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Abstract 13 

Background: Pseudogenes are non-functional copies of protein coding genes that 14 

typically follow a different molecular evolutionary path as compared to functional genes. 15 

The inclusion of pseudogene sequences in DNA barcoding and metabarcoding analysis 16 

can lead to misleading results.  None of the most widely used bioinformatic pipelines 17 

used to process marker gene (metabarcode) high throughput sequencing data 18 

specifically accounts for the presence of pseudogenes in protein-coding marker genes.  19 

The purpose of this study is to develop a method to screen for obvious pseudogenes in 20 

large COI metabarcode datasets.  We do this by:  1) describing gene and pseudogene 21 

characteristics from a simulated DNA barcode dataset, 2) show the impact of two 22 

different pseudogene removal methods on mock metabarcode datasets with simulated 23 

pseudogenes, and 3) incorporate a pseudogene filtering step in a bioinformatic pipeline 24 

that can be used to process Illumina paired-end COI metabarcode sequences.  Open 25 

reading frame length and sequence bit scores from hidden Markov model (HMM) profile 26 

were used to detect pseudogenes.   27 

Results: Our simulations showed that it was more difficult to identify pseudogenes from 28 

shorter amplicon sequences such as those typically used in metabarcoding (~300 bp) 29 

compared with full length DNA barcodes that are used in construction of barcode 30 

libraries (~ 650 bp).  It was also more difficult to identify pseudogenes in datasets where 31 

there is a high percentage of pseudogene sequences.  We show that existing 32 

bioinformatic pipelines used to process metabarcode sequences already remove some 33 

apparent pseudogenes, especially in the rare sequence removal step, but the addition 34 

of a pseudogene filtering step can remove more.   35 
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Conclusions: The combination of open reading frame length and hidden Markov model 36 

profile analysis can be used to effectively screen out obvious pseudogenes from large 37 

datasets.  There is more to learn from COI pseudogenes such as their frequency in 38 

DNA barcode and metabarcoding studies, their taxonomic distribution, and evolution.  39 

Thus, we encourage the submission of verified COI pseudogenes to public databases to 40 

facilitate future studies. 41 

 42 

Key words 43 

Nuclear encoded mitochondrial sequences (nuMT), pseudogene, bioinformatics, COI 44 

mtDNA, DNA barcode, metabarcode, hidden Markov model 45 

 46 

 47 

Introduction 48 

The mitochondrial cytochrome c oxidase subunit 1 gene, COI, is the official animal 49 

barcode marker and large reference databases are available to help identify COI 50 

metabarcode sequences from soil, water, sediments, or mixed communities such as 51 

those collected from traps [1–3].  Crucially, the COI barcode marker is also a protein 52 

coding gene.  This is in contrast with the ribosomal DNA markers typically used for 53 

marker gene studies of prokaryotes or fungi [4–6].  Until recently, the methodology and 54 

bioinformatic pipelines for processing protein coding markers such as COI for animals, 55 

the maturase K gene (matK), or the ribulose bisphospate carboxylase large chain gene 56 

(rbcL) for plants have been treated in very much the same way, even using the same 57 

popular pipelines such as those used to process ribosomal RNA genes. 58 
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Innovative methods of processing COI sequence data has arisen in recent years.  59 

For example, COI marker analysis need not be limited to operational taxonomic units 60 

(OTUs), but may also include the use of exact sequence variant (ESV) analysis for 61 

improved taxonomic resolution and permit intraspecific phylogeographic analyses [7–62 

10].  Additionally bioinformatic tools to remove pseudogenes and noise from COI 63 

datasets have become available [11–13].  There are currently few options, however, to 64 

process COI metabarcode reads that specifically handle COI pseudogenes also known 65 

as nuclear encoded mitochondrial sequences (nuMTs).  COI pseudogenes have been 66 

discussed in the literature largely with regards to COI barcoding efforts and only 67 

recently have tools appropriate for handling large batches of COI sequences recently 68 

become available [14–17].   69 

Pseudogenes are copies of mitochondrial DNA that have been inserted into the 70 

nuclear genome [18].  The mechanism for this is uncertain but may involve the 71 

incorporation of mtDNA during the repair of chromosomal double strand breaks [19].  72 

Some mitochondrial pseudogenes are ‘dead on arrival’ due to the different genetic code 73 

in the nuclear genome [20].  If the pseudogene has only accumulated a few mutations, 74 

the sequence may closely resemble that of a functional COI gene with no frameshift or 75 

internal stop codons and may be referred to as a cryptic pseudogene [21].  More 76 

apparent pseudogenes, on the other hand, may exhibit stark changes in condon usage 77 

bias, transition:transversion ratios, GC content, decreased length, and have unexpected 78 

phylogenetic placement [18].  Since the primers used for PCR will bind to paralogous 79 

regions in pseudogenes, they will amplify nuMTS in addition to or even preferentially to 80 

the target mitochondrial sequence [18, 22]. Including unknown pseudogenes in 81 
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phylogenetic, biodiversity, or population analyses may introduce noise into analyses, 82 

leading to overestimates of haplotype or species richness, or may lead to misleading 83 

identifications or relationships [14, 16, 23–26]. 84 

The methods needed to detect different types of pseudogenes will vary depending 85 

on whether or not many changes have accumulated.  Cryptic pseudogenes may be 86 

identified by examining raw Sanger chromatograms, similar to looking for evidence for 87 

heteroplasmy, by looking for double peaks.  The whole gene region may be examined 88 

looking for the presence of the control region and stop codon.  Conserved regions such 89 

as in the inner mitochondrial membrane alpha helices can be examined for changes 90 

[27].  More obvious pseudogenes may accumulate substitutions equally in non-91 

synonymous and synonymous regions indicating balanced positive and negative 92 

selection at sites across the gene copy or relaxed conservation (dN/dS ratios ~ 1).  This 93 

is in contrast with a functional COI gene where substitutions tend to occur in non-94 

synonymous sites so as to preserve amino acid composition and protein structure and 95 

dN/dS ratios are expected to be < 1.  The result of relaxed purifying selection is the 96 

accumulation of indels, frameshifts, and/or the introduction of premature stop codons.  97 

The objective of this work is to develop methods to remove such apparent pseudogenes 98 

from large COI sequence datasets.   99 

 100 

Bioinformatic Methods 101 

 We used three approaches in this study: A) We simulated a DNA barcode 102 

dataset by compiling a set of annotated COI genes and pseudogenes from the Barcode 103 

of Life Data System (BOLD) and the National Center for Biotechnology Information 104 
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(NCBI) nucleotide (nt) database for the same set of 10 species; B) We created mock 105 

COI metabarcode datasets by mining sequences from BOLD and simulating 106 

pseudogenes, and C) We tested a pseudogene filtering method on a previously 107 

published freshwater benthos COI metabarcode dataset (Figure 1). 108 

 109 

Figure 1.  Overview of methods to determine COI pseudogene characteristics and 110 

test methods for pseudogene removal.  Dataflow for our A) simulated DNA barcode 111 

dataset, B) simulated metabarcode datasets, and C) real freshwater COI metabarcode 112 

dataset.  Abbreviations: BOLD = Barcode of Life Data System; COI = cytochrome c 113 

oxidase subunit I mtDNA gene; HMM = hidden Markov model; NCBI = National Centre 114 

for Biotechnology Information; nt = nucleotide; ORF = open reading frame. 115 

 116 
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 117 

 118 

Part A: Simulating a DNA barcoding dataset 119 

To simulate a DNA barcoding dataset where multiple sequences are generated 120 

for the same species, we retrieved high quality sequences from BOLD and known 121 

pseudogenes mined from the NCBI nucleotide database for the same set of species.  122 

Sequences from the BOLD data releases were obtained from 123 

http://v3.boldsystems.org/index.php/datarelease .  Nucleotide sequences for arthropods 124 

were selected, ensuring that there were no ambiguities in the nucleotide sequences.  If 125 

either the nucleotide sequence or amino acid sequence were missing, then the record 126 

was discarded.  A FASTA file containing arthropod COI pseudogenes was obtained 127 
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from the NCBI nucleotide database using an Ebot script with the search term 128 

“Arthropoda[ORGN] AND pseudogene[TITL] AND (COI[GENE] OR CO1[GENE] OR 129 

coxI[GENE] OR cox1[GENE]) AND 50:2000[SLEN]”.[28]  A few records had to be edited 130 

by hand to isolate the sequence region associated with the COI pseudogene.  We 131 

retrieved 481 COI nucleotide sequences from BOLD and 112 COI pseudogene 132 

nucleotide sequences from the NCBI nucleotide database from the same 10 species 133 

(Table 1).  This dataset is further described in Table S1 showing proportion of 134 

pseudogenes, average length, and average GC content.  On average, the length and 135 

GC content of pseudogenes from these 10 species are slightly shorter and lower, 136 

respectively, than for COI gene sequences. 137 

 138 

Table 1: Summary of a simulated DNA barcoding dataset containing known 139 

arthropod COI pseudogenes 140 

 141 

Class Order Species Gene 
sequences 
(% of total) 

Pseudogene 
sequences 
(% of total) 

Subtotals 

Insecta Coleoptera Xylosandrus 
germanus 

33 1 34 

Insecta Hemiptera Bemisia tabaci 252 7 259 
Insecta Hemiptera Trialeurodes 

vaporariorum 
3 1 4 

Insecta Hemiptera Triatoma dimidiata 9 1 10 
Insecta Hymenoptera Ectatomma gibbum 6 1 7 
Insecta Hymenoptera Halictus rubicundus 29 2 31 
Insecta Hymenoptera Melissotarsus 

insularis 
135 79 214 

Insecta Orthoptera Cyphoderris 
monstrosa 

7 14 21 

Collembola Entomobryomorpha Lepidocyrtus 
cyaneus 

5 1 6 

Malacostraca Decapoda Goneplax 
rhomboides 

2 5 7 

  Subtotals 481 (81) 112 (19) 593 
 142 
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 143 

GC content for COI gene and pseudogene sequences were assessed in R using 144 

the ‘seqinr’ package [29].  We pooled all the sequences together, then proceeded to 145 

filter out just the pseudogene sequences using two different methods:   146 

The first method we used to remove pseudogenes involved screening out ESVs 147 

with outlier open reading frame lengths that were very short or very long (SCVUC 148 

v4.1.0).  This was done by translating arthropod ESVs using ORFfinder v0.4.3 into 149 

every possible open reading frame on the plus strand, ignoring nested ORFs, minimum 150 

length set to 30.  The longest nucleotide (nt) ORFs were retained.  Outliers, putative 151 

pseudogenes or genuine sequences with PCR/sequencing errors, were identified as 152 

sequences shorter than the 25th percentile ORF length - (1.5 * interquartile length) and 153 

longer than the 75th percentile ORF length + (1.5 * interquartile length).   154 

The second method we used to remove pseudogenes involved profile hidden 155 

Markov model (HMM) analysis (SCVUC v4.3.0).  This was done by creating a profile 156 

HMM based on BOLD arthropod barcode sequences using HMMER v3.3 available from 157 

http://hmmer.org .  From the BOLD data releases iBOL phase 0.50 to 6.50, we retrieved 158 

all arthropod barcodes 600-700 bp in length.  We sorted these sequences by 159 

decreasing length using the ‘sortbylength’ command in VSEARCH.  We reduced the 160 

dataset size by clustering by 80% sequence similarity using the ‘cluster_size’ command 161 

and retaining the centroids sequences.  As described above, arthropod ESVs were 162 

translated and the longest open reading frames were retained for both nucleotide and 163 

amino acid (aa) sequences.  The amino acid ORFs were aligned with MAFFT v7.455 164 

using the ‘auto’ setting [30].  The nucleotide ORFs were also mapped to the amino acid 165 
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alignment using TRANALIGN (EMBOSS v6.6.0.0) specifying the invertebrate 166 

mitochondrial genetic code [31].  The FASTA file comprised of 6,162 amino acid 167 

sequences was converted to Stockholm format.  This reference alignment was turned 168 

into a model that describes the probabilities for travelling a path along the length of the 169 

alignment that moves through match, insert, or deletion states.  HMMER was used to 170 

build this nucleotide arthropod COI profile hidden markov model (HMM) using the 171 

‘hmmbuild’ command.  The HMM was indexed using the ‘hmmpress’ command.  172 

Individual arthropod amino acid ORFs were then compared with the profile HMM using 173 

the ‘hmmscan’ command.  One of the hmmscan outputs is a log odds ratio score (bit 174 

score) that compares the likelihood of the query sequence given the model to the 175 

likelihood of the query sequence given a random sequence model.  When a COI gene is 176 

used as the query, we expected a high bit score; whereas when an obvious COI nuMT 177 

is used as the query, we expected a low bit score.  In this way, putative pseudogenes or 178 

genuine sequences with PCR/sequencing errors were identified as amino acid ORFs 179 

with short outlier HMMER scores. 180 

We also calculated the number of substitutions per non-synonymous and 181 

synonymous sites.  Gene sequences and pseudogene sequences were analyzed 182 

separately as follows: Amino acid ORFs were aligned using MAFFT v7.455 using the 183 

‘auto’ setting.  A codon alignment was created using TRANALIGN (EMBOSS) by 184 

mapping the nucleotide ORFs to the amino acid alignment using the invertebrate 185 

mitochondrial genetic code.  We used the package ‘ggplot2’ in Rstudio to create all plots 186 

[32–34].  We used the ‘seqinr’ function ‘kaks’ to calculate the number of substitutions for 187 

non-synonymous and synonymous sites [29].  Before calculating dN/dS ratios, we 188 
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excluded pairwise sequence comparisons where the number of substitutions per 189 

synonymous site was < 0.01 (sequences too similar to yield reliable dN/dS) or > 2 (too 190 

many substitutions, near saturation, to yield a reliable dN/dS).   191 

To assess how pseudogene sequences could be (mis)identified using the top 192 

BLAST hit method, we used the megablast algorithm to find the most similar sequence 193 

in the NCBI nucleotide sequence database [35].  We used this method to verify that the 194 

expected species was a top match (skipping over the top match if it was the same as 195 

the query sequence or if it was an obvious contaminant) and whether or not the top 196 

match was to a gene or pseudogene sequence in the reference database.  To further 197 

visualize phylogenetic divergence between gene and pseudogene sequences for each 198 

species, we aligned nucleotide sequences with MAFFT using the ‘auto’ setting.  The 199 

‘fdnadist’ Phylip method in the EMBOSS package was used to calculate distances using 200 

the Kimura 2-parameter (K2P) model of nucleotide sequence evolution [36, 37].  A 201 

neighbor joining tree was saved in Newick format using the ‘fneighbor’ Phylip method in 202 

EMBOSS.  Statistical support at nodes was calculated by bootstrapping the multiple 203 

sequence alignment 1000 times using the ‘fseqboot’ Phylip method in the EMBOSS 204 

package then K2P distances and neighbor joining trees were constructed as described 205 

above.  A majority rule consensus tree was constructed using the Phylip program 206 

‘consense’ [37].  Bootstrap values from the consensus tree were mapped to the 207 

phylogram using TreeGraph2 v2.15.0-887 [38].  The tree was mid-point rooted and 208 

nodes rotated or collapsed where necessary to improve readability using FigTree v1.4.4 209 

available from http://tree.bio.ed.ac.uk/software/figtree/ .  Further minor editing to 210 
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improve readability was performed using Inkscape v1.0.1 available from 211 

https://inkscape.org/ .   212 

 213 

Part B: Simulating community sequence data 214 

To test our pseudogene filtering methods on a more taxonomically diverse 215 

community of arthropods, we performed a simulation study.  We created an arthropod 216 

COI community based on 100,000 sequences randomly sampled from BOLD.  We 217 

manipulated this mock community in different ways described below.  In our first mock 218 

community, based on our simulated DNA barcoding results from Part A where ~ 19% of 219 

our dataset represented pseudogenes, we decided to introduce mutations into 19% of 220 

the BOLD sequences.  Also based on the results from Part A, we reduced the GC 221 

content in our simulated pseudogenes by 2.5% by replacing G/C bases with an A/T 222 

bases.  In our second mock community, we inserted or deleted bases to introduce 223 

frameshift mutations and premature stop codons.  To keep the rate of pseudogenization 224 

the same as the first mock community, we introduced indels in 2.5% of the bases in our 225 

simulated pseudogenes.  In the third mock community, we split COI barcode sequences 226 

in half to test whether our pseudogene filtering approach would work on shorter barcode 227 

sequences similar in length to those generated in COI metabarcoding studies (~ 300 228 

bp).  In a fourth mock community, we doubled the proportion of pseudogenes in the 229 

mock community from 19% to 38%.  In the fifth mock community, we halved the 230 

proportion of pseudogenes in the mock community from 19% to 9.5%.  Each of these 231 

datasets is further described in Table S1 showing proportion of pseudogenes in the 232 

community, average length, and average GC content. 233 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 13

 234 

Part C: Test pseudogene filtering methods using a real COI metabarcode dataset 235 

We used a previously published freshwater benthos COI metabarcode dataset to 236 

test our bioinformatic pipeline and two different pseudogene removal strategies [39].  237 

We chose this dataset because it includes results from six different COI amplicons (BR5 238 

[B, ArR5] ~ 310 bp, F230R [LCO1490, 230_R] ~ 229 bp, ml-jg [mlCOIintF, jgHCO2198] 239 

~ 313 bp, BF1 [BF1, BR2] ~ 316 bp, BF2 [BF2, BR2] ~ 421 bp, fwh1 [fwhF1, fwhR1] ~ 240 

178 bp) currently used in a variety of labs in the freshwater COI metabarcode literature 241 

[40–47].  The primers and their target taxa are listed in Table S2.  Each amplicon covers 242 

sites across the COI barcoding region and the mode length ranges from 178 bp (fwh1) 243 

to 421 bp (BF2), averaging ~ 300 bp.  The F230R and fwh1 amplicons align to the 5’ 244 

end of the barcoding region and the BR5, ml-jg, BF1, and BF2 amplicons align to the 3’ 245 

end of the barcode region.   246 

A COI metabarcoding bioinformatic pipeline, SCVUC v4.3.0, was used to 247 

process Illumina paired-end reads to output a set of taxonomically assigned ESVs 248 

(available from GitHub at https://github.com/Hajibabaei-249 

Lab/SCVUC_COI_metabarcode_pipeline ) (Fig 2).  This pipeline runs in a conda 250 

environment using a snakemake pipeline.  Conda is an environment and package 251 

manager [48].  It allows most programs and their dependencies to be installed easily 252 

and shared with others.   Snakemake is a python-based workflow manager [49].  The 253 

snakefile contains the commands need to run a bioinformatic pipeline.  The 254 

configuration file allows users to adjust parameter settings.   255 

 256 
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Fig 2.  Overview of metabarcoding bioinformatic pipeline that removes apparent 257 

pseudogenes.  The SCVUC pipeline begins with Illumina paired-end reads.  Arrow 1 258 

indicates where globally rare sequence clusters are removed and quality trimmed reads 259 

are mapped to denoised exact sequence variants (ESVs) to create a sample x ESV 260 

table that contains read numbers.  Arrow 2 indicates where pseudogenes can be 261 

removed using two different approaches.  The first method translates ESVs, retains the 262 

longest nucleotide open reading frame (ORF), then removes sequences with very small 263 

or very large outlier lengths.  The second method translates ESVs, retains the longest 264 

amino acid open reading frame, does a profile HMM analysis, then removes sequences 265 

with very small outlier full sequence bit scores.  Arrow 3 indicates where rare sequence 266 

clusters from each sample are removed and read numbers are mapped to the final 267 

report.  The final report contains all ESVs for each sample, read numbers, ORF 268 

sequences, and taxonomic assignments with bootstrap support values. 269 
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 270 

 271 

Raw paired-end reads are merged using SEQPREP v1.3.2 [50].  This step looks 272 

for a minimum Phred quality score of 20 in the overlap region and requires a minimum 273 

25 bp overlap.  Primers are trimmed in two steps using CUTADAPT v2.6 requiring a 274 

Phred quality score of 20 at the ends to count matches/mismatches, no more than 3 Ns 275 

are allowed, and trimmed reads need to be at least 150 bp [51].  Sequence files are 276 

combined for a global analysis.  Reads are dereplicated using VSEARCH v2.14.1 [52].  277 

Denoised exact sequence variants (ESVs) are also generated using VSEARCH using 278 

the unoise3 algorithm [53].  This step clusters reads by 100% sequence identity, 279 

removes sequences with predicted errors, and globally rare sequences.  Here we define 280 
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rare sequences as clusters containing only one or two sequences.  Putative chimeric 281 

sequences are removed using the uchime3_denovo algorithm in VSEARCH [54].  282 

Denoised ORFs (ESVs) are taxonomically assigned using a naive Bayesian classifier 283 

trained with a COI reference set comprised of sequences mined from GenBank and the 284 

BOLD data releases [55, 56].  Rare sequences clusters are removed from each sample 285 

before printing the final file. 286 

We used the pipeline with the two different pseudogene removal methods 287 

described in Part A.  We then modified the pipeline to skip over several steps, one at a 288 

time, to see how this would affect the removal of apparent pseudogenes using the 289 

ORFfinder + profile HMM method: rare sequence removal, noise removal, chimeric 290 

sequence removal.   291 

 292 

Results 293 

 294 

 Our DNA barcode simulation that included 10 species with both gene and 295 

pseudogene sequences allowed us to compare differences in GC content, length, and 296 

dN/dS ratios.  In Figure 2, we show that COI pseudogenes tend to have a slightly lower 297 

median GC content, shorter ORF lengths, and shorter full sequence bit score values in 298 

HMM profile analyses.  Figure S1 shows how COI genes tend to accumulate 299 

substitutions in synonymous sites where a nucleotide changes does not result in the 300 

change of an amino acid; whereas COI pseudogenes tend to accumulate substitutions 301 

in non-synonymous sites where a nucleotide change results in the change of an amino 302 

acid.  After correcting for pairwise comparisons that could yield unreliable dN/dS ratios, 303 
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where the number of substitutions at synonymous sites is < 0.01 or > 2, we were only 304 

able to calculate dN/dS for COI gene sequences but not for pseudogene sequences.  305 

Due to the length variation in COI pseudogenes and their resulting ORFs it was difficult 306 

to obtain reliable codon alignments for dN/dS analysis.  This method may be more 307 

suitable for detecting cryptic pseudogenes that have open reading frame lengths similar 308 

to functional COI ORFs.  Top BLAST hit analysis shows that all pseudogenes had a top 309 

BLAST hit to another sequence from the expected species (92% - 100% identity).  In 310 

some cases, the top BLAST match for a known pseudogene was to another COI 311 

sequence annotated as a nuclear copy of a mitochondrial gene.  More often, the top 312 

match for a pseudogene was to a COI gene sequence.  This indicates that in some 313 

cases, careful analysis of top BLAST hit output could help flag putative pseudogenes.  314 

Figures S2-S11 show COI phylograms for each species.  In some cases, pseudogenes 315 

form their own clusters (ex. Bemisia tabaci, Goneplax rhomboides), often on long 316 

branches (ex. Bemisia tabaci, Xylosandrus germanus, Triatoma dimidiate, Trialeurodes 317 

vaporariorum, Goneplax rhomboides, Ectatomma gibbum), but occasionally 318 

pseudogenes are found in clades intermixed with regular genes and little sequence 319 

divergence to distinguish them (ex. Melissotarsus insularis, Lepidocyrtus cyaneus, 320 

Halictus rubicundus, Cyphoderris monstrosa). 321 

Table 2 compares the sensitivity and specificity of two pseudogene removal 322 

methods on this dataset.  Figure S12 shows how we calculated sensitivity and 323 

specificity for each pseudogene removal method.  Sensitivity refers to the true positive 324 

rate, in this case the number of pseudogenes correctly filtered out of the dataset.  325 

Specificity refers to the true negative rate, in this case, the number of genes correctly 326 
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retained.  For our DNA barcoding simulated dataset including COI gene and 327 

pseudogene sequences from 10 species, sensitivity (73%) is slightly higher for the 328 

ORFfinder + HMM profile analysis pseudogene removal method and the specificity is 329 

the same for each pseudogene removal method (90%). 330 

 331 

Fig 2. Arthropod COI pseudogenes tend to have lower GC content, shorter open 332 

reading frames, and smaller sequence bit scores.  Based on the simulated DNA 333 

barcoding dataset described in Table 1.  The top panel shows GC content (%) in gene 334 

and pseudogene sequences.  The middle panel shows the sequence length distribution 335 

for the longest retained open reading frame.  The solid vertical line indicates the length 336 

of a typical COI barcode at 658 bp.  The two vertical dashed lines shows the boundaries 337 

for identifying ORFs with outlier lengths.  The bottom panel shows the sequence bit 338 

score distribution after searching our sequences against a COI arthropod nucleotide 339 

profile hidden Markov model.  The vertical dashed line shows the boundary for 340 

identifying small outlier scores.   341 

 342 
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 343 

 344 

Table 2.  Sensitivity and specificity for two pseudogene filtering methods.  We 345 

include results from two approaches: Part A) We used a simulated DNA barcoding 346 

dataset with COI gene and pseudogene sequences from 10 species, Part B) we 347 

simulated pseudogenes from 100,000 BOLD COI sequences.  To simulate 348 

pseudogenes, we either decreased the %GC content or introduced indels.  Sensitivity 349 
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refers to the true positive rate, our ability to correctly identify known or simulated 350 

pseudogenes.  Specificity refers to the true negative rate, our ability to correctly identify 351 

real COI sequences (not pseudogenes). 352 

   Sensitivity 
(%) 

 Specificity 
(%) 

 

Experiment Dataset Type of 
mutations 
introduced 

ORFfinder ORFfinder 
+ profile 
HMM 
analysis 

ORFfinder ORFfinder 
+ profile 
HMM 
analysis 

Simulated 
DNA 
barcoding 
dataset.  COI 
genes and 
pseudogenes 
from 10 
species 

Full length COI 
barcode and 
pseudogene 
sequences 

N/A 70 73 90 90 

Simulated 
metabarcode 
dataset 

Full length COI 
barcode and 
simulated 
pseudogenes 

GC content 
reduced 

31 27 99 ~100 

Simulated 
metabarcode 
dataset 

Full length COI 
barcode and 
simulated 
pseudogenes 

Introduced 
indels 

88 94 ~100 ~100 

Simulated 
metabarcode 
dataset 

Short COI 
barcode and 
simulated 
pseudogenes 

GC content 
reduced 

17** - 50* 6** - 15* 99 ~100 

Simulated 
metabarcode 
dataset 

Short COI 
barcode and 
simulated 
pseudogenes 

Introduced 
indels 

42** - 58* 61** - 87* 99 99* - 
~100** 

Simulated 
metabarcode 
dataset 

Full length COI 
sequences and 
twice as many 
pseudogenes 

GC content 
reduced 

17 0 99 ~100 

Simulated 
metabarcode 
dataset 

Full length COI 
sequences and 
twice as many 
pseudogenes 

Introduced 
indels 

0 0 ~100 ~100 

Simulated 
metabarcode 
dataset 

Full length COI 
sequences and 
half as many 
pseudogenes 

GC content 
reduced 

39 36 95 96 

Simulated 
metabarcode 
dataset 

Full length COI 
sequences and 
half as many 
pseudogenes 

Introduced 
indels 

95 98 96 99 

* 5’ fragment 353 
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** 3’ fragment 354 

 355 

 356 

 We used our observations from the simulated DNA barcode dataset with COI 357 

genes and pseudogenes from the same 10 species to guide the creation of a mock 358 

community comprised of 100,000 COI barcode sequences randomly sampled from 359 

BOLD where we could manipulate parameters in different ways.  In our simulation study 360 

of full length COI sequences, we found that it was easier to filter out pseudogenes 361 

caused by increased indels (sensitivity 88-94%) rather than reduced GC content 362 

(sensitivity 27-31%) (Fig 3 and Table 2).  As shown in Table 2, for full length COI 363 

barcode sequences, each pseudogene removal method performed with similar 364 

specificity (99-100%). 365 

 366 

Fig 3.  In a simulated mock arthropod community, reducing the GC content or 367 

introducing indels in COI sequences reduces ORF lengths and sequence bit 368 

scores.  Each column shows the results from a particular simulation: a controlled 369 

community with pseudogenes absent, a community with pseudogenes that have a 370 

reduced GC content, and a community with pseudogenes where we have introduced 371 

indels.  The top panel shows the length variation of sequences in the longest retained 372 

open reading frame.  The solid vertical line indicates the length of a typical COI barcode 373 

at 658 bp.  The two vertical dashed lines shows the boundaries for identifying ORFs 374 

with outlier lengths. The bottom panel shows the sequence bit score variation.  The 375 
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vertical dashed line shows the boundary for identifying sequences with low outlier 376 

scores.   377 

 378 

 379 

 380 

 We also performed additional simulations by adjusting the length of the COI 381 

barcodes from full length to half length (~ 329 bp) as this is similar to the length of COI 382 
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metabarcode sequences.  As shown in Fig S13, it is more difficult to filter out short 383 

pseudogenes compared with full length COI barcodes.  Table 2 shows that for half-384 

length COI sequences, pseudogene removal sensitivity is better for pseudogenes 385 

generated by introducing indels (42-87%) rather than with pseudogenes where we 386 

reduced GC content (6-50%).  Sensitivity is also generally higher when removing 387 

pseudogenes from the 5’ end of the COI barcode region (15-87%) compared with the 3’ 388 

end (6-61%).  Pseudogene removal specificity is similar across pseudogene types and 389 

removal methods (99-100%).  390 

 Since we don’t really know how prevalent pseudogenes are in metabarcode 391 

datasets, we tested the effect of our pseudogene removal methods on a community 392 

where there are many pseudogenes (38% instead of 19% in previous analyses).  Figure 393 

S14 shows that doubling the proportion of pseudogenes in the community greatly 394 

reduces the number of simulated pseudogenes removed with either method.  As shown 395 

in Table 2, pseudogene removal sensitivity is poor (0-17%) but specificity is high using 396 

either removal method (99-100%).  Next, we ran the opposite simulation where there 397 

are few pseudogenes in the community (9.5% instead of 19% in previous analyses).  398 

Figure S15 shows that reducing the number of pseudogenes in the community 399 

increases the number of simulated pseudogenes removed, especially when 400 

pseudogenes are caused by introducing indels.  As Table 2 shows, the sensitivity of 401 

pseudogene removal is high when pseudogenes are created by introducing indels (95-402 

98%), low when pseudogenes are created by reducing GC content (36-39%), and the 403 

specificity is high for any kind of simulated pseudogene or removal method (99-100%). 404 
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 Because the ORFfinder + HMM profile analysis method for removing 405 

pseudogenes had the highest sensitivity for short COI metabarcodes when 406 

pseudogenes were simulated by introducing indels, we used this method to test our 407 

ability to remove pseudogenes with a real COI metabarcode dataset.  Note that 408 

analyses were limited to only arthropod ESVs because most of the primer sets in the 409 

study were designed to specifically target this group in the original study (Table S2).  As 410 

shown in Figure 4, the total number of arthropod ESVs was highest for the F230R 411 

amplicon (1,240) and least for the fwh1 amplicon (320).  The greatest number of 412 

pseudogenes was detected and removed from the BR5 amplicon (19) and least for the 413 

ml-jg amplicon (1).  Overall, the greatest percentage of pseudogenes out of all ESVs 414 

was detected from the BF2 amplicon (2.8%) and least for the ml-jg amplicon (0.1%).  415 

Because the F230R amplicon detected the greatest ESV richness, we used this 416 

amplicon to determine how existing bioinformatic processing steps affects pseudogene 417 

removal.  Using the standard pipeline with ORFfinder + HMM profile analysis 418 

pseudogene removal, three F230R pseudogenes were removed from the dataset.  419 

Omitting the rare sequence removal step from the bioinformatic pipeline resulted in the 420 

largest number of pseudogenes detected, 34.  Omitting the denoising step results in 1 421 

pseudogene detected.  Omitting the chimera removal step results in 16 pseudogenes 422 

removed.  This suggests to us that at least some apparent pseudogenes are probably 423 

already being removed during regular bioinformatic processing, especially during the 424 

rare sequence removal step as we would expect from the literature [53, 54, 57–59]. 425 

 426 
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Fig 4.  Removing rare sequences also removes apparent pseudogenes.  The 427 

number of removed putative pseudogenes was calculated for each of the 5 amplicons 428 

from a real freshwater COI metabarcode dataset.  Note, that we only compared results 429 

across Arthropoda ESVs.  Using the standard bioinformatic pipline, the F230R amplicon 430 

recovered the greatest ESV richness (top box) so we used this as a test case for further 431 

simulations (bottom box).  To determine whether current bioinformatic processing steps 432 

already help to remove apparent pseudogenes, we dropped one step at a time: removal 433 

of rare sequences, removal of noisy sequences, and removal of chimeric sequences.  434 

 435 

 436 

 437 

COI primer 

set

Total 

Arthropoda  

ESVs

No. 

pseudogenes 

removed

% 

Pseudogenes

BR5 813 19 2.3

F230R 1,240 3 0.24

ml-jg 1,039 1 0.1

BF1 906 13 1.4

BF2 467 13 2.8

fwh1 320 16 5

F230R

Simulation
Remove rare

Remove 

noise

Remove 

chimeras

No. 

pseudogenes 

removed

Standard 

pipeline
√ √ √ 3

Skip rare 

removal
X √ √ 34

Skip noise 

removal
√ X √ 1

Skip 

chimera 

removal

√ √ X 16
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Discussion 438 

 439 

Are all the COI sequences filtered out using ORFfinder + HMM profile analysis 440 

nuMTS?  This method of sequence removal cannot distinguish between genuine 441 

pseudogenes and technical issues involving PCR or sequencing that causes indels, 442 

frameshifts, or the introduction of premature stop codons.  It is possible that even after 443 

bioinformatic processing, artefactual sequences may be missed and subsequently be 444 

removed with these pseudogene removal methods.  Although it is possible that genuine 445 

COI sequences could be removed using these methods, the specificity for pseudogenes 446 

is high (96-100%) and the number of COI gene sequences removed is very low in our 447 

simulated DNA barcode and metabarcode datasets.   448 

There are also biological reasons why genuine mitochondrial sequences may be 449 

misclassified as pseudogenes.  For example, in bivalves, male and female lineages of 450 

mitochondria may lead to fully functional gene copies with divergent sequences [15, 60, 451 

61].  Though this type of sequence could complicate for COI barcoding or phylogenetic 452 

analysis, this would not be filtered out by our methods because as functional COI genes 453 

they are not expected to have frame shifts or shorter length that our method uses to flag 454 

potential pseudogenes.  There are also cases in the literature where as a cell ages 455 

oxidative stress damages DNA that is then repaired by enzymes with reduced activity 456 

[15, 62].  Unrepaired mutations including deletions, duplications, and point mutations 457 

can accumulate in aging cells.  Since truncated mtDNA can be replicated faster than full 458 

length mtDNA, it is possible for partially deleted mtDNA to accumulate [63].  Similarly, 459 

damaged DNA caused by poor preservation could cause COI sequences with 460 
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frameshifts or premature stop codons to look like pseudogenes.  It is quite likely that 461 

COI sequences with indels that lead to frameshifts and premature stop codons will be 462 

filtered out using the pseudogene removal methods we describe here whether the 463 

changes are technical or biological in nature.   464 

How can pseudogenes be avoided?  Indicators for the presence of pseudogenes 465 

include extra bands after PCR, sequence ambiguities when comparing both strands, 466 

frameshift mutations, premature stop codons, and unexpected phylogenetic position 467 

[18].  Strategies for avoiding pseudogenes in single specimens may include using 468 

muscle tissue for DNA extraction as it is naturally enriched with mtDNA, purifying 469 

mitochondria before DNA extraction, by amplifying long stretches of mtDNA with PCR, 470 

or targeting RNA using reverse transcription PCR [14, 18].  Even when working with 471 

environmental DNA samples, however, it can be possible to apply some of these 472 

techniques to avoid pseudogenes.  For example, mitochondrial enrichment from 473 

homogenized tissues is possible and could be applied to freshwater benthic collections 474 

or insects collected from traps [64].  Additionally, long range PCR targeting 475 

mitochondrial DNA from water samples allowed for the construction of whole 476 

mitogenomes from fish [65].  Environmental RNA has also been used to detect 477 

microbes by targeting ribosomal RNA, this area has just begin to be explored using 478 

messenger RNA to target COI for metabarcoding [66–70].  For large scale studies, 479 

however, introducing additional steps such as mitochondrial purification or reverse 480 

transcription would be costly and time consuming.   481 

Our results show that our ability to detect pseudogenes is hindered by short COI 482 

metabarcodes ~ 300 bp in length or if the abundance of sequenced pseudogenes is 483 
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very high.  We show here that in a freshwater benthos COI metabarcode dataset, less 484 

than 3% of arthropod ESVs were removed as putative pseudogenes.  It is quite possible 485 

that additional pseudogenes remain in the dataset, undetected by our pipeline.  Our 486 

pseudogene removal methods cannot remove all pseudogenes, but remaining 487 

pseudogenes could still be useful for making higher level taxonomic assignments, 488 

though they may inflate richness at the species or haplotype level.  Failure to remove 489 

low quality and artefactual sequences can result in inflated richness estimates in 490 

biodiversity studies, as has been shown for grashoppers and crayfish [14].  491 

Pseudogenes are unlikely to affect community composition or beta diversity analyses if 492 

they are rare in the dataset as these analyses are less likely to be affected by the 493 

presence of rare sequences.   494 

The use of phylogenetic based methods is common in COI barcoding studies, but 495 

the presence of pseudogenes could be a complication [14, 24, 26].  For example, a 496 

study of the great apes, showed that nuMTS are commonly sequenced in gorillas and 497 

complicate phylogenetic analyses [71].  It has also been suggested that pseudogenes 498 

are common in Drosophila melanogaster and in fish where they were once thought to 499 

be absent [72, 73].  The increasing use of COI metabarcodes for intraspecific analyses 500 

using ESVs could also be impacted by the presence of cryptic pseudogenes.  The use 501 

of ORFfinder + HMM profile analysis, screening out hits with low outlier sequence bit 502 

scores, could be used as a first pass method for removing obvious pseudogenes.  An 503 

automated method such as what we use in the SCVUC metabarcode pipelines in this 504 

study is more straight-forward to score compared with trying to identify pseudogenes 505 

from phylogenies by eye as branching patterns between genes and pseudogenes are 506 
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not always clear cut.  To detect cryptic pseudogenes careful analysis of species level 507 

sequence alignments should still be carried out to check for sequences with low GC 508 

content, high dN/dS ratios, indels, and codon usage bias.     509 

Hidden Markov model profile analysis is not a commonly used method to process 510 

COI metabarcodes but it is used for many other applications.  For example, the ITSx 511 

extractor is a program used to process fungal ITS metabarcodes by identifying and 512 

removing the conserved gene regions adjacent to the internal transcribed spacer 513 

regions (ITS1 and ITS2) [74].  HMMs are already used in the Pfam database of protein 514 

families [75].  HMM analysis is also used to place 16S rRNA gene sequences in a 515 

reference phylogeny in PICRUST2 [76].  The HMM profile analysis approach would be 516 

suitable for identifying gene sequences from protein coding markers such as rbcL and 517 

matK (plants), such that poor hits could be filtered out as putative pseudogenes.  A 518 

multi-marker metabarcode pipeline that processes paired-end Illumina reads that 519 

provides a pseudogene filtering step for protein coding markers is the MetaWorks 520 

snakemake pipeline that can be found at https://github.com/terrimporter/MetaWorks .  521 

Furthermore, though our current work has focused on arthropod sequences, taxon-522 

specific HMM profiles could be developed for additional macroinvertebrate groups of 523 

interest for biomonitoring such as tubellaria, gastropoda, bivalvia, polychaeta, 524 

oligochaeta, and hirudinea to permit more refined HMM-profile analyses [46].  It would 525 

also be useful to develop HMM profiles for other commonly used protein coding markers 526 

such as rbcL and matK to facilitate nuMT removal from large plant sequence datasets.   527 

 528 

Conclusions 529 
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 530 

 We have shown that it is possible to screen out obvious pseudogenes using ORF 531 

length filtering alone or combined with HMM profile analysis for greater sensitivity when 532 

pseudogene sequences contain indels.  Our pseudogenes removal approach was most 533 

effective on datasets of the full length COI barcode sequence region but is less effective 534 

for shorter sequences (~ 300 bp).  This is especially relevant now that newer 535 

sequencing technologies such as LoopSeq (compatible with Illumina sequencing 536 

platforms, but currently only available for RNA genes) or HiFi circular consensus 537 

sequencing (PacBio) could one day be used for COI metabarcoding targeting the full 538 

length of the barcoding region facilitating pseudogene detection [12, 77–79].  It would 539 

also be helpful if COI barcode studies reported and deposited full length verified 540 

pseudogenes into public databases when possible.  Having key words such as ‘nuclear 541 

copy of mitochondrial gene’ or ‘pseudogene’ in the description would be essential to 542 

quickly flag hits to such sequences.  As the analysis of metabarcode sequences from 543 

protein-coding genes shifts towards the use of exact sequence variants, it is more 544 

important than ever to reduce noise by removing pseudogenes when possible to avoid 545 

inflated richness estimates or misleading phylogenetic results.  The incorporation of 546 

pseudogene filtering steps into widely used pipelines such is needed.  547 

 548 

  549 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 31

List of abbreviations 550 

 551 

BLAST - basic local alignment search tool 552 

BOLD - Barcode of Life Data System 553 

COI - cytochrome c oxidase subunit 1 gene 554 

dN/dS - ratio of non-synonymous to synonymous substitions 555 

ESV - exact sequence variant 556 

GC content -  guanine-cytosine content 557 

HMM - Hidden Markov Model 558 

ITS - internal transcribed spacer region in the ribosomal RNA operon 559 

K2P - Kimura 2-parameter model of nucleotide substitution 560 

matK - maturase K gene 561 

mtDNA - mitochondrial DNA 562 

nuMT - nuclear encoded mitochondrial sequence 563 

NCBI - National Center for Biotechnology Information 564 

ORF - open reading frame 565 

OTU - operational taxonomic unit 566 

rbcL - ribulose bisphosphate carboxylate large chain gene 567 

 568 

 569 

  570 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 32

Declarations: 571 

Ethics approval and consent to participate - Not applicable 572 

Consent for publication - Not applicable 573 

Availability of data and materials - All infiles and scripts used to parse data and 574 

generate figures are available from GitHub at xxx.  The SCVUC COI metabarcode 575 

pipeline used in this study is also available on GitHub from 576 

https://github.com/Hajibabaei-Lab/SCVUC_COI_metabarcode_pipeline .   577 

Competing interests - None 578 

Funding – This study is funded by the Government of Canada through Genome 579 

Canada and Ontario Genomics. 580 

Authors’ contributions – MH and TP conceived of the idea. TP conducted the 581 

analyses and wrote the manuscript.  MH provided critical input into analysis methods 582 

and the manuscript.  MH provided funding and computational resources.  Both authors 583 

edited, read, and approved the final manuscript.  584 

Acknowledgements We would like to thank the Hajibabaei group for their support and 585 

helpful discussions. 586 

 587 

 588 

  589 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 33

References 590 

1. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA 591 
barcodes. Proceedings of the Royal Society B: Biological Sciences. 2003;270:313–21. 592 

2. Ratnasingham S, Hebert PD. BOLD: The Barcode of Life Data System (http://www. 593 
barcodinglife. org). Molecular ecology notes. 2007;7:355–64. 594 

3. Porter TM, Hajibabaei M. Over 2.5 million COI sequences in GenBank and growing. PLoS ONE. 595 
2018;13:e0200177. 596 

4. Bruns TD, White TJ, Taylor JW. Fungal Molecular Systematics. Annual Review of Ecology and 597 
Systematics. 1991;22:525–64. 598 

5. Stackebrandt E, Goebel BM. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S 599 
rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal 600 
of Systematic and Evolutionary Microbiology. 1994;44:846–9. 601 

6. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal 602 
internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. 603 
Proceedings of the National Academy of Sciences. 2012;109:6241–6. 604 

7. Elbrecht V, Vamos EE, Steinke D, Leese F. Estimating intraspecific genetic diversity from 605 
community DNA metabarcoding data. PeerJ. 2018;6:e4644. 606 

8. Porter TM, Hajibabaei M. Putting COI Metabarcoding in Context: The Utility of Exact 607 
Sequence Variants (ESVs) in Biodiversity Analysis. Front Ecol Evol. 2020;8:248. 608 

9. Antich A, Palacin C, Wangensteen OS, Turon X. To denoise or to cluster? That is not the 609 
question. Optimizing pipelines for COI metabarcoding and metaphylogeography. preprint. 610 
Genetics; 2021. doi:10.1101/2021.01.08.425760. 611 

10. Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational 612 
taxonomic units in marker-gene data analysis. The ISME Journal. 2017;11:2639–43. 613 

11. Buchner D, Leese F. BOLDigger – a Python package to identify and organise sequences with 614 
the Barcode of Life Data systems. MBMG. 2020;4:e53535. 615 

12. Nugent CM, Elliott TA, Ratnasingham S, Hebert PDN, Adamowicz SJ. debar, a sequence-by-616 
sequence denoiser for COI-5P DNA barcode data. preprint. Bioinformatics; 2021. 617 
doi:10.1101/2021.01.04.425285. 618 

13. Nugent CM, Elliott TA, Ratnasingham S, Adamowicz SJ. coil: an R package for cytochrome C 619 
oxidase I (COI) DNA barcode data cleaning, translation, and error evaluation. bioRxiv. 2019;:35. 620 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 34

14. Song H, Buhay JE, Whiting MF, Crandall KA. Many species in one: DNA barcoding 621 
overestimates the number of species when nuclear mitochondrial pseudogenes are 622 
coamplified. PNAS. 2008;105:13486–91. 623 

15. Schizas N. Misconceptions regarding nuclear mitochondrial pseudogenes (Numts) may 624 
obscure detection of mitochondrial evolutionary novelties. Aquatic Biology. 2012;17:91–6. 625 

16. Leite LAR. Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on 626 
the same issue. Biota Neotrop. 2012;12:301–8. 627 

17. Andújar C, Creedy TJ, Arribas P, López H, Salces-Castellano A, Pérez-Delgado A, et al. NUMT 628 
dumping: validated removal of nuclear pseudogenes from mitochondrial metabarcode data. 629 
preprint. Evolutionary Biology; 2020. doi:10.1101/2020.06.17.157347. 630 

18. Bensasson D. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in 631 
Ecology & Evolution. 2001;16:314–21. 632 

19. Hazkani-Covo E, Zeller RM, Martin W. Molecular Poltergeists: Mitochondrial DNA Copies 633 
(numts) in Sequenced Nuclear Genomes. PLoS Genet. 2010;6:e1000834. 634 

20. Adams KL, Palmer JD. Evolution of mitochondrial gene content: gene loss and transfer to the 635 
nucleus. Molecular Phylogenetics and Evolution. 2003;29:380–95. 636 

21. Bertheau C, Schuler H, Krumböck S, Arthofer W, Stauffer C. Hit or miss in phylogeographic 637 
analyses: the case of the cryptic NUMTs. Molecular Ecology Resources. 2011;11:1056–9. 638 

22. Zhang D-X, Hewitt GM. Nuclear integrations: challenges for mitochondrial DNA markers. 639 
Trends in Ecology & Evolution. 1996;11:247–51. 640 

23. Martins J, Solomon SE, Mikheyev AS, Mueller UG, Ortiz A, Bacci M. Nuclear mitochondrial-641 
like sequences in ants: evidence from Atta cephalotes (Formicidae: Attini): Numts in A. 642 
cephalotes ants. Insect Molecular Biology. 2007;16:777–84. 643 

24. Williams ST, Knowlton N. Mitochondrial Pseudogenes Are Pervasive and Often Insidious in 644 
the Snapping Shrimp Genus Alpheus. Molecular Biology and Evolution. 2001;18:1484–93. 645 

25. Moulton MJ, Song H, Whiting MF. Assessing the effects of primer specificity on eliminating 646 
numt coamplification in DNA barcoding: a case study from Orthoptera (Arthropoda: Insecta): 647 
DNA BARCODING. Molecular Ecology Resources. 2010;10:615–27. 648 

26. Buhay JE. “COI-like” Sequences Are Becoming Problematic in Molecular Systematic and DNA 649 
Barcoding Studies. Journal of Crustacean Biology. 2009;29:96–110. 650 

27. Pentinsaari M, Salmela H, Mutanen M, Roslin T. Molecular evolution of a widely-adopted 651 
taxonomic marker (COI) across the animal tree of life. Scientific Reports. 2016;6. 652 
doi:10.1038/srep35275. 653 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 35

28. Sayers EW. Ebot. http://www.ncbi.nlm.nih.gov/Class/PowerTools/eutils/course.html. 654 

29. Charif D, Lobry J. SeqinR 1.0-2: a contributed package to the R project for statistical 655 
computing devoted to biological sequences retrieval and analysis. In: Structural approaches to 656 
sequence evolution: Molecules, networks, populations. New York: Springer Verlag; 2007. p. 657 
207–32. 658 

30. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: 659 
Improvements in Performance and Usability. Molecular Biology and Evolution. 2013;30:772–80. 660 

31. Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology Open Software 661 
Suite. Trends in Genetics. 2000;16:276–7. 662 

32. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2009. 663 
http://ggplot2.org. 664 

33. RStudio Team. RStudio: Integrated Development Environment for R. 2016. 665 
http://www.rstudio.com/. 666 

34. R Core Team. R: A Language and Environment for Statistical Computing. 2017. 667 
https://www.R-project.org/. 668 

35. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and 669 
PSI-BLAST: a new generation of protein database search programs. Nucleic acids research. 670 
1997;25:17. 671 

36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through 672 
comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20. 673 

37. Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics. 1989;5:164–6. 674 

38. Stöver BC, Müller KF. TreeGraph 2: Combining and visualizing evidence from different 675 
phylogenetic analyses. BMC Bioinformatics. 2010;11:7. 676 

39. Hajibabaei M, Porter TM, Wright M, Rudar J. COI metabarcoding primer choice affects 677 
richness and recovery of indicator taxa in freshwater systems. PLoS ONE. 2019;14:e0220953. 678 

40. Hajibabaei M, Spall JL, Shokralla S, van Konynenburg S. Assessing biodiversity of a 679 
freshwater benthic macroinvertebrate community through non-destructive environmental 680 
barcoding of DNA from preservative ethanol. BMC Ecology. 2012;12:28. 681 

41. Gibson J, Shokralla S, Porter TM, King I, Konynenburg S van, Janzen DH, et al. Simultaneous 682 
assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods 683 
through DNA metasystematics. PNAS. 2014;111:8007–12. 684 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 36

42. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of 685 
mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular 686 
marine biology and biotechnology. 1994;3:294–9. 687 

43. Gibson J, Shokralla S, Curry C, Baird DJ, Monk WA, King I, et al. Large-Scale Biomonitoring of 688 
Remote and Threatened Ecosystems via High-Throughput Sequencing. PLOS ONE. 689 
2015;10:e0138432. 690 

44. Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versatile primer set 691 
targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan 692 
diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology. 693 
2013;10:34. 694 

45. Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochondrial cytochrome 695 
c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol 696 
Resour. 2013;13:851–61. 697 

46. Elbrecht V, Leese F. Validation and Development of COI Metabarcoding Primers for 698 
Freshwater Macroinvertebrate Bioassessment. Frontiers in Environmental Science. 2017;5:11. 699 

47. Vamos E, Elbrecht V, Leese F. Short COI markers for freshwater macroinvertebrate 700 
metabarcoding. Metabarcoding and Metagenomics. 2017;1:e14625. 701 

48. Anaconda. Anaconda Software Distribution. 2016. https://anaconda.com. 702 

49. Koster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine. 703 
Bioinformatics. 2012;28:2520–2. 704 

50. St. John J. SeqPrep. 2016. https://github.com/jstjohn/SeqPrep/releases. 705 

51. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 706 
EMBnet journal. 2011;17:pp-10. 707 

52. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for 708 
metagenomics. PeerJ. 2016;4:e2584. 709 

53. Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon 710 
sequencing. bioRxiv. 2016. doi:10.1101/081257. 711 

54. Edgar R. UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv. 712 
2016;:074252. 713 

55. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian Classifier for Rapid Assignment of 714 
rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology. 715 
2007;73:5261–7. 716 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 37

56. Porter TM, Hajibabaei M. Automated high throughput animal CO1 metabarcode 717 
classification. Scientific Reports. 2018;8:4226. 718 

57. Reeder J, Knight R. The ‘rare biosphere’: a reality check. nature methods. 2009;6:636–7. 719 

58. Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, et al. 454 Pyrosequencing 720 
and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal 721 
substantial methodological biases. New Phytologist. 2010;188:291–301. 722 

59. Leray M, Knowlton N. Random sampling causes the low reproducibility of rare eukaryotic 723 
OTUs in Illumina COI metabarcoding. PeerJ. 2017;5:e3006. 724 

60. Zouros E, Oberhauser Ball A, Saavedra C, Freeman KR. An unusual type of mitochondrial 725 
DNA inheritance in the blue mussel Mytilus. Proceedings of the National Academy of Sciences. 726 
1994;91:7463–7. 727 

61. Stewart DT, Saavedra C, Stanwood RR, Ball AO, Zouros E. Male and female mitochondrial 728 
DNA lineages in the blue mussel (Mytilus edulis) species group. Molecular Biology and 729 
Evolution. 1995;12:735–47. 730 

62. Druzhyna NM, Wilson GL, LeDoux SP. Mitochondrial DNA repair in aging and disease. 731 
Mechanisms of Ageing and Development. 2008;129:383–90. 732 

63. Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT. Human mitochondrial DNA 733 
with large deletions repopulates organelles faster than full-length genomes under relaxed copy 734 
number control. Nucleic Acids Research. 2002;30:4626–33. 735 

64. Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, et al. Ultra-deep sequencing enables high-fidelity 736 
recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaSci. 737 
2013;2:4. 738 

65. Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al. 739 
Environmental DNA metabarcoding: transforming how we survey animal and plant 740 
communities. Molecular Ecology. 2017;26:5872–95. 741 

66. Tsuri K, Ikeda S, Hirohara T, Shimada Y, Minamoto T, Yamanaka H. Messenger RNA typing of 742 
environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the 743 
future development of eRNA analysis on aquatic vertebrates. Environmental DNA. 2021;3:14–744 
21. 745 

67. Laroche O, Wood SA, Tremblay LA, Lear G, Ellis JI, Pochon X. Metabarcoding monitoring 746 
analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess 747 
offshore oil production impacts on benthic communities. PeerJ. 2017;5:e3347. 748 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 38

68. Pochon X, Zaiko A, Fletcher LM, Laroche O, Wood SA. Wanted dead or alive? Using 749 
metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity 750 
applications. PLoS ONE. 2017;12:e0187636. 751 

69. Harris M. Assessing the Persistence of Environmental DNA and Environmental RNA for 752 
Zooplankton Biodiversity Monitoring by Metabarcoding. McGill University; 2019. 753 
https://search.proquest.com/openview/547572df2ecd232f9071d0fa45507688/1?cbl=44156&l754 
oginDisplay=true&pq-origsite=gscholar. 755 

70. Cristescu ME. Can Environmental RNA Revolutionize Biodiversity Science? Trends in Ecology 756 
& Evolution. 2019;34:694–7. 757 

71. Thalmann O, Hebler J, Poinar HN, Pääbo S, Vigilant L. Unreliable mtDNA data due to nuclear 758 
insertions: a cautionary tale from analysis of humans and other great apes: NUMTS IN APES. 759 
Molecular Ecology. 2004;13:321–35. 760 

72. Harrison PM. Identification of pseudogenes in the Drosophila melanogaster genome. 761 
Nucleic Acids Research. 2003;31:1033–7. 762 

73. Antunes A, Ramos MJ. Discovery of a large number of previously unrecognized 763 
mitochondrial pseudogenes in fish genomes. Genomics. 2005;86:708–17. 764 

74. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved 765 
software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and 766 
other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and 767 
Evolution. 2013;4:914–9. 768 

75. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein 769 
families database. Nucl Acids Res. 2014;42:D222–30. 770 

76. Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for 771 
prediction of metagenome functions. Nature Biotechnology. 2020;38:685–8. 772 

77. Callahan BJ, Grinevich D, Thakur S, Balamotis MA, Yehezkel TB. Ultra-accurate Microbial 773 
Amplicon Sequencing Directly from Complex Samples with Synthetic Long Reads. preprint. 774 
Microbiology; 2020. doi:10.1101/2020.07.07.192286. 775 

78. Tedersoo L, Tooming-Klunderud A, Anslan S. PacBio metabarcoding of Fungi and other 776 
eukaryotes: errors, biases and perspectives. New Phytol. 2018;217:1370–85. 777 

79. Wurzbacher C, Larsson E, Bengtsson-Palme J, Van den Wyngaert S, Svantesson S, 778 
Kristiansson E, et al. Introducing ribosomal tandem repeat barcoding for fungi. 2018. 779 
doi:10.1101/310540. 780 

 781 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 39

Supplementary Material 782 

 783 

Table S1.  Description of the datasets analyzed in Part A and Part B. 784 

Experiment Dataset Proportion of 
dataset 
comprised of 
pseudogenes  
(%) 

Average 
gene 
length 
(bp) 

Average 
pseudogene 
length (bp) 

Gene 
GC 
content 
(%) 

Pseudogene 
GC content 
(%) 

Part A Simulated DNA 
barcode 
dataset 

19 659.6 508.1 32.0 30.8 

Part B Control mock 
community 
with 100,000 
randomly 
sampled 
sequences 
from BOLD 

0 615 NA 31 NA 

Part B Mock 
community 
with decreased 
GC content 

19 615 615 31 29 

Part B Mock 
community 
with increased 
indels 

19 615 607 31 31 

Part B Control mock 
community 
with half-length 
sequences 

0 307** - 
308* 

NA 30*-32** NA 

Part B Mock 
community 
with half-length 
sequences and 
decreased GC 
content 

19 307** - 
308* 

308 30*-32** 28-29 

Part B Mock 
community 
with half-length 
sequences and 
incresed indels 

19 307** - 
308* 

304 30*-32** 31-32 

Part B Control mock 
community 
with twice 
100,000 
randomly 
sampled BOLD 
sequencdes 

0 622 NA 31 NA 

Part B Mock 
community 
with twice the 

38 622 622 31 28 
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number of 
pseudogenes 
with decreased 
GC content 

Part B Mock 
community 
with twice the 
number of 
pseudogenes 
with increased 
indels 

38 622 614 31 32 

Part B Control mock 
community of 
100,000 
randomly 
sampled 
sequences 
from BOLD 

0 622 NA 31 NA 

Part B Mock 
community 
with halved 
number of 
pseudogenes 
with decreased 
GC content 

9.5 622 623 31 28 

Part B Mock 
community 
with halved 
number of 
pseudogenes 
with increased 
indels 

9.5 622 615 31 32 

* 5’ fragment 785 

** 3’ fragment 786 

 787 

 788 

 789 
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Table S2.  Primers used in the freshwater benthos COI metabarcode dataset used 790 

in Part C (Hajibabaei et al., 2019 PLoS ONE). 791 

 792 

Amplicon Primer Target Primer sequence (5’-3’) Reference 
BR5 B Freshwater benthic 

macroinvertebrates 
CCIGAYATRGCITTYCCICG Hajibabaei et al., 

2012  
 ArR5 Tropical arthropods GTRATIGCICCIGCIARIACIG

G 
Gibson et al. 2014* 

F230R LCO1490 Metazoan 
macroinvertebrates 

GGTCAACAAATCATAAAGAT
ATTGG 

Folmer et al., 1994 

 230_R Arthropods CTTATRTTRTTTATICGIGGR
AAIGC 

Gibson et al., 2015 

ml-jg mlCOIintF Metazoa GGWACWGGWTGAACWGT
WTAYCCYCC 

Leray et al., 2013 

 jgHCO2198 Marine 
invertebrates 

TAIACYTCIGGRTGICCRAAR
AAYCA 

Geller et al., 2013 

BF1 BF1 Freshwater 
macroinvertebrates 

ACWGGWTGRACWGTNTAY
CC 

Elbrecht and 
Leese, 2017 

 BR2 Freshwater 
macroinvertebrates 

TCDGGRTGNCCRAARAAYC
A 

Elbrecht and 
Leese, 2017 

BF2 BF2 Freshwater 
macroinvertebrates 

GCHCCHGAYATRGCHTTYC
C 

Elbrecht and 
Leese, 2017 

 BR2 Freshwater 
macroinvertebrates 

TCDGGRTGNCCRAARAAYC
A 

Elbrecht and 
Leese, 2017 

fwh1 fwhF1 Freshwater 
macroinvertebrates 

YTCHACWAAYCAYAARGAY
ATYGG 

Vamos et al., 2017 

 fwhR1 Freshwater 
macroinvertebrates 

ARTCARTTWCCRAAHCCHC
C 

Vamos et al., 2017 

* This primer sequence was published based on its alignment to the plus strand but is 793 

shown here in the 5’-3’ orientation 794 

 795 
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Fig S1.  COI gene sequences accumulate substitutions in synonymous sites.  For 796 

10 species with annotated COI genes and pseudogenes, we did a pairwise comparison 797 

of nucleotide substitutions in non-synonymous and synonymous sites: a) COI barcode 798 

sequences tend to accumulate substitutions in synonymous sites.  In contrast, COI 799 

pseudogenes tend do accumulate substitutions in non-synonymous sites.  After filtering 800 

out pairwise comparisons between species with < 0.01 substitutions  in synonymous 801 

sites (sequences too similar to yield a reliable dN/dS estimate) or > 2 substitutions in 802 

synonymous sites (sequences that have accumulated too many substitutions to yield a 803 

reliable dN/dS estimate), it was only possible to analyze dN/dS ratios for COI barcode 804 

sequences.  b) Most pairwise comparisons of COI gene sequences resulted in dN/dS 805 

ratios < 1 consistent with purifying selection pressure and the conservation of a protein 806 

sequence. 807 
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Fig S2.  Bemisia tabaci COI pseudogenes cluster together on long branches.  A 815 

mid-point rooted neighbor joining phylogram using the Kimura 2-parameter model of 816 

nucleotide substitution included gene and known pseudogene sequences.  Sequences 817 

annotated in GenBank as a nuclear copy of a mitochondrial gene are shown in red.  818 

Nodes with greater than 70% bootstrap support are labelled. 819 

 820 

 821 
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Fig S3. A single Xylosandrus germanus COI pseudogene sequence is found on a 822 

long branch.  A mid-point rooted neighbor joining phylogram using the Kimura 2-823 

parameter model of nucleotide substitution included COI gene sequences as well as a 824 

sequence annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  825 

Nodes with greater than 70% bootstrap support are labelled. 826 

 827 

 828 

 829 

 830 

 831 
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Fig S4.  A single Triatoma dimidiata COI pseudogene sequence is found on a long 832 

branch.  A mid-point rooted neighbor joining phylogram using the Kimura 2-parameter 833 

model of nucleotide substitution included COI gene sequences as well as a sequence 834 

annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  Nodes with 835 

greater than 70% bootstrap support are labelled. 836 

 837 

 838 

 839 

 840 

 841 
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Fig S5.  A single Trialeurodes vaporariorum COI pseudogene sequence is found 842 

on a long branch.  A mid-point rooted neighbor joining phylogram using the Kimura 2-843 

parameter model of nucleotide substitution included COI gene sequences as well as a 844 

sequence annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  845 

Nodes with greater than 70% bootstrap support are labelled. 846 

 847 

 848 

 849 
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Fig S6. Melissotarsus insularis COI gene and annotated pseudogene sequences 850 

are often found in intermixed clusters.  A mid-point rooted neighbor joining 851 

phylogram using the Kimura 2-parameter model of nucleotide substitution included COI 852 

gene sequences as well as sequences annotated in GenBank as a nuclear copy of a 853 

mitochondrial gene (red).  Nodes with greater than 70% bootstrap support are labelled.  854 

Clusters of nearly identical sequences were collapsed.  855 

 856 
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Fig S7. A single Lepidocyrtus cyaneus COI pseudogene sequence clusters with 858 

other gene sequences.  A mid-point rooted neighbor joining phylogram using the 859 

Kimura 2-parameter model of nucleotide substitution included COI gene sequences as 860 

well as a sequence annotated in GenBank as a nuclear copy of a mitochondrial gene 861 

(red).  Nodes with greater than 70% bootstrap support are labelled. 862 

 863 
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 865 

 866 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427982
http://creativecommons.org/licenses/by/4.0/


 51

Fig S8. Two Halictus rubicundus COI pseudogene sequences cluster together 867 

near other gene sequences.  A mid-point rooted neighbor joining phylogram using the 868 

Kimura 2-parameter model of nucleotide substitution included COI gene sequences as 869 

well as two sequences annotated in GenBank as a nuclear copy of a mitochondrial 870 

gene (red).  Nodes with greater than 70% bootstrap support are labelled. 871 

 872 

 873 

 874 
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Fig S9. Several Goneplax rhomboides COI pseudogene sequences cluster 876 

together.  A mid-point rooted neighbor joining phylogram using the Kimura 2-parameter 877 

model of nucleotide substitution included COI gene sequences as well as sequences 878 

annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  Nodes with 879 

greater than 70% bootstrap support are labelled. 880 

 881 

 882 

 883 
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Fig S10. A single Ectatomma gibbum COI pseudogene sequence is found on its 885 

own branch.  A mid-point rooted neighbor joining phylogram using the Kimura 2-886 

parameter model of nucleotide substitution included COI gene sequences as well as a 887 

sequence annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  888 

Nodes with greater than 70% bootstrap support are labelled. 889 

 890 

 891 

 892 
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Fig S11. Cyphoderris monstrosa COI gene and annotated pseudogene sequences 893 

sometimes cluster with regular gene sequences.  A mid-point rooted neighbor 894 

joining phylogram using the Kimura 2-parameter model of nucleotide substitution 895 

included COI gene sequences as well sequences annotated in GenBank as a nuclear 896 

copy of a mitochondrial gene (red).  Nodes with greater than 70% bootstrap support are 897 

labelled. 898 

 899 

 900 

 901 
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Fig S12.  Sensitivity and specificity were used to assess the effectiveness of our 902 

two pseudogene filtering approaches.  The vertical dashed line represents a 903 

threshold used to delimit COI pseudogene sequences.  The ability to detect 904 

pseudogenes represents the positive condition.  Correctly removed pseudogenes are 905 

true positives (TP).  Incorrectly filtered COI gene sequences (genes) represents false 906 

positives (FP).  Correctly retained genes represents true negatives (TN).  Incorrectly 907 

retained pseudogenes represents false negatives (FN). 908 
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Fig S13. Halving COI sequence lengths results in fewer simulated pseudogenes 912 

removed compared with full length COI barcode sequences.  Each column shows 913 

the results from a particular simulation: a controlled community with pseudogenes 914 

absent, a community with simulated pseudogenes with a reduced GC content, and a 915 

community with simulated pseudogenes with introduced indels.  The top two panels 916 

show the length variation of sequences in the longest retained open reading frame for 917 

short sequences sampled from the 5’ and 3’ end of COI barcode sequences.  The solid 918 

vertical line indicates half the length of a typical COI barcode at 329 bp.  The two 919 

vertical dashed lines shows the boundaries for identifying ORFs with outlier lengths. 920 

The bottom two panels show the nucleotide bit score for short sequences sampled from 921 

the 5’ and 3’ ends of COI barcode sequences.  The dashed vertical line shows the 922 

boundary for identifying sequences with unusually short scores. 923 
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Fig S14.  Doubling the proportion of mutated sequences greatly reduces the 925 

number of simulated pseudogenes removed.  Each column shows the results from a 926 

particular simulation: a controlled community with pseudogenes absent, a community 927 

with pseudogenes that have a reduced GC content, and a community with 928 

pseudogenes where we have introduced indels.  The top panel shows the length 929 

variation of sequences in the longest retained open reading frame.  The solid vertical 930 

line indicates the length of a typical COI barcode at 658 bp.  The two vertical dashed 931 

lines shows the boundaries for identifying ORFs with outlier lengths.  The bottom panel 932 

shows the sequence bit score variation.  The vertical dashed line shows the boundary 933 

for identifying sequences with small outlier scores. 934 
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Fig S15.  Halving the proportion of mutated sequences increases the number of 937 

simulated pseudogenes removed.  Each column shows the results from a particular 938 

simulation: a controlled community with pseudogenes absent, a community with 939 

pseudogenes that have a reduced GC content, and a community with pseudogenes 940 

where we have introduced indels.  The top panel shows the length variation of 941 

sequences in the longest retained open reading frame.  The solid vertical line indicates 942 

the length of a typical COI barcode at 658 bp.  The two vertical dashed lines shows the 943 

boundaries for identifying ORFs with outlier lengths.  The bottom panel shows the 944 

sequence bit score variation.  The vertical dashed line shows the boundaries for 945 

identifying sequences with short outliers scores.   946 
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