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ABSTRACT 

Background: Quality control of brain segmentation is a fundamental step to ensure data 

quality. Manual quality control is the current gold standard, despite unfeasible in large 

neuroimaging samples. Several options for automated quality control have been 

proposed, providing potential time efficient and reproducible alternatives. However, 

those have never been compared side to side, which prevents to reach consensus in the 

appropriate QC strategy to use. This study aims to elucidate the changes manual editing 

of brain segmentations produce in morphological estimates, and to analyze and compare 

the effects of different quality control strategies in the reduction of the measurement 

error. Methods: We used structural MR images from 259 participants of The Maastricht 

Study. Morphological estimates were automatically extracted using FreeSurfer 6.0. A 

subsample of the brain segmentations with inaccuracies was manually edited, and 

morphological estimates were compared before and after editing. In parallel, 11 quality 

control strategies were applied to the full sample. Those included: a manual strategy, 

manual-QC, in which images were visually inspected and manually edited; five 

automated strategies where outliers were excluded based on the tools MRIQC and 

Qoala-T, and the metrics morphological global measures, Euler numbers and Contrast-

to-Noise ratio; and five semi-automated strategies, were the outliers detected through 

the mentioned tools and metrics were not excluded, but visually inspected and manually 

edited. We used a regression of morphological brain measures against age as a test case 

to compare the changes in relative unexplained variance that each quality control 

strategy produces, using the reduction of relative unexplained variance as a measure of 

increase in quality. Results: Manually editing brain surfaces produced changes 

particularly high in subcortical brain volumes and moderate in cortical surface area, 

thickness and hippocampal volumes. The exclusion of outliers based on Euler numbers 

yielded a larger reduction of relative unexplained variance for measurements of cortical 

area, subcortical volumes and hippocampal subfields, while manual editing of brain 

segmentations performed best for cortical thickness. MRIQC produced a lower, but 

consistent for all types of measures, reduction in relative unexplained variance. 

Unexpectedly, the exclusion of outliers based on global morphological measures 

produced an increase of relative unexplained variance, potentially removing more 

morphological information than noise from the sample. Conclusion: Overall, the 

automatic exclusion of outliers based on Euler numbers or MRIQC are reliable and time 

efficient quality control strategies that can be applied in large neuroimaging cohorts. 
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1 INTRODUCTION  
Quality control (QC) of brain MRI segmentation 

and parcellation (i.e. the detection and correction 

or exclusion of inaccuracies in segmented brain 

images), is a fundamental step to ensure 

measurement reliability. The concept of QC has 

recently gained interest, with many tools, metrics, 

and protocols being proposed (Backhausen et al., 

2016; Esteban et al., 2017; Keshavan et al., 2018; 

Klapwijk et al., 2019; Rosen et al., 2018; Waters 

et al., 2019). Manual QC, consisting of visual 

inspection and surface editing, despite its 

component of subjectivity, is considered the gold 

standard. However, neuroimaging research is 

shifting towards Big Data paradigms, with studies 

including thousands of brain images, such as the 

UK Biobank (Miller et al., 2016), or The 

Maastricht Study (Schram et al., 2014). Manual 

QC has therefore become an unfeasible strategy 

due to the time and resources required, thus there 

is a need to validate and come to an agreement in 

a reproducible and time efficient QC solution for 

large cohort studies.  

Poor quality segmentation is defined by the 

presence of certain amount or severity of 

inaccuracies. Inaccuracies occur when the 

boundaries that define the morphological 

divisions or regions of interest (ROIs) do not 

correspond to the anatomical boundaries, which 

may lead to morphological measurement errors. 

A commonly used tool to segment structural brain 

MRI is FreeSurfer (Fischl, 2012), a software for 

MRI analysis that provides automated subcortical 

segmentation and cortical parcellation of the 

brain. Errors in FreeSurfer’s output may happen 

(amongst others) when sufficiently abnormal 

brain structure, or low quality image is provided 

as input. Further, image artifacts have been 

related to worse segmentation estimates for both 

cortical thickness (Reuter et al., 2015) and 

volumes (Savalia et al., 2017). Errors in the 

segmentation may result in regression attenuation 

(Hutcheon et al., 2010), as well as reduction of 

statistical power (Phillips and Jiang, 2016) in 

regression analysis of phenotypical measures 

with MR features. Large sample sizes can 

compensate for these downsides. However, when 

the measurement errors are systematic, recurrent, 

and in the same direction, a bias can be 

introduced, making segmentation quality a 

potential confounder. This type of bias has 

previously been shown in clinical populations 

compared to healthy controls (Pardoe et al., 

2016), children compared to adults (Blumenthal 

et al., 2002) and older adults compared to younger 

adults (Madan, 2018; Savalia et al., 2017; 

Wenger et al., 2014).  

Manual QC of brain segmentations is currently 

the most accepted approach to ensure reliable 

segmentation estimates, and in absence of a better 

solution, it is considered the gold standard for 

QC. The manual QC process involves the visual 

inspection of each segmentation, ideally by 

several independent operators with knowledge of 

neuroimaging normal anatomy, in addition to the 

manual editing of segmentations identified as 

inaccurate. This process is time consuming (the 

time required to visually inspect and edit each 

segmentation can range between 10 and 45 

minutes) and subjective, requiring a trained 

operator. Moderate interrater reliability has been 

previously reported, with Cohen’s Kappa indices 

that range between 0.30 (Esteban et al., 2017) and 

0.48 (Savalia et al., 2017). 

Studies investigating alterations in morphological 

estimates due to manual editing have shown 

mixed results, with some studies reporting 

significant changes (Beelen et al., 2020; Waters 

et al., 2019), while others showed no differences 

(McCarthy et al., 2015). Despite the potential 

changes in morphological estimates due to 

manual editing, manual QC does not show 

important effects in the sensitivity to detect 

differences between groups using volumetric 

morphological estimates (Waters et al., 2019), 

although it may have more impact on the 

sensitivity to detect differences using cortical 

morphological estimates like surface area and 

thickness (Beelen et al., 2020). 

Rather than performing manual QC, one can also 

use automatic exclusion of cases based on 

quantitative parameters, such as quality metrics 

or morphological information that are readily 

available from FreeSurfer or other software, 

making the QC process more time-efficient. 

Among the most commonly used quality metrics 

are contrast-to-noise ratio (CNR) (Welvaert and 

Rosseel, 2013) and Euler numbers (EN) (Dale et 

al., 1999). CNR has been used as an objective 

measure of image quality over many years, but it 

correlates weakly with human quality 
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classifications (Yao et al., 2005). EN are a 

measure of reconstructed brain surface 

complexity calculated by FreeSurfer, and has 

been found to correlate with movement artifacts 

(Rosen et al., 2018). Another option for 

automated QC is the exclusion of cases according 

to outliers based on global morphological 

estimates like mean cortical thickness, total 

surface area or estimated total intracranial 

volume, a technique commonly used in 

neuroimaging studies, e.g. (Boedhoe et al., 2018; 

Guadalupe et al., 2014; Shinn et al., 2017).  

Additionally, several tools for a more extensive 

QC are currently available. Two promising tools 

are MRIQC (Esteban et al., 2017) and Qoala-T 

(Klapwijk et al., 2019). Both tools use machine 

learning to provide a rating for quality. While 

MRIQC uses the T1 or T2 images as input to 

provide a score on image quality, Qoala-T uses 

FreeSurfer’s segmentation and parcellation 

output, together with FreeSurfer’s output quality 

metrics to provide a score on segmentation 

quality.  

The aims of this study are: 1) to determine the 

effect that manual editing of FreeSurfer’s output 

has on the resulting morphological estimates, and 

2) to identify which QC approach is best in terms 

of reduction of unexplained variance relative to 

total variance in the context of large-population 

imaging. As a test case to assess this reduction in 

unexplained variance, we use a regression of 

morphological brain measures against age. The 

time investment of each QC strategy is taken into 

consideration, and we provide a recommendation 

for the optimal QC approach in large structural 

neuroimaging studies.  

 

2 MATERIAL AND METHODS 
2.1 STUDY DESIGN AND PARTICIPANTS 

2.1.1 Sample 

We used data from The Maastricht Study, an 

observational prospective population-based 

cohort study (Schram et al., 2014). In brief, the 

study focuses on the etiology, pathophysiology, 

complications, and comorbidities of type 2 

diabetes and is characterized by an extensive 

phenotyping approach. All individuals aged 

between 40 and 75 years living in the southern 

part of the Netherlands were eligible for 

participation. Participants were recruited through 

mass media campaigns, from the municipal 

registries and the regional Diabetes Patient 

Registry via mailings. Recruitment was stratified 

according to known type 2 diabetes status, with 

an oversampling of individuals with type 2 

diabetes. The study has been approved by the 

institutional medical ethical committee 

(NL31329.068.10) and the Dutch Ministry of 

Health, Welfare, and Sports of the Netherlands 

(permit 131088-105234-PG). All participants 

gave written informed consent. 

The present report uses cross-sectional data from 

the first 3451 participants who completed the 

baseline survey between November 2010 and 

September 2013. The selection includes 200 

participants with mild cognitive impairment 

(MCI), and 200 non-MCI participants in order to 

introduce some heterogeneity in the sample. 

These are matched on age, sex and educational 

level, without oversampling for diabetes. MCI 

diagnosis was based on: Mini-Mental State 

Examination (Folstein et al., 1983) scores below 

24 points; more than two cognitive tests not 

executed; delayed recall and word learning test 

(Walton, 1958), or Stroop-III (Stroop, 1935) 1.5 

SD below the population-mean. Of those 400 

participants, 260 had MRI brain data available. 

Data processing and extraction failed in one 

participant, specifically in the MRIQC tool 

processing, and was removed. Hence, the current 

manuscript includes 259 participants. See 

participant inclusion flowchart in Figure 1.   

 

2.1.2 MRI acquisition 

Brain images were acquired on a 3T clinical 

magnetic resonance scanner (MAGNETOM 

Prismafit, Siemens Healthineers GmbH) located 

at a dedicated scanning facility (Scannexus, 

Maastricht, The Netherlands) using a head/neck 

coil with 64 elements for parallel imaging. The 

MRI protocol included a three-dimensional (3D) 

T1-weighted (T1w) magnetization prepared rapid 

acquisition gradient echo (MPRAGE) sequence 

(repetition time/inversion time/echo time 

(TR/TI/TE) 2,300/900/2.98ms, 176 slices, 256 × 

240 matrix size, 1.0 mm cubic reconstructed 

voxel size); and a fluid-attenuated inversion 

recovery (FLAIR) sequence (TR/TI/TE 

5,000/1,800/394 ms, 176 slices, 512 × 512 matrix 

size, 0.49 × 0.49 × 1.0 mm reconstructed voxel 

size). 
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Matched on age, 

sex and  

educational level 

MCI 

n=200 

Non-MCI 

n=200 

Available MRI 

data 

n=260 

Data extraction: 

1. Demographics 

 - Age 

 - Sex 

 - Body mass index 

 - MMSE 

 - Education level  

 - MCI status 

 - Diabetes status 

2. MRIQC 

 - Quality score 

3. FreeSurfer  

 - Morphological estimates 

 - Euler Numbers 

 - Contrast-to-noise ratio 

3. Qoala-T 

 - Quality score 

Removal of 

missing cases:  

MRIQC n=1 

Final sample 

n=259 

DMS: Dataset 2 

n=3451 

Figure 1: Sample selection and data extraction. Among the included participants in dataset 2, a sample 

of MCI participants and matched non-MCI were selected. Among these, 260 participants had available 

brain MRI data. There was one missing case because the MRIQC tool was unable to run in one of the 

participants. The case with missing data was removed and the present report includes 259 subjects.   
 

Abbreviations: MCI: Mild cognitive impairment; MMSE: Minimental State Examination. 
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2.1.3 Brain segmentation 

Brain segmentation and cortical parcellation was 

performed on 259 participants with FreeSurfer 

v6.0 (Fischl, 2012) using T1w and FLAIR images 

as input. The optional arguments “-FLAIRpial” 

and “-3T” were used to optimize segmentation 

and parcellation quality. In addition, hippocampal 

subfields (Iglesias et al., 2015) were extracted. 

FreeSurfer output yielded cortical area (68 ROIs) 

and cortical thickness estimates (68 ROIs) in 

accordance with the Desikan-Killiany atlas 

(Desikan et al., 2006), as well as subcortical 

volumes (38 ROIs), and hippocampal subfields 

(24 ROIs). Hence, a total of 198 morphological 

estimates were obtained per individual brain. 

With no further manipulation, tabulated data was 

extracted. This original dataset will be referred 

from now on as “Non-QC dataset” (see 

Figure 2A) and used as reference for comparison 

with the other QC datasets.  

 

2.1.4 Quality control strategies 

Eleven QC strategies were applied to the original 

sample, generating 11 new QC datasets covering 

all morphological estimates for cortical thickness, 

cortical area, subcortical volumes and 

hippocampal volumes. Each QC strategy resulted 

in different brains to edit, include and exclude. 

Hence, all the 11 new QC datasets (and the non-

QC dataset) contain 198 morphological 

estimates, but differ with respect to participant 

inclusion and which brains underwent manual 

editing. 

These strategies can be divided into three 

categories: 1) full manual QC with editing, i.e. 

gold standard; 2) automated QC by exclusion of 

outliers based on: MRIQC, Qoala-T, 

Morphological, EN or CNR measures; 3) 

semi-automated QC by visual inspection of 

outliers based on: MRIQC, Qoala-T, 

Morphological, EN or CNR measures. In the next 

sections we describe the QC strategies in detail. 

 

2.1.4.1 Manual quality control and editing: 

gold standard assessment 

The first category, “full manual QC” includes 

only one QC strategy: the gold standard. Figure 

2B shows the manual QC process. This strategy 

was executed by two researchers who 

independently visually inspected and rated brain 

segmentations according to their quality, 

followed by manual editing of segmentations 

identified as inaccurate.  

A standard operating procedure (SOP) for visual 

inspection and manual editing was designed 

specifically for The Maastricht Study. A 

researcher with three years of experience in 

hands-on QC of large MRI cohorts (J.M.) 

performed visual inspection of the 259 brain 

segmentations twice with a 6-month period gap, 

without and with the help of the SOP 

respectively. A second researcher (M.B.), without 

prior experience in QC, independently reviewed 

the same set of segmentations once, after training 

by rater 1, and following the same SOP. Both 

researchers scored the quality of the 

segmentations from 0 to 3, where 0 referred to 

segmentations with perfect quality, 1 to 

segmentations with sufficient quality, 2 to 

segmentations that needed manual editing, and 3 

to segmentations that should be excluded due to 

unfixable inaccuracies.  

Finally, both researchers met to review and 

discuss each discordant case and reached 

consensus, creating a final agreed-upon score 

called from now on “Accorded rating”. The 

segmentations with accorded ratings of 0 or 1 

were accepted, and those rated with a 3 were 

removed from the dataset.   

Subsequently, manual editing was performed on 

those brains with inaccurate 

segmentations -scored as 2 by the accorded 

rating-. The editing was performed by changing 

the brain surfaces where inaccuracies were 

detected. This process was done through addition 

or removal of voxels in the white matter mask, 

removal of voxels in the brain mask, and addition 

of control points in the brain mask.   

The edited subjects subsequently underwent a 

new segmentation pipeline. This process -visual 

inspection, manual editing, and production of a 

new segmentation- was repeated a maximum of 

two times when necessary, after which, the 

reconstructed images were visually inspected one 

last time. These were then accepted as accurate 

(scores 0 or 1) or rejected as unfixable (score of 

3). 
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Figure 2: Creation of datasets through QC strategies. Each QC strategy includes specific steps: Manual QC includes only the 

manual step, Auto-QC includes the automatic step, Semi-QC includes both, and no QC includes none of them.  
  

2A) No QC: The extraction of the morphological estimates is done without any QC.  

2B) Manual QC: Segmented images undergo visual inspection. Concurred rating classifies the images to “pass”, “edit” or 

“exclude”. When appropriate, manual editing is performed a maximum of two times. All images classified as “pass” in the last 

round are included in the dataset. In parallel, data is independently extracted (box in gray) for only those images manually 

edited (n=39). This is done before and after undergoing manual editing.  
  

2C) Automatic QC: Segmentations are classified according to their quality by either an automated software (MRIQC & Qoala-

T) or outliers based on several metrics (Morphological, EN or CNR). Only those classified as “good” are included in the dataset.  
  

2D) Semi-automatic QC: A “combination” between automatic and manual QC. Instead of being excluded, images classified as 

“poor” by the automated steps, undergo visual inspection and manual editing when appropriate.  
  
  

Abbreviations: QC: Quality control; Qoala: Qoala-T; EN: Euler numbers; CNR: Contrast-to-noise ratio  

Input Automatic step Manual step Data extraction 

  2B: Manual QC (gold standard) 
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Edit 
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editing 
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“Manual-QC” 

Extraction of  

data before and after 

editing 

n=39 

  2C: Automatic QC 

FreeSurfer’s 

segmentation 

Automati
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detection 

Good 

Poor 
*MRIQC 

*Qoala 

*Morphological 

*EN 

*CNR 
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  2A: No QC (original sample) 

FreeSurfer’s 

segmentation 

Dataset:  

“Non-QC” 

  2D: Semi-automatic QC 
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Automati

c 

detection 

Good 

Poor Visual 

inspectio

n 

Score=0/1 

Pass 

Score=2 

Edit 

Score=3 

Exclude 

Manual 

editing 

*MRIQC 

*Qoala 

*Morphological 

*EN 

*CNR 

Datasets:  

“Semi- * ” 

x2 

x2 
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Tabulated data from all accepted segmentations’ 

cortical thickness, cortical surface area, 

subcortical volumes and hippocampal 

volumes -either edited or unedited- were 

subsequently extracted. This tabulated data will 

be referred to as “Manual-QC dataset”.  

In order to study changes produced by manual 

editing in brain estimates, morphological 

estimates were additionally extracted before and 

after manual editing across all the edited 

segmentations (n=39). These 39 subjects will be 

used to investigate the alterations due to manual 

editing on morphological FreeSurfer estimates.   

 

2.1.4.2 Automatic quality control: exclusion of 

cases 

Figure 2C shows the automatic QC process. MR 

images were either accepted or excluded based on 

the assessment by the following tools: MRIQC 

(Esteban et al., 2017), and Qoala-T 

(alternative B) (Klapwijk et al., 2019); and the 

following metrics: FreeSurfer’s global 

morphological measures, EN (Dale et al., 1999), 

and CNR (Welvaert and Rosseel, 2013). 

The tools MRIQC and Qoala-T use machine 

learning to provide a binary quality score (“good” 

or “poor”). Segmentations with a quality score of 

“poor” were excluded. Tabulated data were then 

extracted, creating the datasets “Auto-MRIQC 

dataset” and “Auto-Qoala dataset” respectively. 

Despite the fact that many studies define outliers 

based on standard deviation, it is a measure 

highly dependent on distribution, as it assumes a 

normal distribution, and hence not a robust 

method to detect outliers (Leys et al., 2013). For 

this reason, in this study outliers were defined as 

1.5 interquartile range (IQR) below the first 

quartile (Q1), and 1.5 IQR above the third 

quartile, following the classical method proposed 

by Tukey (1977). Hence, the lower inner fence 

was defined as Q1-1.5*IQR, while the upper 

inner fence was Q3+1.5*IQR. 

The identification of morphological outliers was 

specific for each type of measure, and based on 

the next FreeSurfer’s global estimates: left/right 

hemisphere mean thickness, for estimates of 

cortical thickness; left/right hemisphere white 

surface area for cortical area; estimated total 

intracranial volume and mask volume for 

subcortical volumes; and left/right hemisphere 

whole hippocampus volume for hippocampal 

subfields. Outliers were excluded below the 

lower and above the upper inner fences. 

Tabulated data were extracted for each type of 

morphological estimate separately (cortical 

thickness, cortical area, subcortical volumes and 

hippocampal volumes), and then put together, 

creating the dataset “Auto-morphological 

dataset”. 

Outliers based on EN and CNR metrics were 

excluded only as values below the lower inner 

fence, because high values in EN and CNR 

indicate a positive relation with quality. 

Tabulated data were extracted, creating the 

datasets “Auto-EN dataset” and “Auto-CNR 

dataset” respectively.  

 

2.1.4.3 Semi-automated quality control: 

automatic detection with visual 

inspection and editing 

Figure 2D shows the semi-automated QC 

process. Based on the same principle as for the 

automatic QC strategies, potentially inaccurate 

cases and outliers were identified with MRIQC, 

Qoala-T, global morphological estimates, EN, 

and CNR. Rather than being excluded, the 

potentially inaccurate cases went through visual 

inspection and manual editing when necessary, in 

an identical scheme as the one described in 

section “2.1.4.1 Manual quality control and 

editing: the gold standard assessment”. 

For each approach, tabulated data were then 

extracted creating the QC datasets: 

“Semi-MRIQC dataset”, “Semi-Qoala dataset”, 

“Semi-Morphological dataset”, “Semi-EN 

dataset”, and “Semi-CNR dataset”. 

 

2.2 STATISTICAL ANALYSIS 

2.2.1 Sample characteristics 

Wilcoxon signed-rank tests and Chi-squared (χ2) 

tests, for continuous and categorical variables 

respectively, were performed to assess significant 

differences between the MCI and non-MCI 

groups. 

 

2.2.2 Agreement and overlap of manual ratings 

Weighted Cohen's Kappa (К) (Cohen, 1968) and 

percentage of agreement ( 
scores with agreement

total scores
×

100 ) were implemented to assess inter- and 

intra-rater reliability among the visual 

inspection’s ratings. 
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2.2.3 Manual editing effects 

To assess our first aim, the percentage of change 

on brain morphological estimates 

( 
edited−unedited

unedited
× 100 ) after manually editing 

was extracted for each of the 198 brain 

morphological estimates separately. Wilcoxon 

signed-rank test, and effect size (r) (Rosenthal et 

al., 1994) defined as r=Z/√N, where Z is the 

Z-score, and N is the sample size, were used to 

test significance of changes before and after 

manual editing for each paired morphological 

estimate. False discovery rate (FDR) was used for 

multiple comparisons correction providing 

q-values. In addition, we extracted the average 

within-subject coefficient of variation (CoV) for 

each of the 198 morphological estimates as: 

CoVwithin−subject = √
1

n
∑

s

m2n   . √
1

n
∑

s

m2n  . 

Where n is the sample size, s the within-subject 

variance as s =
(xedited−xunedited)2

2
  , m the 

within-subject mean as m =
xedited+ xunedited

2
 , 

and x is a specific brain morphological estimate.  

2.2.4 Comparison of QC strategies 

To assess our second aim, we focus on how QC 

strategies change the proportion of unexplained 

variance relative to its total variance. The 

background concept is based on the measurement 

error contained in a linear regression (Yi = β0 +
∑ βjXi,j + εi

p
j−1 ) model’s stochastic component, 

the error term. Purely measuring the changes in 

unexplained variance is insufficient, as any QC 

strategy that would reduce the total variance of a 

sample will collaterally reduce the unexplained 

variance, but potentially also the explained one. 

Therefore, in this paper we will use the inverse 

proportion of unexplained-to-total variance. The 

coefficient of determination (R2) captures this 

proportion (R2 = 1 − (
∑ εei

2
i

∑ (yi− y̅)2
i

) = 1 −

(
Unexplained variance

Total variance
)). It can be robustly 

extracted from a linear regression model, and in 

practical terms it is not affected by sample size 

(Hayes, 2017).  

In order to extract R2 for each morphological 

measure in each dataset, we created a test case 

regression model with one morphological 

measure as dependent variable, and age and sex 

as independent variables. We ran this model 

separately for each of the 198 morphological 

measures, in the non-QC dataset and in each of 

the 11 newly created datasets, obtaining 198 R2 

for each of QC datasets (i.e. a total of 2376 R2 

values). The reason to use a model with age and 

sex is to ensure a wide range of R2 values in each 

dataset. Age related brain atrophy has been 

widely studied (Gur et al., 1991; Kakimoto et al., 

2016; Murphy et al., 1992; Tang et al., 2001; 

Yoshii et al., 1988), and most brain regions are to 

some extent affected by age. Please note that 

purpose of the linear regression with age is to 

obtain a metric related to the unexplained-to-total 

variance, not to assess what morphological 

estimate has the strongest relationship with age.  

Using non-QC as baseline, we then individually 

subtracted the R2 values obtained in the non-QC 

sample from their paired R2 values obtained in 

each of the 11 QC datasets, obtaining 198 delta 

R2 (∆R2) for each of the 11 QC strategies 

(∆RxQCi

2 = Rx,QCi

2 − Rx,NonQC
2 , where x is the 

specific morphological estimate, and i 

corresponds to 1 of the 11 QC datasets not 

including the baseline, Non-QC). 

An increase in ∆Rx
2 will then indicate a reduction 

of unexplained-to-total variance ratio for a 

specific brain morphological estimate, and hence 

a beneficial increase of relative explained 

variance. Differences in ∆Rx
2 will be assessed 

qualitatively. 

All statistical analysis were performed in R 4.0.2 

(2020-06-22) (Team, 2013). Graphs were created 

through ggplot2 (Wickam, 2009), and brain maps 

through ggseg (Mowinckel & Vidal-Piñeiro, 

2019). Scripts are available upon reasonable 

request from the corresponding authors.  

 

3 RESULTS 
3.1 SAMPLE CHARACTERISTICS 

3.1.1 Subjects 

259 participants completed FreeSurfer’s recon-all 

and underwent all QC strategies. Supplementary 

Table 1 summarizes the characteristics of the 

study sample stratified for MCI and non-MCI. 

The MCI and non-MCI participants were 

matched for age, sex and educational level. A 

significantly higher BMI in MCI (p=0.017) was 

found, but there were no other differences on 

demographic parameters between participants. 
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Table 1: Cohen’s kappa scores between 

raters and confidence interval. TP: time 

point; SOP: Standard operating procedure. 
 

 

 

3.1.2 Brain segmentation & creation of 

datasets 

A total of 11 QC strategies were applied to the 

original sample (non-QC dataset). Each strategy 

differed in the amount of segmentations that were 

visually inspected, edited or excluded, as well as 

the time investment of performing each QC 

strategy. The sample sizes of the newly created 

QC datasets ranged from n=205 to n=259. The 

time investment to perform QC ranged from 15 

minutes for the auto-QC strategies to 126 hours 

(approximately 30 minutes per subject) when 

applying the manual QC strategy. Supplementary 

Table 2 summarizes the number of segmentations 

visually inspected, edited and excluded, the total 

sample sizes of the new datasets, and the time 

investment of applying each QC strategy. 

 
 

3.1.3 Manual quality control 

The inter-rater agreement was 54.7%. The 

intra-rater agreement was 40.7% when only one 

rater used SOP, and 47.0% when both raters 

followed the SOP. Table 1 summarizes inter/intra 

rater reliability through weighted Cohen’s Kappa 

values (К), which takes in consideration the 

scores as ordered values, and confidence intervals 

(CI). The inter-rater reliability increases with the 

use of a SOP, reaching a К=0.25, similar to the 

intra-rater reliability, with К=0.24. 

The accorded rating, agreed-upon by both raters, 

classified 17.8% of the segmentations as 

inaccurate, either by requiring manual editing or 

exclusion. Figure 3 shows the distribution of the 

scores given by each rater, as well as the final 

accorded rating. 

  

 

3.2 MANUAL EDITING OF BRAIN SURFACES: 

CHANGES IN BRAIN ESTIMATES  

Segmentations of 39 out of 259 brains had an 

accorded rating of “2” and thus were manually 

edited. Manual editing resulted in changes in all 

morphological measures out of the 39 edited 

brains. The largest difference after editing, with a 

mean increase of 25% of its volume, was found 

in bilateral fimbria, followed by differences that 

ranged from +9 to +12% in bilateral vessel and 

cerebellar white matter. The largest reduction was 

found in the fourth ventricle, with a mean volume 

reduction of 7%. Figure 4A shows the average 

difference in percentage across subjects after 

editing.  

Wilcoxon signed-rank test showed significant 

differences (q-value < 0.05) in 53 out of the 197 

analyzed morphological measures. See 

Supplementary Figure 1 for q-values’ brain maps. 

The effect sizes (r) ranged from 0 to 0.87, with 

the largest effect sizes (r>0.8) found in bilateral 

fimbria, brainstem, 4th ventricle, left cerebellum 

white matter, left lateral ventricle, and bilateral 

ventral DC. Figure 4B shows the effect size 

distribution for several cortical and subcortical 

morphological measures. A brain map legend is 

provided in Supplementary Figure 2.  

The median CoV for all brain regions was 2.4%, 

with a standard deviation (SD) of 3.0%. The 

largest CoV was found within subcortical 

structures (CoV=4.5%, SD=4.6%), followed by 

Kappa 

(Confidence 

Interval) 

Rater 

1 TP1 

Rater 1 

TP2 
Rater 2 

Rater 1 

TP1 
1 

0.24  

(-0.45, 0.94) 

0.16  

(-0.41, 0.73) 

Rater 1 

TP2 
 1 

0.25  

(-0.09, 0.60) 

Rater 2   1 

Figure 3: Distribution of given scores in each visual inspection 

and final accorded rating.  

Abbreviations: SOP: Standard operating procedure.  

Accorded 
rating 
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hippocampal subfields (CoV=2.9%, SD=4.2%), 

cortical thickness (CoV=2.2%, SD=1.0%), and 

the smaller in cortical areas (CoV=1.7%, 

SD=1.6%).  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Brain maps 
 

4A: Figure shows the average change after editing of each ROI. Yellow color indicates an increase in volume, area or thickness, 

while blue color shows a decrease. Color intensity indicated magnitude. Notice the percentage of change in subcortical 

volumes is larger than those found in cortical areas and thickness, and so it is reflexed it its legend.  

4B: Effect size. Brain map shows the effect size (r) of the changes, larger effect sizes are closer to 1 and represented in pink, 

while lower effect sizes are closer to 0 and represented in white.  
 

Note: The brain maps do not represent all the analyzed morphological measures, for a list of percentage of change, q-values 

and effect sizes of all brain regions see Supplementary Table 3 (A, B and C). 
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3.3 QUALITY CONTROL APPROACHES: 

CONSEQUENCES IN A REGRESSION 

ANALYSIS 

R2 was extracted for 198 morphological measure 

over 12 datasets (1 non-QC and 11 QC datasets). 

The distribution of the R2 values obtained by 

each dataset can be found in Supplementary 

Figure 3. 

Figure 5 shows the mean ∆R^2 obtained by each 

QC strategy, when compared to the non QC 

dataset. The QC strategies that resulted in a 

higher increase in explained to total variance ratio 

as measured by larger positive ∆R^2 are: Manual 

QC (mean ∆R^2=.0087) for cortical thickness; 

Auto Qoala (mean ∆R^2=.0115) and Auto EN 

(mean ∆R^2=.0077) for cortical area; auto 

MRIQC (mean ∆R^2=.0123), Auto EN (mean 

∆R^2=.0097), and Auto Qoala (mean 

∆R^2=.0060) for subcortical volumes; and Auto 

EN (mean ∆R^2=.0131), Auto MRIQC (mean 

∆R^2=.0072) and Auto Qoala (mean 

∆R^2=.0055) for hippocampal subfields. The 

exclusion of cases based on morphological 

estimates (Auto Morphological) produces a 

relatively large reduction in R2 for any type of 

measure (mean ∆R^2=  .0337 for area, mean 

∆R^2=  .0222 for hippocampal subfields, mean 

∆R^2=  .0172 for subcortical volumes and mean 

∆R^2=  .0107 for cortical thickness), as well as 

Auto Qoala, which reduces R2 in cortical 

thickness in  .0207 points relative to the non QC 

strategy.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Circles position indicate the mean ∆𝑅2 across type of morphological estimates obtained by 

each QC strategy.  Green indicates an increase in R2 while orange indicates a decrease, intensity of 

color shows magnitude of change. 
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Across all brain regions, the exclusion based on 

Euler numbers (Auto-EN) yields the largest 

decrease of unexplained variance relative to total 

variance, as shown by the largest increase in R2 

(∆𝑅2 =.0050). Auto-Morphological yields the 

largest decrease in R2 (∆𝑅2 =.-.0213). Figure 6 

show the mean ∆𝑅2 for each QC strategy in each 

type of morphological measure. 

 

 

 

 

 

 

 

 

 

 

  

Figure 6: Squares indicate the mean ∆𝑅2 across morphological estimates obtained by each QC strategy. Whiskers show the 

95% confidence interval for the mean. Green indicates an increase in R2 while orange indicates a decrease, intensity of color 

shows magnitude of change. Red dotted line shows the mean ∆𝑅2 of the non-QC strategy, i.e. zero.  
  

Abbreviations: QC: Quality control; EN: Euler numbers; CNR: Contrast-to-noise ratio; Qoala: Qoala-T 
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4 DISCUSSION 
In this study we investigated the influence of 

manual editing of brain surfaces on resulting 

morphological FreeSurfer estimates. We also 

compared the performance of different QC 

strategies by assessing how these alter the relative 

proportion of unexplained variance in a 

neuroimaging sample.  

 
4.1 MANUAL EDITING BRAIN SURFACES  

Manual editing of brain segmentations produces 

significant changes in several brain 

morphological estimates across thickness, surface 

area and volumetric measures, with large effect 

sizes especially found in subcortical structures. 

Similar studies showed mixed results: Waters et 

al. (2019) showed significant differences in 

cortical but not subcortical volume following 

editing. Beelen et al. (2020) found a significant 

increase in cortical area, and a decrease in cortical 

thickness after manual editing. Conversely, 

McCarthy et al. (2015) found no significant 

differences in cortical area, thickness, and 

subcortical volumes. The discrepancy in results 

could be explained by the use of different editing 

techniques: While Waters et al. (2019) only 

edited voxels in the brain mask, Beelen et al. 

(2020) also edited the white matter mask, and 

used control points; McCarthy et al. (2015) 

exclusively used control points and white matter 

modification; and we edited the brain mask, white 

matter mask and used control points.  

The within-subject CoV that we obtained after 

manual editing was similar to what was found in 

repeatability studies for subcortical structures 

(Maclaren et al., 2014; Velasco‐Annis et al., 

2018). Further, similar CoV were found in 

FreeSurfer’s reproducibility studies between 

operating systems in measures of volume and 

thickness (Gronenschild et al., 2012). Taken 

together, our results indicate that despite the 

significant changes in morphological estimates 

produced by manual editing, those changes are 

similar to those expected from the process of 

re-running the segmentation process itself, and do 

not necessarily imply an improvement in 

segmentation quality.  

 

4.2 COMPARISON BETWEEN QC METHODS  

We created a regression model and extracted the  

∆R2 for each morphological estimate in each QC 

strategy when compared with non-QC. To our 

knowledge, this is the first study using the 

proportion of unexplained-to-total variance as a 

measure of quality.  

Two previous studies have assessed the 

importance of manual QC by testing whether it 

increases the sensitivity to detect differences 

between clinical groups. Both studies used paired 

t-tests to compare the effect sizes obtained with 

and without QC, with no significant results 

(Beelen et al., 2020; McCarthy et al., 2015). With 

a different methodology, Waters et al. (2019) 

assessed if the correlation coefficients for 

brain-behavior relationships differed between 

edited and unedited segmentations, finding 

non-significant differences. Relating the quality 

of the data to the capacity to find significant 

results can be misleading, as non-randomized 

noise, for example the one caused by biases in the 

data (Blumenthal et al., 2002; Madan, 2018; 

Pardoe et al., 2016; Savalia et al., 2017; Wenger 

et al., 2014) can lead to more significant 

differences between groups. Similarly, some 

studies have used the variance of brain volumes 

before and after applying a specific QC strategy 

(Backhausen et al., 2016; McCarthy et al., 2015) 

to test whether a QC strategy is adequate. And 

while the reduction of the total variance of a 

sample implies a potential reduction on 

unexplained variance, it can also entail a potential 

reduction of explained variance driven by actual 

morpho-physiological information. Finally, other 

studies assess the viability of a QC method by 

comparing it to manual ratings (Klapwijk et al., 

2019; Rosen et al., 2018; Yao et al., 2005), which 

assumes that manual QC improves the quality of 

a sample. Using the proportion of unexplained-to-

total variance, allows us to assess the 

measurement error caused by both noise and 

biases.  

 

4.2.1 The optimal QC strategy depends on the 

type of morphological estimate of 

interest 

Our results show that cortical thickness benefits 

the most from manual QC, despite the small 

changes by manual editing in cortical thickness; 

cortical area benefits most from Auto-Qoala and 
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Auto-EN; and subcortical and hippocampal 

subfields volumes from Auto-EN and Auto-

MRIQC.   

The different effects of the QC strategies on each 

type of estimate can be explained by the particular 

mechanisms of each QC strategy. Manual-QC 

visually inspects the upper and lower boundaries 

of the cortical gray matter (pial and white matter 

surfaces respectively), which are tightly related to 

the cortical gray matter thickness. Manual editing 

changes the distance between these boundaries, 

directly changing the cortical thickness estimates. 

However, manual editing does not change the 

boundaries between specific ROIs, and hence 

morphological estimates of surface area are not 

substantially affected. Distinct from cortical 

parcellation, subcortical segmentation is defined 

based on image intensities and probabilistic 

information of ROIs positions (Fischl et al., 

2002), and thus, correcting errors in surface 

boundaries and adding control points to correct 

normalization errors changes the subcortical 

estimations only indirectly.  The QC strategies 

based on image quality metrics -such as CNR and 

specially MRIQC- may provide a good indication 

of segmentation quality based on the fact that 

good image quality -for example high contrast, 

with no movement or artifacts- which facilitates 

good segmentation performance.  

 

4.2.2 QC strategies based on global 

morphological estimates are not a 

suitable QC solution 

Notably, for all types of measures, the ∆R2 

decreased by the commonly used strategy of 

excluding or visually inspecting and editing 

subjects based on global morphological estimates 

(Auto- and Semi-Morphological QC strategies). 

Excluding outliers based on morphological 

estimates naturally reduces the total variance of a 

sample, but our results indicate that a large part of 

this reduced variance is not unexplained variance 

but potentially relevant morpho-physiological 

information. In addition, a previous study found 

that approximately 40% of the segmentation 

errors are not identified by the use of 

morphological outliers (Waters et al., 2019). 

Taken together, this strongly indicates that the 

exclusion of subjects based on global 

morphological estimates is not a suitable QC 

strategy. 

 

4.2.3 Auto-EN produces, on average, the 

greatest reduction in noise 

Some studies might be interested in all types of 

morphological measures at the same time. For 

those cases, Auto-EN is a pragmatic strategy that 

(on average) produces the best results, 

consistently good for three out of four types of 

brain measures (i.e. subcortical volumes, 

hippocampal subfields and cortical area). EN are 

a measure of reconstructed surface complexity, 

and has been found to highly correlate with visual 

inspection scores and image artifacts in several 

samples (Rosen et al., 2018). It is perhaps 

counterintuitive that this QC strategy performs 

poorly for measures of cortical thickness. 

However, EN relates to the frequency, and not the 

size, of bridges and holes on the brain 

segmentation. Cortical thickness might be 

influenced by large errors (possibly more related 

to skull striping) than from frequent small ones, 

which may be more related to underlying image 

quality. Hence, auto-EN is an effective and 

time-efficient QC strategy despite the small 

reduction in ∆R2 for cortical measures. 

Alternatively, manual-QC and semi-EN provide 

a small but consistently good increase in ∆R2, all 

the same with a higher time investment.  

 

4.3 LIMITATIONS 

The design of this study does not allow drawing 

firm conclusions beyond models using age as an 

independent variable. However, a large 

proportion of published studies include age as a 

covariate or independent variable, and thus, 

information about the optimal QC procedure for 

such studies will be relevant for the neuroimaging 

community. In addition, the segmentation quality 

of our sample was high, as measured by a high 

percentage (82.2%) of brain segmentations rated 

as accurate. Different (more severely affected) 

clinical samples, studies with different population 

types, or even different acquisition hardware or 

parameters, could lead to a different pattern of 

segmentation inaccuracies, and further research 

needs to be performed to investigate these 

scenarios.  
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5 CONCLUSION  
Manual editing of brain surfaces significantly 

alters, but not necessarily improves, FreeSurfer’s 

brain morphological estimates. The selection of a 

QC strategy should be determined by the type of 

morphological measures of interest in a study, 

while taking in consideration the available 

resources.  

We recommend the exclusion of outliers based on 

Euler number for studies using subcortical 

measures, hippocampal subfields or cortical 

areas, as it produces on average the largest 

increase in explained‑to‑total variance 

proportion, in addition to being a highly 

time‑efficient QC strategy. Manual‑QC is the 

strategy that may provide the best quality for 

studies including cortical thickness measures. 

However, this strategy may not be feasible for 

large samples, and the exclusion of outliers based 

on Euler Numbers or MRIQC, or the visual 

inspection of outliers based on Euler numbers are 

reliable alternatives. Finally, we discourage the 

exclusion of outliers based on global 

morphological estimates as a method to ensure 

segmentation quality as it reduces a larger 

proportion of explained variance. 
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