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Abstract

Brain networks can be explored by delivering brief pulses of electrical current in one
area while measuring voltage responses in other areas. We propose a convergent
paradigm to study brain dynamics, focusing on a single brain site to observe the average
effect of stimulating each of many other brain sites. Viewed in this manner,
visually-apparent motifs in the temporal response shape emerge from adjacent
stimulation sites. This work constructs and illustrates a data-driven approach to
determine characteristic spatiotemporal structure in these response shapes, summarized
by a set of unique “basis profile curves” (BPCs). Each BPC may be mapped back to
underlying anatomy in a natural way, quantifying projection strength from each
stimulation site using simple metrics. Our technique is demonstrated for an array of
implanted brain surface electrodes in a human patient. This framework enables
straightforward interpretation of single-pulse brain stimulation data, and can be applied
generically to explore the diverse milieu of interactions that comprise the connectome.

Author summary

We present a new machine learning framework to probe how brain regions interact using
single-pulse electrical stimulation. Unlike previous studies, this approach does not
assume a form for how one brain area will respond to stimulation in another area, but
rather discovers the shape of the response in time from the data. We call the set of
characteristic discovered response shapes “basis profile curves” (BPCs), and show how
these can be mapped back onto the brain quantitatively. An illustrative example is
included from one of our human patients to characterize inputs to the parahippocampal
gyrus. A code package is downloadable from https://purl.stanford.edu/rc201dv0636 so
the reader may explore the technique for own data, or study sample data provided to
reproduce the illustrative case presented in the manuscript.

Introduction 1

Brain networks have been explored electrophysiologically with a variety of techniques, 2

spanning a variety of spatial scales, such as electroencephalography (EEG), 3
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magnetoencephalography (MEG), intracranial EEG (iEEG), and microelectrode local 4

field potentials (LFPs). Efforts to infer connectivity between brain regions may search 5

for correlated signals in response to supervised perturbation by a behavioral task, or in 6

an unsupervised state (“resting” awake, or sleeping). Alternately, it has been shown 7

that interactions between brain regions may be studied by applying or inducing pulses 8

of electrical stimulation to a particular site, while measuring the electrophysiological 9

response elsewhere [1–3]. In recent years, a sub-field of neuroscience has matured 10

around systematic stimulation and measurement through implanted (iEEG) arrays of 11

brain surface (electrocorticography, ECoG) or deeply-penetrating 12

(stereoelectroencephalography, SEEG) electrodes, typically called “cortico-cortical 13

evoked potentials” (CCEPs) or, for the special case of short pulses separated by several 14

seconds, “single-pulse electrical stimulation” (SPES) [4–6]. The more general term, 15

“CCEP” will be used to refer to both in this text. 16

For an array of N total electrodes, there are a potential set of order N2 CCEP 17

interactions that may be explored (for bipolar stimulation, the actual number will 18

depend on which sets of adjacent stimulation pairs are chosen to deliver electrical pulses 19

through). There are different network paradigms with which to address CCEP data, 20

illustrated in figure 1. In the “all-to-all” case where one wishes to examine the full set of 21

interactions (incorporating the temporal property of each response), the limited number 22

of stimulation events possible to record in the clinical environment (where these 23

measurements are made) does not allow for a well-defined exploration of the network. 24

Therefore, scientists have imposed a type of constraint, or a hybridization of several 25

constraints. One such approach is to reduce the problem by beginning the exploration 26

with a pre-defined interaction based on location, and then study the temporal dynamics 27

within that paired framework (figure 1D) [4]. 28

A “divergent” paradigm is commonly adopted, where the effect of stimulating a 29

chosen site on all of the other sites is used to infer motifs of connectivity. However, the 30

underlying cortical laminar architecture of each recipient (measured from) site is very 31

different, and therefore the voltage timecourse of each CCEP cannot be interpreted in a 32

common “physiological language” to distinguish different types of interactions [7]. 33

Nonetheless, many studies have found it useful to assume a canonical form (temporal 34

structure) and then parametrize within this assumed form (e.g. voltage at fixed delay 35

time from stimulus). The most common of these is a negative deflection between about 36

10 and 100 ms (or “N1”) and a later second negative deflection (“N2”) to characterize 37

which brain regions are connected [4]. That approach forces each response into a fixed 38

interpretation where the form being fit may not actually be present. 39

A different, “convergent”, paradigm is to focus on measurement from a single site, 40

and examine the effect of stimulating in the remainder of the array [8]. Although initial 41

studies from this paradigm have retained the N1/N2 framework, the convergent 42

approach is, in principle, more tractable than other paradigms. When one measures 43

from a single site and stimulates many, there is only one “physiological language” that 44

evoked responses must be interpreted in, because the underlying anatomy is unchanged. 45

In this context, different shaped temporal responses must imply a fundamentally 46

different nature of interaction between brain areas. 47

With the convergent paradigm as our initial framework, we made the visual 48

observation that inputs to primary motor cortex had very different shaped CCEPs from 49

one another, but with a compelling spatial clustering [9]. This finding was again 50

observed, but for responses in the parahippocampal gyrus (PHG) of a different patient, 51

and are shown in figure 2. 52

While anatomical clustering of stimulation sites that produce similar voltage 53

responses can be observed anecdotally by visual inspection, there is no 54

generally-available quantitative tool for organizing these physiological 55
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Fig 1. Cortico-cortical evoked potential analysis paradigms. A: Convergent - Evoked responses at one chosen site
(gray circle) are compared with the effect of stimulating all other sites (yellow circles with lightning bolt). For N electrodes,
this characterizes N interactions. B: Divergent - The temporal response of all sites are examined and compared in response
to stimulation of a chosen site (N interactions). C: All-to-all - All N2 interactions between sites are characterized. D:
Hypothesis preselected - Two sites are chosen based upon a pre-defined anatomical or functional hypothesis, and a 1-way or
2-way interaction between them is characterized. E: In the convergent paradigm, all measured responses from a brain surface
electrode are associated with the same underlying laminar architecture, so each response shape measured implies a distinct
type of input. F: In the divergent paradigm, different shaped responses may be measured from different sites, in response to
stimulation at a single site. This creates ambiguity because different shaped responses cannot distinguish between the same
type of output arriving at cortical sites with different underlying laminar architecture and different types of inputs to sites
with similar laminar architecture.

measurements1 [7]. This work aims to close this gap and develop a novel tool to uncover 56

and cluster these temporal motifs in CCEPs and enable systematic exploration of 57

connectivity. We name the resulting canonical voltage response shapes “basis profile 58

curves” (BPC) and will contribute by a framework to identify them. 59

Within the convergent CCEP paradigm, there are several criteria to constrain the 60

BPC framework. First, there should be no assumption of the form of BPCs – they 61

should emerge from the data naturally. Second, they should be able to be mapped into 62

the original data, and onto the brain anatomy in an intuitive way. Third, each 63

stimulation response trial should be able to be parameterized by a single BPC (rather 64

than a superposition of BPCs). Fourth, there should be no orthogonality constraint in 65

BPC shapes in case features (such as the N1 or N2) are shared between BPCs. 66

Technically, this framework amounts to a hierarchical clustering problem, where the 67

subgroup of single-stimulation events from each stimulation site are known, but how the 68

stimulation site subgroups cluster into the larger group of characteristic stimulation 69

response shapes is to be discovered. In this manuscript, we describe a generic solution 70

to this problem, and showcase its potential to obtain novel insights for a representative 71

dataset from implanted ECoG electrodes in a human patient (figure 2). 72

1Our exploration of the literature could not uncover a technique perhaps originating from a different
application setting that could be translated for the present brain data.
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Fig 2. Single-pulse cortico-cortical evoked potentials. A: An array of brain surface (ECoG) electrodes were surgically
placed on the left hemisphere of a brain tumor patient. B: The voltage (red trace) was measured at a parahippocampal gyrus
(PHG) electrode site. C: Biphasic stimulation pulses were delivered between adjacent electrodes throughout the array. D:
Responses from each stimulation pulse are aligned into a matrix Vk(t). E: Averaged subgroup responses Gn(t) (from the
PHG measurement site) are shown at the site of each stimulation pair that produced them.
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Materials and methods 73

Clinical measurement of cortico-cortico evoked potentials 74

The patient shown for the illustrative example of this technique was a patient with a 75

left temporal-occipital-parietal tumor (discovered to be a dysembryplastic 76

neuroepithelial tumor) who underwent placement of an electrocorticographic (ECoG) 77

electrode array to localize their seizures and map brain function (Fig. 2). This array 78

consisted of a 6x8 frontal-temporal-parietal grid, a 2x8 anterior temporal grid, and 3 79

1x4 sub-temporal strips of platinum electrodes (Ad-Tech, Racine, WI). The circular 80

electrode contacts had 4 mm diameter (2.3 mm exposed), 1 cm inter-electrode distance, 81

and were embedded in silastic. These arrays were surgically placed on the sub-dural 82

brain surface during staged surgical treatment for functional mapping and seizure 83

localization prior to tumor resection, with consented research conducted under Mayo 84

Clinic IRB 15-006530, which also authorizes sharing of the data. 85

Voltage data V (t0) were recorded at 2048Hz on a Natus Quantum amplifier. 86

Electrode pairs were stimulated ∼10-12 times with a single biphasic pulse of 200 87

microseconds duration and 6mA amplitude every 3-7 seconds using a Nicolet Cortical 88

Stimulator (figure 2A-C). Electrodes were localized on the CT and coregistered to an 89

MRI using the “CTMR” package [10], available in the “ctmr” folder of the ECoG 90

library [11] or on github [12]. 91

Data structure (Fig. 2) 92

Data are first structured in a stimulation-evoked voltage matrix V: The time-by-1 93

matrix V (t0) for the whole experiment, from the chosen electrode, was sorted into the 94

matrix Vk(t), where t denotes the time from the kth electrical stimulation, τk: 95

(τk + t1) ≤ t ≤ (τk + t2) . The dimensions of V are T ×K, with K total stimulation 96

events (trials) by T total timepoints (over the interval t1 ≤ t ≤ t2). For this 97

illustration, t1 was set to 0.050 sec and t2 to 2.000 sec. 98

Within this matrix Vk(t), similar events were given a common subgroup label n: These 99

are naturally-grouped stimulation events, corresponding to the physical location of 100

stimulation pair. The number of repeats is not the same in each stimulation-pair 101

subgroup (typically 10-12). There are N total of these stimulation-pair subgroups. 102

Although we assume that stimulations within each subgroup are independent for the 103

purpose of these analyses, this is an approximation. An example of potential 104

non-independence may be seen in the non-zero offset of individual trials from the yellow 105

site pair in figure 2C, presumably due to direct charging of the cortical lamina due to 106

proximity of the stimulation-pair sites to the recording site. 107

Trials from the same pair of stimulation sites, n, can be combined to obtain the 108

subgroup-averaged evoked voltage change matrix G: For stimulation subgroup n, the 109

average voltage temporal profile is Gn(t) = 〈Vk(t)〉k∈n. The dimensions of G are N × T . 110

With this type of brain stimulation data, Gn(t) are commonly given the name 111

“Cortico-cortical evoked potentials” (CCEPs). 112
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Fig 3. Technique for identification of Basis Profile Curves (BPCs). An illustration of the series of steps to extract
BPCs from the voltage matrix V and subgroup assignments k ∈ n. A: Within stimulation-pair subgroup self-projections. B:
Between-subgroup cross-projections. C: An illustration of sets of cross- and self-projections for stimulation-pair subgroup 11,
S11,m. D: The significance of each set Sn,m is determined initially by t-value vs. zero. Negative t-values are set to zero. The
matrix of these values is then scaled to 1, and labeled Ξ. E: Non-negative matrix factorization (NNMF) is performed to
identify structure. F: The inner dimension of NNMF is iteratively reduced. G: BPCs are identified from the groups clustered
in the rows of H.
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Single-trial cross-projections & Significance matrix (Fig. 3A-D) 113

In order to understand shared structure between stimulation trials, we first obtain a 114

matrix of unit-normalized single trials: Ṽk(t) = Vk(t)/ |Vk(t)|. Each Ṽk(t) is then 115

projected into all other trials, P = Ṽ
T
V: 116

P (k, l) =
∑
t

Ṽk(t)Vl(t)

Note that P (k, l) 6= P (l, k). The full matrix P is subsequently sorted into an array of
sets Sn,m that characterize each cross-subgroup interaction:

Sn,m = P{k ∈ n, l ∈ m}

with k = l omitted. 117

We then construct a matrix of t-values whose elements Ξ(n,m) are the t-values of the 118

corresponding distribution in Sn,m (each set’s mean divided by its standard error [13]). 119

This matrix is first subjected to a non-negativity constraint (needed for subsequent 120

factorization): if Ξ(n,m) < 0, then Ξ(n,m) 7→ 0. Ξ is then scaled to its maximum 121

Ξ 7→ Ξ/max (Ξ), making 0 ≤ Ξ(n,m) ≤ 1. This significance matrix plays a role 122

analagous to a cross-correlation matrix to help understand preserved structure of 123

individual trials within, and between different, stimulation-pair subgroups. 124

Note that the diagonal elements of Ξ can be very small. Interestingly, in some cases, 125

off-diagonal elements are larger than corresponding diagonal element from the same row 126

(Figure 3D). This occurs when there is reliable structure in the response, but, first, 127

within-group variation is larger than the cross-group variation, and, second, there is 128

structure in the variation itself. A simple example of this is when two subgroups 129

produce nearly identical response shapes, but there is adaptation in the response to 130

repeated stimulation for each electrode-pair subgroup - a finding illustrated in some 131

superior temporal gyrus sites from our example (visually apparent in subgroups 11&23 132

of Fig. 3A-C, and the green in Fig. 4C). 133

Non-Negative Matrix Factorization (NNMF) for clustering (Fig. 134

3E) 135

When clustering stimulation sites that produce similar measured responses, a 136

non-negative projection weight constraint must be applied. This is done because the 137

problem is not a source-localization - the same cluster cannot have both positive and 138

negative contributions to the recording site. Physiologically, this follows because 139

laminar anatomy not invertible, and when there is positive-negative flip in voltage in 140

one electrode, even if shape is similar, that points to a different biology we want 141

separately segregated into a different cluster (as illustrated in Fig 1E). 142

The process of non-negative matrix factorization is applied to the matrix Ξ,
performing a decomposition [14]:

Ξ ∼W H

Where Ξ has dimensions N ×M , W has dimensions N ×Q, and H has dimensions 143

Q×M . The goal of NNMF in this context is to minimize η = |Ξ−WH|2, with the 144

non-negativity constraint Wnq, Hqm ≥ 0. 145

NNMF multiplicative update rules 146

Begin with randomly generated W and H, with elements between 0 and 1. The 147

elements of W and H are then iteratively updated to better approximate Ξ until 148
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convergence criteria are met. Using a multiplicative (rather than additive) update rule 149

preserves non-negativity in matrix weights [15]. 150

1. First, elements of H are individually scaled according to : 151

Hqm 7→ Hqm

(
WTΞ

)
qm(

WTWH
)
qm

2. Second, the rows of H are normed, pushing the normalization factor onto the 152

columns of W: 153

H(q,M) 7→ H(q,M)/|H(q,M)|, and

W (N, q) 7→W (N, q) · |H(q,M)|

3. Third, elements of W are individually scaled according to : 154

Wnq 7→Wnq

(
ΞHT

)
nq(

WHHT
)
nq

4. Fourth, calculate error η = |Ξ−WH|2 and assess for convergence, exiting the 155

update loop when the ratio of change in error between subsequent steps to the 156

error is below a set threshold: ∆η/η < 105. 157

One could alternately choose NNMF with sparseness constraints built into the 158

construction of the factorization algorithm [16], though we defer this to future study. As 159

the process begins with randomly generated initial W and H, we re-run the NNMF 160

algorithm a number of times to identify a reliable minimal error η between Ξ and WH. 161

Separately, one might perform an algorithmic minimization with convergence rather 162

than brute-force repetition, though we found this impractical. 163

Dimensionality reduction (Fig. 3F) 164

The output of NNMF can be highly degenerate, and this degeneracy can be quantified 165

by the off-diagonal elements of the matrix HHT. We define the sum of the upper-half 166

off-diagonal elements as ζ (Figure 2F). Then, we iteratively reduce the number of inner 167

components Q by 1 and re-perform the NNMF until ζ < 1. This iterative reduction 168

performs our clustering, where the non-zero elements in each 1-by-N row of H define 169

how stimulation-pair subgroups are clustered together. The goal of pruning is to 170

minimize number of response shape motifs needed to explain the significant data. We 171

might instead have chosen to constrain the magnitude of any one of the off-diagonal 172

elements of HHT (rather than the sum of all), which would limit the magnitude of any 173

pairwise comparison between BPCs, but not have a global constraint in overall shared 174

structure. 175

While we have chosen to start with the beginning number of potential clusters 176

(internal dimension Q in NNMF) to be the same as the number of stimulation-pairs for 177

this example, it is more expedient by starting with a lower number of clusters (∼ 10 178

appears appropriate). This is sensible, since the number of basic motifs in laminar 179

organization (at each brain site) is constrained by a limited number of cell types. One 180

could alternately scan through many different inner dimensions, and select the best in 181

terms of explained variance (see supp Fig. 1). 182
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Clustering of subgroups (Fig. 3G) 183

At the conclusion of this process, we perform a winner-take-all operation on the 184

columns of H such that one stimulation-pair subgroup can only belong to one 185

component. Then, all but the largest elements of each column are set to zero: For each 186

row q of H, a set of stimulation-pair subgroups is assigned to each cluster - If 187

Hqn >
1

2
√
N

, then n ∈ q. This threshold is set because if all subgroups contributed 188

equally to a cluster, then the element weight of each would be 1/
√
N . A tolerance 189

factor of 1/2 was added to allow for some variation. 190

This “winner-take-all” approach implies a process constructed for canonical responses 191

rather than superposition of contributing motifs. For the present work, this assumption 192

is appropriate, though it may not hold in situations where separate physiologic motifs 193

contribute independently, and each may superimpose in the measured response. 194

Furthermore, in the present example, there is not a significant penalty for inclusion 195

of a group since the significance of this inclusion is reflected by the scoring of single 196

events, as described below in the subsection “Projecting basis profile curves back into 197

data′′. 198

Identification of basis profile curves using Linear Kernel PCA 199

(Fig. 3G) 200

Parsing the set of all single-stimulation responses from groups that are clustered 201

together by the NNMF process, we can identify characteristic “Basis Profile Curve” 202

(BPC) shapes, Bq(t), in the following manner: 203

The subset of single trial clustered responses are first concatenated as 204

Vk∈n∈q(t) ≡ V(q), to reflect single trials belonging to stimulation-pair subgroups (k ∈ n) 205

that in turn belong to cluster q (n ∈ q), with Kq such trials. We would like to identify a 206

representative basis curve, Bq(t), that represents the ”principal direction” of Vk∈q(t). 207

However, the practical fact that the number of timepoints, T , generally far exceeds the 208

number of trials, K, in these data (T � Kq) prohibits a standard principal component 209

decomposition (PCA, [17]), which would require Kq > T 2 to characterize the T -by-T 210

matrix of interdependencies between timepoints. 211

We address this issue by inverting the decomposition using the “Linear Kernel PCA” 212

technique [18–20]. This method allows for the interchange of an eigenvalue 213

decomposition of the matrix V(q)V
T
(q) (T 2 elements) with VT

(q)V(q) (K2
q elements). 214

Following this approach, we obtain a matrix F, whose columns are the eigenvectors of 215

VT
(q)V(q), with associated eigenvalues contained in the diagonal matrix ξ2, satisfying 216(
VT

(q)V(q)

)
F = Fξ2. We can then solve for the eigenvectors of V(q)V

T
(q), contained in 217

the columns of X: 218

Xξ = V(q)F
T

We keep the first column of X as our basis curve Bq(t). 219

Note that, if we were to take the simple average of all candidate stimulation-pair 220

subgroups instead of the 1st principal component for this canonical shape, it could 221

significantly dilutes the BPC form with noise. As illustrated in cluster 3 of our example, 222

several insignificant stimulation-pair subgroups are clustered along with a strong and 223

significant response subgroup. As we have constructed it, uncorrelated noise doesn’t 224

contribute significantly to variance employed by the kernel PCA approach. 225
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Fig 4. Projection of Basis Profile Curves (BPCs). A: The contribution of each BPC Bq to a single trial from its

cluster can be quantified according to a scalar multiplier α
(q)
k , and residual noise εk (trial 238 illustrated). B: The 3 BPCs for

our example case. C: The spatial representation of BPCs, color-coded, with diameter and color intensity indicating
magnitude (group-averaged signal-to-noise ratio). Each BPC distribution is individually scaled to maximum. Gray indicates
sites discarded by thresholding (figure 3G).

Projecting basis profile curves back into data 226

Utilizing the formalism from functional data analysis [21,22], we can represent each 227

individual trial as a projection of a basis profile curve Bq(t), scaled by a scalar α
(q)
k , 228

with residual error εk(t): 229

Vk(t) = α
(q)
k Bq(t) + εk(t)

We expect that E(ε) = 0 and E(ε2k) ∼ E(ε2l ), for all k and l. This allows us to estimate 230

the projection of Bq(t) into each individual trial: 231

α
(q)
k =

∑
t

Bq(t)Vk(t) and
∑
t

Bq(t)εk(t) = 0

Since E(ε) = 0, and
∑

tBq(t)α
(q)
k Bq(t) = α

(q)
k

∑
tBq(t)Bq(t) = α

(q)
k . Having α

(q)
k thus 232

determined, we can quantify the residual noise after regressing out the shape of Bq(t) : 233

εk(t) = Vk(t)− α(q)
k Bq(t)

With this description Vk(t) = α
(q)
k Bq(t) + εk(t), several useful quantities for each 234

trial Vk can be described (omitting q for notational simplicity): a “projection weight” 235

αk; a scalar “noise” summary term
√
εTkεk; a “signal-to-noise” αk

/√
εTkεk; the 236

“explained variance” by application of the BPC is 1− εTkεk
V T
k Vk

. For stimulation-pair 237

subgroup n, we can estimate the presence of residual structure after application of Bq, 238

by the remaining pair-wise correlation in noise terms:
〈
εTkεl

〉
k,l∈n;k 6=l

. 239
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Code and data availability 240

Code written in MATLAB to reproduce all of the steps and illustrations contained in 241

this manuscript is freely available along with the sample dataset at 242

https://purl.stanford.edu/rc201dv0636. The file “kjm bpcmethod readme.pdf” 243

describes the code and dataset, along with instructions for how to perform the analyses. 244

Results 245

Cortico-cortical and subcortical inputs converge in each brain region, and disentangling 246

of this convergence will shed light on the networks that interconnect the brain. In order 247

to explore this idea, we stimulated pairs of intracranial electrodes implanted across 248

many different brain areas and measured voltage responses in a single site. We expect 249

that biologically different types of inputs will produce characteristic shapes in the 250

voltage timecourse, and that these might be clustered into distinct groups based upon 251

where was stimulated. 252

Our framework, aiming to better understand brain connectivity, is grounded in a 253

convergent paradigm, examining a set of temporal voltage responses to stimulation, all 254

measured from the same site (figures 1 and 2). Each response event is labeled by the 255

site of stimulation. Then, a novel algorithm is applied within this framework to identify 256

canonical temporal response motifs, which we call “basis profile curves” (BPCs). Each 257

BPC clusters subgroups of stimulation-pairs together into a larger group that induce a 258

similar response profile, and are likely engaging same microcircuitry in their 259

connectivity from the stimulated brain site to the measured brain site. 260

Multiple different stimulation evoked voltage response motifs 261

are measured from one brain site 262

The BPC approach allowed us to extract a concise set of Basis Profile Curves that 263

describes the multitude of responses observed a single site. As illustrated in figure 3, the 264

algorithmic approach begins by obtaining a set of all projection magnitudes 265

(correlations in response timecourse) between pairs of single trials within their own 266

stimulation-pair subgroups and across different stimulation-pair subgroups. A matrix 267

characterizing the significance of each subgroup-subgroup projection magnitudes is 268

generated from the t-values of these sets, before setting negative values to 0 and scaling 269

to 1. Then non-negative matrix factorization (NNMF) is repeatedly performed to 270

decompose this matrix into a pair of other matrices, one of which characterizes 271

correlated features within the matrix, and the other of which characterizes the weight of 272

each feature (and is normalized). NNMF is performed many times, iteratively reducing 273

the inner dimension of factorization until a cross-correlation threshold between features 274

is surpassed. The iterative reduction clusters stimulation-pair subgroups by their 275

relative weights within the weight matrix (Supplemental figure 1 shows that the 276

technique identifies the optimal number of clusters from the data for portion of variance 277

explained in our example case). For each cluster, linear kernel PCA is applied to the 278

concatenated larger group of single responses from all included stimulation-pair 279

subgroups used to extract the temporal shape of the BPC. In this way, a unique BPC is 280

associated with each cluster. 281

The algorithm, by construction, produces BPCs that have a set of desired properties 282

(figure 4): Each BPC has a characteristic shape in time of “canonical” responses with 283

simple visual formulation where connectivity between areas is paired with a temporal 284

BPC motif that can be a window into the nature of the interaction. Although the 285

literature has predominantly supported a canonical form for the timecourse of CCEPs 286
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(e.g. polyphasic with 2 characteristic “N1/N2” negative deflections), this was not the 287

case in our measurements. We found instead that the measured cortico-cortical evoked 288

potentials could be described by three basis profile curves, which are unique in shape 289

(Figure 4B), only one of which (B3) is consistent with the reported N1/N2 form. 290

Stimulation of adjacent anatomical sites produces similar 291

voltage responses that are clustered together 292

The initial step in examining these stimulation data from the convergent paradigm is to 293

plot the evoked response at the measurement site onto the brain surface at the site of 294

stimulation (figure 2). Visual inspection of these plots suggests that the response shapes 295

cluster along anatomical boundaries. 296

Once BPCs have been identified, single stimulation events can be characterized with 297

the architecture from functional data analysis [21–23], which enables quantification of 298

BPC projection weight (signal) and residual noise. These quantifications may be 299

projected back to brain anatomy in an intuitive way to visualize what sites are 300

meaningfully connected to the measured-from site. In our example case (figure 4), the 301

back projections reveal a relatively sparse network interacting with the PHG originating 302

from the superior temporal gyrus (STG, green in figure 4 ), the posterior portion of the 303

inferior temporal gyrus (orange), and the fusiform gyrus (yellow). However, rather than 304

identifying this clustering by visual inspection, the clustering is quantitative with 305

summary weight and clear statistical description. The result is very similar in 306

appearance whether quantified by projection weight, signal-to-noise, or explained 307

variance (supplemental figure 2). 308

If a different measurement site is selected in the example patient data, at the 309

temporal pole (TP), a very similar clustered region from the STG emerges 310

(Supplemental figure 3). Interestingly, the shape of the associated BPC is very different. 311

This is precisely the dilemma envisioned by the divergent paradigm shown in figure 1F. 312

The interpretation of the difference in these shapes is ambiguous. One cannot tease out 313

whether the difference in BPC shape implies a different kind of connectivity, or simply a 314

reflection of the different microcircuitry of the TP and STG in response to a similar 315

type of input. 316

Discussion 317

This work begins with the general question of how electrical stimulation paired with 318

voltage measurement can be used to understand spatial and temporal structure in brain 319

networks. Our framework begins with a convergent approach, where one measurement 320

site is selected, and responses to sets of repeated stimulations in many other sites are 321

quantified (figure 1). Each electrical stimulation pulse is brief (<1ms) and the time 322

between pulses is long (>3s), allowing for transient voltage changes to return to 323

baseline. A relatively long time between pulses means that mono-synaptic and 324

polysynaptic effects can contribute to the temporal structure of the responses, and be 325

captured during data analyses. This experimental paradigm where enough time has 326

passed between consecutive stimulations for transient effects to die out is typically 327

called “single pulse electrical stimulation” [24], a subset of “cortico-cortical evoked 328

potential” (CCEP) measurement. Our initial observations of these types of data within 329

the convergent paradigm did not suggest a universal form to evoked voltage changes 330

from the same brain site [9], so the framework we have developed does not assume what 331

shape the measured responses should have. We constructed a data-driven technique to 332

extract motifs from all responses at a single seed site that we call “basis profile curves” 333
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(BPCs), beginning with a natural set of subgroups defined by repeated stimulations at 334

the same brain site. 335

The convergent approach to connectivity 336

A common approach to explore network structure in CCEP research is to examine every 337

possible interaction within an array of electrodes. In this all-to-all approach, the large 338

number (N2) of all possible interactions between the N intracranial electrodes are 339

studied (figure 1), and each response profile has hundreds-to-thousands of timepoints. 340

The several seconds between each electrical stimulation and the large set of electrode 341

pairs to stimulate between severely limits the number of repeated stimulations that may 342

be performed in the clinical setting. From a practical perspective, this means that if one 343

does not approach the study of CCEPs with clear constraints, then the problem 344

becomes too high-dimensional to handle, given the limited amount of data available. 345

Many existing studies have attempted to address this by presuming a specific temporal 346

structure in the evoked response, such as the voltage at a pre-specified timepoint 347

post-stimulation [25]. However, as illustrated in figures 2&S3 and reported by Kundu 348

and colleagues [26], there is no single canonical CCEP response shape or feature, even 349

when measuring from a single electrode. 350

Our approach to this high-dimensional data dilemma is to first constrain our study 351

to measurements from a single electrode at a time, leveraging the convergent paradigm. 352

The BPC framework then enables one to naively extract a family of response shapes 353

specific to that site. Although there is no prior assumption about the forms the BPCs 354

should have, they are constructed with the constraint that they should be reproducible 355

within subgroups of repeated stimulations at the same brain site. 356

Aside from computational convenience, the convergent paradigm is also useful 357

because we can reduce the plethora of potential interactions to a smaller, more tractable, 358

set that may be linked to physiological interpretation (i.e. a few different appearing 359

motifs in interaction between the stimulated and measured sites). For example, inputs 360

to superficial or deeper layers should produce different response motifs in the electric 361

potential measured at the brain surface, and be isolated as distinct BPCs (Fig. 1). 362

Although a single site is selected for the convergent approach, one may iteratively 363

uncover the larger connectivity space: Projections between brain regions can be 364

identified, beginning with a known seed site and then using the proposed algorithm to 365

find a strongly projecting site within a BPC cluster which, in turn, becomes the new 366

seed. This would allow one to trace projections in reverse to explore and model a 367

network of previously unknown interactions. 368

Properties of the BPC algorithm 369

The BPC algorithmic framework is constructed to satisfy a pre-defined set of desired 370

properties, each of which is a associated with distinct computations. 371

Simple assignment of each subgroup to a single BPC: We wanted to meaningfully 372

decompose brain responses to stimulation with a process that can be naturally mapped 373

back on to the underlying anatomy. This means that stimulated electrode pairs that 374

evoke the same response motif should be grouped together in a way that can be plainly 375

viewed on a brain rendering. In our BPC responses, this means that positive voltage 376

deflections of a particular shape will not be clustered with negative deflections of a 377

similar shape (and vice-versa). Ensuring this is very important when interpreting the 378

signals physiologically. For example, sign flips could reflect inputs at superficial vs deep 379

lamina or at different classes of synapses, and so should be clustered independently [27]. 380

Mathematically, this decomposition can be formulated as a clustering problem with 381

preservation of sub-group structure and inclusion of a non-negativity constraint. 382
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Commonly applied techniques such as independent/principal component analyses 383

(ICA/PCA) may not be productive in this setting (even with non-negativity 384

constraints [28]). They assume linear superposition of motifs with arbitrary sign and 385

weight rather than the identification of distinct, unique motifs. In addition, ICA/PCA 386

have different loss functions than the BPC framework, emphasizing different 387

decomposition targets and are unable to reveal the subgroup structure of 388

stimulation-pair sites necessary for our analysis. Specifically, they are specialized to 389

generate components with minimum independency, rather than to cluster motifs by 390

similarity (which is our goal). Canonical correlation analysis (CCA) or variants 391

thereof [29,30], which might allow for some labeling subgroup structure, do not easily 392

allow one to incorporate necessary constraints and are of limited help for our purpose. 393

Allowance of limited overlap in BPC shape: Although two different responses may reflect 394

different types of inputs, a limited sub-interval of time may have transient similarity. 395

Therefore, it can be useful to allow for some limited shared structure in the timecourses 396

of different BPCs. In our example, this is illustrated in the negative deflections seen in 397

the initial ∼ 500ms of B2 and B3, Figure 4B. We implement this allowance of limited 398

overlap by using a winner-take-all approach rather than enforcing orthogonality in the 399

rows of H (e.g. HHT = I). The amount of overlap allowed can be adapted by setting 400

the maximum value of individual off-diagonal elements of HHT, or their sum (ζ). 401

Disregarding of meaningless subgroups: Another physiologically meaningful constraint 402

for the BPC framework is that existing sub-group structure, where responses to 403

stimulation come from the same pair of electrodes should either be reliable on a 404

trial-by-trial basis or not contribute to the clustering. In the BPC approach, a 405

correlation-significance matrix quantifying similarity in single-trial pairwise correlations 406

organized between sub-groups (stimulation-pair sites) can be obtained. Unlike many 407

common decomposition techniques which construct covariance or correlation matrices 408

(ICA/PCA/CCA), the significance matrix generated by this process can have very small 409

diagonal elements, and, in some cases, off-diagonal elements are larger than 410

corresponding diagonal elements from the same row (Figure 3D)2. These small diagonal 411

elements, coupled with the thresholding of the elements of factor matrix H excludes 412

stimulation-pair subgroups that do not produce reliable responses in measurement from 413

the identification of BPCs. Once BPCs have been extracted, more explicit 414

quantification of significance for each stimulation-pair subgroup may be tested for by 415

testing the magnitudes αk,k∈n (for subgroup n) versus zero. 416

Simple metric to describe single trials: At the beginning of our data exploration, each 417

single trial k is described by its timecourse Vk(t), and the stimulation-pair, k ∈ n, that 418

produced it (its subgroup). At the conclusion of the BPC extraction, each trial is 419

assigned to a single BPC (q) with a scalar projection weight (α
(q)
k ), and a residual noise 420

timecourse (εk(t)). The parameterization of single-trial stimulation responses takes the 421

form Vk(t) = α
(q)
k Bq(t) + εk(t), which is a formalism borrowed from the field of 422

functional data analysis [23]. One might use the tools developed in that discipline for a 423

larger exploration of these data when generalizing across different patients, tasks, 424

stimulation paradigms, and recording settings. This formalism allows for 425

straightforward characterization of signal and uncorrelated noise in each stimulation 426

single-trial, and comparisons of these across stimulation-pair subgroups and also across 427

BPCs. As noted in the method subsection “Projecting basis profile curves back into 428

data”, one may quantify a scalar values of signal, noise, and variance explained by the 429

form of the BPC for each single-trial response. These quantities may be useful to plot 430

versus one another (supplemental figure 2, and allows one to easily scale distributions 431

independently or globally (as seen in supplemental figure 3D&E). The advantage of this 432

2See description in methods subsection “Single-trial cross-projections & Significance matrix”
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formalism moves well beyond that of notational convenience. Namely, the magnitudes of 433

response to stimulation in different brain areas can be directly compared versus one 434

another to quantify how much the local microcircuitry is being influenced, even though 435

the shape of the response timeseries may be very different. This quantification is 436

typically difficult for timeseries analysis in these types of data, where 437

template-projection or other similar approaches are otherwise necessary [31]. 438

Response motifs and underlying physiology 439

At the macroscale that is measured by ECoG or SEEG electrode contact size, an entire 440

population of about half of a million neurons is being averaged over [11]. As such, we 441

expect that only a few BPCs will explain variance from a measurement site. Each region 442

is defined by a unique laminar architecture (defined as a unique Brodmann area, [32]), 443

so we expect that the pro-dromic (reflecting inputs) or the anti-dromic (reflecting 444

outputs) will be constrained to a few unique motifs, and reflected by relatively few 445

BPCs. Therefore our BPC technique allows for visual inspection of temporal motifs that 446

are well-defined in measurement space (see figure 4) but raise important questions 447

about the neurophysiology they reflect. Potentially typical shapes may reveal 448

connection to microcircuitry in intuitive way, where surface positive deflections may be 449

tied to deep positive ion influx or superficial ion efflux from specific synapse types in 450

the large pyramidal cells beneath [27]. Alternately, they may reveal projections from the 451

stimulation site directly to different classes of cells within the laminar architecture of 452

cortex (e.g. interneurons vs pyramidal neurons). Some BPC morphologies might reveal 453

different motifs in connectivity at the macroscale. For example, one might speculate 454

about different types of connectivity within the temporal lobe that may be inferred 455

from examination of figures 4 and S3. Direct connections from intracortical axonal 456

projects within gray matter (via lateral projections) might be differentiated from those 457

relayed subcortically through white matter tracts. Note that indirect projections relayed 458

through a third cortical site or a set of subcortical nuclei might each be revealed in 459

characteristic BPC shapes, and this will be explored in future studies. 460

Potential future applications 461

We would like to emphasize that initial explorations with our BPC technique should be 462

framed in a well-controlled setting with connection to simple functional studies from 463

primary motor, auditory, or visual regions to look for commonality in BPC shapes. In 464

this manner, existing understanding from other types of measurement can serve to 465

validate BPC interpretation, and examine whether they are conserved at homologous 466

brain sites across different patients. 467

Subsequent studies might vary experimental conditions with a task, medication, or 468

property of the stimulation (current magnitude and temporal profile, or timing between 469

pulses), and quantify signal, noise, and residual structure in the responses. For example, 470

one could examine the effect of simply changing the amplitude of stimulation, where it 471

has been demonstrated that different stimulation magnitudes can elicit very different 472

morphologies [26] and examine distribution of BPCs as a function of that. 473

Inspecting recordings from a single site, our novel framework could be applied to 474

behavioral, rather than electrical stimulation. For example, one could study higher 475

order visual areas, like the fusiform gyrus, and examine responses to presented images of 476

different semantic types (pictures of faces, houses, tools, etc., etc.) [33,34]. In such a 477

study, one would replace stimulation pair groups with semantic stimulus groups 478

(pictures of faces, houses, tools, etc.) to see how different semantic groups cluster 479

together in production of the fusiform electrophysiological response. 480
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This “winner-take-all” approach (figure 3G) implies a process constructed for 481

canonical responses rather than superposition of contributing motifs. In other words, 482

this means that each stimulation response is assigned to a single BPC, rather than as a 483

combination of multiple BPCs. For the present work, this assumption is appropriate, 484

though it may not hold in situations where separate physiologies contribute 485

independently and may superimpose in the measured response. There may be later 486

approaches where initial voltage changes (1st order projections) and later (2nd & higher 487

order projections) are assessed independently and allowed to superimpose, particularly 488

when attempting to detect/discover potential higher-order responses. In future work, 489

this could be performed by picking multiple sets of t1 and t2, and re-performing 490

analyses for isolated time windows. 491

One result of this functional data analysis formalism is that candidate structures not 492

correlated to initial subgroup labeling could be tested for by looking at correlations of 493〈
εTkεl

〉
k 6=l

, where k and l would be of a candidate different type of subgroup (for 494

example, the third stimulation pulse from each set of stimulations). In this case, after a 495

full exploration of that residual structure, the error term ε for a given trial would split 496

out into a second order set of BPCs, Cp, with coefficients β
(p)
k , where ε −→ β(p)Cp + ε′, 497

and Vk(t) = α
(q)
k Bq(t) + β

(p)
k Cp(t) + ε′k(t). 498

Conclusion 499

We have detailed a new data-driven framework for uncovering motifs in epoch-based 500

timeseries data belonging to labeled subgroups. These motifs are called “basis profile 501

curves” (BPCs), and they determine characteristic spatiotemporal structure. Each 502

timeseries epoch is assigned to a unique BPC, with motif projection strength and 503

residual noise simply parameterized. This framework is applied to understand the effect 504

of electrical stimulation in the human brain using arrays of implanted electrodes, where 505

the labeled subgroups are repeated stimulations at the same site. We introduce a set of 506

paradigms for interpreting these measurements, of which the convergent one allows 507

application of the BPC framework. In our illustrative example of measurements from 508

the surface of the parahippocampal gyrus, we find that identified BPCs clearly uncover 509

several connected regions and allow them to be viewed and interpreted intuitively. 510
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Supporting information

S1 Fig.

Supplemental Fig 1. Explained variance as a function of number of inner dimensions, Q. We can quantify the
total variance explained by the fitting of resulting BPCs, Bq(t) across all included stimulation-pair trials:〈
V T
k Vk − εTkεk

〉
k∈n∈q

. When we normalize this by the total variance,
〈
V T
k Vk

〉
k ∈ all n

, we have the portion of total variance

explained (blue circles). However, the goal of the decomposition is to identify motifs, explained by BPCs, from the full set of
stimulations. For example, if one were to perform stimulations at a site that have no effect on the measurement site, it should
not undermine our confidence in the decomposition. Therefore, a more appropriate normalization is to instead divide the
explained variance by the variance of the trials included in the clustering,

〈
V T
k Vk

〉
k∈n∈q

. For our example case, this

immediately validates the dimensionality Q = 3, selected by the algorithm (Fig. 3).

S2 Fig.

Supplemental Fig 2. Alternate metrics for projection weights of BPC curves. As in figure 4, but using alternate
scoring metrics for each stimulation-pair subgroup, shown in inset squares overlying each cortical rendering.

S3 Fig.
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Supplemental Fig 3. Illustration from a different site. Stimulation responses from a site in the temporal pole are
shown. A: Responses from each stimulation pulse are aligned into a matrix Vk(t). B: Averaged responses Gn(t) are shown at
the site of each stimulation pair that produced them. C: BPCs produced by the algorithm. D: Weights (group-averaged
signal-to-noise ratio) associated with each BPC (color-coded), and non-included sites (gray). E: Spatial representation of
BPCs, color-coded, with diameter and color intensity indicating magnitude. All values are scaled to the global maximum
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across all BPCs. F: As in (E), but with each BPC distribution individually scaled to its own maximum. Note the similarity
in the spatial distribution of the stimulation-site cluster labeled in green to figure 3, but the completely different shape of the
BPC (likely reflecting the different laminar architecture of the two recipient measurement sites).

January 25, 2021 22/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.428020doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.428020
http://creativecommons.org/licenses/by/4.0/

