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Abstract 
 
The complex heterogeneity of Autism Spectrum Disorder (ASD) has made quantifying disease specific molecular 
changes a challenge. Blood based transcriptomic assays have been performed to isolate these molecular 
changes and provide biomarkers to aid in ASD diagnoses, etiological understanding, and potential treatment ​1–6​. 
However, establishing concordance amongst these studies is made difficult in part by the variation in methods 
used to call putative biomarkers. Here we use personal perturbation profiles to establish concordance amongst 
these datasets and reveal a pool of 1,189 commonly perturbed genes and new insights into poorly characterized 
genes that are perturbed in ASD subjects. We find the resultant perturbed gene pools to include the following 
unnamed genes: C18orf25, C15orf39, C1orf109, C1orf43, C19orf12, C6orf106, C3orf58, C19orf53, C17orf80, 
C4orf33, C21orf2, C10orf2, C1orf162, C10orf25 and C10orf90. Investigation into these genes using differential 
correlation analysis and the text mining tool Chilibot reveal interesting connections to DNA damage, 
ubiquitination, R-loops, autophagy, and mitochondrial damage. Our results support evidence that these cellular 
events are relevant to ASD molecular mechanisms. The personalized perturbation profile analysis scheme, as 
described in this work, offers a promising way to establish concordance between seemingly discordant 
expression datasets and expose the relevance of new genes in disease. 
 

 
 
 
Introduction 
 
 ​ASD is an incredibly complex disease marked by an 
even more complex genetic presentation. The Simons 
Foundation Autism Research Initiative SFARI has 
curated a list of over 900 genes implicated in ASD ​7​ . 
Males seem more likely to develop ASD, with Loomes 
et al. 2017  noting the ASD male to female ratio is 
close to 3:1 ​8​ . This discrepancy between males and 
females is not currently understood ​9​ . What is more, 
there is an extreme bias towards males in autism 
research with Ratto et al. 2019 noting that female 
specific ASD traits are being missed by behavioral 
diagnosis ​10​. Multiple transcriptomic studies have been 
performed with the aim of supplementing psychiatric 
data with quantification of the molecular differences 
between typically developing individuals and 
individuals with ASD ​1,4–6,11,12​ . The transcriptomic 
assays examined in this work are blood-based, which 

offers the advantage of being easily available but the 
disadvantage of only revealing indirectly the likely 
phenotypic changes seen in the brain.  Brain biopsies 
are more difficult to obtain, and are typically a complex 
mix of cells, whereas blood is more readily available 
and can be tracked over time. By exploring aberrant 
genetic expression in blood, we aim to offer a more 
robust understanding of ASD molecular mechanics in a 
tissue well suited for sampling. 

Instead of traditional methods of establishing 
differential expression, this work uses “personal 
perturbation profiles'' - wherein a z-score based on the 
expression values of the control group determines 
whether a gene in an ASD subject is perturbed ​13​. 
Personal perturbation profiles are an admittedly 
interesting choice for a concordance study as Menche 
et al. 2017 showed these profiles often have very little 
overlap, even in the same study​13​. However, traditional 
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methods of establishing differential expression are not 
without drawbacks. Isolating a common pool of 
biomarkers across studies is often difficult due to the 
variety in platforms and statistics used in delivering 
these results ​13​ . Balázsi et al. 2011 point out biological 
processes are marked by random fluctuations 
providing an inherent source of noise when analyzing 
biological data ​14​ . While these concerns are not 
explicitly resolved with personal perturbation profiles, 
they do attempt to account for another source of 
biomarker variation between studies, disease 
heterogeneity and a disease that results from a 
multitude of molecular mechanisms​13​ . Given the 
apparent heterogeneity of ASD, the personal 
perturbation approach seemed appropriate. 

This work aims to reveal not only a set of commonly 
perturbed genes implicated in ASD but explore poorly 
characterized genes that are commonly perturbed in 
ASD individuals. We selected genes with no canonical 
name at the time these studies were performed. These 
genes were isolated by the pattern “CXXorfXXX” in the 
gene name. While isolating genes based on this 
pattern is a relatively quick and simple way of isolating 
poorly characterized genes, it has some advantages 
over other methods - for example, we could have 
selected genes based on PMID count or GO 
annotations. However, the majority of GO annotations 
are held by only 16% of all known genes, ​15​ and these 
annotations are used as evidence in many articles 
which may inflate literature counts. Additionally, not all 
genes are mapped to PMIDs, nor is there any obvious 
cut-off as to what makes a gene poorly studied. For the 
sake of a first pass analysis, we chose to pick 
unnamed genes to isolate a smaller pool of poorly 
characterized candidates. 

Results 

 ​Personalized Perturbation Profiles Reveal a Set 
of Commonly Perturbed Genes 

The following ASD blood-based transcriptomic studies 
were examined, GSE26415,GSE6575,GSE37772, 
GSE18123-GPL570,GSE18123-GPL6244,GSE42133, 
and GSE25507. Data was pulled from the Gene 
Expression Omnibus GEO. The tissue source used in 

GSE26415, GSE6575, GSE37772, 
GSE18123-GPL570,GSE18123-GPL6244, GSE42133, 
and GSE25507 were venous leukocytes, whole blood, 
lymphoblast cell line, blood, blood, leukocyte, and 
lymphocytes, respectively. Previous studies into ASD 
blood-based transcriptomics have shown via 
multidimensional scaling that there are notable 
differences between these tissue types ​16​ . However, 
the availability of large blood based ASD datasets has 
limited us to these datasets in this first attempt to 
establish concordance.   

We first began by taking a more traditional approach to 
differential expression, by using the Welch two sample 
t-test to isolate which genes were differentially 
expressed in each dataset. T-test p-values were limited 
to those below the canonical 0.05 threshold to reveal 
each dataset had an average of 4,436 differentially 
expressed genes. When each dataset’s differentially 
expressed genes were compared with one another, 
these datasets only had one gene in common, 
SMARCA2. 

To establish personal perturbation profiles, the 
expression of each gene for each ASD individual was 
compared to the expression values of the controls for 
that gene per study. If the z-score of the expression 
value for the ASD individual was greater than 2.5 or 
less than -2.5 the gene was considered perturbed. The 
list of perturbed genes per patient was added to the list 
of genes perturbed in that study (​Supplemental Data 
1​). On average there were 14,117 unique personally 
perturbed genes per study​ Figure 1​. These pools were 
compared with one another to reveal 1189 genes in 
common​ Figure 1​ (​Supplemental Data 2​). In total, 
there were 534 ASD individuals between the studies 
examined. Only 9.2% of these ASD individuals were 
female and the remaining 90.8% were male. The 
extreme bias toward males in these data prompted us 
to account for gender. To obtain a pool of male 
specific personally perturbed genes each study’s list of 
personally perturbed genes was limited to the genes 
found to be perturbed in male ASD patients. These 
male only perturbed gene pools were compared with 
one another to obtain a pool of commonly perturbed 
male genes. The pool of commonly perturbed female 
genes was obtained using this same scheme. ASD 
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males were found to have 1,111 commonly perturbed 
genes (​Supplemental Data 2​), while ASD females were 

found to have 133 commonly perturbed genes 
(​Supplemental Data 2​). 
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PANTHER Enrichment of Personally Perturbed 
Genes 

The common personally perturbed genes, male 
specific personally perturbed genes and female 
personally perturbed genes were run through the 
PANTHER Overrepresentation Test GO Biological 
Process Complete, GO Molecular Function Complete, 
and GO Cellular Component Complete utilizing the GO 
Ontology database (DOI: 10.5281/zenodo.4081749 
Released 2020-10-09) (​Supplemental Data 3, 
Supplemental Data 4, Supplemental Data 5, 

Supplemental Data 6, Supplemental Data 7, 
Supplemental Data 8, Supplemental Data 9, 
Supplemental Data 10, Supplemental Data 11​) ​17​. Out 
of the set of 1189 personally perturbed genes with no 
gender filter, 21 of these genes did not map to any 
annotations. When the male and female specific genes 
were examined, 18 and 2 genes did not map to any 
annotation, respectively. These annotations were 
filtered to exclude any annotation with more than 1000 
genes linked to it. In this way we avoid overly 
ambiguous annotations. The top 10 most significant 
annotations for each category per pool of genes is 
displayed in​ Figure 2​. 
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The GO annotations in​ Figure 2,​ reveal that across all 
three GO categories, for genes pooled from all patients 
is nearly identical to the annotations for the genes 
pooled from all male patients. It is worth noting the 
cellular locations across all patients, male patients and 
female patients reveal an overrepresentation of genes 
localized to vesicle membranes. Across molecular 
functions transcriptional regulation/repression 
appears in all patients and male patients. In female 
patients there is an annotation for histone 
methyltransferase activity. Modification of histones is 
a known mechanism by which transcription is 
regulated  ​18​. Ubiquitin ligase activity, a top annotation 
for both all patients and male patients, is interesting as 
histone ubiquitination is another common histone 
modification  ​19​. 

The molecular function annotations for both the pool 
of all and male patient genes have genes 
overrepresented for GTPase binding and G-protein 
coupled receptor (GPCR) activity. These annotations 
are of interest because signaling of neurotransmitters 
is controlled by GPCR activity ​20​ . The molecular 
function annotations for the pool of female patients 
show genes overrepresented for phosphodiesterase 
activity. Phosphodiesterases are known to break down 
cAMP and cGMP ​21​ . Intracellular signaling in motor 
circuits, associative/cognitive circuits and limbic 
circuits have been shown to be mediated by cAMP and 
cGMP, and as such phosphodiesterase inhibition has 
become an attractive drug target for neurological 

disorders ​22​. The presence of neurologically relevant 
annotations for these pools of perturbed genes 
suggests that the resultant genes are of some 
significance. The appearance of unnamed genes in 
these pools of perturbed genes prompted further 
investigation into their nature and why they might be 
relevant to ASD etiology.  

 Unnamed Genes Appear in Each Study’s Pool of 
Personally Perturbed Genes 

The gene pools for all, male and female patients 
contain unnamed genes. The same unnamed genes 
were pulled from the gene pool with no gender filter 
and the male gender filter; C18orf25, C15orf39, 
C1orf109, C1orf43, C19orf12, C6orf106, C3orf58, 
C19orf53, C17orf80, C4orf33, C21orf2, C10orf2, and 
C1orf162. The unnamed genes pulled from the female 
gene pool were C10orf25 and C10orf90. These genes 
were of interest because of their prevalence in each 
patient personalized perturbation profile. The 
prevalence of these 15 unnamed genes in each dataset 
ranged from 17.1% to as high as 85.7% of patients 
Figure 3​. PubMed results for the male unnamed genes 
C18orf25, C15orf39, C1orf109, C1orf43, C19orf12, 
C6orf106, C3orf58, C19orf53, C17orf80, C4orf33, 
C21orf2, C10orf2, and C1orf162 were relatively scarce 
with no result count over 200 and ten of the result 
counts were below 20. The female unnamed genes 
C10orf25 and C10orf90 were also rarely mentioned in 
PubMed with result counts below 20 as well. 
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Differential Correlation Analysis Results   

Differential Gene Correlation Analysis was used to 
identify differentially correlated genes in ASD 
individuals with the unnamed genes. Unnamed genes 
identified in the male specific gene pool were tested 
for correlation against male patients in each study and 
the same was done for females ​Figure 4​. In using 
differential correlation analysis, we admittingly weaken 
the strength of any derived correlation, since the 
datasets used are not only split by disease status but 
also by gender. It is also true small sample sizes can 
lead to spurious correlations ​23​ . However, it should 
also be mentioned by not separating data, spurious 
conclusions can also be made ​23​ . For instance, 

Aggarwal et al. 2016 notes if hemoglobin levels are 
plotted against height and not separated by gender, a 
false correlation will appear  ​23​ . Given the strong male 
bias in these data and gender-based differences in 
ASD presentation we thought it pertinent to query 
correlations after splitting by gender. By dividing by 
disease status, we get a unique view as to what 
correlations change between ASD and typically 
developing populations. Correlations were filtered by 
the ASD Spearman Correlation Coefficient greater than 
0.7 or less than -0.7 and a p-value difference less than 
0.05 ​Figure 4​. These correlations were filtered by their 
presence in TCGA Pancancer Low Grade Glioma data 
where the Spearman Correlation Coefficient was 
greater than 0.3 and less than -0.3 while also having a 
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p-value less than 0.05 ​Figure 4​. The filtered 
correlations were stored in ​Supplemental Data 12​. 
Using the TCGA Pancancer Low Grade Glioma dataset 
as a filter was used to safeguard against spurious 
correlations and the ASD spearman correlation 
coefficient filter of 0.7 was used to ensure any 
correlations found were indeed strong. We use TCGA 

Pancancer Low Grade Glioma data not only for its size 
and clean data structure, but also because there is 
evidence of significant abnormalities in the microglia 
of ASD individuals leading to brain inflammation ​24​ . 
Investigation into these correlated genes was aided by 
the PubMed search tool Chilibot, wherein a pairwise 
search of gene names was used to derive connections 
25​. 
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C18orf25, C1orf109, C6orf106, and C19orf53 have 
been found to localize to the nucleus ​26–29​. Two of 
these genes, C18orf25 and C6orf106 along with 
C10orf90, have motifs/domains related to ubiquitin. 
C18orf25 has two ​small ubiquitin-like modifiers or 
SUMO motifs and C6orf106 has a ubiquitin-associated 
UBA-like domain ​26,30​. Through the correlation analysis 
scheme described above we found C18orf25, 
C1orf109, C19orf12, C6orf106, C3orf58, C19orf53, 
C4orf33, C10orf2 and C10orf90 are all correlated with 
a variety of ubiquitin specific peptidases (USPs). USPs 
are the largest family of deubiquitinating enzymes, 
noted for their substrate specificity and association 
with the DNA repair pathway ​31​ . C10orf90 functions as 
an E2 ubiquitin ligase involved in responding to DNA 
damage ​32​ . C1orf109 is also implicated in DNA 
damage as it has been shown to lead to the 
accumulation of an RNA/DNA hybrid structure, called 
an R‐loop, which has been shown to lead to DNA 
damage ​33,34​ ​. The helicase DHX9 was shown to also 
promote R-loop formation and through the correlation 
analysis scheme in this work we show it correlates 
with C10orf90, C17orf80 and C19orf53 ​35​. It has also 
been demonstrated that C21orf2 is needed to interact 
with NEK1 to mitigate DNA damage repair  ​36​. While not 
directly associated with DNA damage, C17orf80 is 
highly correlated with CUL4, a noted E3 ubiquitin 
ligase, has been found to establish a DNA repair 
threshold ​37​. 

C1orf43, C3orf58, and C1orf162 show localization to 
the Golgi apparatus while ​38–40​ C1orf43, C19orf12, 
C17orf80, C21orf2, C10orf2, have evidence of 
localization to the mitochondria ​38,41–44​. Several of 
these unnamed genes have ties to 
phagocytosis/autophagy. By studying L. pneumophila 
pathogenesis , Jeng et al. 2019 stated C1orf43 as a 
key regulator of phagocytosis ​38​ . Venco et al. 2015 
propose C19orf12 to be a sensor of mitochondrial 
damage and inducing autophagy as a protective 
mechanism to avoid apoptosis ​45​ . The variant 
rs3800461 on the gene C6orf106 was found by Law et 
al. 2017 to be implicated in autophagy ​46​ . Binding of 
C3orf58/DIPK2A to VAMP7B was shown to encourage 
autophagosome-lysosome fusion  ​47​. It is worth noting 
C3orf58/DIPK2A is directly implicated in familial 
autism ​48​ . Biopsies from individuals with mutations in 

C10orf2 revealed autophagic vacuoles and abnormal 
mitochondria upon histopathological examination  ​49​. 
From the analysis performed in this work additional 
evidence is provided to support the connection 
between these poorly characterized genes and 
autophagy. C18orf25 is highly correlated with JAK2, 
HIF1A, PIK3C3, RAB10 and BMPR2 all of which are key 
regulators of autophagy ​50–52​. ​C19orf53 correlates with 
PARK7, SOD1 and ROCK1 which have roles in 
autophagic proteolysis and the formation of the 
autophagosome ​53–55​ . ​Our correlation analysis also 
reveals C1orf109 is highly correlated with TMEM41B, 
ATG4C RAB39B, TRIM8, and NPRL3 which are also 
regulators of autophagy ​56–59​. C1orf109 was shown 
here to be highly correlated with SNCA. SNCA, or 
alpha-synuclein, is implicated in several neurological 
conditions including dementia and Parkinson’s disease 
60​. Minakaki et al. 2018 provided evidence 
demonstrating components of the 
autophagy-lysosome pathway are present in 
extracellular vesicles, extracellular vesicles in 
cerebrospinal fluid transfer SNCA from cell to cell, and 
inhibiting the autophagy-lysosomal pathway increases 
SNCA in neuronal extracellular vesicles ​61​ . 

As mentioned earlier, C19orf12 ​and C10orf2​ have been 
implicated in mitochondrial function/ disorders ​45,49​. 
Mutations in C19orf12 have made this protein unable 
to localize to the mitochondrial membrane, causing 
high levels of mitochondrial Ca​2+​, and an inability to 
respond to oxidative stress ​45​ . Mutations in C19orf12 
are also shown to be involved with neurodegeneration 
with brain iron accumulation, a molecular disorder 
shown to be involved in the disease etiology of 
frontotemporal dementia, Parkinson's disease, 
Alzheimer's disease, Friedrich ataxia and Amyotrophic 
lateral sclerosis (ALS) ​62​ . C10orf2/TWNK is the only 
mitochondrial helicase needed for mitochondrial DNA 
replication and its dysfunction is implicated in 
neurodegeneration and premature aging ​63​ . As with 
phagocytosis our correlation analysis scheme has 
revealed interesting correlations between other 
unnamed genes and the mitochondria. C1orf43 
correlates with VDAC1, TOMM20, and TMCO1 whose 
dysfunction/overexpression has been linked to 
mitophagy and mitochondrial dysfunction in relation to 
Alzheimer’s disease and Parkinson’s Disease ​64–66​. It is 

Page 10 of 17 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.25.427953doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.427953
http://creativecommons.org/licenses/by-nc-nd/4.0/


worth mentioning the two unnamed genes with direct 
connections to mitochondrial dysfunction, C19orf12 
and C10orf2, are correlated with TMCO1 and TOMM20, 
respectively. 

Discussion 

To the best of our knowledge this is the first-time 
personalized perturbation profiles, as laid out by 
Menche et al. 2017, have been used to establish 
concordance among blood based ASD transcriptomic 
datasets. Using the Welch two sample t-test we saw 
only one gene, SMARCA2, was differentially expressed 
between all datasets. By leveraging personalized 
perturbation profiles, we find each study’s pool of 
perturbed genes, male perturbed genes and female 
perturbed genes have 1,189, 1,111, and 133 genes in 
common, respectively. PANTHER GO annotations of 
these gene pools reveal interesting connections to 
vesicle membranes, GPCRs, and phosphodiesterase 
activity. Extracellular vesicles have recently been 
implicated in the disease etiology of ASD while 
GPCRs/phosphodiesterases are an important facet of 
neural signaling ​20,21,67​ . 

In these pools of perturbed genes, we found 15 
unnamed genes which had a relatively high prevalence 
among each study’s pool of perturbed genes.  Of these, 
13 unnamed genes were common to pools of each 
study’s male pool of perturbed genes and two of these 
were common to each study’s female pool of 
perturbed genes - the discrepancy likely owing to the 
smaller number of female patients. Investigating these 
poorly characterized genes along with differential 
correlation analysis demonstrated overlap between 
their correlations and experimentally derived functions. 
We find these unnamed genes have connections with 
DNA damage, ubiquitination, autophagy, and the 
mitochondria. 

Mitochondrial dysfunction has been implicated in ASD. 
Magnetic Resonance Spectroscopy has shown 
N-acetyl-aspartate, a mitochondrial dysfunction 
marker, was significantly lower in ASD children ​68​ . 
Aberrations in respiratory chain complexes have also 
been found in ASD individuals ​69​ . Similarly, elevated 
levels of reactive oxygen species were observed in the 

brains of ASD subjects ​70​ . Extracellular vesicles in ASD 
microglia were shown to have significantly more 
mitochondrial DNA than typically developing 
individuals ​67​ . A recent study by Varga et al. 2018 
found over 16% of ASD individuals tested in their study 
had deletions of mitochondrial DNA ​71​ . Mitochondrial 
mutations may also provide an answer as to why ASD 
seems to affect more males than females. Frank 2012 
presented evidence that mitochondrial mutations act 
as a sex-biased sieve allowing males to build up more 
mitochondrial mutations ​72​ . Support for this theory is 
provided by a study using ​Drosophila Melanogaster​, in 
which mitochondrial mutations disproportionally affect 
male aging as opposed to female aging ​73​. Siddiqui et 
al. 2016 acknowledges while mitochondrial 
dysfunction is not yet designated a causal factor for 
ASD, indirect evidence for this hypothesis is rising ​69​ . 

Oxidative stress has also been related to DNA damage 
in relation to neurological disorders. Melnyk et al. 2012 
found evidence of depleted antioxidant levels and 
oxidative DNA damage in the plasma of ASD 
individuals ​74​ . Markkanen et al. 2016 remarked that 
studies are starting to implicate DNA repair 
mechanisms in ASD but at times have provided 
conflicting results ​75​ . In our results we noticed 
C1orf109 is implicated in DNA damage through the 
accumulation of R-loops and ​C10orf90, C17orf80 and 
C19orf53 were highly correlated with DHX9, a protein 
known to promote R-loop formation ​35​ . In the context 
of neurological diseases, embryonic neural R-loop 
levels were determined to be essential for proper 
nervous system development ​76​ . Defective R-loop 
mechanisms have also been implicated in the 
molecular workings of ALS ​77​ . What is more, is 
evidence provided by Akman et al. 2016 show 
mutations in RNAase H1 have proved detrimental to 
mitochondrial R-loop levels, which have led to 
mitochondrial DNA aggregates ​78​ . Holt 2019 remarks 
this atypical organization of mitochondrial DNA is 
implicated in infantile-onset epilepsy, mitochondrial 
encephalopathy, and cerebellar dysfunction ​79​. This 
finding might prove a useful connection between 
R-loops, DNA damage, mitochondrial dysfunction, and 
the presence of mitochondrial DNA in extracellular 
vesicles. 
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Autophagy is also starting to have a more defined role 
in the molecular mechanics of ASD. Microglia with 
defunct autophagic pathways have been shown to 
negatively affect synaptic pruning in ASD individuals ​80​. 
Recently, Dana et al. 2020 found the autophagic 
markers LC3 and Beclin-1 were significantly disturbed 
in the Cc2d1a animal model of ASD ​81​ . What is 
interesting about this study is their separation by 
gender revealed while both ASD males and females 
had lower levels of Beclin-1, LC3 expression was 
increased in ASD females and decreased in ASD males 
81​ . This finding seems indicative of gender specific 
autophagic responses. Kasherman et al. 2020 detailed 
deficits in the mTOR signaling, a method by which 
autophagy is regulated, is disturbed in ASD subjects, 
and collected evidence also linking mutations in USPs 
to ASD features ​82–84​. Kasherman et al. 2020 also 
states the role of USPs in ASD etiology remains poorly 
studied ​82​. A possible answer might be found in 
Klusmann et al. 2018, as they provided an interesting 
connection between ubiquitination and R-loops, being 
ubiquitination of histones aided in the suppression of 
R-loops ​85​ . 

More experimental validation must be done to provide 
conclusive links between DNA damage, R-loops, 
autophagy, mitochondrial damage, and ubiquitination 
in the context of ASD; our research here only draws 
attention to a handful of genes that may have been 
overlooked as they are poorly studied, and in the case 
of R-Loops, represent a relatively new field of study. 
The inclusion of more females in ASD blood 
transcriptomics would be of enormous value as well. 
As stated earlier, these data are derived from over 90% 
male ASD subjects and as such our analysis of the 
ASD female blood transcriptome is limited.  However, 
we find that useful information can still be gleaned 
from these data with the use of personalized 
perturbation profiles. Aside from collecting a common 
pool of perturbed genes, which the t-test could not 
deliver, we found poorly characterized genes in those 
pools which may underlie ASD molecular mechanics. 
These results are a promising step in cataloging the 
true heterogeneity of ASD. 

Materials and Methods 

 ASD Blood-Based GEO Datasets 

To obtain relevant datasets we queried GEO with the 
terms “ASD” or “autism”. These results were limited to 
human samples and only those of blood-based tissue 
types ​86​ . We filtered these results further by only 
examining studies with more than 20 ASD individuals. 
Expression, patient, and probe data for each study was 
obtained via the R package GEOquery ​87​. If the 
expression data was not already normalized the data 
was normalized by adding the minimum value of the 
expression dataset , taking the log2 of these data and 
normalizing by quantiles by use of the R package 
limma ​88​ . 

Personalized Perturbation Profiles and T-test 

Each expression dataset was split by disease status 
and subjects who were not labeled as ASD were 
excluded from analysis. The t-test p-value was 
calculated using the Welch two sample t-test for each 
gene, with the expression of the control group being 
compared against the expression of the ASD group. 
Genes with a p-value below 0.05 were added to each 
study’s list of differentially expressed genes. All these 
studies were compared with one another to obtain 
common differentially expressed genes. Establishing 
personalized perturbation profiles began with 
obtaining the mean and standard deviation of the 
expression of each gene in the control group. The 
z-score, for each ASD individual at each gene was 
obtained by the following equation as laid out by 
Menche et al. 2017​13​ : 

zASD_patient_i_gene_X = σ control_gene_X

Exp  − μ ASD_patient_i_gene_X control_gene_X  

Where,  is the z-score for ASD patient izASD_patient_i_gene_X  
at gene X,   is the expression ofxp E ASD_patient_i_gene_X  
ASD patient i at gene X,  is the mean μ control_gene_X  
expression for the control group at gene X, and 

 is the standard deviation of the σ control_gene_X  
expression of the control group at gene X. A gene was 
considered perturbed if the z-score was greater than 
2.5 or less than -2.5. In this fashion each patient had a 
list of genes which were determined personally 
perturbed. These genes were added to each study’s 
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pool of personally perturbed genes. These pools of 
perturbed genes were compared with one another to 
obtain a pool of commonly perturbed genes. The 
common male personally perturbed gene pool was 
obtained by limiting each study’s pool of personally 
perturbed genes to male patients, and these male only 
study pools were compared with one another. 
Common female specific personally perturbed genes 
were obtained in the same way. 

PANTHER Enrichment 

Pools of personally perturbed genes were run through 
the PANTHER Overrepresentation Test GO Biological 
Process Complete, GO Molecular Function Complete, 
and GO Cellular Component Complete utilizing the GO 
Ontology database DOI: 10.5281/zenodo.4081749 
Released 2020-10-09 ​17​ . The resulting data tables were 
downloaded and were filtered to exclude any 
annotation with more than 1000 genes linked to it. The 
negative log was taken of the raw p-value and only the 
top 10 most significant annotations were displayed. 
Plots were generated using the R package ggplot2 and 
colors were obtained using the R package 
RColorBrewer ​89,90​. These packages were also used 
when plotting the prevalence of unnamed genes in 
each study’s pool of perturbed genes. 

Differential Correlation Analysis and Chilibot 

Differential correlation analysis was performed using 
the R package DGCA ​91​ . Design matrices were created 
to split data based on ASD status. The spearman 
correlation coefficient used as a measure of 
differential correlation. Differential correlation was only 
obtained for the unnamed genes found in the pools of 
commonly perturbed genes. Only those genes with a 
p-value difference less than 0.05 and an ASD 
spearman correlation coefficient greater than 0.7 and 
less than -0.7 were explored further. As a level of noise 
reduction TCGA Pancancer Low Grade Glioma 
Coexpression data was used to verify correlations 
found by differential correlation analysis. Coexpression 
data mRNA Expression, RSEM Batch normalized from 
Illumina HiSeq_RNASeqV2, for the unnamed genes 
was downloaded from cBioPortal ​29,92–101​ . These 
coexpression data were filtered to exclude correlations 

whose p-value is above 0.05 and whose spearman 
correlation coefficient is below 0.3 and above -0.3 but 
still below 0. Those correlations not found in these 
refined TCGA Pancancer Low Grade Glioma data were 
excluded from further analysis. The resulting 
correlated genes were investigated using the PubMed 
text mining tool, Chilibot ​25​. Chilibot’s pairwise search 
function was used to determine how correlated genes 
might be connected. 
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