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Abstract 

A major goal of large-scale brain imaging datasets is to provide resources for investigating heterogeneous 

populations. Characterisation of functional brain networks for individual subjects from these datasets will have 

an enormous potential for prediction of cognitive or clinical traits. We propose for the first time a technique, 

Stochastic Probabilistic Functional Modes (sPROFUMO), that is scalable to UK Biobank (UKB) with expected 

100,000 participants, and hierarchically estimates functional brain networks in individuals and the population, 

while allowing for bidirectional flow of information between the two. Using simulations, we show the model’s 

utility, especially in scenarios that involve significant cross-subject variability, or require delineation of fine-

grained differences between the networks. Subsequently, by applying the model to resting-state fMRI from 4999 

UKB subjects, we mapped resting state networks (RSNs) in single subjects with greater detail than we have 

achieved previously in UKB (>100 RSNs), and demonstrate that these RSNs can predict a range of sensorimotor 

and higher-level cognitive functions. Furthermore, we demonstrate several advantages of the model over 

independent component analysis combined with dual-regression (ICA-DR), particularly with respect to the 

estimation of the spatial configuration of the RSNs and the predictive power for cognitive traits. The proposed 

model and results can open a new door for future investigations into individualised profiles of brain function 

from big data. 

 

Keywords: Hierarchical network modelling, big data fMRI, single subject connectivity, stochastic inference, 

PROFUMO, resting state networks, cognition prediction   

 

Highlights 

• We introduce stochastic PROFUMO (sPROFUMO) for inferring functional brain networks from big data  

• sPROFUMO hierarchically estimates fMRI networks in population and individuals  

• We characterised high dimensional resting state fMRI networks from UK Biobank  

• Model outperforms ICA and dual regression for estimation of individual-specific network topography 

• We demonstrate the model’s utility for predicting cognitive traits  
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1 Introduction 

Spontaneous fluctuations in human brain activity, and their interpretations, have been a key focus of human 

neuroscience research for several years (Biswal et al., 1995; Buckner and Vincent, 2007; Calhoun et al., 2008; 

Damoiseaux et al., 2006; Raichle et al., 2001; Smith et al., 2013b). Resting state networks (RSNs) characterise 

functionally synchronised regions that underlie the brain function in the absence of active tasks, and have been 

replicated in different population cohorts (Fransson et al., 2007; Lee et al., 2013) and using several imaging 

modalities such as functional Magnetic Resonance Imaging (fMRI) (Allen et al., 2014; Beckmann et al., 2005; 

Power et al., 2014) and Magneto-/Electroencephalography (Brookes et al., 2011; de Pasquale et al., 2010; 

Mantini et al., 2007; Vidaurre et al., 2018b), and have been shown to coactivate with spontaneous replay of 

recently acquired information (Higgins et al., 2021). Large-scale neuroimaging datasets such as the Human 

Connectome Project (HCP) (Smith et al., 2013a; Van Essen et al., 2012) and UK Biobank (UKB) (Alfaro-Almagro 

et al., 2018; Miller et al., 2016), have significantly advanced RSN research, leading to the mapping of brain 

function with unprecedented detail (Fan et al., 2016; Glasser et al., 2016). Furthermore, the wealth of non-

imaging phenotypes in these datasets has provided new insights into the translational importance of the RSNs, 

which display significant associations with life factors, genetics, behavioural and clinical traits (Elliott et al., 2018; 

Finn et al., 2015; Jiang et al., 2020; Kong et al., 2019; Vidaurre et al., 2017). What remains largely unresolved, 

however, is how to accurately and robustly model cross-individual variations of the RSNs in big epidemiological 

data, such that substantial degrees of population heterogeneity are interpretably accounted for (Smith et al., 

2013b). This is particularly important if we are interested in utilising RSNs to characterise cognitive idiosyncrasies 

in individuals or as biomarkers to predict, e.g., pathology before clinical onset.  

Functional brain modes1 in rest and task are conventionally modelled using group-average algorithms, such as 

independent component analysis (ICA) (McKeown et al., 1998). Typically, modes are modelled as spatially 

contiguous parcels (Bellec et al., 2010; Craddock et al., 2012; van den Heuvel et al., 2008) or functionally unified 

systems distributed over multiple brain areas (Beckmann and Smith, 2004; Calhoun and Adali, 2012; Thomas 

Yeo et al., 2011), and characterised in terms of spatial configuration over the brain voxels (mode topography) 

and a summary time course that captures mode activity over time. Of particular interest is to characterise the 

functional connectivity between the modes themselves, ideally using models that can accurately disambiguate 

changes in functional connectivity across separate dimensions (e.g. spatial or temporal features) (Bijsterbosch 

et al., 2019, 2018), thereby obtaining functional connectomes.  

Recent evidence indicates that even after registration of the subject data to a standard brain such as MNI space, 

functional modes still significantly vary across individuals (Glasser et al., 2016; Gordon et al., 2017a; Mueller et 

al., 2013). These misalignments can be due to multiple factors including limitations in methodologies for aligning 

subjects’ data (e.g. registration errors), differences in subjects’ brain anatomy (Devlin and Poldrack, 2007; Llera 

                                                             

 
1 We use functional mode (FM) as an umbrella term to describe both large-scale and parcel-like functional entities of the brain function in 
rest and task. 
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et al., 2019) or inherent differences in functional localisations of the modes (Bijsterbosch et al., 2018; Gordon et 

al., 2017b; Haxby et al., 2020; Laumann et al., 2015). Therefore, it is increasingly desirable to devise models with 

hierarchical links between the population and individuals, which can accurately cope with subject deviations 

from the group, while at the same time maintaining a representative group model that provides correspondence 

over subjects. 

Hierarchical models can differ with respect to the way the direction of information flow between the population 

and individuals is set up. Unidirectional models often start from group-level estimations and derive subject 

modes as a variant of the group, of which dual regression is a well-known example (Beckmann et al., 2009; 

Nickerson et al., 2017). It runs a two-step multiple regression paradigm: firstly, group maps, typically from spatial 

ICA, are regressed against the data to extract subject-specific fMRI time series; secondly, DR regresses subject 

mode time courses against fMRI time-series to obtain subject-specific spatial mode maps. Alternatively, 

bidirectional models such as multi-subject dictionary learning (Abraham et al., 2013; Varoquaux et al., 2011), 

hierarchical ICA (Guo and Tang, 2013; Shi and Guo, 2016) and the framework of Probabilistic Functional Modes 

(PROFUMO) (Harrison et al., 2015) allow for bottom-up, data-driven estimation of the group-level modes, as 

well as top-down regularisation of the subject specific modes using the group-level model - and can thus 

accommodate larger degrees of population heterogeneity. 

Another important factor that distinguishes different hierarchical models is whether the hierarchy is defined 

over the mode topography or functional connectivity. More specifically, one approach is to identify a consensus 

spatial layout for the modes, and estimate how the number, locations and spatial arrangement of the voxels 

belonging to the mode varies across individuals. An alternative approach is to identify voxels belonging to a 

mode based on their connectivity profiles at group-level, and subsequently approximate subject-specific 

connectomes, e.g. similar to ideas implemented by multi-session hierarchical Bayesian parcellations (Kong et al., 

2019) or connectivity hyper-alignment (Guntupalli et al., 2018; Haxby et al., 2020). Notably, however, defining 

hierarchy solely on spatial topography or temporal connectivity might neglect how these two elements interact 

with each other in reality, which might in turn result in topographical misalignments being (mis)interpreted as 

(being changes in) functional connectivity or vice versa (Bijsterbosch et al., 2018). One solution is proposed by 

the latest version of PROFUMO (Harrison et al., 2020) which defines hierarchical models on both spatial 

topographies and functional connectivity.  

Despite their promise for modelling population heterogeneity, the application of hierarchical models to modern 

high-resolution fMRI with thousands of subjects is limited because of computational costs. Recent work has 

proposed solutions that are applicable to group models or unidirectional hierarchical models, e.g. using 

incremental or stochastic matrix factorisations (Mensch et al., 2018; Smith et al., 2014), or utilising Bayesian 

priors from group estimations to inform subject-specific network modelling (Mejia et al., 2019). Nevertheless, 

the application of the bidirectional hierarchical models to big data remains impractical (c.f. FIGURE 1) (Mejia et 

al., 2019).  

Contributions of the current study are twofold. Firstly, we propose an advance to PROFUMO using stochastic 

variational Bayes (VB) that can reduce the computational costs by a factor of 100, in order to scale the model 
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for big data. We refer to the proposed model as stochastic PROFUMO, or sPROFUMO for short, and refer to the 

probabilistic functional modes identified using this approach as PFMs. Stochastic VB (Hoffman et al., 2013) 

entails partitioning small, random subsets of observations into numerous batches, and visiting only a fraction of 

the population in every iteration, thus significantly reducing the computational expense (FIGURE 1), without loss 

of generalisability. For the purposes of fMRI analyses, different subjects provide a natural way to subdivide the 

data, and our algorithm therefore iterates through updating the group model over batches, while 

simultaneously optimising subject modes within these batches. This approach has been successfully applied to 

neuroimaging data to discover functional modes using group-level Hidden Markov Models (HMM) (Vidaurre et 

al., 2018a). Generalising this approach in sPROFUMO requires modifications to the original algorithm to ensure 

preserving group-level generalisability, cross-subject variability and subject-group alignment, as we will 

elaborate later in section Model. In addition to scaling the model to work on big data, sPROFUMO substantially 

reduces the computational expenses for medium-sized datasets while preserving the accuracy of estimations, 

and thus is expected to facilitate the model’s broader usability.  

The second contribution of this study is the application of sPROFUMO to fMRI data from 4999 UKB subjects, 

made possible by its substantially reduced computational costs. This allowed us to obtain both our first high-

dimensional PFM decomposition of brain function (100, 150 and 200 modes), and an increase in the detail of 

mapping of RSNs in single subjects compared to what has been reported previously from UKB. We tested how 

accurately these PFMs can predict non-imaging phenotypes based on 68 cognitive tests that cover a range of 

sensorimotor, memory, executive functions and general fluid intelligence. Our focus on high-dimensional RSNs 

was informed by recent studies that suggest the functional parcellations with 100-1000 modes to provide more 

elaborate delineation of the brain function compared to low-dimensional decompositions, which is useful for 

prediction of non-imaging variables (Dadi et al., 2020; Pervaiz et al., 2020). We investigated in detail the 

prediction power of mode elements in spatial and temporal domains, and identified the sPROFUMO modes, or 

PFMs, that provided the best predictors. We further carried out a detailed comparison between sPROFUMO and 

ICA-DR with regards to accounting for cross-subject variability and prediction power for cognitive heterogeneity. 
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2 Model 

In this section, we first provide a brief conceptual summary of PROFUMO (see (Harrison et al., 2020) for further 

details), and next elaborate on the stochastic variational inference and its application to obtain sPROFUMO.  

2.1 Classic PROFUMO summary 

PROFUMO is a hierarchical matrix factorisation framework with two levels of subject and group modelling.  

At the subject level, fMRI timeseries (Dsr) are decomposed into a set of spatial maps (Ps), time courses (Asr) and 

time course amplitudes (Hsr), with residuals 𝜺"# : 

𝑫"# =	𝑷"𝑯"#𝑨"# +	𝜺"#															𝑫"# ∈ 	ℝ-.×-0 , 𝑷" ∈ 	ℝ-.×-2,𝑯"# ∈ 	ℝ-2×-2, 𝑨"# ∈ 	ℝ-2×-0 															( 1 ) 

where s denotes each subject and r denotes a recording session. Ps denotes spatial mode layout of the modes 

across the brain voxels, which hereafter we will refer to as spatial maps, or just maps. Asr represents mode time 

courses and Hsr denotes mode amplitudes. Nv, Nm and Nt denote the number of voxels, modes and time points, 

respectively. 

Assuming that anatomical and functional organisation of the brain regions remain unchanged for a subject, the 

spatial map, Ps, are assumed to be the same across multiple scans (or runs – sets of continuous timeseries data). 

Each map is modelled using a Double-Gaussian Mixture Model (DGMM), where one Gaussian component is set 

to account for the signal and a second Gaussian distribution captures the background spatial noise in each voxel. 

Additionally, a per-mode membership probability is estimated to determine the probability of a voxel belonging 

Figure 1 Computational efficiency of Stochastic PROFUMO: CPU RAM required to run the model on large-scale 
datasets such as HCP and UKB, compared to classic PROFUMO. RAM usage for stochastic PROFUMO is 
calculated with batch size set to 50 or 1% of the full population, whichever the larger.  
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to the signal versus the noise component. Therefore, Ps consists of five posterior parameters (one map for each): 

signal mean, signal variance, noise mean, noise variance and membership probability. Spatial maps are one of 

the elements that are estimated hierarchically in PROFUMO. Therefore, in addition to Ps for each subject, a 

consensus set of group-level parameters is also estimated to capture both the group maps and the key patterns 

of cross-subject variability in the spatial domain. Concretely, we introduce a set of hyperpriors on - and infer the 

group-level posteriors over - the signal means, signal variances, noise variances and membership probabilities. 

The mode time courses, Asr, are estimated separately for each scan. These timeseries are allowed to vary across 

runs such that PROFUMO can account for both the unconstrained nature of the resting state and the inherent 

cross-run variations in task data. Similar to the spatial maps, mode time courses are also modelled as a sum of 

a signal and a noise component, where the signal component is HRF-constrained and the noise component 

follows a Gaussian distribution. Asr is not modelled hierarchically, because in general (at least for resting state 

data) there will be no consensus temporal structure across the subjects. However, even though the time courses 

are unconstrained, the temporal correlations among the neural time courses can be both highly structured 

within-individuals, and have a consensus structure across individuals (Shehzad et al., 2009). In order to account 

for these correlations, PROFUMO models the precision matrix 𝜶"# hierarchically and using Wishart distributions. 

Additionally, because of haemodynamic responses that govern the BOLD signal, the estimation of the partial 

correlation matrices explicitly incorporates HRF-constrained autocorrelations between the modes.  

Finally, the mode amplitudes, Hsr, are modelled as positive diagonal matrices, to capture (subject and/or scan) 

variations in the amplitude of the mode time series. In the dual regression paradigm, these amplitudes appear 

as the time course standard deviations and have been shown to reflect meaningful sources of within- and 

between-subject variations (Bijsterbosch et al., 2017). The PROFUMO framework captures these variations via 

multivariate normal distributions, again with a hierarchical link between the group and the subject levels. 

2.2 Stochastic PROFUMO (sPROFUMO) 

2.2.1 Standard VB 

PROFUMO uses a variational Bayesian (VB) framework to find a solution for the full probabilistic model described 

in the previous section. This optimises the parameters of a simple approximating distribution 𝑞, with the aim 

that it is as close as possible to the true posterior. In each model iteration, the group model is used to constrain 

the subject-specific matrix factorisations, from which one can infer posterior distributions for subject-specific 

spatial maps, time course correlations and amplitudes. Next, the posterior evidence is accumulated and 

combined across individuals to obtain an updated version of the group model. The model iterates between these 

two levels of estimation until convergence. In order to reach convergence, the algorithm utilises the conjugate-

exponential structure of the model to obtain a closed-form version of the natural gradient of the Free Energy 

(i.e. the difference between the true and approximate posteriors, as measured by the Kullback-Leibler (KL) 

divergence), based on which we optimise via gradient ascent. Therefore, for observations D	 (where D is a 

collection of all Dsr in EQUATION 1), group-level latent variables 𝝀 and subject-level latent variables z,	we will 

have: 
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ℒ(𝑞,𝑫) = 	𝔼>	[log𝑝(𝑫, 𝒛, 𝝀)] − 𝔼>	[log 𝑞(𝒛, 𝝀)]                  ( 2 ) 

where 𝔼>	[log 𝑝(𝑫, 𝒛, 𝝀)] is the expected log joint, log 𝑞(𝒛, 𝝀) is the (approximate) log joint posterior distribution 

over the latent variables, and ℒ(𝑞, 𝑫) is the free energy of the model. To find a (locally) optimal solution, 

traditional VB optimisation must have access to the entire dataset in each iteration, which becomes 

computationally intractable when a large number of subjects need to be analysed.  

2.2.2 Substitution of standard VB with stochastic VB to obtain sPROFUMO 

One of the main contributions of this work is to reduce the computational expense of the VB optimisation, by 

substituting standard VB with stochastic VB (Hoffman et al., 2013). Applying this approach to PROFUMO requires 

modifications to the original algorithm to ensure that: a) the group model is not biased by a few batches and 

instead remains representative of the entire population, b) single subjects are kept consistent with the group 

regardless of when they have been visited, and c) the model has flexibility to accommodate single-subject 

heterogeneity in a big data population.  

We start by making use of the fact that in VB the group- and subject-level PROFUMO parameters are inferred 

independently, and define them as global and local variables, respectively. Specifically, mean-field 

approximations allow for factorisation of the joint posteriors into a global term and a product of local terms; 

i.e.: 

																															𝑞(𝒛, 𝝀) = 𝑞(𝝀|𝜃)∏ ∏ 𝑞(𝒛"#|𝜙"#)K
#LM

N
"LM                               ( 3 ) 

where 𝝀, z are global (i.e. group) and local (i.e. subject) latent variables respectively, governed by global and 

local parameters 𝜃 and 𝜙. Here, S and R denote the total number of subjects and recordings per subject. The 

mean-field approximations allow for simplification of the free energy estimations into a sum of a global and a 

local term such that: 

																																			ℒ(𝜃) = 	𝔼>	[log𝑝(𝝀|𝑫, 𝒛)] − 𝔼O	[log 𝑞(𝝀)] + 𝑐𝑜𝑛𝑠𝑡O                             ( 4 ) 

ℒ(𝜙) = 𝔼>	[𝑙𝑜𝑔 𝑝(𝑫, 𝒛)]	 −W W 𝔼XYZ	[𝑙𝑜𝑔 𝑞(𝒛"#)] + 𝑐𝑜𝑛𝑠𝑡X
K

#LM

N

"LM
 

Classic VB iterates between keeping 𝜃 fixed and optimising with respect to ϕ => 𝛻Xℒ(𝜙) = 0 and keeping ϕ 

fixed and optimising with respect to 𝜃 => 𝛻Oℒ(𝜃) = 0 until convergence (where 𝛻Xℒ(𝜙) and 𝛻Oℒ(𝜃) denote 

gradients of ℒ with respect to 𝜙 and 𝜃, respectively).  

With stochastic VB, we instead randomly subsample the local variables (i.e. sessions/subjects) across batches, 

and focus on continuously improving the estimation of the global parameters as more observations are visited 

over time. Considering ℒI (𝜃) as the free energy term corresponding to the Ith batch, we will have: 

𝐿_(𝜃) ≜ 	𝔼>	[log 𝑝(𝝀)] − 𝔼>	[log𝑞(𝝀)] + 𝑁maxXe
(𝔼>	[log 𝑝(𝑫_, 𝒛_|𝝀)] −	𝔼>	[log𝑞(𝒛_)])           ( 5 ) 

The third term on the right-hand side refers to the optimisation of the local variables within batch I, while the 

overall aim will be to optimise 𝐿_(𝜃) across batches. The natural gradient of 𝐿_(𝜃) is therefore a noisy estimate 

of the natural gradient of the overall variational objective. According to proofs provided by Hoffman et al. (2013), 
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even though the noisy gradient 𝛻fOℒg = 0 does not have an analytical solution, the conjugate-exponential 

structure of PROFUMO means that convergence can be achieved if: a) we scale the subject-specific terms in 

EQUATION 5 in each batch by the factor N (i.e. number of batches), such that 𝐿_(𝜃) is updated as though the 

entire population was included; and b) global parameters are updated iteratively, using a weighted sum of the 

intermediate global parameters obtained from the current batch (𝜃fh) and what has been accumulated over all 

the previous batches (𝜃hiM). In other words, we keep a memory of the global parameter updates over time; i.e.: 

𝜃h = (1 − 𝜌h)𝜃hiM +	𝜌h𝜃fh            ( 6 ) 

We adopt a similar approach as (Hoffman et al., 2013; Vidaurre et al., 2018a), in defining a decreasing step size 

for the stochastic gradient descent: 

𝜌h = (𝑡 + 	𝜏)im           ( 7 ) 

𝜏 > 0 is the delay parameter of stochastic inference that determines the degree to which initial batches 

influence the overall inference, and	𝛽 ∈ (0.5, 1] is the forget rate of the model that determines the degree to 

which global parameter updates rely on the current batch versus previous batches (i.e. inter-batch variations). 

Larger 𝛽 thus corresponds to smaller 𝜌h and results in less stochasticity in the model.  

Having described the general rationale behind stochastic VB inference and application to PROFUMO, we next 

elaborate specific changes in the model implementation in sections 2.2.3 to 2.2.5. A flowchart of these steps is 

outlined in FIGURE 2.  

2.2.3 Changes in model initialisation 

As outlined in 2.1, PROFUMO estimates multiple parameters per voxel and mode. For a typical volumetric fMRI 

in 2mm MNI space, this entails estimating of the order of 150,000,000 parameters per subject. Considering that 

with a model of this complexity, random initialisations are likely not viable, the algorithm initialises the group 

maps based on a group-level variational ICA in order to place the parameters within a realistic ballpark. To obtain 

this initialisation, subject fMRI data matrices Dsr are first dimension reduced using SVD to obtain Xsr∈ ℝ-.×-r  

where p is the number of top singular values. The Xsr matrices are concatenated across subjects and further 

reduced using random SVD to 2*Nm spatial basis vectors.  

However, to handle many thousands of subjects, e.g. in UKB, the SVD approach used in the original PROFUMO 

will become intractable as it requires concatenation of the subject data from the entire population in one matrix. 

We therefore substituted this step in sPROFUMO with MELODIC’s Incremental Group-PCA (MIGP) (Smith et al., 

2014). MIGP is an online PCA decomposition, where subjects’ data are visited one at a time, and dimension 

reduced to 2*Nm in every step, until the entire population is visited. Considering that MIGP loads only a few 

subjects’ data at a time, it offers an additional advantage of allowing us to work with the full rank subject data 

Dsr instead of dimension-reduced Xsr, and is thus expected to preserve fine-grained modes that are likely to get 

eliminated in dimension reductions.  
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After obtaining the spatial basis, group-level variational spatial ICA (Harrison et al., 2020; Lawrence and Bishop, 

2000) is applied to the PCA output in order to infer Nm initial maps. These initial maps, together with hyperpriors, 

are used to initialise the group model in PROFUMO/sPROFUMO.  

2.2.4 Batch randomisations and changes in update rules 

Considering that we randomise subjects across numerous small batches of size K, and in order to maximise the 

chances of every subject being selected multiple times, the randomisation is weighted by a parameter 𝑤" = 	 𝜏tu 

that determines the probability of a subject i being picked in the current batch, where ni denotes the number of 

times that the subject i has been picked so far. Subjects that are picked for a batch are initialised as follows: 

• When a subject is visited for the first time, we can either initialise them based on the initial maps (from 

variational ICA as outlined earlier in 2.2.3) or the latest group model. There are arguably pros and cons 

to each approach; namely, initialisation based on the latest group will align the subjects and can thus 

help with quicker model convergence. However, considering that any subsequent batches will be built 

upon the first few batches, it might result in the overall inference being biased towards the early 

Figure 2 Flowchart of different steps of stochastic PROFUMO (sPROFUMO). Batch updates, progressing from left to right, 
involve treating group model as global parameters that are continuously updated over time, whilst subsets of subjects are 
randomly selected and respective parameters are locally optimised within each batch. Blue boxes: group model update 
process, blue arrows: flow of information from the group to the subjects, where dark blue denotes hierarchical links 
between the spatial maps and light blue denotes hierarchical links between partial temporal correlation matrices.  Orange 
boxes: subject models and batch-based update process, orange arrows: flow of information from subjects/batches to the 
group, where dark orange denotes hierarchical links between the spatial maps and light orange denotes hierarchical link 
between partial temporal correlation matrices. Grey: initialisation and priors, MIGP: MELODIC’s Incremental Group-PCA. 
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batches, thus potentially compromising the representativeness of the final group model. We therefore 

chose to always initialise subjects’ first visit based on the initial maps.  

• In any subsequent visits, subject-specific updates build upon previous incarnations of the subject 

model. In this way, by keeping a memory of a subject’s own previous visits, it can be expected that 

subject-specific deviations from the group are more accurately accounted for. 

• After subject-initialisations, we initially keep the group model constant and run multi-iterations of 

subject updates to bring the subjects into better alignment with the group. We refer to this step as 

initial batch updates. 

• Subsequently, we run the full inference (section 2.1) on subjects within current batch (local parameters 

in stochastic VB) as well as the group model (global parameters). We refer to this step as full batch 

updates, or batch updates for short. 

As outlined earlier, we treat group-level parameters as global parameters that stochastic VB optimises 

continuously across batches. Considering that all the distributions that are used in the model are from the 

exponential family (e.g. Gaussian), changes in the group-level update rules follow EQUATION 6. 

It is worth noting that sPROFUMO can be expected to allow for larger degrees of heterogeneity; i.e. subject 

deviations from the group average. This is due to the fact that in PROFUMO, all subjects are updated in line with 

the group in every model iteration, which will produce a tendency for the algorithm to converge to local optima 

where the subject-level models are close to the group average. On the contrary, in sPROFUMO we are updating 

stochastically by using a random subset of the subjects at each model iteration with each subject being only 

visited at random intervals; and though the model update procedures are designed to ensure subject-group 

alignment throughout iterations, this stochastic updating may help sPROFUMO to jump out of local minima 

(Keskar et al., 2017; Kleinberg et al., 2018).  

2.2.5 Additional considerations 

Batch randomisations mean that some of the subjects will be selected during the earliest batches and may not 

be revisited later. We therefore revisit every subject again at the end of the inference and update them with 

reference to the final group model. This is done to ensure the final estimations of posteriors for all subjects are 

defined in relation to the same group model. 

Additionally, with regards to the choice of the stochastic parameters in EQUATIONS 6 and 7, it is typically of 

interest to minimise the running times and RAM memory requirements of the model, while maximising the 

accuracies of estimations and reaching a convergence point. The number of batches, and initial and full batch 

updates, control the running times while the choice of batch size controls the memory usage. It is therefore of 

interest to find an optimal trade-off between these factors, which we will later explore using simulations.       
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3 Materials and Methods 

3.1 Simulations 

We performed two sets of simulations. The first set focused on evaluating sPROFUMO’s performance compared 

to PROFUMO, where the entire population is available at every model iteration. More specifically, we tested 

how the choice of the key stochastic parameters, namely batch size, stochastic forget rate 𝛽 and full batch 

updates, affects the accuracy of final results. The second set of simulations were aimed at evaluating 

sPROFUMO’s performance in obtaining high dimensional modes; and in this case, comparison is with the spatial 

ICA-dual regression paradigm. We explored several scenarios that make the latter set of simulations challenging, 

particularly with respect to accurate reconstruction of high dimensional subject-specific networks. More details 

of each simulation set are presented in the RESULTS section. For each simulation scenario, we created synthetic 

data with realistic fMRI settings for 500 subjects with two recording sessions for each subject. Each simulation 

scenario was repeated twice and results were pooled for reporting.  

Overall, we investigated data from 11 scenarios, each repeated twice and each repeat consisting of two datasets 

(2 x 500) of simulated subjects, providing a thorough evaluation of our model. Each synthetic fMRI data matrix 

consisted of 10,000 voxels and 300 time points at a TR of 0.72s, and was created using an outer product model, 

similar to EQUATION 1. Therefore, spatial and temporal properties of the modes are simulated independently in 

this pipeline.   

At the group level, we defined a set of spatial maps Pg that consisted of modes generated from a number of 

randomly-selected contiguous blocks of voxels (i.e. parcels), such that some of the modes were confined to one 

brain region and others were distributed over multiple non-contiguous regions. Weights of signal for each voxel 

within a mode were drawn from a Gamma distribution. Subject-specific variations of these parcels, and 

subsequently subject spatial mode maps, Ps, were defined at the vicinity of the group maps by applying spatial 

warps and adding background Gaussian noise. Time courses were generated separately for each mode, subject 

and session, but we defined a hierarchical link between the group and subjects’ temporal correlation matrices, 

following a Wishart distribution, to ensure a consensus representation of the functional connectivity between 

the two levels. Time courses were first generated as semi-Gaussian neural time course with amplified 

frequencies < 0.1Hz, and next convolved with a random draw from the FLOBS basis functions (Woolrich et al., 

2004) such that final time courses would mimic the BOLD signal. Finally, random noise was added to the outer 

product of spatial maps and time courses to create space-time data matrices. More details of simulation 

parameters are available in (Bijsterbosch et al., 2019; Harrison et al., 2020, 2015). 

The simulated modes were reconstructed using sPROFUMO, PROFUMO and ICA/ICA-DR, and results were 

compared against the ground truth. For this purpose, we initialised all three models based on the same set of 

spatial bases that were obtained using MIGP, to ensure that the observed differences are not due to the initial 

PCA.    
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3.2 Applying sPROFUMO to UK Biobank  

We used UK Biobank (UKB) data, accessed under application number 8107, for volumetric resting state fMRI 

data as well as cognitive tests and imaging confounds (see 3.4.1 and 3.4.2 for more details on the latter). We 

randomly drew 4999 subjects from the May 2019 release of this dataset. fMRI data consisted of one recording 

session per subject, with 490 (occasionally 530) time points per session, at a TR of 0.735s, yielding ~6 minutes 

of data per subject. Data were pre-processed using the standard UKB pipeline that includes quality control, brain 

extraction, motion correction, artefact rejection using FSL-FIX, and registration to standard MNI-2mm space 

(Alfaro-Almagro et al., 2018). As a part of sPROFUMO’s internal initialisation (see (Harrison et al., 2020) for 

details), we further processed the data using voxel-wise removal of timecourse mean and variance 

normalisation. We next initialised the model as explained in 2.2.3 and ran full model inference thorough batch 

randomisations as outlined in 2.2.4 and 2.2.5, and characterised 100, 150 and 200 sPROFUMO modes. 

3.2.1 Dealing with the missing modes to obtain high dimensional decompositions 

In previous PROFUMO papers and based on real resting state fMRI data from up to ~1000 subjects in HCP Young 

Adult cohort, we reported that while the model reliably estimates a low dimensional set of modes (i.e. up to 40), 

it tends to eliminate any more modes beyond that (Harrison et al., 2020). Additionally, some of the modes that 

are reliably estimated in the group might be returned as empty in a subset of subjects. This is despite the fact 

that ICA and ICA-DR have reported up to 300 modes from the same data (Smith et al., 2015). The mode 

elimination in PROFUMO corresponds to the lack of evidence – in a Bayesian sense – for the mode being present, 

given that subject’s data and the inferred noise level. Together, these can render the posterior probabilities of 

mode presence as zero. The validity of, and reasons behind, these missing modes had remained puzzling to date. 

More importantly, it is unclear whether these are specific to the s/PROFUMO framework or might also be 

reflected in a different way in other models e.g. ICA-DR.  

In APPENDIX A we will present details of five main changes in the data and model that were found to largely 

resolve sPROFUMO missing modes for the UK Biobank data in the current study; these include: 1) increased 

group-level signal-to-noise ratio due to the higher number of subjects in UKB; 2) stochastic variational inference 

in sPROFUMO may have allowed for the VB optimisation to jump out of local minima, resulting in an improved 

minima that seems to allow for a higher degrees of subject variability in the group model; 3) homogeneous 

spatial smoothness in different parts of the brain (e.g. cortical and subcortical regions); 4) no SVD dimensionality 

reduction at single subject level, and 5) increased subject-level SNR by applying a small amount of spatial 

smoothing. Factors 1, 2 and 3 led to a higher number of group-level modes being reliably reconstructed and 

factors 2, 4 and 5 increased the number of subject-specific modes. 

3.3 Applying spatial ICA and ICA-Dual Regression to UK Biobank 

In addition to sPROFUMO characterisation of functional brain modes from resting state fMRI data, we also used 

spatial ICA followed by dual regression (DR) to characterise the modes. The ICA and ICA-DR are among the most 

commonly used methods for group-level and subject-level estimation of the resting state networks, respectively. 
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Additionally, ICA/ICA-DR have been used as standard RSN characterisation methods from large-scale datasets 

such as HCP and UKB. Thus, they can provide suitable models to compare sPROFUMO results against. We used 

FSL tool MELODIC to identify 150 spatially independent ICA modes at the group-level and subsequently used FSL 

tool dual_regression to map the ICA group-level results onto single subject data. Stage 1 of Dual Regression 

yielded subject-specific time courses for each mode and stage 2 yielded subject-specific spatial maps. We further 

computed mode amplitudes as standard deviation of the time courses and estimated functional connectivity 

between the modes using Tikhonov-regularised partial correlations. It is worth noting that in order to make the 

final sPROFUMO and ICA/ICA-DR results fully comparable, we used the same PCA initialisation for both models. 

For this purpose, MIGP results were obtained as explained earlier in 2.2.3 and were fed into both MELODIC and 

sPROFUMO for initialisation. 

3.4 Prediction pipeline 

We investigated the accuracies of the spatial and temporal properties of sPROFUMO modes (i.e. PFMs) in 

predicting cognitive outcome from behavioural cognitive tests in UKB. We conducted predictions at two levels: 

multi-mode predictions where output from all the modes were combined, and uni-mode predictions where each 

mode was used separately for prediction. For both levels, we conducted predictions based on: a) Mode spatial 

maps, b) Mode temporal network matrices (temporal NetMats; partial correlation matrix between PFM 

timecourses), c) Mode spatial NetMats (full correlation matrix between PFM maps), d) Mode amplitudes and e) 

multi-element; i.e. all 4 elements combined. We further compared PFM prediction accuracies to ICA-DR.  

3.4.1 Selecting Cognitive Tests  

As the first step, we selected a subset of outcome measures from UK Biobank cognitive tests by pruning 1172 

metrics to 68. This initial filtering was based on two criteria, firstly, one of the authors manually screened the 

outcome measures and only included active measures that were directly reflective of each subject’s 

performance. For example, among outputs from the “Reaction Time” task, which entails viewing two cards (A 

and B) and pressing buttons if they are identical, we included the “Mean time to correctly identify matches”, 

while “Index for card A in round” was excluded. Secondly, we only selected tests that had a non-NaN value in at 

least 25% of the subjects. The final list of 68 tests belonged to the following categories: Reaction time, Trail 

making, Matrix pattern completion, Numeric memory, Prospective memory, Pairs matching, Symbol digit 

substitution and Fluid intelligence. These tests cover a wide range of cognitive abilities from sensory-motor 

coordination to memory and executive functions, thus providing a suitable testbed for evaluating the cognitive 

relevance of the PFMs. The list of 68 measures are shown in  

TABLE S 1 and more details are available in UKB website: 

https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100026. 

3.4.2  Confound Removal 

The large number of subjects in UKB provides an unparalleled potential for application of machine learning 

algorithms and predicting non-imaging phenotypes based on image-extracted brain features. However, 
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contamination of the imaging data by interfering factors, often referred to as imaging confounds, is likely to 

have a significant impact on the interpretability of the results (Alfaro-Almagro et al., 2020; Snoek et al., 2019). 

One solution to alleviate this problem is to regress out the confounds (a.k.a. deconfounding) before applying 

machine learning predictions. There is not currently a consensus in the literature as to whether or not 

deconfounding is required in prediction pipelines. Indeed, if the aim is to obtain the highest prediction accuracies 

for non-imaging phenotypes, regardless of the factors that drive the accuracies, one may opt to run predictions 

without deconfounding. However, that might arguably interfere with the interpretability of the results in 

scenarios where a common confounding factor, e.g. head size or head motion might have contributed to 

prediction accuracies (Snoek et al., 2019). Here, in order to improve the interpretability of our results, we chose 

to run predictions after deconfounding.  

In a recent study, Alfaro-Almagro et al. (2020) provided a comprehensive set of 602 confounds in UKB brain 

imaging. Here we used a reduced set by: a) selecting conventional confounds including age, age squared, sex, 

age x sex, site, head size and head motion; b) reducing the remaining confounds by applying singular value 

decompositions and retrieving the top principal components that explained 85% of the variance. These two 

steps yielded 82 variables for deconfounding, which were regressed out of both predictor and target variables 

using linear regression. Importantly, we applied deconfounding within cross-validation folds in order to avoid 

leakage of information from test to train data, as proposed by (Snoek et al., 2019).  

3.4.3 Elastic-Net prediction and cross-validation 

The prediction pipeline was implemented in Python 3.6.5 using scikit-learn 0.19.1 (Pedregosa et al., 2011). It 

was built around ElasticNet regression and nested 5-fold cross validations, where subjects were split into 5 non-

overlapping subsets, and in each iteration 80% of the subjects were assigned to train and 20% to the test group. 

In each cross-validation loop, where pre-prediction feature selections were required (details in the following 

sections), the top n% of the features were selected based on correlation with the target variable within the 

training set. Next, quantile transformation (QuantileTransformer) was applied to obtain a Gaussian distribution for 

each predictor and target variable across subjects. The quantiles were estimated using the training set and 

applied to transform both train and test data. Next, confound regression parameters (or “betas”) were 

estimated from the training set and applied to de-confound both train and test data. Finally, ElasticNetCV was used 

to predict target variables in the test set. Note that we used nested cross-validations within the training set to 

optimise the ratio of Lasso to Lasso+Ridge regularisation (l1ratio varied between [0.1,0.5,0.7,0.9,0.95,0.99,1.0] 

with 10 alphas per l1ratio). The prediction accuracies were calculated based on correlations between estimated 

and actual values of the target variables across subjects in the test set. 

3.4.4 Multi-mode prediction 

Multi-mode prediction involved combining output from all the modes to predict cognitive outcome based on 

sPROFUMO and ICA-DR modes: 

• For the spatial maps, estimating 150 modes resulted in a Pgrand matrix of Nsubject x Nvoxel x 150, yielding 

~35 million features per subject. Dimensionality reduction of this matrix to a few hundred features that 
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can meaningfully capture the essence of subject spatial maps is non-trivial. For this purpose, we used 

unsupervised learning in the form of FMRIB’s Linked ICA for big data (bigFLICA) (Gong et al., 2020; 

Groves et al., 2011), which is an ICA framework originally proposed to fuse multimodal data. First, we 

collapsed subject spatial maps across voxels using sparse dictionary learning and obtained a PdicL matrix 

of size Nsubject x 1000 x 150. Next, we considered each mode as a separate “modality” within bigFLICA 

and obtained a Pfeat feature matrix of size Nsubject x 500. Using linked ICA in this way will allow us to 

preserve subject-specific variations in each mode’s spatial map and combine them across numerous 

modes to obtain a set of independent features to characterise the sources of population variations in 

PFMs.   

• For the spatial and full/partial temporal correlation matrices (spatial and temporal NetMats), we 

started with matrices of size Nmode x Nmode for each subject. After applying the Fisher r-to-Z 

transformation, we flattened these matrices by taking the upper diagonal elements. Next, in order to 

obtain feature matrix from spatial NatMat, i.e. SNETfeat of size Nsubject x 500, we used SVD for 

dimensionality reduction, and reduced the flattened spatial NetMats to 500 features. Similarly, for 

temporal NetMat feature matrix TNETfeat, we extracted 250 SVD features from each of the full and 

partial temporal NetMats and concatenated them to obtain a TNETfeat of size Nsubject x 500. Partial 

temporal NetMats were computed based on precision matrices and with a Tikhonov regularisation 

parameter 0.01. 

• Mode amplitudes were used without any transformations; i.e. providing a Hfeat matrix of size Nsubject x 

150. 

We conducted uni-element predictions based on Pfeat , SNETfeat , TNETfeat  and Hfeat separately, and multi-element 

predictions when all combined. For the latter, we utilised pre-prediction univariate feature selections to further 

reduce from 1650 features to 900.  

3.4.5 Uni-mode prediction 

The uni-mode prediction steps are conceptually similar to multi-mode predictions outlined above, with a few 

exceptions. Firstly, for the dimensionality reduction of the spatial maps we did not need to combine information 

across modes using bigFLICA. Instead, we used sparse dictionary learning to obtain feature matrices of Nsubject  x 

500 for each mode. For spatial and temporal NetMats we take rows of correlation matrices for each subject and 

do not apply additional dimensionality reduction, thus obtaining 149 features per subject, per mode for each 

NetMat. For the amplitudes, as there is one value per subject-mode, we simply add a mode’s amplitude to the 

temporal NetMat feature matrix.   

4 Results 

Results presented here are broadly focused on: firstly, evaluating sPROFUMO’s performance, especially with 

respect to scaling to big data and reconstruction of a high dimensional set of sPROFUMO modes, or PFMs. 

Secondly, investigations into the functional and cognitive relevance of these high dimensional modes from 
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resting state data. And, thirdly, a detailed comparison of the model with the ICA & Dual Regression (DR) 

paradigm, which has been one of the most commonly used methods in RSN research and functional mode 

discovery. 

4.1 Simulation set 1 - sPROFUMO vs. PROFUMO 

This first simulation set tested how sPROFUMO’s accuracies depend on the choice of the main stochastic 

parameters, and compared it to PROFUMO. Simulations were designed to mimic real fMRI data (as outlined in 

3.1) and comprised two datasets. To mimic big data, each dataset consisted of 500 subjects and 2 recordings 

per subject. 15 modes were simulated in the brain, which consisted of a mixture of contiguous and distributed 

modes and were simulated to be temporally correlated and spatially overlapping, where on average 1.3 modes 

resided per brain voxel. Subject spatial maps (or in short, subject maps) were simulated to have on average of 

~17% spatial misalignment with the group maps (i.e. a given subject mode was on average ~83% overlapping 

with the group). Spatial mode layouts were kept constant between subject runs, while mode time courses were 

allowed to be different, thus resembling the unconstrained nature of the resting-state signals.  

As shown in FIGURE 3, we evaluated the model’s performance by computing correlations between three 

elements of ground truth and estimated modes: group maps, subject maps and subject time courses. Firstly, we 

found that sPROFUMO is robust to the choice of batch size, and by decreasing batch sizes from 20% to 5% of the 

population, model performance was comparable to PROFUMO (FIGURE 3A). This shows how sPROFUMO can be 

used to generate the same results as classic PROFUMO while being RAM efficient. Secondly, we found that 

sPROFUMO is robust to the choice of 𝛽 (FIGURE 3B). This indicates that in real data application, one can flexibly 

Figure 3 Simulation set 1: illustrating robustness of sPROFUMO (yellow) to the choices of stochastic parameters including 
batch size, stochastic 𝜷and batch updates, and comparison to classic PROFUMO (blue). BU: Batch Updates, BU 20/10 
denotes initial/full batch updates. 
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tweak 𝛽 values to allow for higher or lower inter-batch variations in the posterior parameters, as would fit data 

and study requirements. Thirdly, as shown in FIGURE 3C, we found that the accuracy of the results was robust to 

the initial and full batch updates (see 2.2.4 for definitions). Thus, in real data this parameter can be flexibly 

altered to reduce the model’s running time. This first set of simulations therefore depicts sPROFUMO’s 

robustness to the choice of specific parameters, thus allowing us to tweak them in real data to obtain more 

flexible and memory-efficient inference.  

4.2 Simulations set 2 - high dimensional RSNs: sPROFUMO vs. ICA  

In the next simulation set, we specifically focused on scenarios that are associated with the estimation of a high-

dimensional set of modes, and that can be particularly challenging for the matrix factorisation models. In these 

simulations, we compared sPROFUMO’s performance to ICA-DR. As shown in FIGURE 4, we focused on three 

factors; i.e. spatial misalignments across subjects, spatial overlaps among the modes, and mode size, and 

evaluated each of these factors based on two resting state datasets, each with 500 subjects and 2 runs per 

subject (see FIGURE S 1 in APPENDIX B for examples of simulated and estimated sPROFUMO modes). 

The first scenario tested the hypothesis that in order to obtain a high-dimensional set of modes, we are required 

to estimate not only the modes that agree across the individuals, but also the modes with larger degrees of 

cross-subject inconsistencies (e.g. in the presence of spatial misalignments). We simulated 15 modes per 

subject, and the amount of misalignment (cross-subject) was increased from a moderate 23.1%, where subject 

maps were on average ~80% overlapping with the group; to an excessive 57.7%, where subject and group maps 

were only ~40% overlapping. As shown in FIGURE 4A, all the model elements were somewhat affected by the 

increase in misalignment, but the effect was most pronounced in the subject map estimations. Additionally, the 

biggest difference between sPROFUMO and ICA-DR was also reflected in the subject map estimations, where 

e.g. for 57.7% misalignments, sPROFUMO’s average accuracy remained close to 0.9, while ICA-DR’s accuracy 

dropped to less than 0.5. 

In scenario 2 (FIGURE 4B), we fixed cross-subject misalignments at 300 voxels (i.e. 3% of the brain voxels), and 

increased the number of modes in the brain from 20 to 30 to 40 while keeping the mode size constant at 8.6% 

of the brain voxels. Therefore, simulated modes only varied with respect to the spatial overlap between the 

modes (1.7 to 3.5 modes per voxel on average). We found that while sPROFUMO generally coped well with 

moderate overlaps (i.e. 1.7 and 2.6 modes per voxel), larger overlaps induced a big impact on both spatial and 

temporal accuracies of the PFMs. Similar to the previous scenario, we found sPROFUMO’s accuracies to be 

higher than the ICA-DR. Especially for the extreme case of 3.5 modes per voxel, for the group and subject maps 
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we found: 0.6 ICA vs 0.75 sPROFUMO and 0.15 ICA-DR vs. 0.55 sPROFUMO, respectively. Larger spatial overlap 

between the modes induces higher spatial correlations among the modes, and as such, this scenario was 

expected to be particularly challenging for the spatial ICA because it is built around the assumption of spatial 

mode independence. Somewhat surprisingly, however, we also observed a big impact on sPROFUMO, even 

though model assumptions were not explicitly violated.  

In the third and last scenario (FIGURE 4C), we held the amount of mode overlap constant, and increased the 

number of modes in the brain from 20 to 30 to 40, thus obtaining smaller modes, covering 6.5% to 3.25% of the 

brain voxels. The smaller modes have been frequently reported in high dimensional functional parcellation 

studies (Dadi et al., 2020; Smith et al., 2015), and are particularly challenging to accurately estimate in single 

subjects because even small amounts of misalignments (relative to the overall number of the voxels in the brain) 

can easily surpass the number of the voxels in these modes. Additionally, estimation of these modes is likely to 

be more affected by the amount of noise in the data and/or dimensionality reduction that is often a part of the 

preprocessing pipelines. Here we observed that even though sPROFUMO group map and subject time course 

estimations remained fairly accurate (> 0.8) for the smallest modes, subject map accuracies dropped to ~0.5. 

Nevertheless, similar to the previous scenarios, its performance remained superior to that of the ICA-DR by up 

to 100%.  

In summary, these simulations based on three plausible scenarios, provide initial evidence that high dimensional 

decompositions, particularly at single subject level, are associated with extra challenges for accurate functional 

Figure 4 sPROFUMO (yellow) versus spatial ICA (green) in overcoming challenging simulation scenarios for obtaining high-
dimensional (i.e. large number of) modes at individual subject level, including: a) cross-individual spatial variability; b) 
amount of spatial mode overlap; and c) mode size (i.e. smaller modes). 
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mode reconstructions that are not typically seen at lower dimensions. We further showed that the hierarchical 

modelling in sPROFUMO helps to overcome these challenges often with up to 100% more accuracy than ICA-DR. 

In APPENDIX B (and FIGURE S 2) we show how these results extend to classic PROFUMO and further discuss some 

of the plausible reasons for when each of these modelling frameworks yield low accuracies. Future studies are 

expected to investigate additional scenarios and how these findings might generalise to other single subject 

modelling frameworks.   

4.3 sPROFUMO on UK Biobank: different types of RSNs identified in a high 

dimensional soft parcellation 

After evaluating sPROFUMO using extensive simulations in the previous sections, we applied the model to the 

resting state fMRI data from 4999 subjects in UKB and characterised 150 sPROFUMO modes, or PFMs. For this 

purpose, we set 𝛽 = 0.6	𝑎𝑛𝑑	𝜏 = 5 for the inference (in EQUATION 7) and subjects were randomised across 

batches of size 50. The inference was conducted across 250 batches; thus, each subject was included in a batch 

2.5 times on average. Within each batch, subjects were first updated 10 times, keeping the group model 

constant, in order to bring the subjects into accordance with the group (i.e. initial batch updates, see 2.2.4 for 

details and rationale) and next, the full inference was run 20 times (i.e. full batch updates). Therefore, the overall 

group model was updated 5000 times, and each subject 50 times alongside the group (on average). The model 

was run on 10 processing cores on a compute node, taking ~210 hours to complete, and the memory usage 

peaked at ~100GB. Model convergence is shown in FIGURE S 3 (APPENDIX C), where we measured convergence 

based on the Free Energy calculated across the full population, as well as the group spatial map and group partial 

temporal correlation matrix, which represent the two key aspects of the model that are estimated hierarchically.  

FIGURE 5 illustrates the 150 group-level PFMs that consist of a variety of cortical, subcortical and cerebellar 

modes, providing a high dimensional soft parcellation of the brain. PFMs in this figure are thresholded at 0.5 for 

illustration purposes. A key distinction between the current results and the previous PROFUMO papers is the 

reconstruction of a high dimensional set of resting state modes. As shown in FIGURE 5A, we can broadly 

categorise these PFMs into four categories: 1) high-SNR distributed RSNs (yellow), 2) lower SNR distributed RSNs 

(blue), 3) lower SNR parcel-like RSNs (green) and 4) PFMs with physiological or MR acquisition origins (purple). 

PFMs in category (1) show a close match to the well-known sensorimotor and cognitive RSNs that are typically 

reported at lower dimensions. PFMs in category (2) appear to represent the variants of sensorimotor and 

cognitive RSNs that are less frequently found in resting state studies. PFMs in category (3), i.e. the parcel-like 

modes, were found to spatially overlap with one or several of the distributed RSNs in categories (1) and (2). As 

will be illustrated later in 4.3.1, we found the signal to noise ratio of the categories (2) and (3) to be lower than 

the more established RSNs in category (1). 
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We further characterised the similarities between the PFMs based on two types of correlation-based network 

matrices (NetMats): partial temporal NetMats and spatial NetMats. As outlined earlier in 2.1, in sPROFUMO 

(and PROFUMO), modes are simultaneously characterised in both the spatial and temporal domains. In the 

spatial domain, a mode is described based on its spatial layout (i.e. topography) across the brain voxels and in 

the temporal domain it is described with time courses, time course amplitudes, and time course partial 

correlations. The group-level spatial NetMat was computed as cross-mode correlations of the group spatial maps 

Figure 5. Summary results of applying sPROFUMO to 4999 subjects from UK Biobank and obtaining a high dimensional decomposition 
with 150 PFMs: a) the reconstructed modes include the large-scale RSNs that are typically found in lower dimensional decompositions, 
with the addition of less-common RSNs. Four types of PFMs were identified here: high SNR distributed RSNs (category (1) yellow 
frames), lower SNR distributed RSNs (category (2) blue), contiguous parcel-like RSNs (category (3) green) and PFMs of physiological or 
acquisition origin (category (4) purple), that altogether provide a high dimensional, soft parcellation of the brain function. Modes 
shown in this figure are thresholded at an absolute value of 0.5 for illustration purposes. b) Group-average spatial (left) and partial 
temporal (right) network matrices (NetMats) for sPROFUMO modes. The spatial NetMats cluster into 6 distinct clusters of modes. 
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and showed a structured pattern consisting of 6 distinct clusters that were characterised by high within-cluster 

correlations and low cross-cluster correlations (FIGURE 5B - LEFT). These clusters were identified using the Louvain 

algorithm as outlined in (Geerligs et al., 2015) and can be broadly labelled as: somatosensory; visual and 

cerebellar; variants and subdivisions of DMN; parieto-occipital; fronto-parietal; fronto-central and subcortical. 

We additionally characterised the group-average temporal NetMat based on partial correlations among the 

mode time courses, as shown in (FIGURE 5B - RIGHT). Using the same mode ordering in FIGURE 5B – LEFT&RIGHT 

shows that modes with high spatial correlations tend to be generally more temporally correlated, albeit with a 

notable reduction in the strength of the block structure.  

4.3.1 Signal versus noise components 

Up to this point, we have shown results based on the “signal” elements of sPROFUMO. However, as outlined in 

section 2.1, in both spatial and temporal domains, sPROFUMO additionally estimates noise terms. More 

specifically, every PFM is characterised by six elements: spatial signal and noise, temporal signal and noise, 

amplitudes and residuals. FIGURE S 4 in APPENDIX C illustrates signal and noise components for a set of example 

resting state PFMs in three random subjects. In the spatial domain (FIGURE S 4A), it can be seen that the signal 

element captures the spatial topography of a PFM and its variability across subjects, while the background that 

is irrelevant to the mode topography is accurately assigned to the noise components. This property is key in 

obtaining clean subject spatial maps, and can be expected to be particularly useful for datasets with naturally 

lower SNRs or when less data per subject are available. In the temporal domain (FIGURE S 4B), the separation of 

signal and noise components clearly shows how the time courses of example RSNs from categories (1), (2) and 

(3) from FIGURE 5 differ from each other, with category (1) showing substantially higher SNR.  

4.3.2 Stability of sPROFUMO PFMs across subjects and model runs  

We further evaluated how reliably sPROFUMO modes were estimated across subjects and model runs based on 

two set of consistency metrics: a) between-run and b) cross-individual robustness of the results. Here we present 

a brief summary and further details are presented in APPENDIX D and FIGURE S 5. Firstly, between-run stability 

was measured by re-running the model on the same subjects and measuring correlations between the outputs 

of the two runs, in order to measure stability to stochastic randomisations. We found average consistency of 

0.98, 0.98 and 0.94 for the group spatial maps, spatial and temporal NetMats, respectively. For subject-specific 

PFMs these values were: 0.90, 0.94 and 0.77, with 0.85 consistency for the amplitudes. Secondly, we measured 

cross-individual robustness of the results based on subject-to-group (S2G) and subject-to-subject (S2S) 

consistencies.  In the absence of a ground truth in the real data, higher S2G and S2S consistencies have been 

often used as metrics of performance and robustness in single subject modelling (Gordon et al., 2020; Guntupalli 

et al., 2018). This is particularly due to the fact that we expect the biologically meaningful RSNs to exhibit similar 

key features across individuals (e.g. right-hand motor network should localise to left motor cortex), and we 

expect the group model to capture the key elements shared across the population. We found the most-to-least 

consistent sPROFUMO mode elements to be: spatial NetMats (S2S: 0.79, S2G: 0.89), partial temporal NetMats 

(S2S: 0.70, S2G: 0.83), spatial maps (S2S: 0.55, S2G: 0.73) and mode amplitudes (S2S: 0.31, S2G: 0.56).  It is worth 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.02.01.428496doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.428496
http://creativecommons.org/licenses/by/4.0/


 
 

23 

noting that while S2G and S2S consistencies yield useful metrics of results stability, in order to provide more 

direct evaluation of the model’s ability to capture meaningful subject-specific variability in spatial and/or 

temporal domains, we complement results from this section with additional metrics from simulations (4.2) and 

prediction power for cognitive tests (4.6).   

4.4 Functional relevance of sPROFUMO PFMs at the single-subject level 

A closer examination of the PFMs in FIGURE 6 reveals interesting links with the established functional subdivisions 

of the brain, not only for the group but also at individual subject level. For example, FIGURE 6A – RIGHT  illustrates 

four large-scale PFMs distributed over motor cortex and cerebellum that closely correspond to a somatotopy 

map of the foot, left hand, right hand and face/tongue areas in the brain (Buckner et al., 2011; Haak et al., 2018; 

Van Den Heuvel and Pol, 2010). Importantly, visual inspection of the example subject PFMs shows rich details 

of topographical variability across the individuals, whilst the characteristic features of the PFMs, e.g. 

lateralisation of left versus right-hand motor networks persists. Similarly, FIGURE 6A – LEFT shows seven PFMs in 

the occipital lobe that correspond to specific functional sub-regions of the visual cortex (Wang et al., 2015).  

 

Figure 6. Functional relevance of sPROFUMO modes (i.e. PFMs) in population and individuals illustrated based on: a) examples of visual 
and motor networks. These PFMs show similarities with the well-known subdivisions of the sensory-motor networks and show rich 
details of spatial variability across participants; b) two variants of DMN, that are distinct by several factors, marked with arrows, 
including: 1) a Para-hippocampal node exists in DMN1, but not DMN2; 2) while DMN1 includes posterior IPL and Angular Gyrus, DMN2 
includes anterior IPL and Temporoparietal Junction; 3) lateral temporal cortex, including anterior temporal lobes are pronounced in 
DMN2 but less so in DMN1; 4) while DMN1 includes ventromedial PFC, DMN2 includes dorsomedial PFC; 5) a subnetwork in the inferior 
frontal cortex exists in DMN2 but not in DMN1. Note that group-level modes shown in this figure are thresholded at an absolute value 
of 0.5 for illustration purposes but subject-level modes are unthresholded to preserve the details of cross-subject variability. 
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In addition to the sensorimotor RSNs, we detected multiple variants of the higher-level cognitive networks in 

single subjects. FIGURE 6B illustrates two variants of the DMN which is typically characterised by sub-networks 

in bilateral Inferior Parietal Lobe (IPL), Posterior Cingulate Cortex (PCC), bilateral Temporal Lobes and medial 

Prefrontal Cortex (PFC). The two DMNs identified here were distinct by several factors (see six marked arrows 

and explanations in FIGURE 6B and its caption). Considering these distinctions, DMN1 and DMN2 seem to closely 

match respectively to the medial temporal and dorsal medial DMN variants that recent studies have reported 

(Andrews-Hanna et al., 2014; Braga and Buckner, 2017), and which was also reported in the PFMs inferred from 

HCP data using PROFUMO (Harrison et al., 2020). The important distinction between the results we show here 

and these previous results is that the characteristic features of the PFMs hold in individual subjects, even when 

using only six minutes of data per subject: for example, note the presence of the Para-hippocampal subnetwork 

in DMN1 versus its absence in DMN2. By way of contrast, HCP results used one hour of data per subject, and 

Braga & Buckner’s analyses used nearly three hours of data per subject. 

4.5 Distinct behaviours of sPROFUMO and ICA at higher dimensions 

We next conducted a detailed comparison of the sPROFUMO PFMs with 150 functional modes estimated using 

spatial ICA (FSL’s MELODIC) and Dual Regression (DR). Results are shown in FIGURE 7. Note that group-level 

modes in this figure are thresholded for illustration purposes (refer to colourbars and figure caption for details).   

At the group-level, we paired sPROFUMO and ICA modes based on the spatial correlation across voxels. As 

shown in FIGURE 7A, for 74 modes, we found a clear one-to-one correspondence between PFMs and ICs, while 

for the other half, every PFM corresponded to multiple ICs. A closer examination of the modes revealed that 

one-to-one correspondence typically occurs for smaller modes (i.e. categories (2) and (3) in FIGURE 5), such as 

cerebellar and subcortical RSNs in FIGURE 7B. In contrast, large-scale PFMs corresponded to multiple ICs as shown 

e.g. for DMN in FIGURE 7B. This pattern is likely a by-product of differences in model assumptions. More 

specifically, ICA assumes spatial independence among the modes and as a result, ICA modes are oftentimes 

minimally overlapping (Beckmann and Smith, 2004; Bijsterbosch et al., 2019). Consequently, by moving to higher 

dimensions, ICA is expected to split the large-scale modes into multiple fine-grained modes with small overlaps. 

On the contrary, sPROFUMO does not impose any such assumption and thus yields a mixture of overlapping 

large-scale and fine-grained PFMs in high dimensional decomposition. As we will later cover in the Discussion, 

this can have implications for the interpretability of the sPROFUMO and ICA modes.  

In addition to the group-level differences, we also detected interesting differences between sPROFUMO and 

ICA-DR’s single-subject results. In FIGURE 7C, we show two visual and motor networks because they provide 

examples of high SNR modes that are typically reliably estimated in single subjects. As can be noticed, PFM 

subject maps are less contaminated by the background noise. We showed earlier in 4.3.1 how the Double-

Gaussian Mixture Modelling in sPROFUMO accurately assigns uninteresting background to the noise 

component. Here this is reflected in the histogram of the signal map values across the voxels (FIGURE S 6 in 

APPENDIX E), where for a large number of voxels, signal values are near zero, indicating that noise membership 

probability has outweighed signal probability. However, such a pattern cannot be systematically captured using 
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ICA-DR and instead, as shown in FIGURE S 6, it yields one Gaussian distribution across the voxels to account for 

signal and noise, combined.  

 

4.6 Predicting cognitive outcome based on sPROFUMO and ICA-DR 

We have so far shown evidence of sPROFUMO’s ability to yield stable and functionally relevant results, and its 

potential to cope with challenging scenarios for reliable estimation of the high dimensional PFMs. We further 

examined in detail how the model compares against spatial ICA-DR paradigm. An important next question that 

might occur to the reader is whether the PFMs inferred by sPROFUMO are indeed capable of accounting for 

Figure 7 Comparison of 150 sPROFUMO modes from UKB to spatial ICA (group) and ICA-Dual Regression (subjects): a) sPROFUMO 
and ICA modes that are matched based on spatial correlation across voxels. For the 74 modes labelled as showing one-to-one 
matching, absolute spatial correlation between each pair was >0.7 and this correlation was at least two standard deviations higher 
that the next best matching mode.  Modes that do not pass this criterion are labelled as having one-to-many matching. b) Left: 
examples of cerebellar, subcortical, frontal and parietal modes with one-to-one matching; right: example of one DMN mode in 
sPROFUMO that divided into six subnetworks in ICA; c) example subject-level differences between sPROFUMO and ICA-DR for 
sensory-motor networks in two UKB participants. Note that group-level modes shown in this figure are thresholded for illustration 
purposes (refer to colourbars for thresholds) but subject-level modes are unthresholded to preserve the details of cross-subject 
variability and noise levels in each spatial map. 
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interpretable individual-specific traits; e.g. are these high dimensional PFMs of significant cognitive relevance? 

We looked to address this question by assessing the sPROFUMO PFMs’ ability to predict a battery of 68 cognitive 

tests in the UKB data. These tests spanned a range of sensorimotor and higher-level cognitive functions.  

First, we computed the prediction accuracies by combining outputs from all the functional modes, which we 

refer to as multi-mode predictions. For this purpose, as outlined earlier in 3.4.4, spatial maps across all the 

functional modes where dimensionality-reduced and combined using sparse dictionary learning and bigFLICA 

(Gong et al., 2020), in order to obtain a set of SMAP features across the subjects. Additionally, spatial and 

temporal NetMats were dimension-reduced to obtain SNET and TNET features, and mode amplitudes across the 

subjects were utilised as AMP features. The main purposes of the multi-mode predictions were: a) to determine 

which of the model elements provide the best predictors, and b) to compare sPROFUMO’s performance to ICA-

DR. Bland-Altman plots in FIGURE 8A show correlation-based prediction accuracies, where values above and 

below the baseline (at zero) depict higher performances for sPROFUMO and ICA-DR, respectively.  

An immediate advantage of sPROFUMO that can be noted from these plots is its superior SMAP prediction 

accuracies. More specifically, the size, locations and spatial arrangement of the functional modes in sPROFUMO 

were found to provide the best predictors. In contrast, TNET from ICA-DR, i.e. the functional connectivity among 

the modes, outperforms that of sPROFUMO. Apart from this double dissociation, SNET and AMP elements 

showed similar performances between the two models.  

For multi-element predictions, we found the accuracy to be higher for sPROFUMO, especially for the cognitive 

tests with accuracies > 0.2. We made a closer examination of sPROFUMO’s accuracies for each cognitive test in 

isolation, as shown in violin plots in APPENDIX F, FIGURE S 7, and broadly categorised the 68 tests into three sets: 

a) sensorimotor metrics that include tests of reaction time and trail making; b) memory and executive functions 

that include tests of numeric and prospective memory, symbol-digit and pair matching, and matrix pattern 

completions; c) a range of fluid intelligence tests. We found sPROFUMO to be most successful at predicting tests 

related to memory and executive functions, where the average prediction accuracies were found to be as high 

as ~0.3. Importantly, we found SMAP and SNET as the best predicting elements of the model, followed by AMP 

and TNET.  

Next, taking a step away from combining outputs of all the functional modes, we used uni-mode predictions, to 

identify the best predicting modes. As shown in FIGURE 8C, these included multiple frontal, fronto-parietal and 

variants of the DMN, in addition to one visual, one auditory, and one cerebellar mode. We found the uni-mode 

prediction accuracies to be up to 0.15, 0.2, 0.2 and 0.25 for TNET, SNET, SMAP and multi-element, respectively 

(FIGURE 8B). Comparison against ICA-DR revealed a generally better performance for sPROFUMO, reflected in 

SMAP, SNET and multi-element prediction but not the TNET. The outperformance of uni-mode multi-element 

predictions (FIGURE 8B LEFT) is particularly interesting as it reveals that single PFMs at higher dimensions are of 

higher cognitive relevance compared to ICA-DR modes. 
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In summary, we found sPROFUMO to successfully predict a range of cognitive tests, and to generally outperform 

ICA-DR. Notably, we found a double dissociation between the two models, where in sPROFUMO the spatial 

mode topographies showed the highest contribution in predicting the cognitive outcome, while in ICA-DR, 

between-mode functional connectivity provided the best predicting element. This dissociation is in-line with 

previous findings of ICA-DR and PROFUMO (Bijsterbosch et al., 2019, 2018; Harrison et al., 2020; Llera et al., 

2019) based on canonical correlations analysis of behavioural and life factors. In this study, we expand those 

findings based on causal inference using predictions and a sample size that is approximately five times larger. 

Figure 8 Prediction of cognitive outcome using sPROFUMO modes at rest, and comparison to ICA-DR. These results show 
an overall higher performance for sPROFUMO and reveal a double dissociation between the role of spatial topography 
versus functional connectivity in prediction accuracies (PA) of the two models. a) Bland-Altman plots for multi-mode 
prediction; b) density scatter plots of uni-mode predictions; c) examples of the best predicting sPROFUMO RSNs. Red 
dashed lines in (a) and (b) denote baselines for equal performance. 
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As we will discuss later, this has important implications for how spatial topography and functional connectivity 

might interplay in resting-state network estimations.    

4.7 Effect of mode dimensionality on group- and subject-level PFMs 

Results presented up to this point are based on the decompositions of 150 sPROFUMO PFMs in the brain at rest. 

Recent studies of subject-specific high dimensional functional parcellations have reported hundreds of 

functional modes at rest (Dadi et al., 2020; Smith et al., 2015). These findings are often based on the datasets 

with long recordings in the order of hours e.g. HCP data or combinations of multiple datasets. Given the relatively 

small number of time points in UKB (i.e. 490 time points corresponding to 6 minutes), here we chose to estimate 

150 modes. Nonetheless, this choice remained somewhat arbitrary. We therefore explored the extent to which 

the key results hold when 100 and 200 PFMs were to be estimated.  

First focusing on the group model, we paired group spatial maps based on the spatial correlation across the 

voxels, as shown in FIGURE 9A. When comparing 100 and 150 dimensions, we found that there was generally a 

one-to-one correspondence between the first 100 PFMs, and by increasing to 150, sPROFUMO added new PFMs. 

We made a similar observation when comparing 150 and 200 PFMs. Modes that started appearing at higher 

dimensions were spatially correlated with multiple of the existing modes. These new modes were among the 

lower-ranked modes in sPROFUMO’s matrix factorisation and thus, perhaps unsurprisingly, were found to be 

typically lower in SNR. We next examined model convergence (FIGURE S 8 in APPENDIX G) and found that higher-

dimensional decompositions showed a quicker convergence of both group spatial maps and partial temporal 

NetMats.  

Next, we investigated the effect of increased dimensionality on subject-specific PFMs (FIGURE 9B). Focusing on 

cross-subject consistencies, similar to section 4.3.2 and Appendix D, for each model element, we calculated 

correlations between each subject and all other subjects. Regardless of dimensionality, spatial NetMats were 

the most consistent model element across the individuals, followed by partial temporal NetMats and spatial 

maps, and consistencies of these elements further increased with dimensionality. On the contrary, mode 

amplitudes were the least consistent element and further decreased in consistency by the increased 

dimensionality. Interestingly, increasing the dimensionality from 100 to 150/200 resulted in more structured 

partial temporal NetMats with higher off-diagonal values, which in turn resulted in a noticeable increase in cross-

subject temporal NetMat consistencies. 

These results altogether show that the increased dimensionality of the resting state sPROFUMO modes, i.e. 

PFMs, adds unique information to what is provided by lower dimensions, resulting in more accurate fits to the 

data and higher consistency across individuals. 
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5 Discussion  

In this study, we proposed stochastic PROFUMO (sPROFUMO) for inferring functional brain modes in individuals 

and populations from big fMRI data. We applied the model to resting state data from 4999 UK Biobank (UKB) 

subjects, in order to obtain high dimensional PFM decompositions of the brain function at rest, and predicted 

cognitive traits based on these functional modes. The highlights of the proposed model and results are threefold: 

firstly, sPROFUMO resolves the issue of computational costs that is associated with the application of 

bidirectional hierarchical models to big fMRI data; e.g. UKB with expected 100,000 subjects. It therefore provides 

suitable means to leverage the unprecedented richness of population variability that is provided by big data, 

and explicitly models functional networks for each individual within the epidemiological cohorts. Secondly, using 

simulations and real data, we illustrated several advantages of sPROFUMO over the established paradigm of ICA 

Figure 9 Estimating different number of resting state functional modes using sPROFUMO (comparing 150 to 100 and 200). 
a) group-level: going to higher dimensions (i.e. from 100 to 150 and 150 to 200) yield new modes that are spatially 
overlapping with the existing modes; b) subject-level: all model elements except for the amplitudes become more 
consistent for higher dimensions. 
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Dual Regression. This was particularly reflected in over 100% more accurate estimation of cross-subject 

variability in the spatial sPROFUMO mode topographies, and yielding more biologically interpretable RSNs at 

higher dimensions. Thirdly, sPROFUMO enabled us to obtain the first high dimensional RSN decomposition of 

the brain function based on the PROFUMO framework. Crucially, these yield, to our knowledge, an 

unprecedently detailed mapping of the single subject RSNs based on UKB and we showed these RSNs to be 

predictive of individualistic cognitive traits. The sPROFUMO code and discovered PFMs will be made publicly 

available in hopes of being useful for future investigations into individualised brain function.  

5.1 Hierarchical functional mode modelling from big data 

An important objective of big neuroimaging data is to provide resources for precision medicine and neuroscience 

(Bzdok and Yeo, 2017; Ganguli et al., 2018; Quinlan et al., 2020; Sui et al., 2020). Therefore, increasing 

developments have been made to map the brain function in single subjects, and an important challenge in doing 

so is to overcome the computational costs of such models (Mejia et al., 2019). Classic PROFUMO (Harrison et 

al., 2020, 2015) provides an advanced approach for hierarchical modelling of the functional brain networks in 

population and individuals. The sPROFUMO method proposed in this study builds upon PROFUMO and 

incorporates two key differences in order to make it suitable for big data application. Firstly, it substantially 

reduces the computational costs of the model. For example, for a 150-mode PFM decomposition and 4999 UKB 

subjects as used in this study, classic PROFUMO would typically require ~7.5TB and for the forthcoming 100,000 

subjects in UKB, this value will increase to 150TB of computer RAM, which are intractable. With sPROFUMO, 

these values are decreased by a factor of 100 while still maintaining the accuracy of estimations, such that 

thousands of subjects can be readily analysed with a modest computing cluster.  

The stochastic variational inference used in sPROFUMO enables the model to also accommodate larger degrees 

of population heterogeneity; i.e. subject deviations from the group, which we interpret as being a key 

contributing factor for the reconstruction of up to 200 modes in the current study as opposed to ~40 modes 

previously reported using PROFUMO (Harrison et al., 2020). More specifically, in the previous studies, we had 

observed that PROFUMO requires a mode to be unanimously present in a majority of individuals in order to be 

estimated for the population (Harrison et al., 2020), otherwise, it was found to be typically “switched off” -  

returned as “missing” for the population as well as all subjects. On the contrary, we found that sPROFUMO was 

able to recover modes even when they were estimable in only a minority of the subjects. This could be useful in 

various instances; e.g. when there are substantial variations in the SNR of the fMRI recordings across the 

individuals, such that the less prominent modes might only be estimable in a subset of subjects. As outlined in 

3.2.1, we applied additional data curation strategies to boost the number of estimable modes in individuals.   

Another feature of sPROFUMO, which is directly inherited from PROFUMO, and we found to be particularly 

useful when applying the model to UKB, was its explicit account of signal and noise components at single subject 

level. UKB, despite the unprecedently large number of subjects that provides excellent group-level SNR, has a 

relatively small amount of data per subject, where each subject is scanned once and for ~6 minutes (Miller et 

al., 2016). This will make it particularly challenging to estimate “clean” modes at single subject level and, thus, 
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further modelling strategies are required to obtain high SNR mode estimation in individuals. Unlike the common 

approach used in matrix factorisations, where each mode is decomposed into spatial map, time course and 

residuals (Beckmann et al., 2009; Guo and Tang, 2013; Mejia et al., 2019; Varoquaux et al., 2011), in sPROFUMO, 

spatial maps and mode time courses are further decomposed into signal and noise components. We showed 

that (FIGURE 7 and FIGURE S 4) this noise modelling can accurately tease apart signal from the background noise 

and substantially improved the SNR of subject mode estimations, e.g. compared to ICA-DR.    

5.2 High dimensional single subject RSN decompositions in UK Biobank  

As outlined earlier, we used sPROFUMO on UKB and estimated high dimensional RSNs in population and 

individuals. The importance of high dimensional RSN decompositions has come to light in the last few years, as 

they provide a detailed mapping of the brain function (Dadi et al., 2020; Pervaiz et al., 2020; Smith et al., 2015, 

2013b). The fine millimetre spatial resolution of fMRI makes this modality suitable for investigation of the brain 

function on a voxel-by-voxel basis; a potential that has been extensively exploited in studies of brain activity; 

e.g. in multivoxel pattern analyses (Norman et al., 2006; Woolgar et al., 2016). Nonetheless, resting state fMRI 

connectivity is oftentimes conducted in low-dimensional spaces, e.g. based on 20-50 networks which provides 

valuable insight into long-distance system-level interactions. Nevertheless, growing evidence suggests that this 

approach has a limited ability to elucidate the information that is encoded in fine-grained brain topographies 

(Feilong et al., 2020) or within-mode interactions (Schaefer et al., 2018). The high dimensional modes (100, 150, 

200 PFMs) that we identified using sPROFUMO incorporated three types of RSNs: i) high-SNR distributed RSNs, 

ii) lower SNR distributed RSNs, iii) lower SNR parcel-like RSNs. 

Importantly, the high dimensional PFMs demonstrated a unique behaviour whereby the well-known large scale 

RSNs, e.g. DMN or DAN, that are typically found at lower dimensions were preserved, while new, spatially 

overlapping, modes were added. This behaviour is distinct from the existing high dimensional functional 

parcellations (Craddock et al., 2012; Schaefer et al., 2018), and previously reported behaviour in terms of 

hierarchically organised networks (Doucet et al., 2011; Lee et al., 2012). In particular, this is a fundamentally 

different behaviour to that which we observed in spatial ICA. Namely, in ICA moving to higher dimensions (e.g. 

> 100) typically results in the large-scale modes being divided into multiple minimally-overlapping sub-modes 

that are predominantly confined to one brain region (Kiviniemi et al., 2009; Smith et al., 2015, 2013b). As an 

example, at 150-mode dimension, we illustrated the DMN in FIGURE 7, where one PFM spatially overlaps with 

six different ICs. 

The additional RSNs identified with sPROFUMO can be described as the less prominent variants of the well-

known RSNs. For example, as illustrated in FIGURE 5, we found 24 modes in the occipital and occipito-temporal 

cortex, coinciding with visual networks (Wang et al., 2015) while low-dimensional decompositions typically yield 

less than 10 visual networks (Smith et al., 2012; Thomas Yeo et al., 2011). The functional relevance of these new 

RSNs remain to be explicitly investigated in the future studies. Some plausible scenarios include: a) a subset of 

these modes that are localised to specific brain regions are likely to be specialised for specific tasks; b) some of 

these modes might be sub-nodes of the distributed networks such as DMN. These include the modes that show 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.02.01.428496doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.428496
http://creativecommons.org/licenses/by/4.0/


 
 

32 

high one-to-one correlations to ICA-DR modes at high dimensions (c.f. FIGURE 7); c) a subset of these modes, e.g. 

parcel-like modes in the parietal cortex (FIGURE 5, 6th and 7th rows), might have occurred due to the limitations 

of our model for capturing the more complex underlying connectivity patterns e.g. gradients of connectivity, 

dynamic connectivity, or presence of subpopulations in the data (Lurie et al., 2020; Margulies et al., 2016; 

Seitzman et al., 2019; Vidaurre et al., 2017). 

5.3 Predicting cognitive outcome based on functional modes 

An important goal of single subject modelling of functional brain networks is to account for individualistic 

cognitive and clinical traits (Finn & Constable 2016; Gordon et al. 2017b; Kong et al. 2019). Leveraging the rich 

source of non-imaging phenotypes in UKB, we used PFMs to predict the outcome of a range of cognitive 

phenotypes. Based on multi-mode predictions, we found the model to be most successful at predicting tests 

related to memory and executive functions, where the correlations between the estimated and true test scores 

were found to be as high as ~0.3. These prediction accuracies are superior or comparable to previous reports 

based on soft (Pervaiz et al., 2020) and hard parcellations (Kong et al., 2019) as well as the more recent 

multimodal phenotype discovery methods (Gong et al., 2020). Furthermore, uni-mode predictions unravelled 

multiple variants of DMN and fronto-parietal attention networks as the best predictors of cognitive phenotypes. 

This finding can be readily integrated within the previous literature, given the well-established (albeit less well 

understood) role of DMN and fronto-parietal networks in higher-level cognitive function (Andrews-Hanna et al., 

2014; Buckner et al., 2008; Raichle, 2015; Spreng et al., 2010). Interestingly, however, we also found a cerebellar 

mode as one of the top predicting PFMs, which is in accordance with growing evidence suggesting a key role for 

the cerebellum in higher-level cognition that goes beyond motor coordination (Schmahmann, 2019; Sokolov et 

al., 2017; Wagner and Luo, 2020).  

Importantly, we found the spatial characteristics of the PFMs, i.e. spatial configuration of the PFMs across the 

brain voxels as well as spatial correlations among the modes, to provide better predictors of cognitive 

phenotypes compared to the functional connectivity. While previous research has predominantly investigated 

links between RSNs and non-imaging phenotypes based on functional connectivity (Dadi et al., 2019; Ng et al., 

2016; Pervaiz et al., 2020; Smith et al., 2015), recent studies have highlighted (Bijsterbosch et al., 2018; Kong et 

al., 2019) that differences in spatial topographies can give rise to trait-like differences. We showed that using 

sPROFUMO, functional subdivisions of the brain can be clearly reconstructed in individuals (FIGURE 6), and the 

prediction results further illustrate that cross-subject variability of these spatial maps is predictive of 

individualistic traits.  

5.3.1 Interpreting the prediction accuracies 

In addition to utilising the prediction accuracies as a proxy for the model’s performance, we conducted 

comparisons between sPROFUMO and ICA-DR in order to shed light on how these results can be interpreted. 

While we observed a generally higher performance for sPROFUMO, particularly in uni-mode predictions, the 

most intriguing difference was the increased predictive performance of sPROFUMO’s spatial topography versus 

ICA-DR’s functional connectivity. This is in-line with recent studies (Bijsterbosch et al., 2018; Llera et al., 2019) 
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and can be explained in light of differences in model assumptions and the way subject-group hierarchies are 

defined in each framework (Beckmann and Smith, 2004; Harrison et al., 2020; Nickerson et al., 2017).  

If we consider the true sources of subject-variability to span both spatial and temporal characteristics of the 

functional modes, we ideally require a model to: a) identify the variability across the individuals and b) accurately 

assign the division of labour between spatial versus temporal domains in accounting for that variability. Previous 

studies have shown that if the spatial variability is not accurately specified, in particular if spatial overlaps 

between the modes are not accurately accounted for, it can result in a biased, typically over-estimated, 

functional connectivity (Bijsterbosch et al., 2019, 2018). In other words, true sources of variability that were 

spatial in nature are likely to be erroneously estimated as functional connectivity and enhance its prediction 

power. Multiple characteristics in sPROFUMO/PROFUMO framework can help circumvent this problem: Firstly, 

as we showed in simulations (section 4.2), bidirectional hierarchical modelling and inference allows for accurate 

estimation of spatial mode configurations in single subjects. Secondly, considering that there are no constraints 

on spatial and/or temporal independence of the PFMs, the model allows the modes to be functionally correlated 

and spatially overlapping, depending on the evidence provided by the data at hand. Thirdly, and importantly, 

defining hierarchies on both spatial and temporal characteristics of the modes allows to iteratively fine-tune the 

parameters in both domains until an optimal balance is found. Therefore, sPROFUMO prediction accuracies can 

be expected to provide a more interpretable reflection of the true sources of functional mode variability that 

contribute to cognitive heterogeneity.  

6 Data and code availability 

Data used in this study is generously provided by UK Biobank and is available upon registration and applying for 

data access from UK Biobank website: http://www.ukbiobank.ac.uk/register-apply.   

Codes used for simulations is available from the following public repository: 

https://git.fmrib.ox.ac.uk/samh/PFM_Simulations.  

Code for sPROFUMO implementation is currently available upon request from the following private repository, 

it is being integrated within PROFUMO and will be made publicly available in an upcoming FSL release:  

https://git.fmrib.ox.ac.uk/rezvanh/sprofumo_develop. 
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10 Appendices 

A. Appendix to section 3.2.1: missing modes 

In the main section 3.2.1 we discussed the issue of missing modes in PROFUMO framework and briefly outlined 

five key changes in the data and model that enabled us to largely resolve this issue in this study. Here we 

elaborate these five factors. 

Reduced group-level missing modes using UKB and sPROFUMO  

Here, when applying sPROFUMO to UKB, we found 46/50 and 92/100 non-empty modes at the group-level, 

which denotes an increase compared to our previous findings (Harrison et al., 2020). A few factors that can 

explain this observation are: firstly, the large number of subjects in UKB improved the signal-to-noise ratio of 

the group-level estimations, which can lead to a higher number of group-level modes being reliably 

reconstructed. Secondly, stochastic inference in sPROFUMO may have allowed for the VB optimisation to jump 

out of local minima, resulting in an improved minima that seems to allow for a higher degrees of subject 
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variability in the group model. More specifically, in PROFUMO, a mode is typically returned as non-empty only 

if it is consensually estimable in a majority of the subjects (Harrison et al., 2020). sPROFUMO appeared to show 

more flexibility around such consensuses, such that modes can be estimated when present in a minority of the 

subjects too. Finally, in the previous papers we mostly found cortical modes, whereas here a subset of the new 

modes that we discovered comprised subcortical and cerebellar RSNs. This can potentially be attributed to the 

type of data, in that here we utilised volumetric fMRI while in the previous papers we used CIFTI (UKB data has 

not yet been preprocessed into CIFTI form; this is planned for 2021). CIFTI data combines surface-based 

reconstruction of the cortical areas and volumetric reconstruction of the sub-cortical grey matter. As a result, 

there are known to be substantial differences in the smoothness of the data measured from cortical and 

subcortical regions, leading to inhomogeneities in the signal-to-noise ratio. Conversely, volumetric data yields 

more homogenous signal in different parts of the brain that can potentially help with recovering of the cortical 

and subcortical modes, alike.  

Even though these four factors significantly decreased the number of the group-level missing modes, a number 

of subject-level missing modes persisted. We applied additional data curation strategies to reduce the remaining 

missing modes.  

Additional data processing to reduce subject-specific missing modes 

Firstly, we applied additional spatial smoothing using FSL tool fslmaths with Gaussian smoothing kernel sigma 

of 2.00, 2.05 and 2.15mm within cortex/white matter, cerebellar and subcortical masks, respectively. The slight 

difference in smoothing parameters were designed to account for the inherent smoothness differences in 

resting state signals in these regions. The final estimated smoothness, according to FSL’s smoothest, was on 

average ~7.2mm FWHM across subjects in all the masks. We observed that this relatively small amount of 

additional smoothing makes a notable difference to the high dimensional sets of modes obtained from both 

sPROFUMO and ICA, especially for estimation of single subject spatial maps and reducing missing modes.  

As a part of subject-specific preprocessing, PROFUMO by default applies an SVD dimensionality reduction to 

subject data matrix Dsr in EQUATION 1 to give Xsr∈ ℝ-.×-r , where 𝑁z is the number of top singular vectors. 

Subsequent matrix factorisations and mode inference are conducted in this dimension-reduced space. For low-

dimensional mode decompositions (e.g. ~40 modes) this dimensionality reduction offers an efficient way of 

reducing the computational costs while largely preserving the estimation accuracies (provided the number of 

modes is small compared to the number of timepoints per subject). However, we found that even though the 

most prominent modes are consistent among the individuals, as we move up to higher dimensions it becomes 

harder for the SVD to dissociate signal from noise components. Thus, the rank of the modes can arbitrarily 

change across individuals and more of the group-level modes will be lost in single subjects during SVD reduction. 

This results in those modes being returned as empty in individuals. In sPROFUMO, considering that only a small 

fraction of the population is kept in the memory for any given iteration, we are able to work with the full data 

matrix Dsr. We found this change to greatly reduce the subject-specific missing modes at high dimensions; since, 

even if a mode does not explain much of the data variance, it can still be recovered in single subjects.  
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B. Appendix to simulation set 2 (section 4.2) 

In the main section 4.2 we presented three simulation scenarios associated with challenges of high-dimensional 

mode decomposition from resting state fMRI data. FIGURE S 1 shows examples of simulated ground truth modes 

and estimated sPROFUMO modes. In the main text, we compared sPROFUMO results to that of ICA and ICA-

Dual Regression (ICA-DR). Here in FIGURE S 2 we show an extended version which also includes classic PROFUMO. 

Based on these results, in the presence of different degrees of cross-subject variability in the modes, spatial 

overlaps between the modes and smaller mode sizes, sPROFUMO and PROFUMO show similar performances 

and they both outperform ICA and ICA-DR. The difference is particularly notable for single subject estimation of 

the spatial mode topographies where s/PROFUMO tend to yield accuracies that are up to ~100% superior to 

that of ICA/-DR.  

Modes with low accuracies 

A closer look at the violin plots in FIGURE S 2 (and FIGURE 4) reveals a puzzling behaviour: estimation accuracies 

of the spatial maps sometimes depict a bimodal distribution where a subset of the modes show accuracies near 

zero while a majority of the modes are estimated very accurately; e.g. see the distribution where the 

misalignment is 57.7% in FIGURE 4A.    

A subset of these low accuracy modes can be attributed to when a ground truth mode is missing from the 

estimations. This is likely to happen at both group- and subject-level, e.g. when a mode is excessively small 

and/or noisy, such that it cannot be estimated as one of the top modes, and instead is included within the 

residuals. An additional factor that can give rise to subject-specific missing modes in these simulation scenarios, 

and consistent with the pattern of results that we observe, is that they occur when a group map is not 

representative of the entire population. For example, if the amount of misalignment in a subset of subjects is so 

large that a specific mode has minimal overlap with the group, then it will be difficult for both 

sPROFUMO/PROFUMO and ICA-DR to estimate those subjects accurately. Arguably, this scenario will also be 

challenging for other hierarchical algorithms that aim to find one single consensus group model, considering 

that a key assumption of these models will be violated.  

The low accuracy modes are also likely to be false positives; i.e. where a mode that does not exist in the ground 

truth is detected by the matrix factorisation model. Such false positives might occur when the assumptions of 

matrix factorisation model (e.g. spatial independence in spatial ICA) are largely violated in the ground truth, or 

a noise-driven component being erroneously detected as a functional mode. 
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Figure S 1 Examples of a) simulated and b) estimated networks in the presence of spatial overlap among the 

modes and spatial misalignment across subjects. Top: group-level spatial maps. Bottom: subject-level spatial 

maps and time courses.   

Figure S 2 results of simulation set 2 (section 4.2) when including PROFUMO. 
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C. Appendix to summary of UK Biobank results (section 4.3) 

In the main section 4.3 we showed the results of applying sPROFUMO to resting state fMRI data of 4999 subjects 

from UK Biobank and characterising 150 functional modes. Here we present supplementary figures to that 

section. FIGURE S 3 shows model convergence based on full population Free Energy (output from stochastic 

Variational Bayesian optimisation process) as well as group-level spatial maps and partial temporal NetMats. 

FIGURE S 4 is linked to the main section 4.3.1 and shows how explicit decomposition of modes’ spatial and 

temporal properties into signal and noise components help finding a clean estimation of the subject-specific 

modes that is minimally contaminated by noise. This also shows how high-SNR large-scale RSNs, low-SNR large-

scale RSNs and parcel-like RSNs differ with respect to the noise levels. 

 

 

 

 

 

 

 

 

 

 

Figure S 3 Model convergence on 
UKB data. Top: Free Energy 
convergence of the full model; 
bottom: correlation of group spatial 
maps and group partial temporal 
NetMats in each batch iteration (i), 
with their immediately preceding 
iteration (i-1) until convergence.  
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Figure S 4 Signal and noise terms in spatial and temporal aspects of sPROFUMO PFMs: a) group-level spatial signal maps (top) and subject-
level spatial signal and noise maps for three random participants (IDs: 21126276, 24329265, 24761264). Signal maps in subjects denote 
the spatial mode topography and noise maps denote the background; b) examples of one PFM per each of the four categories from FIGURE 
5: 1) high-SNR distributed (first left), 2) low-SNR distributed (second left) and 3) low-SNR (third left) parcel-like sPROFUMO RSNs in parieto-
central cortices as well as 4) a mode with physiological/acquisition origin (right). Note that three timecourses/power spectra are shown 
in each plot which include: clean time course of the signal component only, decorrelated time course of the signal component after de-
convolving with an HRF response function, and noisy time course from combined signal and noise components.    
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D. Appendix to stability of sPROFUMO PFMs (section 4.3.2) 

This section provides a detailed description of the results that were presented in 4.3.2. We evaluated how 

reliably sPROFUMO modes were estimated across subjects and model runs based on two set of consistency 

metrics: 

Firstly, we tested between-run stability of the sPROFUMO’s results, by re-running the model on the same 

subjects and measuring correlations between the outputs of the two runs. In stochastic inference, due to the 

randomisation over the local variables, different runs of a model are prone to yielding different results, even if 

the inference is conducted based on an identical set of parameters and on the same data. Despite this property, 

our aim is that the final sPROFUMO output remains stable across multiple runs. To test the stability, we initialised 

the model based on the same set of initial maps and priors, and re-inferred subject and group PFMs. Results are 

shown in FIGURE S 5A where we found average consistency of 0.98, 0.98 and 0.94 for the group spatial maps, 

spatial and temporal NetMats, respectively. For subject-specific sPROFUMO PFMs these values were: 0.90, 0.94 

and 0.77, with 0.85 consistency for the amplitudes.  

Secondly, we measured cross-individual robustness of the results based on subject-to-group (S2G) and subject-

to-subject (S2S) consistencies.  In the absence of a ground truth in the real data, higher S2G and S2S consistencies 

are often used as metrics of performance and robustness in single subject modelling (Gordon et al., 2020; 

Guntupalli et al., 2018). This is due to the fact that, firstly, we expect the biologically meaningful RSNs to exhibit 

similar key features across individuals (e.g. right-hand motor network should localise to left motor cortex), and 

we expect the group model to capture the key elements shared across the population. Secondly, the model 

should ideally be able to remove the effect of measurement noise from single subject mode estimations (e.g. 

see FIGURE S 4) which in turn is expected to increase S2G and S2S values. We measured S2G consistencies by 

finding correlation coefficients of the corresponding mode elements (e.g. spatial maps) between a subject and 

the group. Similarly, for S2S consistencies, we correlated each subject’s mode elements with all other subjects. 

Pooling the results in Raincloud plots (FIGURE S 5B) revealed that S2G consistencies were generally ~10% higher 

than S2S consistencies. We further found the most-to-least consistent mode elements to be: spatial NetMats 

(S2S: 0.79±0.017, S2G: 0.89±0.019), partial temporal NetMats (S2S: 0.70±0.085, S2G: 0.83±0.10), spatial maps 

(S2S: 0.55±0.024, S2G: 0.73±0.033) and mode amplitudes (S2S: 0.31±0.055, S2G: 0.56±0.093).  It is worth noting 

that while S2G and S2S consistencies yield useful metrics of results stability, they do not inform us of the 

relationship between estimated and ground truth subject-specific variability in spatial and/or temporal domains. 

Therefore, we complement results from this section with additional metrics from simulations (4.2) and 

prediction power for cognitive tests (4.6) to illustrate model’s ability to accurately and meaningfully capture 

cross-subject variations.   
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E. Appendix to comparison of sPROFUMO and ICA-DR (section 4.5) 

In the main section 4.5 we showed how high-dimensional sPROFUMO decomposition of 150 modes 

compared to that of ICA and ICA-DR. FIGURE S 6 is supplement to FIGURE 7 and shows how distribution of 

subject spatial maps in different brain voxels differs between sPROFUMO spatial signal element and ICA-

DR. 

 

Figure S 6 Supplement to Figure 7: example histograms of sPROFUMO subject spatial maps (signal element) and ICA-DR 
spatial maps across voxels for participant 21126276. Left: visual modes in Figure 7, Right: motor modes in Figure 7. 

 

F. Appendix to prediction results (section 4.6) 

In the main section 4.6 we showed results of using 150 sPROFUMO modes from resting state fMRI from 4999 

UK Biobank subjects to predict cognitive outcome.  

Figure S 5 Stability of sPROFUMO modes: a) consistency of group- and subject-level PFMs across two sPROFUMO runs; b) 
subject-to-group and subject-to-subject consistency of PFMs within a single model run. Consistencies are measured based 
on different model elements including spatial maps (SMAP), spatial and partial temporal NetMats (SNET, PTNET), and 
Amplitudes. Note that we do not include a Raincloud plot (Allen et al., 2019) for the group-level amplitudes in panel (a) 
because each mode has one group-average amplitude thus yielding 150 values per model run. The correlation between these 
amplitudes is therefore just a single number. 
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TABLE S 1 shows the names of cognitive tests included in predictions and full details of each test are available in 

UKB website: https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100026. FIGURE S 7 shows prediction accuracies 

for every cognitive test separately (refer to the main text for additional explanations).  

 

Figure S 7 Accuracies of sPROFUMO (multi-mode prediction) for predicting different categories of cognitive tests. The model is generally 
better in predicting higher cognitive functions such as memory and executive function compared to sensory-motor function. For violin-
plots where numbers are shown on the x-axis, sPROFUMO’s performance is significantly above chance after Bonferroni correction for 
multiple comparisons. Red asterisks show significantly better performance compared to MELODIC-DR after Bonferroni correction for 
multiple comparisons. Blue asterisks vice versa. Therefore, for multi-element prediction and spatial maps (SMAP), sPROFUMO shows 
superior performance, for temporal NetMat (TNET) ICA-DR is better and for spatial NetMat (SNET) and amplitudes (AMP) the two models 
perform on par with each other.  
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Table S 1 68 cognitive tests used for prediction 

Cognitive tests 

1-  No. incorrect matches (0.1)   31- Digits correctly (2.1)  

 

 60- Prospective memory (2.0)  

 2- No. incorrect matches (0.2)   32- Digits correctly (2.2)  

 

 61- Mn time identify matches (0.0)  

 3- No. incorrect matches (2.1)   33- Digits correctly (2.3)  

 

 62- Mn time identify matches (2.0)  

 4- No. incorrect matches (2.2)   34- Digits correctly (2.4)  

 

 63- No. incorrect matches (0.0)  

 5- No. incorrect matches (2.3)   35- Digits correctly (2.5)  

 

 64- Dur num. path (trl #1) (0.0)  

 6- No. times snap-button (0.0)   36- Digits correctly (2.6)  

 

 65- Dur alphanum path (trl #2) (0.0) 

 7- No. times snap-button (0.1)   37- Digits correctly (2.7)  

 

 66- No. symbol digit matches (0.0) 

 8- No. times snap-button (0.2)   38- Max digits correctly (2.0)   67- No. symbol digit matches (2.0) 

 9- No. times snap-button (0.3)  39-  FI1 : numeric add. (0.0)  

   

 10- No. times snap-button (0.4)   40- FI1 : numeric add. (2.0)  

   

 11- No. times snap-button (0.10)   41- FI3 : word interpol. (0.0)  

   

 12- No. times snap-button (0.11)   42- FI3 : word interpol. (2.0)  

   

 13- No. times snap-button (2.0)   43- FI4 : posit. arithmetic (0.0)  

   

 14- No. times snap-button (2.1)   44- FI4 : posit. arithmetic (2.0)  

   

 15- No. times snap-button (2.2)   44- FI5 : fam. rel. calc. (0.0)  

   

 16- No. times snap-button (2.3)   45- FI5 : fam. rel. calc. (2.0)  

   

 17- No. times snap-button (2.4)   46- FI6 : condit. arith. (0.0)  

   

 18- No. times snap-button (2.5)   47- FI6 : condit. arith. (2.0)  

   

 19- No. times snap-button (2.7)   48- FI7 : synonym (0.0)  

    

 20- No. times snap-button (2.10)   49- FI7 : synonym (2.0)  

    

 21- No. times snap-button (2.11)   50- FI8 : chained arithmetic (2.0)  

   

 22- Time elapsed (2.0)  

 

 51- FI9 : concept interpol. (2.0)  

   

 23- Time elapsed (2.1)  

 

 52- FI10 : arith. seq. recog. (2.0)  

  

 24- Time elapsed (2.2)  

 

 53- Dur. num. path (trl #1) (2.0)  

   

 25- Time elapsed (2.3)  

 

 54- Total err num. path (trl #1) (2.0) 

  

 26- Time elapsed (2.4)  

 

 55- Dur alphanum. path (trl #2) (2.0) 

  

 27- Time elapsed (2.5)  

 

 56- No. puzzles correct (2.0)  

   

 28- Time elapsed (2.6)  

 

 57- Fluid intelligence (0.0)  

   

 29- Time elapsed (2.7)  

 

 58- Fluid intelligence (2.0)  

   

 30- Digits correctly (2.0)  

 

 59- Prospective memory (0.0)  
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G. Appendix to effect of mode dimensionality (section 4.7) 

In section 4.7 we showed the effect of mode dimensionality on sPROFUMO results, comparing 150 modes 

with 100 and 200. FIGURE S 8 shows the convergence rates of the group spatial maps and partial temporal 

NetMats based on correlations between the group model obtained in each model iteration with the 

immediately preceding group model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S 8 Convergence rates of different dimensions of sPROFUMO modes at rest.  
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