distribution, and defined the p-value as the 
proportion of null T values equal to or exceeding the actual value (one-tailed; (Rademaker et al., 
2019)). We corrected for multiple comparisons using the false discovery rate across timepoints 
within each ROI and condition. 
 
To quantify how distraction impacted univariate fMRI responses (Figure 2 &  Figure S2), we first 
conducted a 2-way ANOVA using ROI and RF condition (in vs. out) on average BOLD delay-
period (3.75-12s) responses from voxels selected by their proximity to (within 15 degrees polar 
angle; RFin) or separation from (at least 165 degrees polar angle from) the WM target (Fig. 2, 
A,B; Fig. S2 A,B) or distractor (Fig 2., C; Fig S2 C). F-scores computed for each main effect were 
compared against a distribution of shuffled data, within participant 1000x. p-values were 
determined by the proportion of shuffled F-scores per main effect greater than or equal to the F-
score computed using the intact data. We performed follow-up 1-way ANOVAs within each ROI, 
using RF (in vs. out) as the main effect, and F-scores were computed using the same within-
participant shuffling procedure. FDR corrections were performed across ROIs.  
 
To quantify WM representation fidelity (Figure 4) in each ROI during each trial epoch, we first 
conducted a 3-way repeated measures ANOVA (ROI × distractor condition × delay epoch) on 
average BOLD responses across voxels within each ROI and trials within each condition. F-
scores computed for each main effect, 2-way, and 3-way interaction were compared against a 
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distribution of each comparison computed using data shuffled within each participant over 1000 
iterations. P-values reflect the proportion of null F-scores within each comparison greater than or 
equal to the F-score computed using intact data. The minimum p-value achievable with this 
procedure is 0.001. We conducted follow-up 2-way repeated-measures ANOVAs for each ROI 
(distractor condition x delay epoch) using the same shuffling procedure within each ROI. P-values 
were corrected for multiple comparisons across all ROIs within each comparison (separately for 
each main effect and interaction; FDR). 
 
To establish whether WM representation fidelity differed across distractor conditions within each 
ROI and epoch (Figure 4A), we used a slightly different shuffling procedure. Computing WM 
fidelity on distractor-present trials cannot occur on single trials, and instead must aggregate 
across an equivalent number of trials for each relative distractor position. Each scanning run (10 
trials) involved one trial for each relative distractor position, so we were able to compute a mean 
WM representation fidelity for distractor-absent trials (3) and distractor-present trials (7) on each 
scanning run (26-36 runs per participant). First, we computed a t-statistic from a paired t-test for 
each ROI and epoch to quantify the effect of distractor condition on WM fidelity. Then, we 
computed a null t-distribution after shuffling run-wise average WM fidelity scores within each 
participant 1000 times. P-values were computed as the proportion of the t-distribution exceeding 
the t-statistic computed using intact data, and doubled to reflect a two-tailed test. We corrected 
p-values using the false discovery rate across all ROIs and epochs.  
 
To determine whether decoded WM target position just before response onset predicted 
behavioral response positions on a trial-by-trial basis on distractor-present trials, we extracted 
decoded WM positions from each ROI (Eq. 6) on each trial with a nearby distractor (within 12° 
polar angle) and correlated, within each participant, these values with corresponding behavioral 
responses (Figure 5B-C). We converted Pearson correlation coefficients to Z-scores using the 
Fisher r-to-Z transform before combining across participants, and computed a t-score for each 
ROI. To assess significance, we shuffled the relationship between behavioral and neural 
responses within each participant 1000 times, recomputed correlations for each participant and t-
scores across participants, then compared the true t-score for each ROI to the corresponding 
shuffled null distribution. P-values (one-tailed) were corrected across ROIs with FDR. We also 
tested for a main effect of ROI on average trial-by-trial error correlation across participants using 
a shuffled 1-way ANOVA. 
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