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Abstract 11 

We used SUFI-2 for the first time to calibrate the phenology module of the APSIM-wheat model 12 

for 10 spring wheat cultivars cultivated in northeast Australia (south-eastern Queensland). 13 

Calibration resulted in an average RMSE of 5.5 d for developmental stages from stem elongation 14 

up to flowering. Projections from 33 climate models under the representative concentration 15 

pathway 8.5 were used for simulations at 17 sites. Using adapted sowing times, we simulated 16 

significantly shorter crop cycles and grain yield improvements for the period 2036-2065 relative to 17 

1990-2019 for three selected cultivars (Hartog, Scout and Gregory). Photoperiod and vernalisation 18 

sensitivities were shown to be the largest and smallest contributors to total uncertainties in the 19 

simulated flowering day and grain yield. Uncertainties in climate models had a relatively minor 20 

contribution to the total uncertainties in the simulated values of target traits. This contribution 21 

significantly increased when climate change impact on the target traits was estimated. 22 

Keywords: Australian wheatbelt, calibration, climate change, crop model, sensitivity analysis, 23 

uncertainty analysis.  24 
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1 Introduction 25 

Crop phenology, i.e. knowledge of crop developmental phases, is essential for precision farming 26 

and crop management. It is a key component of crop models that use cultivar-specific parameters 27 

to simulate growth, development and yield of a crop.  There has been an increased application of 28 

process-based crop models to address the interactive impact of genotype × environment × 29 

management interactions (G×E×M) on crop yield and development under a changing climate (e.g. 30 

Zheng et al., 2012; Lobell et al., 2015; Stöckle et al., 2018; Webber et al., 2018; Hunt et al., 2019; 31 

Liu et al., 2019, 2020; Ababaei and Najeeb, 2020). Crop models have also been extensively adopted 32 

in climate change impact and adaptation studies across Australia (Yang et al., 2014; Luo et al., 2018; 33 

Hunt et al., 2019; Ababaei and Najeeb, 2020; Liu et al., 2020) and worldwide (Ababaei and 34 

Ramezani Etedali, 2017; Stöckle et al., 2018; Liu et al., 2019; Asseng et al., 2015; Challinor et al., 35 

2009a; Pörtner et al., 2014; Rosenzweig et al., 2014). However, due to the complex nature of bio-36 

physical factors associated with crop production processes, many uncertainties originate while 37 

simulating the impact of the future climate on crops. Sources of uncertainty include projection of 38 

greenhouse gas emissions, projection of global warming, projection of local climate change, 39 

estimation of crop model parameters and crop model structure (Zhang et al., 2019; White et al., 40 

2011; Challinor et al., 2013; Wallach and Thorburn, 2017).  41 

Previous studies quantified the effect of these uncertainties on estimates of climate change impact 42 

on crop production. For example, Luo et al. (2005) and Tao et al. (2008) used the Monte Carlo 43 

technique to quantify and manage uncertainties from climate change projections. Studies by Iizumi 44 

et al. (2009) and Zhang et al. (2019) used the Markov Chain Monte Carlo (MCMC) technique for 45 

examining the probability distribution of biophysical parameters. Asseng et al. (2013), Araya et al. 46 

(2015) and Wang et al. (2017) reported a greater contribution of crop model structure to the total 47 

uncertainty than general circulation models (GCMs). In contrast, greater uncertainties in crop yield 48 

projections from GCMs than those from crop model structure were reported by Tao et al. (2009), 49 

Kassie et al. (2015) and Zhang et al. (2019). These conflicting findings show the necessity of 50 

assessing each source of uncertainty with the target model(s), within the target study area, and for 51 

the target crop(s). 52 

Among these sources, crop model parameter estimation (the so-called crop model calibration or 53 

inverse modelling) can be an important source of uncertainty. Calibration is a critical step in 54 

developing and applying a simulation model, which uses observational data to estimate unknown 55 

model parameters for a better fit of model outputs (Seidel et al., 2018). Common goodness-of-fit 56 

criteria for determining crop parameters include visual assessment and statistical/optimisation 57 
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approaches such as maximum likelihood, ordinary least square, D-statistics (Willmott, 1982), and 58 

Bayesian analysis. Some calibration algorithms also generate useful statistical information such as 59 

parameter sensitivities for supporting calibration. Compared to direct measurement of parameters 60 

in the field, which is time and cost consuming, inverse modelling generates inferences from 61 

common measured phenological and production components. Recently, there has been an 62 

increased interest in using inverse modelling for calibrating crop models (e.g., Ababaei et al., 2014; 63 

Andarzian et al., 2015; Yuan et al., 2017; Hussain et al., 2018; Zhang et al., 2019; Gao et al., 2020). 64 

However, most of the previous studies explored the impact of uncertainties in model parameters 65 

on the target outputs by assigning arbitrary ranges of variations to a number of parameters (e.g. 66 

Bert et al., 2007; DeJonge et al., 2012; Zhao et al., 2014), usually based on literature or previous 67 

experiences. This approach could lead to unrealistically large impacts on selected outputs as it does 68 

not account for the uncertainty in observations and the interaction between the parameter 69 

uncertainty and model structure uncertainty under local conditions.  70 

Soil and crop models have a large array of biophysical and physiological parameters. For such 71 

complex models, a sensitivity analysis helps to identify the importance of each parameter to the 72 

response of target output variables (Richter et al., 2010). Sensitivity analysis has so far been applied 73 

to different cropping systems and climate scenarios to evaluate the importance of input parameters 74 

for target outputs using agro-hydrological models (Asseng et al., 2004; DeJonge et al., 2012; Kumar 75 

et al., 2014; Zhao et al., 2014). Asseng et al. (2004) showed complex interactions between 76 

phenological and physiological traits in high and low yielding environments for wheat yield. The 77 

model outputs could be sensitive to both individual parameters and their combinations (Pogson 78 

et al., 2012) and the sensitivities of parameters depend on model complexity, the number of crop 79 

parameters included in the analysis and the environment (Richter et al., 2010). 80 

Hence, the objectives of present study were to: (1) calibrate phenology module of the widely used 81 

Agricultural Production Systems sIMulator (APSIM)-wheat model with a modified version of  the 82 

SUFI-2 (Sequential Uncertainty Fitting, ver. 2; Abbaspour et al., 2004) calibration and uncertainty 83 

analysis algorithm, (2) examine sensitivities of the selected phenological parameters under current 84 

and future climate scenarios, (3) assess the impact of parameter uncertainty on the simulated 85 

phenology and grain yield and also on the quantification of the impact of climate change on these 86 

traits, and (4) evaluate the impact of climate change on wheat crops in northeast Australia.  87 
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2 Materials and methods 88 

2.1 Field experiments 89 

Eight field experiments were conducted over 2 years (2018–2019) at three different locations 90 

across southern Queensland, Australia (Table 1). Randomised block design trials with two times 91 

of sowing (TOS) and four replicates were conducted each year. Zadoks growth stage (Zadoks et 92 

al., 1974) was recorded from stem elongation (Z31) up to flowering (Z65) for all genotypes. 93 

Phenology data were recorded as an average of the whole plot (i.e. at least 50% of culms in the 94 

plot). Wheat crops were planted late in the cropping season, to ensure they would receive high 95 

temperatures during different developmental phases. For example, the crop was planted on July 3 96 

and 9 (conventional sowing) and August 31 and September 3 (late sowing) at The University of 97 

Queensland Research Farm, Gatton (27°34′50″S 152°19′28″E). The experiments were also 98 

conducted at the Hermitage Research Station, Warwick (28°12'40''S, 152°06'06''E) and Tosari 99 

Crop Research Centre, Tummaville (27°54'60"S, 151°30'0"E) with sowing on July 16 100 

(conventional sowing), and September 12 and September 6 (late sowing) in 2018 and 2019, 101 

respectively. All the experiments were planted using a cone seeder with a target population of 100 102 

plants m-2 and a row-spacing of 250 mm within 5 m × 1 m plots. The crops were irrigated at sowing 103 

and cultivated under non-limiting fertiliser conditions. Standard crop management practices 104 

including weed, disease and pest control were adopted. 105 

Table 1. Field experiments used for calibrating the phenological parameters. 106 

Location 
Coordinates 

Previous crop Sowing dates Year Irrigation 
S E 

University of Queensland Research Farm, Gatton 27° 34′ 50″ 152° 19′ 28″ Fallow 
03-Jul 31-Aug 2018 Full 

09-Jul 03-Sep 2019 Full 

Hermitage Research Station, Warwick 28° 12' 40'' 152° 06' 06″ Fallow 16-Jul 12-Sep 2018 Supplementary 

Tosari Crop Research Centre, Tummaville 27° 54' 60" 151° 30' 0" Cotton 16-Jul 06-Sep 2019 Supplementary 

        
Ten commercial Australian bread wheat (Triticum aestivum L.) cultivars with contrasting phenology 107 

and adaptation were used in this study (Table 2). These include three high-performing spring 108 

cultivars with a wider adaptation to Australian environments i.e. Suntop (mid-season maturity), 109 

Mace (early to mid-season maturity) and Scout (mid-season maturity).  110 

2.2 Calibration and uncertainty analysis algorithm 111 

In this study, SUFI-2 calibration and uncertainty analysis algorithm was adopted for calibration of 112 

APSIM-wheat crop model (version 7.10). To the best of our knowledge, the present study is the 113 

first to use this algorithm for calibrating a crop model. The original SUFI-2 has been implemented 114 
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in SWAT Calibration and Uncertainty Programs (SWAT-CUP; Abbaspour et al., 2007a; 115 

Abbaspour, 2015), which is designed for calibration of Soil and Water Assessment Tool (SWAT). 116 

SUFI-2 accounts for the uncertainties in observations while estimating parameter values and 117 

performs uncertainty analysis at the same time as parameter estimation. A modified version of 118 

SUFI-2 (hereafter, ‘SUFI-2M’) was implemented in a customised package in the R programming 119 

environment (R Core Team, 2017). 120 

Table 2. List of the cultivars with varying maturity type and adaptation. 121 

Cultivar Maturity type Adaptation  Reference  

Suntop Mid maturing Widely adapted to Australian environments Graham et al., 2015 

Mace Mid to slow maturing Widely adapted to Australian environments Graham et al., 2015 

Scout Mid maturing Widely adapted to Australian environments Graham et al., 2015 

EGA Gregory Mid to slow maturing Nematodes resistance Graham et al., 2015 

EGA Wylie Mid to slow maturing Fusarium crown rot resistance Zheng et al., 2014 

Seri-82 Mid to slow maturing Drought tolerance Christopher et al., 2008  

Drysdale Mid to slow maturing Drought tolerance Condon et al., 2012; Tausz-Posch et al., 2012 

Spitfire Fast to mid maturing High grain protein Graham et al., 2015; Brill et al., 2013 

Hartog Fast to mid maturing Drought susceptible Brennan et al., 1991; Christopher et al., 2008 

Janz Fast to mid maturing Straw strength and standability Brennan et al., 1991 

    

A step-by-step description of SUFI-2 has been presented by Abbaspour et al. (2007b). All steps 122 

and related equations are presented in the Supplementary Material. Briefly, initial uncertainty 123 

ranges are allocated to the selected parameters for the first round of sampling. These ranges are 124 

subjective and are selected based on literature or previous experience. Then, a Latin Hypercube 125 

(LH; McKay et al., 1979) sampling is carried out leading to LHn (here, 200) parameter 126 

combinations, which should be relatively large. The model is then run LHn times and the target 127 

traits are stored. A goal function (here, root mean square error, RMSE) is calculated and the 128 

sensitivity matrix is created. Next, an equivalent of a Hessian matrix is calculated (Abbaspour et 129 

al., 2007b). Then, an estimate of the lower bound of the parameter covariance matrix (C) is made 130 

(Press et al., 1992) using variance of the objective function values resulting from the LHn runs. 131 

The estimated standard deviation and 95% confidence interval of each parameter is calculated 132 

from the diagonal elements of the covariance matrix. As all parameters are allowed to change, the 133 

correlation between any two parameters is quite small and can be evaluated with the diagonal and 134 

off-diagonal terms of C.  135 

SUFI-2 calculates the 95% prediction uncertainties (95PPU) for all the variables in the objective 136 

function (i.e. values of target traits). It is calculated by the 2.5th and 97.5th quantiles of the 137 

cumulative distribution of simulated points. The aim is to encapsulate as many measured data as 138 

possible within the 95PPU band (P‐factor: percentage of observed data that fall within the 95PPU), 139 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.28.428676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428676
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

and to reduce average distance between the upper and the lower 95PPU (d-Factor: the degree of 140 

uncertainty). The ‘ideal’ outcome is that 100% of the measurements fall within the 95PPU range 141 

and d-Factor is close to zero (Abbaspour et al., 2007b). This ideal situation is generally not 142 

achievable. We seek to see most of observations fall within the 95PPU range. At the same time, 143 

we prefer to have a small 95PPU range (i.e. uncertainty range). No specific recommendation exists 144 

for these two factors, like any other goodness of fit measure. However, a value of >70% can be 145 

suggested for P‐factor while having R‐factor of around 1 is acceptable (Abbaspour et al., 2007b).  146 

Parameter ranges are updated at the end of each iteration. This approach ensures that the updated 147 

parameter ranges are always cantered around the best estimates. It is recommended that of the 148 

highly correlated parameters, those with smaller sensitivities should be fixed to their best estimates 149 

and removed from additional sampling rounds (Abbaspour et al., 2007b). For the present study, 150 

number of iterations was set to 100. 151 

A few modifications were introduced to the original SUFI-2 routine. First, updating parameter 152 

ranges in SUFI-2M is performed at the beginning of each iteration instead of at the end. This way, 153 

we assure that the finally selected ‘best’ parameter set has been chosen from a range of which the 154 

corresponding 95PPU range brackets a pre-defined percentage of observations (here, 70%). If the 155 

updating is performed at the end of each iteration, final parameter ranges may or may not satisfy 156 

this criterion. In the modified version, parameter ranges are not updated if no improvement in the 157 

goal function has been achieved. Moreover, only the best parameter set is used to update the 158 

parameter ranges, instead of using the average of the top p (a user-defined number) best parameter 159 

sets, which is the case in the original version. 160 

Another modification was the introduction of a ‘boosting’ option. With this option, LHn is reduced 161 

at the beginning of each iteration (see Supplementary Material for the equations). This option 162 

reduces LHn proportionally to changes in parameter ranges and makes the optimisation procedure 163 

significantly faster. 164 

2.3 Calibration setup 165 

Four phenological parameters were selected for calibration based on previous experiences on 166 

model performance: (1) vernalisation sensitivity (vern_sens), (2) photoperiod sensitivity 167 

(photop_sens), (3) thermal time from ‘end of juvenile’ to ‘floral initiation’ (tt_end_of_juvenile), 168 

and (4) thermal time from ‘floral initiation’ to ‘flowering’ (tt_floral_initiation). To evaluate the 169 

capability of SUFI-2M for crop model calibration, the selected phenological parameters were 170 

calibrated for 10 selected spring wheat cultivars. Following a common and widely accepted 171 
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approach (e.g. Chenu et al., 2011; Hammer et al., 2014; Lobell et al., 2015; Zheng et al., 2016; An-172 

Vo et al., 2018; Ababaei et al., 2019), most crop parameters were assumed to be similar across 173 

cultivars and therefore equal to the default values for the base cultivar (i.e. Hartog). Observed 174 

phenology data from Gatton 2018 (second sowing) and Gatton 2019 (first sowing) experiments 175 

were used for validation (i.e. ~35% of the observations) each representative of a number of trials 176 

in terms of heat-shock and drought patterns. The rest of the data were used for calibration. In 177 

order to consider the uncertainty in observations and account for its impact on parameter 178 

estimation, all replications were used for calibration as independent measurements. 179 

2.4 Simulation setup 180 

The APSIM-wheat model (Keating et al., 2003; Holzworth et al., 2014), which has been widely 181 

tested and used in Australia (e.g. Asseng et al., 2001; Lilley and Kirkegaard, 2007; Hochman et al., 182 

2009; Chenu et al., 2011; Christopher et al., 2016; Wang et al., 2018; Ababaei and Chenu, 2019, 183 

2020; Ababaei and Najeeb, 2020), was adopted (version 7.10) to simulate wheat crop growth and 184 

development under current and future climate scenarios. Heat-shock and frost impacts were 185 

estimated using methods described by Lobell et al. (2015), Ababaei and Chenu (2020) and Zheng 186 

et al. (2015a). 187 

Out of ten calibrated spring wheat cultivars, three cultivars (Hartog, Scout and Gregory) of 188 

contrasting maturity habits and different ranges of parameter uncertainties were chosen for 189 

simulations with sowing dates between April 1 and July 31 at 7-day intervals. At each location, soil 190 

characteristics, initial soil nitrogen, fertilisation levels and planting density were set to represent 191 

local soils and farming practices. (see Table 1 in Chenu et al., 2013). Soil initial conditions were 192 

reset on January 1 each year to the median level based on long-term simulations (Chenu et al., 193 

2013). A small amount of irrigation was applied at sowing, if needed, to raise soil moisture of the 194 

top layer to the lower limit of plant-extractable soil water so that seeds could germinate the day 195 

after sowing. 196 

2.5 Climate data 197 

Historical daily weather data, including maximum and minimum temperature, solar radiation and 198 

rainfall, were obtained from the SILO patched point dataset (http://apsrunet.apsim.info/cgi-199 

bin/silo; Jeffrey et al., 2001) for the period 1976-2019 at 17 selected sites across northeast Australia 200 

(Figure 1; Ababaei and Chenu, 2020). Locations were selected to represent the wheat-producing 201 

regions of Queensland and New South Wales (Chenu et al., 2013). Monthly projections of 202 

precipitation and minimum and maximum temperatures from 33 GCMs for future period centred 203 
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on 2050 were obtained from the Coupled Model Intercomparison Project 5 (CIMIP5; Taylor et 204 

al., 2012). Future climate scenarios were constructed for 2036-2065 (hereafter, the ‘2050’ climate) 205 

by downscaling to a daily time step. Downscaling was performed by applying projected changes in 206 

local monthly means to the daily temperature and rainfall data for the period of 1976-2005 (Lobell 207 

et al., 2015). The 30-year period of 1990-2019 (hereafter, the ‘2005’ climate) was simulated as the 208 

benchmark scenario to quantify the impact of climate change. 209 

 210 

Figure 1. The 17 selected sites representative of the major wheat-producing regions in northeast Australia 211 
(depicted with red shading). 212 

Atmospheric [CO2] was set at 541 ppm for the 2050 climate, as projected by the representative 213 

concentration pathway (RCP) 8.5, which assumes ‘business as usual’ CO2 emission. For the 2005 214 

climate, atmospheric [CO2] data was obtained from Ziehn et al. (2016). In APSIM-wheat, elevated 215 

[CO2] linearly increases transpiration efficiency from a cultivar-specific reference value at 350 ppm 216 

by 37% when [CO2] reaches 700 ppm (Reyenga et al., 1999). It is also related to the radiation use 217 

efficiency (RUE) which is adjusted with a temperature response function. In APSIM-wheat, RUE 218 

at 20oC increases by 14% when [CO2] increases to 541 ppm (Lobell et al., 2015). 219 
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2.6 Optimum sowing dates 220 

The ‘best’ sowing date in each season, i.e. leading to the highest grain yield,  was used to quantify 221 

the target traits (flowering date and grain yield) under each climate scenario. This was done to 222 

minimise the effect of suboptimal management choices and give a more realistic evaluation of the 223 

‘net’ impact of climate change on wheat crops when cultivated on the best sowing date in each 224 

season. In order to investigate the impact of climate change on optimum sowing dates, sowing 225 

windows were determined separately under each climate scenario. For the 2050 climate, one 226 

common sowing window was identified for all the GCMs. The windows were determined as the 227 

period between 25th and 75th quantiles of the selected dates over the 30 simulated seasons. 228 

2.7 Quantifying the impact of parameter uncertainty on simulated traits 229 

Any uncertainty in estimated values of crop parameters may lead to substantial deviations in the 230 

simulated values of target traits from the values simulated by the ‘best’ calibrated parameter sets. 231 

Therefore, after calibration was performed and the final parameter ranges were determined for 232 

each cultivar, a set of parameter values (hereafter, ‘uncertain’ parameter sets) was created for each 233 

cultivar to analyse the impact of parameter uncertainties on the simulated values of the target traits 234 

(flowering day and grain yield). To that end, the lower and upper bounds and the mid-point of 235 

each parameter range were chosen. Each combination of these three values and the four selected 236 

parameters (34 = 81 parameter sets) was considered as an individual ‘virtual’ cultivar. For each 237 

parameter, the ‘uncertain’ parameter sets represent the range of uncertainty around the ‘best’ 238 

parameter value and allow quantification of the impact of uncertainties on the simulated traits.  239 

We evaluated the contributions of model parameters and climate models to the total uncertainty 240 

of target traits using an Analysis of Variance (ANOVA; Tao et al., 2018; Zhang et al., 2019). 241 

Variance components were estimated as the corresponding contribution (in percentage) of each 242 

factor to the total sum of squares. ‘Cultivar uncertainty’ was estimated as the variation of target 243 

traits across the ‘virtual’ cultivars while the simulated target traits were averaged across the GCMs. 244 

‘GCM uncertainty’ was estimated as the variation of target traits across the 33 GCMs while 245 

averaged across the ‘virtual’ cultivars.  246 

2.8 Sensitivity analysis of APSIM-wheat phenological parameters 247 

APSIM-wheat sensitivities to uncertainties in wheat phenological parameters were evaluated with 248 

a global sensitivity analysis (GSA) approach (Abbaspour et al., 2007b; Faramarzi et al., 2010; 249 

Abbaspour, 2015). GSA overcomes the drawbacks of local optima (or one-at-a-time) approaches 250 
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by exploring the entire multi-dimensional parameter space simultaneously, leading to a better 251 

quantification of the influence of each parameter and the interactions between parameters (Saltelli 252 

et al., 2008). A multiple linear regression system, which relates the parameters generated by the 253 

Latin Hypercube sampling to the objective function values (i.e. the values of target traits) in all 254 

simulated seasons, was separately constructed for each season as well as for all simulated seasons 255 

together. A t-test was used to identify the significance of each estimated parameter value. The 256 

sensitivity indices (SI) calculated by this method are estimates of the average changes in the target 257 

traits (here, flowering day and grain yield) stemming from uncertainties in each parameter while all 258 

other parameters are also changing. That is, the SIs are based on linear approximations and only 259 

provide partial information about the sensitivity of the objective function to model parameters. 260 

Sensitivity analysis was independently performed under the 2005 and 2050 climates. To quantify 261 

the contribution of climate models to the total uncertainty in parameter sensitivities, sensitivity 262 

analysis was performed for each GCM separately as well as for all GCMs collectively under the 263 

2050 climate. As the range of selected parameters were different, each parameter was scaled (by 264 

subtracting the average and dividing by the standard deviation) before fitting the multiple linear 265 

regressions. To obtain a better understanding of the magnitude of sensitivities, we further 266 

compared the contributions of location, climate models and inter-annual variability to the total 267 

variance of target traits using ANOVA. 268 

3 Results 269 

3.1 Parameter calibration 270 

Calibration was performed with the aim of encapsulating at least 70% of the observed phenology 271 

data within the uncertainty range of model simulations (95PPU). Figure 2 shows the observed vs 272 

simulated phenology for the 10 wheat cultivars calibrated with SUFI-2M along with the simulation 273 

uncertainty ranges. The overall root mean square error (RMSE) of the calibration/validation phase 274 

was 5.6/5.5 d (Figure 2). Calibration significantly improved model performance compared with 275 

when the APSIM default parameters were adopted (Supplementary Material Figure S1). 276 

Considering all the individual replications, the lowest and highest errors were related to cv Hartog 277 

(RMSE = 3.9 d; Figure 3a), and cv Seri-82 and Drysdale (RMSE = 7.1 d), respectively. Figure 3b 278 

presents the ‘best’ calibrated value for phenological parameters along with the uncertainty ranges 279 

of the parameters. 280 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.28.428676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428676
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 281 

Figure 2. APSIM-wheat calibration results with the SUFI-2M algorithm across three locations in northeast 282 
Australia (south-eastern Queensland): (a) calibration for the 10 selected spring wheat cultivars; (b) 283 
uncertainty ranges in the simulated phenology along with the observed phenology for all the individidual 284 
replications. Data were averaged across replications in panel (a). RMSE is the root mean square error, MAE 285 
is the mean absolute error and N is the number of data points. Observations included Zadoks growth stages 286 
from stem elongation (Z31) up to flowering (Z65). ‘Inside’ and ‘outside’ refer to the 95% prediction 287 
uncertainties (95PPU) range and whether the observed values fell within this range or not.  288 

  289 

Figure 3. Root mean square error (RMSE) for the 10 selected spring wheat cultivars after calibration, 290 
considering all the individual replications (a), and the ‘best’ calibrated values (red points) and uncertainty 291 
ranges (error bars) of each phenological parameter along with the default values of APSIM cultivar-specific 292 
parameters (blue points) (b). Parameters included: (1) vernalisation sensitivity (vern_sens), (2) photoperiod 293 
sensitivity (photop_sens), (3) thermal time from ‘end of juvenile’ to ‘floral initiation’ (tt_end_of_juvenile), 294 
and (4) thermal time from ‘floral initiation’ to ‘flowering’ (tt_floral_initiation). 295 

 296 
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3.2 Climate change is expected to shift sowing dates to earlier dates in the season 297 

Sowing windows were determined under each climate scenario separately for three spring wheat 298 

cultivars (Hartog, Scout and Gregory) of contrasting maturity habits (Figure S2). Under the 2050 299 

climate and all the studied sites, except Emerald (for all cultivars) and Nyngan (only for cv Hartog), 300 

the start and mid-point of the sowing windows are expected to occur earlier in the season than in 301 

2005. The shift was estimated to be 6.7, 7.0 and 7.9 d for the start date and 9.0, 9.8 and 11.9 d for 302 

the mid-point for Hartog, Scout and Gregory, respectively. Moreover, the sowing windows would 303 

be 7.5, 6.4 and 6.7 d shorter than those in 2005. 304 

3.3 Crop model sensitivity changes over time and in space 305 

Sensitivity of APSIM-wheat to uncertainties in crop phenological parameters varied over time 306 

(Figure 4; Supplementary Material Figures S3-S4) and in space (Supplementary Material Figure S5). 307 

For example for cv Hartog, approximately >92% of the total variance in the sensitivities of 308 

simulated flowering day and grain yield to changes in vernalisation sensitivity (vern_sens) was 309 

explained by residuals (i.e. inter-annual variations), which implies a high temporal variability in the 310 

SIs (Figure 5). These variance components were estimated to be larger in 2050 than in 2005, and 311 

for flowering day than for grain yield. Other parameters were more variable across the sites though 312 

the variance components were generally smaller in 2050 than in 2005 and larger for grain yield 313 

than for flowering day. Contribution of climate models to the total variance of the SIs was 314 

markedly smaller (<1%) than other sources of variance. On the other hand, 9-33% of the total 315 

variance in the sensitivity of flowering day to uncertainties in phenological parameters in 2050 was 316 

explained by location, while this component was generally smaller for grain yield. 317 

3.4 Crop parameter sensitivities are expected to change in the future 318 

For the four phenological parameters, we calculated the SIs related to wheat flowering day and 319 

grain yield under both climate scenarios (Figure 4). Among the calibrated parameters, uncertainties 320 

in photoperiod sensitivity (‘photop_sens’) was the most influential source of uncertainty on the 321 

simulated flowering day (Figure 4a), while vernalisation sensitivity (‘vern_sens’) was the least 322 

influential. Gregory, a slow-maturing spring cultivar, was most sensitive to uncertainties in 323 

‘photop_sens’, ‘tt_end_of_juvenile’ and ‘tt_floral_initiation’ among the studied cultivars. These 324 

sensitivities are expected to slightly increase under future climate scenario, especially for 325 

‘photop_sens’.  326 
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 327 

Figure 4. Sensitivity indices (SIs, averaged across 30 seasons) of the selected four phenological parameters 328 
for flowering day (a) and grain yield (b) under the 2005 (current) and 2050 (future) climates for three 329 
selected spring wheat cultivars across 17 sites in easutern Australia. Box plots show 10, 25, 50, 75 and 90th 330 
quantiles along with the means (black points). Parameters included: (1) vernalisation sensitivity (vern_sens), 331 
(2) photoperiod sensitivity (photop_sens), (3) thermal time from ‘end of juvenile’ to ‘floral initiation’ 332 
(tt_end_of_juvenile), and (4) thermal time from ‘floral initiation’ to ‘flowering’ (tt_floral_initiation). 333 

The order of most sensitive parameters for grain yield was the same as for phenology (Figure 4b) 334 

for Hartog, however, the SIs were less variable across the selected sites for Scout and Gregory, 335 

except for ‘vern_sens’. Unlike for flowering day, it is expected that the sensitivity of phenological 336 

parameters decreases in 2050 relative to 2005, though the shifts were generally insignificant for 337 

Hartog and Scout. 338 

The only non-significant (P>0.05; i.e. P value of the t-test) SIs were related to ‘vern_sens’ for 339 

flowering day and across a few of the sites (Roma, Dalby, Meandarra and Walgett) for grain yield 340 

(Supplementary Material Figure S5). Sensitivity of flowering day to uncertainties in all the four 341 

parameters, except for ‘vern_sens’, generally increased from north to south (in the southern 342 

hemisphere) and the trend was strongest for ‘photop_sens’ under both climate scenarios. A similar 343 
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but relatively weaker trend was observed for grain yield, though the spatial patterns were more 344 

heterogeneous. 345 

 346 

Figure 5. Variance components of the sensitivity of the target traits (flowering day and grain yield) to the 347 
four phenological parameters under the 2005 (current) and 2050 (future) climates for three selected spring 348 
wheat cultivars. Parameters included: (1) vernalisation sensitivity (vern_sens), (2) photoperiod sensitivity 349 
(photop_sens), (3) thermal time from ‘end of juvenile’ to ‘floral initiation’ (tt_end_of_juvenile), and (4) 350 
thermal time from ‘floral initiation’ to ‘flowering’ (tt_floral_initiation). 351 

3.5 Parameter uncertainties affect trait quantifications 352 

Larger uncertainties in phenological parameters of cv Scout and Gregory, as compared with Hartog, 353 

led to larger deviations of simulated flowering day with uncertain parameter sets from the values 354 

simulated with the ‘best’ parameter sets (Figure 6a), suggesting larger sensitivities. The mean 355 

absolute errors (MAE) were estimated to be <1 d for Hartog under both climates and 3.9 and 4 d 356 

for Gregory under the 2005 and 2050 climates, respectively. However, these deviations were not 357 

directly reflected in the simulated grain yields (Figure 6b). While the uncertainty ranges for 358 

phenological parameters were larger for Scout than for Hartog, the simulations with uncertain 359 

parameter sets (representative of parameter uncertainties) resulted in smaller deviations from the 360 
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simulations with the ‘best’ parameter set (a normalized MAE of 11% for Scout vs 15% for Hartog 361 

in 2005). This suggests that the simulated grain yield is more sensitive to other environmental and 362 

management factors than flowering day is. 363 

 364 

Figure 6. Flowering day (a) and grain yield (b), averaged across 30 seasons, simulated with the best (x-axis) 365 
and uncertain (y-axis) parameter sets (averaged across 81 parameter combinations) for three selected spring 366 
wheat cultivars under the 2005 (current) and 2050 (future) climate scenarios. A larger deviation of y-axis 367 
values from x-axis values suggests a larger sensitivity.  368 

3.6 Climate change is expected to enhance phenology and improve grain yield in 369 

northeast Australia 370 

Wheat crops under the warmer and drier climate of 2050 were projected to reach flowering 371 

significantly earlier as compared with 2005 (Figure 7a). Using the best (|uncertain) parameter sets 372 

for three selected cultivars and at a regional scale, it was shown that Hartog, Scout and Gregory 373 

would reach flowering day 9.9 (|10.2), 9.5 (|9.1) and 11.6 (|11.1) d earlier in 2050 than in 2005. 374 

While this impact may reduce the time available for biomass assimilation, the wheat grain yield 375 
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could still benefit from the elevated atmospheric [CO2] levels, leading to grain yield increases by 376 

22.8 (|30.1), 20.4 (|24.3) and 25.1 (|32.5)% for the studied cultivars planted on the optimum 377 

sowing dates (Figure 7b, Supplementary Material Figure S6). The results showed that the inclusion 378 

of parameter uncertainties led to statistically significant deviations from the trait values simulated 379 

with the ‘best’ parameter sets (P<0.05) for all the tested cultivars. 380 

 381 

Figure 7. The impact of climate change (CC) on flowering day (a) and grain yield (b) at regional scale (i.e. 382 
averaged acorss 30 seasons and 17 sites) simulated with the best and uncertain parameter sets for three 383 
selected speing wheat cultivars. Error bars show standard deviation of the simulations across 33 GCMs 384 
(gray, green and red bars) and 81 uncertain parameter sets (blue and red bars). 385 

With the best sowing time adopted in each season under each climate scenario, it is anticipated 386 

that all the studied cultivars would experience a significant improvement in grain yield level in 2050 387 

relative to 2005 (Supplementary Material Figure S6), except in Emerald. Across all other locations, 388 

it would be expected that Hartog, Scout and Gregory have higher grain yields by 9.7-63.1%, 5.4-389 

53% and 9.9-67.5%, respectively. Emerald was the only site that is expected to experience a 390 

reduction in average grain yield in 2050, at which Hartog, Scout and Gregory were expected to 391 

have lower simulated grain yields by 1.4, 2.8 and 2.5%, respectively. 392 
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Considering all the site × GCM combinations (Figure 8), 99.6, 99.4 and 99.9% of combinations 393 

showed a negative shift in flowering day in 2050 for Hartog, Scout and Gregory, respectively. For 394 

grain yield, in 95.5, 93.3 and 94.6% of the combinations a positive impact of climate change was 395 

simulated for the three cultivars. 396 

 397 

Figure 8. The cumulative probability of the simulated impact of climate change on flowering day (absolute 398 
change, d) and grain yield (relative change, %) with each of the 33 GMCs (gray lines) and all the GCMs 399 
combined (red line) for three selected speing wheat cultivars. Cumulative probabilities on the horizontal 400 
axis show the probability of observing impacts less than the numbers on the vertical axis. 401 

3.7 Contribution of crop parameters and climate models to simulation uncertainties 402 

Both crop parameters and climate models (GCMs) contribute to the uncertainties in the target 403 

traits. Regarding absolute values of the target traits under the 2050 climate, the contribution of 404 

crop parameters to uncertainties was larger than climate models (upper panels in Figure 9; Figure 405 

10) while residuals (i.e. inter-annual variability) were the largest variance component. The 406 

contribution of crop parameters to the total uncertainties in the simulated flowering day was larger 407 

for Gregory and Scout than for Hartog, while this component was the smallest for grain yield of 408 

Scout. The contribution of phenological parameters (|climate models) to the total uncertainties 409 

were estimated to be 26 (|9), 38 (|7) and 55 (|5)% for the simulated flowering day and 15 (|8),10 410 

(|8) and 16 (|7)% for the simulated grain yield for Hartog, Scout and Gregory, respectively.  411 
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On the other hand, the contribution of climate models to the total uncertainties in the simulated 412 

impact of climate change (i.e. change in target traits in 2050 relative to 2005) on flowering day and 413 

grain yield was significantly larger than crop parameters, especially for flowering day (lower panels 414 

in Figure 9; Figure 10). Gregory (with the widest parameter uncertainty ranges) and Hartog (with 415 

the narrowest parameter uncertainty ranges) had the lowest and highest contributions of 416 

phenological parameter to the total variances, respectively. 417 

 418 

Figure 9. Variance components of the simulated values of the target traits (flowering day and grain yield) 419 
under the 2050 climate (a-b) and of the simulated impact of climate change on each trait (c-d) for the three 420 
selected cultivars. Values were averaged across the 17 selected sites in northeast Australia. 421 

3.8 Spatial pattern of sensitivity indices in northeast Australia 422 

Contributions of the two major sources of uncertainty to the total uncertainty in simulated 423 

flowering day and grain yield and the impact of climate change on target traits were significantly 424 

correlated with latitude (Figure 10). Considering all three cultivars, the correlation coefficient was 425 

estimated to be -0.21 and 0.24 for flowering day, -0.41 and 0.51 for grain yield, -0.24 and 0.27 for 426 

the impact of climate change on flowering day and -0.45 and -0.51 for the impact on grain yield, 427 

respectively. 428 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.28.428676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428676
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

 429 

Figure 10. Variance components of the simulated values of the target traits (flowering day and grain yield) 430 
under the 2050 climate (a-b) and of the simulated impact of climate change on each trait (c-d) for the three 431 
selected spring wheat cultivars across 17 selected sites in northeast Australia. 432 

Figure 11 shows the impact of climate change on flowering day and grain yield simulated using the 433 

‘best’ parameter sets against the averages of the simulations with the uncertain parameter sets. 434 

Considering all the uncertainties in the selected parameters, the impact of climate change on 435 

flowering day was simulated with a MAE of 0.2, 0.5 and 0.6 d for Hartog, Scout and Gregory, 436 

respectively. These deviations were smaller than the deviations estimated for the absolute values 437 

of the target traits under each climate scenario (Figure 6). The same was the case for grain yield, 438 
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with MAE values estimated to be 7, 4.3 and 7.6%. This implies that APSIM-wheat is more sensitive 439 

to uncertainties in phenological parameters than uncertainties in climate models when the aim is 440 

to quantify the absolute values of target traits under a future climate scenario. On the contrary, the 441 

model is more sensitive to uncertainties in climate models when the target is to ‘compare’ the target 442 

traits under current and future climate scenarios. 443 

 444 

Figure 11. The impact of climate change on flowering day (a) and grain yield (b) of three selected spring 445 
wheat cultivars. Values are averaged across 30 seasons, simulated with the best (x-axis) and uncertain (y-446 
axis) parameter sets (averaged across 81 parameter combinations). A larger deviation suggests a larger 447 
sensitivity. 448 

4 Discussion 449 

4.1 Calibration 450 

We successfully calibrated the APSIM-wheat crop model in northeast Australia (south-eastern 451 

Queensland) using SUFI-2M algorithm. SUFI-2M resulted in a robust calibration of the model 452 
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with an overall RMSE of 5.5 d (3.9-7.1d) despite a considerable variations in the observed 453 

phenology of the 10 selected wheat cultivars. While more detailed data on wheat growth stages 454 

were used in this study than just data on heading, flowering or maturity days, these deviations are 455 

considerably lower or at least comparable to the reported deviations by other similar studies, for 456 

example, the reported RMSE for cv Janz was 6.2 d  for days to heading (Zheng et al. 2012) , 6.2 d 457 

for flowering day (Flohr et al. 2017) , 7-8 d for flowering and maturity days of spring wheat cultivars 458 

(Liu et al. 2018),  1.4–7.2 days for days to heading in barley (Liu et al. 2020) and 9.4-35.3 d for days 459 

to flowering in rice (Gao et al. 2020). 460 

In previous studies, other parameter estimation routines have been used for calibrating 461 

hydrological and crop models. For example, Gao et al. (2020) applied three commonly used 462 

calibration methods to the CSM-CERES-Rice phenology model of the Decision Support System 463 

for Agrotechnology Transfer (DSSAT), including Ordinary Least Square (OLS), MCMC, and 464 

Generalized Likelihood Uncertainty Estimation (GLUE). They reported that selection of the 465 

calibration routine had implications for parameter estimates and uncertainty quantifications and 466 

found MCMC more reliable than GLUE in quantifying model uncertainty. Iizumi et al. (2009) and 467 

Tao et al. (2009) applied the MCMC technique to crop models for paddy rice and spring maize to 468 

optimize a set of regional-specific parameters and quantified the uncertainty of yield estimation 469 

associated with model parameters. They found that MCMC is a powerful technique to optimize 470 

multiple parameters, to quantify their uncertainties and to investigate the impacts of climate 471 

variability on crop productivity. As each of these techniques have been used with different crop 472 

or hydrological models, in different locations and for different purposes/crops, it is not practically 473 

possible to make a thorough comparison. Therefore, a choice should be made based on availability 474 

of statistical knowledge, computation power and the objectives of the study.  475 

4.2 Sensitivity analysis 476 

Our findings showed that flowering day was mainly sensitive to uncertainties (i.e. changes) in 477 

photoperiod sensitivity (photop_sens) and thermal time from ‘end of juvenile’ to ‘floral initiation’ 478 

(tt_end_of_juvenile) for all the three studied spring cultivars (Figure 4). The sensitivity of these 479 

parameters did not only depend on the maturity habit of a cultivar, but on the location (i.e. latitude) 480 

and time (i.e. sowing year; Supplementary Material Figures S3-S4). For grain yield, the ranking of 481 

parameter sensitivities was the same as for flowering day for cv Hartog. However, uncertainties in 482 

‘tt_end_of_juvenile’ and thermal time from ‘floral initiation’ to ‘flowering’ (tt_floral_initiation) 483 

were the most influential parameters for Scout and Gregory. For all the three selected cultivars, 484 

vernalisation sensitivity (vern_sens) was the least sensitive parameter for the simulated flowering 485 
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day and grain yield. Our finding stands in contrast to the findings by Zhao et al. (2014)  who 486 

reported ‘vern_sens’ being the most sensitive parameter among the parameters influential on grain 487 

yield at two sites in eastern Australia. This can be explained by the initial ranges of parameter values 488 

that were used in that study (0-5 for ‘vern_sens’ and ‘photop_sens’). They chose the ranges based 489 

on the range of values for existing cultivars in the APSIM cultivar-specific parameter sets, while 490 

the ranges (~0-2 for ‘vern_sens’ and ~2.5-4 for ‘photop_sens’) used in the present study were 491 

chosen based on a local calibration with the detailed phenology data and accounting for 492 

uncertainties in field observations. 493 

In APSIM-wheat, the length of growing season, especially the vegetative and reproductive phases, 494 

determine the amount of biomass accumulation and biomass allocation to grains. Leaf area index 495 

(LAI) and dry matter biomass build up quickly until flowering. Vegetative phases are highly 496 

sensitive to photoperiod and vernalisation. The thermal time from emergence to end of juvenile is 497 

affected by photoperiod and vernalisation sensitivity factors and the number of vernalization days 498 

(Zheng et al., 2015b). This implies the importance of sowing time and maturity habit in the 499 

quantification of the sensitivity of these parameters. 500 

Grain yield is a more complex trait than flowering day and is sensitive to numerous parameters 501 

(e.g. Zhao et al., 2014). Richter et al. (2010) ranked high the phenological development and leaf 502 

area dynamics and ranked low the physiological parameters in terms of sensitivity of grain yield to 503 

these parameters. They also showed that parameter sensitivities changed in different environments 504 

(i.e. sowing time × location). In the present study, we focused on four phenological parameters 505 

and the impact of uncertainties in those parameters on grain yield without changing other 506 

potentially influential parameters. Therefore, the estimated sensitivity may change in other studies 507 

if additional physiological and morphological parameters are included using different 508 

environments / cultivars. 509 

4.3 Climate change impact on wheat phenology and grain yield  510 

The present study found that wheat flowering will advance by 9 to 12 days by 2050 across the 17 511 

selected sites in northeast Australia (Fig 10a). This is in line with findings by previous studies such 512 

as Luo (2016) who simulated 5 to 11 days advancement in the key phenological events of wheat 513 

crops by 2050. Similarly, Liu et al. (2018) suggested 7-8 days shortening of sowing-anthesis phase 514 

per degree of warming. Wang et al. (2018), Luo et al. (2018), Zheng et al. (2012) and Yang et al. 515 

(2014) also reported a substantial boost in wheat phenology under future warmer environments. 516 
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It is anticipated that wheat grain yield would potentially increase by 20.4-25.1% in 2050 relative to 517 

2005, depending on the selected cultivar (Fig 11). These numbers must be considered the ‘net’ 518 

impact of climate change when the optimum sowing time is chosen in each season. Our results 519 

confirm the findings by Ghahramani et al. (2015), Wang et al. (2018) and Hunt et al. (2019) who 520 

reported a substantial increase in wheat grain yield under future climates. For example, 521 

Ghahramani et al. (2015) simulated an 18% increase in Australia’s national wheat yield by 2030 522 

assuming optimal adaptation. Similarly, Wang et al. (2018) adopted 1961–2000 as the baseline 523 

period and reported a 10.7% increase in wheat grain yield across Australia (up to 10% in eastern 524 

Australia) by 2050 under RCP 8.5, if autonomous adaptation strategies (i.e. adapted cultivated 525 

cultivar and sowing time) would be adopted. Hunt et al. (2019) reported a 0.54 t/ha (~25%) 526 

increase in national average wheat yield with early sowing systems combined with slower-527 

developing wheat genotypes.  528 

A negative trend in water-limited yield potential (e.g. 27% between 1990 and 2015 by Hochman 529 

et al., 2017) or increased effect of heat shocks have been reported on wheat yield (e.g. 4.6% in each 530 

decade by Ababaei and Chenu, 2020). Yang et al. (2014) reported a generally decreasing trend in 531 

NSW wheat yield (3.4 to −14.7 %) for the period centred on 2030 when compared to the baseline 532 

period of 1961–1990 which is in contrast with our findings. The reason that the estimated yield 533 

improvements by 2050 in the current study are higher than some of the previously reported values 534 

is that we used 1990-2019 as the baseline scenario instead of 1961-2000 or 1976-2005. That is, our 535 

estimates accounts for the already lower yield over the period of 1990-2019 relative to the period 536 

of 1961-2000 or 1976-2005. Further, we selected the ‘best’ sowing date in each season, which 537 

would lead to the highest grain yield under each climate scenario. Changes in wheat grain yield 538 

under future climates depend on location and time of sowing as suggested by Luo (2016) and Luo 539 

et al. (2018). The difference in the magnitude of increases in wheat yield between the current study 540 

and Anwar et al. (2015) and the change sign opposite to some of previous studies (e.g. Yang et al., 541 

2014) could be attributed to different greenhouse gas emission scenarios, GCMs, locations, time 542 

periods and cultivars considered. 543 

4.4 Contribution of uncertainty sources 544 

This study investigated the uncertainties arising from the two key sources, i.e., crop model 545 

phenological parameters and climate projections. We performed analyses on the simulated values 546 

of target traits as well as on the simulated impact of climate change on those traits. We showed a 547 

large contribution from crop model phenological parameters to the total uncertainties in the 548 

simulated flowering day and grain yield. Holzkämper et al. (2015) stated that the relative 549 
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importance of uncertainties in climate projections and model parameters depends on local 550 

conditions. We can confirm this conclusion as we observed a large spatial variation in the 551 

sensitivity indices across the study area.  552 

On the other hand, the uncertainties in climate models are expected to play a more important role 553 

than phenological parameters when the aim is to quantify the impact of climate change on target 554 

traits (Figure 9). The latter is supported by Tao et al. (2018), who estimated the contribution of 555 

crop parameters and GCMs to the total uncertainty in the simulated grain yield to be 42 and 46% 556 

at Jokioinen and 24 and 59% at Lleida, Finland (averaged across seven crop models). Studies by 557 

Challinor et al. (2009), Kassie et al. (2015) and Zhang et al. (2019) also showed climate projections 558 

to be a larger contributor to the total uncertainty in simulations of the impact of climate change 559 

on target traits.  560 

The uncertainties in crop model structure was not addressed in the current study, though have 561 

been evaluated in previous studies (Tao et al., 2009; Asseng et al., 2013; Araya et al., 2015). Some 562 

studies showed that variation in crop model structures could contribute more to the total 563 

uncertainty than variation across GCMs while others reported conflicting results. A recent study 564 

by Liu et al. (2018) concluded that uncertainty stemming from crop model structure might be 565 

larger than crop parameter estimation and the total uncertainty would be larger under a warmer 566 

climate due to extra uncertainties from climate projections. These findings and conflicts suggest 567 

that the contributions of crop model structure, crop parameter estimation and climate models to 568 

the total uncertainty need to be evaluated at specific location(s) and with relevant crop model(s) 569 

and crop(s). Moreover, continuing improvement of GCMs and using more robust calculation 570 

routines for estimating crop model parameters are necessary to account for uncertainties in field 571 

observations and parameter estimation procedure. 572 

5 Conclusion 573 

In this study, a slightly modified version of SUFI-2 (SUFI-2M) was used to calibrate the APSIM-574 

wheat model based on two years of experimental data at three locations in northeast Australia 575 

(south-eastern Queensland). An overall RMSE of 5.5 d in simulating flowering day of 10 spring 576 

wheat cultivars was found in the present study. This suggests that SUFI-2M is a robust and 577 

computationally efficient calibration and uncertainty analysis algorithm which can be used for 578 

similar research activities.  579 

Sensitivity analyses indicated that uncertainties in photoperiod sensitivity, thermal time from ‘end 580 

of juvenile’ to ‘floral initiation’ (tt_end_of_juvenile), and thermal time from ‘floral initiation’ to 581 
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‘flowering’ were significantly more influential than uncertainties in vernalisation sensitivity in terms 582 

of simulated flowering day and grain yield. We also found a substantial inter-annual variability in 583 

parameter sensitivities. 584 

We estimated that climate change would advance wheat phenology by 9.5.-11.6 d at a regional 585 

scale across three selected spring cultivars and would have a positive impact on wheat grain yield 586 

(20.4-25.1%), if the best sowing date is selected in each season. There are high confidence in the 587 

direction of the impact on the target traits, with a probability of shortened time to flowering and 588 

positive impact on grain yield estimated to be 99% and 93%, respectively.   589 

We found that variance decomposition of the simulated flowering day and grain yield was 590 

significantly correlated with latitude. Uncertainty in the simulated flowering day and grain yield 591 

was strongly influenced by the selected crop model parameters than the GCMs, which contributed 592 

to the total uncertainty in the simulated values of target traits by less than 9%. On the other hand, 593 

the contribution of the uncertainties from the GCMs was the largest component when the impact 594 

of climate change on the target traits was to be quantified (>90% for flowering day and 49% for 595 

grain yield). It was concluded that the contribution of various sources of uncertainty depended on 596 

the environment (i.e. location and sowing time), the maturity habit of the cultivated cultivar, and 597 

the target trait. 598 
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