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Abstract. Diversity and dissimilarity within and between species assemblages have now been studied 

for more than half a century by community ecologists in relation to their connections with ecosystem 

functioning. However, a generalized framework that puts diversity and dissimilarity coefficients under 

the same formal umbrella is still lacking. In this paper, we show that generalized means represent an 

effective tool to develop a unifying formulation for the construction of a large array of parametric 

diversity and dissimilarity measures. These measures include some of the classical diversity 

coefficients, such as the Shannon entropy, the Gini-Simpson index or the parametric diversity of Patil 

and Taillie, together with a large number of dissimilarity coefficients of the Bray-Curtis family and 

can be further extended to the measurement of functional and phylogenetic differences within and 

between plots. 

 

Keywords: Bray-Curtis dissimilarity; effective number of species; expected species rarity; generalized 

mean; Gini-Simpson diversity; parametric diversity; Rao’s quadratic diversity; Shannon’s entropy; 
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1. Introduction 

Diversity and dissimilarity measures have been typically used by community ecologists to explore 

the compositional heterogeneity within and between sample plots (or quadrats, sites, species 

assemblages, communities, etc.). For concave diversity measures, the usual way to link the within-plot 

heterogeneity (or α-diversity) of a pair of plots to their between-plot heterogeneity (β-diversity) is 

through Whittaker’s (1960) multiplicative decomposition. According to this model, β-diversity can be 

defined as the ratio between the pooled diversity of both plots (γ-diversity) and mean α-diversity in 

both plots such that   = . 

Here, concavity means that the total diversity in the pooled pair of plots is not lower than the 

average diversity within each plot. From a mathematical viewpoint, let U and V be two plots where 

Ujx  and Vjx  are the (absolute) abundances of species j in plots U and V, 
1

N

Uj Uj Ujj
p x x

=
=   is the 

relative abundance of species j in plot U (with 0 1Ujp   and 
1

1
N

Ujj
p

=
= ), and N is the total number 

of species in both plots. Further, let Uw  and Vw  be two weights associated to plots U and V with 

0 1Uw   and 1V Uw w= − , and γ be the total diversity of the pooled pair of plots computed using the 

weighted mean of the species relative abundances in U and V: j U Uj V Vjp w p w p = + . For a concave 
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diversity index, we have    where 
U U V Vw w  = +  and U  is the diversity of plot U. In its 

very essence, the requirement of concavity means that diversity increases by mixing. 

According to this requirement, we thus have 1  , with 1 =  for two identical plots. Therefore, 

for concave diversity measures, the reciprocal of β-diversity 1   =  can be interpreted as an index 

of compositional similarity between U and V in the range  0,1 . Based on this approach and on its 

many successive improvements, a large number of diversity-related resemblance measures which 

depend on the excess of γ-diversity with respect to mean α-diversity have been defined (Rao 1982; 

Lande 1996; Jost 2007; Jost et al. 2010; Pavoine and Ricotta 2014; Chao et al. 2014, 2019). 

Nonetheless, most of the ‘classical’ dissimilarity coefficients which have been used for decades to 

summarize compositional differences among plots, such as the Bray-Curtis dissimilarity, cannot be 

related to the difference of within-plot and between-plot diversity. Therefore, apart from Whittaker’s 

model, a generalized formulation that puts diversity and dissimilarity coefficients under the same 

umbrella is still lacking. 

The aim of this paper is thus to propose a unifying framework for diversity and dissimilarity 

measures. This framework includes a large number of traditional dissimilarity coefficients of the 

‘Bray-Curtis family’ and can be further extended to the measurement of functional and phylogenetic 

differences among plots. The paper is organized as follows: first, we provide an overview of a large 

class of diversity and dissimilarity measures, together with some of their properties. Next, we show 

that these measures can be traced back to a unified formulation which is based on the mathematical 

concept of generalized mean. 

 

2. Diversity as the average rarity of a community 

In their seminal paper, Patil and Taillie (1982) defined the diversity 
UD  of a given plot U as the 

average rarity of the species relative abundances Ujp : 

 

1
( )

N

U Uj Ujj
D p p

=
=                          (1) 

 

where the rarity ( )Ujp  of species j is some decreasing function of its relative abundance Ujp . To 

avoid the additional complexity of species with zero abundances (particularly when dealing with 

effective numbers of species; see below), here and throughout the paper the summation is taken over 

all N species that are actually present in U with 0Ujp  . 

Diversity measures that fall within the definition of Patil and Taillie (1982) include two classical 

indices, such as the Shannon entropy (Shannon 1948) and the Simpson diversity (Simpson 1949). 
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According to Shannon, the amount of information associated to a given plot U with species relative 

abundances Ujp  ( 1,2,..., )j N= can be summarized as: 

 

1
ln

N

U Uj Ujj
H p p

=
= −                         (2) 

 

where ( ) ln( )Uj Ujp p = − . 

The Shannon entropy H is basically a measure of uncertainty in predicting the relative abundance 

of species in U. High entropy thus implies high unpredictability. Shannon’s entropy attains its 

maximum value lnUH N= for a completely even community where all species occur in equal 

abundance ( 1 )Ujp N= , whereas minimum entropy 0UH =  is obtained if the community contains 

one dominant species whose relative abundance approaches unity and 1N −  species with vanishingly 

small abundances. 

The amount of information obtained from observing the result of an experiment depending on 

chance can be taken to be numerically equal to the amount of uncertainty in the outcome of the 

experiment before carrying it out (Aczél and Daróczy 1975). Therefore, the Shannon entropy is 

usually interpreted as a measure of statistical information. Due to its logarithmic nature, a highly 

valued property of the Shannon entropy is additivity. That is, for two independent probability 

distributions 1 2( , ,..., )Np p p p=  and  1 2( , ,..., )Kq q q q=  we have ( ) ( ) ( )H pq H p H q= + where 

pq is the joint distribution of p and q (see e.g. Klir and Wierman 1999). 

Since entropy reaches its maximum value when uncertainty is highest, information-theoretical 

measures appeared in early work on community structure. McArthur (1955) used the Shannon entropy 

to measure community stability, while Margalef (1958) first proposed to use entropy to summarize 

biological diversity. Since then, information-theoretical measures have become a fundamental tool for 

diversity analysis (Pielou 1966a, 1966b; He and Orlóci 1993). 

The second pillar of classical diversity theory is the Simpson (or Gini-Simpson) index of diversity, 

which is defined as the probability that two individuals selected at random with replacement from a 

given community do not belong to the same species: 
2

1
1

N

U Ujj
G p

=
= − . 

Apart from its probabilistic meaning, the Simpson index may be also formulated as an average 

community rarity: 

 

1
(1 )

N

U Uj Ujj
G p p

=
= −                         (3) 
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where the rarity function ( ) (1 )Uj Ujp p = −  is linearly decreasing with the species relative abundances 

Ujp . 

 

3. Parametric Diversity 

The Shannon and the Simpson indices are point descriptors of diversity. As such, they show only 

one portion of the whole diversity spectrum. To provide a vector description of diversity, the use of 

parametric functions has been advocated (Hurlbert 1971; Tóthmérész 1995). Rényi (1961) first 

introduced a parametric information measure, known as Rényi’s entropy, which is obtained by 

substituting the linear average in the Shannon entropy with the generalized Kolmogorov-Nagumo 

averages and by imposing the additivity of the information measures: 

 

( )1

1
ln

1

N

U Ujj
H p 

 =
=

−
                        (4) 

 

According to Eq. 4, there is a continuum of possible diversity measures that become increasingly 

dominated by the most abundant species for increasing values of the parameter α. The various 

diversity measures obtained by varying the parameter α are in fact different moments of the same 

basic function. The Rényi generalized entropy thus allows to represent community diversity by its 

diversity profile of UH  vs. α. As a result, rather than as a single-point summary statistic, parametric 

diversity can be seen as a scaling process that takes place in the topological data space (Podani 1992). 

For 0  , UH  is concave. Therefore, the Rényi entropy is adequate to summarize community 

diversity in an ecologically meaningful manner. Due to its parametric nature, UH  includes the three 

most important measures of species diversity: for 0 = , 0 lnUH N=  (i.e. a logarithmic transformation 

of species richness), for 2 = , ( )2 2

1
ln 1

N

U Ujj
H p

=
=  , where 

2

1

N

Ujj
p

=  is the Simpson concentration 

or dominance (the opposite of diversity). For 1 = , 1

UH  is undefined. However, its limit as α tends to 

unity gives the Shannon entropy: 1

11
lim ln

N

U U Uj Ujj
H H p p

 =→
= = − . 

Patil and Taillie (1982) further defined an additional parametric diversity index which has the form 

of an average community rarity as: 

 

1

1

1

1

N Uj

U Ujj

p
D p







−

=

−
= 

−
                        (5) 
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with ( ) ( )1( ) 1 1Uj Ujp p −= − − . 

UD  is a monotonic transformation of Rényi’s generalized entropy that has been used several times 

in many different fields (Havrdra and Charvát 1967; Daróczy 1970; Tsallis 1988; Keylock 2005). Like 

for Rényi’s entropy, 
UD  can generate each of the three classical diversity measures simply by varying 

the parameter α: for 0 = , 0 1UH N= −  (i.e. a linear function of species richness that assigns zero 

diversity to single-species communities), for 2 = , 2

UH  equals the Simpson index 2

1
1

N

Ujj
p

=
− , while 

for 1 = , 1

UH  is defined in the limiting sense as the Shannon entropy 
1

ln
N

Uj Ujj
p p

=
− . This led Lou 

Jost (2019) to say that parametric diversity functions were “a very interesting and important 

unification of what had once seemed like a smorgasbord of unrelated measures. It was the first sign 

that there might be a rich and deep «mathematics of diversity» that could bring order to the field”. 

 

4. Diversity as effective numbers of species 

McArthur (1965) and Whittaker (1972) noted that many diversity indices are nonlinear with respect 

to species addition. Therefore, even when all species are equally common, each added species leads to 

a smaller increment in overall diversity than the species added before it (see Jost et al. 2010). Hill 

(1973) suggested to solve this problem by converting traditional diversity measures to ‘effective 

numbers of species’. For a given diversity measure 
UD , the effective number of species or species 

equivalent US , represents the number of equally abundant species (i.e. all with abundance 1Uj Up S= ) 

that are needed in order that its diversity be 
UD . 

Species equivalents are linear with respect to pooling, such that the species equivalent of a 

community of N totally dissimilar species in equal proportions is simply N (Leinster and Cobbold 

2012). Jost (2006) further proved that the species equivalents of all measures of diversity that can be 

expressed as monotonic functions of 
1

N

Ujj
p

= , or limits of such functions as α approaches unity, are 

obtained as the exponential of the corresponding Rényi entropies of order α: 

 

( )
1

1

1

N

U Ujj
S p

  −

=
=                            (6) 

 

For details, see Jost (2006, Appendix 1). Hence, for 0 = , 0

US  equals species richness N, for 

2 = , 2

US  is the inverse of the Simpson concentration 2 2

1
1 (1 ) 1

N

U U Ujj
S G p

=
= − =   and for 1 =  the 
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measure is defined in the limiting sense as the exponent of the Shannon entropy:

( )1

1
exp ln

N

U Uj Ujj
S p p

=
= − . Effective numbers of species thus provide a general method for 

converting a wide variety of traditional diversity measures to the common currency of a species 

richness scale. For a throughout discussion on the properties of effective numbers of species, see Jost 

(2007) and Chao et al. (2014). 

From Eq. 6 it follows that the effective numbers of species of all diversity functions that can be 

expressed as monotonic functions of 
1

1

N

Uj Ujj
p p−

= , thus including all diversity functions of the form 

1

1
( )

N

Uj Ujj
p p −

= , can be expressed as the reciprocal of a generalized mean of order 1 −  (Patil and 

Taillie 1982): 

 

( )
1

11

1

N

U Uj Ujj
S p p

  −−

=
=                          (7) 

 

The generalized mean or power mean (Hardy et al. 1952) is a function that generalizes various 

notions of means, such as the arithmetic, or geometric mean into a single concept. Let 1 2, ,..., Nx x x  be 

a sequence of positive real values. For any weights 1 2( , ,..., )j Np p p p=  adding up to 1, the classical 

arithmetic mean is 
1

N

j jj
M p x

=
=  . To generalize this notion, the power mean 

( )
1

1

N

j jj
M p x

 

=
=   is obtained by transforming each value jx  into jx , then by taking the 

weighted mean of the transformed values, and finally by applying the inverse transformation (Leinster 

and Cobbold 2012). According to this recipe, it is easily shown that Eq. 7 is the reciprocal of a 

generalized mean of order 1 −  of the species relative abundances Ujp  with weights Ujp . 

Each generalized mean M  always lies between the smallest and largest of the original values: 

min maxj jx M x  . A few characteristic values of the parameter α recover more traditional 

notions of means. For example, for  = − , min jM x− = , for 1 = − , we obtain the harmonic 

mean 
1 1

1
1

N

j jj
M p x− −

=
=  , for α tending to 0 we obtain the geometric mean 

0

1

j
N p

jj
M x

=
= , for 

1 =  we obtain the classical arithmetic mean, while for  =  , max jM x = . 

Consistently with our intuitive notion of diversity, for 0  , all moments of the parametric 

functions UH , UD  and US  conform to Dalton’s (1920) principle of transfers, which states that 

diversity should increase if abundance is transferred from one species to another strictly less abundant 
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species. This can be done either by transferring abundance to an already existing species, or by 

introducing a new species (i.e. by transferring abundance to a new species with zero abundance). 

Transferring abundance to an existing species increases community evenness, while introducing a new 

species increases richness (Patil and Taillie 1982). 

 

5. From Simpson to Rao 

All diversity measures discussed so far are based solely on the species relative abundances and 

cannot account for the ecological differences between species. Rao (1982) first introduced a diversity 

index, Quadratic diversity, that incorporates a measure of the pairwise differences between species. 

Quadratic diversity is defined as the expected dissimilarity between two individuals drawn randomly 

with replacement from the community: 

 

1 1

N N

U Uj Ui ijj i
Q p p d

= =
=                          (8) 

 

where ijd  is the dissimilarity among species i and j such that ij jid d=  and 0jjd = . 

These dissimilarities can be based either on functional or phylogenetic differences, as ecological 

differences between species are believed to be reflected in each of these. The mathematical properties 

of quadratic diversity have been extensively investigated by a number of authors (Shimatani 2001; 

Champely and Chessel 2002; Pavoine and Bonsall 2009; Rao 2010; Pavoine 2012) and the interested 

reader is addressed to these papers for details. Here, it is important to note that if the interspecies 

dissimilarities ijd  used to calculate the Rao index are squared Euclidean, UQ  is concave. A matrix of 

dissimilarities ijd  among N species is said to be squared Euclidean, if the N species can be embedded 

in a Euclidean space such that the Euclidean distance between species i and j is 
ijd  (Gower and 

Legendre 1986). 

Assuming that biological differences between species are related to their dissimilarities, Leinster 

and Cobbold (2012) defined the ordinariness of species j, as the abundance of all species that are 

similar to j (including j itself): 

 

1

N

Uj Ui ijj
p s

=
=                            (9) 

 

where ijs  is the similarity between species i and j such that 1ij ijs d= − . Dealing with functional 

diversity, Uj  thus measures the commonness of all individuals in plot U that support the functions 
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associated with species j. For 0 1ijd  ,
Uj  ranges from 

Ujp  if all species i j  are maximally 

dissimilar from j, to 1 if all species i j  are functionally identical to j. Hence, 
Uj Ujp  . 

Since 
1

1
N

Uj Ui iji
p d

=
= − , quadratic diversity can be thus expressed as the expected rarity of the 

species ordinariness 
Uj : 

 

1 1 1
(1 )

N N N

U Uj Ui ij Uj Ujj i j
Q p p d p 

= = =
= = −                     (10) 

 

where the quantity 
1

N

Uj Ui iji
z p d

=
=  represents the abundance of all species in U that conflict with 

species j such that 1Uj Ujz + = . 

According to Eq. 10, assuming that all species are maximally distinct from each other (i.e. if 1ijd =  

for all i j ), UQ  reduces to the Simpson diversity 
1

(1 )
N

Uj Ujj
p p

=
− . Rao’s Q can be thus interpreted 

as a measure of expected rarity among the species in a given assemblage if the species are not treated 

as maximally distinct from each other. 

Expressing the generalized diversity of Patil and Taillie (1982) in terms of species ordinariness, 

Ricotta and Szeidl (2006) first obtained a parametric diversity function that incorporates a measure of 

pairwise differences between species: 

 

1

1

1

1

N Uj

U Ujj
K p








−

=

−
= 

−
                        (11) 

 

where, 
1

1
ln

N

U Uj Ujj
K p 

=
= −  and 

2

UK  = Rao’s quadratic diversity. 

Note however that in the original paper of Ricotta and Szeidl (2006) there was an error in proving 

the concavity of UK  for 2  . In fact, using numerical simulations, it is possible to show that, apart 

for the special case 2 = , the parametric function UK  is generally not concave. 

A few years later, Ricotta and Szeidl (2009) extended the concept of effective number of species to 

quadratic diversity. According to Ricotta and Szeidl (2009), the effective number of species of 

quadratic diversity is given by the inverse of Rao’s concentration 
1

1 (1 ) 1
N

U U Uj Ujj
S Q p 

=
= − =  . In 

this case, the effective number of species is defined as the number of equally abundant and maximally 

dissimilar species (i.e. with 1ijd =  for all i j ), needed to produce the given value of Q. 
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The effective number of species of the parametric diversity function of Ricotta and Szeidl (
UK ) 

was then derived by Leinster and Cobbold (2012) as the reciprocal of a generalized mean of order 

1 −  of the species ordinariness Uj  with weights Ujp : 

 

( )
1

11

1

N

U Uj Ujj
S p

  −−

=
=                          (12) 

 

Like for all parametric diversity measures discussed so far, in Eq. 12, increasing the value of alpha 

increases the importance given to abundant or ordinary species compared to rare or distinct (unusual) 

species. Also, Eq. 11 and 12 satisfy an important condition discussed by Leinster and Cobbold (2012) 

and Botta-Dukát (2018) for functional and phylogenetic diversity measures which requires that 

diversity should not change if a given species j is replaced by two identical species with the same total 

abundance of j. For mathematical details, see Leinster and Cobbold (2012, Appendix A). A similar 

requirement was proposed by Weitzman (1992) and Solow and Polasky (1994) for the measurement 

of functional or phylogenetic richness, respectively, and by Pavoine and Ricotta (2019) for functional 

dissimilarity. 

Diversity measures that conform to this branching requirement are generally not maximized if all 

species occur in equal abundance ( 1 )Ujp N= . As a result, they do not conform to Dalton’s (1920) 

principle of transfers. Ricotta (2002) defined the indices that have their greatest value for non-

completely even communities ‘weak diversity indices’ to differentiate them from ‘strong diversity 

indices’ such as the Shannon or the Simpson index, which show their maximum diversity for 

completely even communities. Although weak diversities are mathematically more difficult to handle, 

they are generally thought to describe ecological processes more convincingly that traditional 

diversities. While Poole (1974) defined classical diversity measures ‘answers to which questions have 

not yet been found’, there are now literally thousands of papers that relate functional or phylogenetic 

diversity to different aspects of community structure and species co-occurrence. 

 

6. Anatomy of a dissimilarity index 

Ecologists have developed a large number of measures to summarize the dissimilarity between a 

pair of plots (see e.g. Podani 2000; Legendre and Legendre 2012). Like for the Shannon or the 

Simpson diversity, most of these measures summarize community dissimilarity based either on 

species incidence or abundance data, thus assuming that all species are equally and maximally 

dissimilar from each other. 
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Irrespective of how dissimilarity is calculated, a desirable property for a dissimilarity coefficient is 

the so-called ‘sum property’. That is, its ability to be additively decomposed into species-level values. 

In this way, the practitioner can see which species contribute most to plot-to-plot dissimilarity (Ricotta 

and Podani 2017). For diversity indices, Patil and Taillie (1982) termed this property ‘dichotomy’ 

because the contribution of a given species to plot-to-plot diversity would be unchanged if the other 

species were grouped into a single complementary category. 

Among the dissimilarity measures that conform to the sum property, the Bray and Curtis (1957) 

dissimilarity is obtained by standardizing the sum of species-wise differences by the total abundance 

of species in a pair of plots U and V: 

 

( ) ( )
1

1

1

N

Uj Vj N Uj Vjj

UV jN j

Uj VjUj Vjj

p p p p
BC

p pp p


=

=

=

− −
= =

++





                 (13) 

 

where 

 

( )
( )

( )
1

1

2

Uj Vj

j Uj VjN

Uj Vjj

p p
p p

p p


=

+
= = +

+
                    (14) 

 

is the abundance of species j in U and V relative to the total species abundance in both plots. 

Note that, to keep a formal homogeneity with parametric diversity, in Eq. 13 the Bray-Curtis 

dissimilarity is expressed in terms of species relative abundances Ujp . Nonetheless, the same 

coefficient, together with all other dissimilarity coefficients used in this study, can be also expressed 

in terms of species absolute abundances Ujx  (see Ricotta and Pavoine 2015). Note also that, like for 

diversity measures, in Eq. 13 and throughout this paper, the summation is taken over all N species that 

are actually present in either U or V (i.e. 0Uj Vjp p+  ). 

Using the Bray-Curtis coefficient as a model, Pavoine and Ricotta (2019) proposed a general 

notation for the dissimilarity between two plots U and V that can be expressed as the mathematical 

expectation of the species-wise dissimilarity functions ( , )Uj Vjp p  for all species in U and V. 

 

1
( , )

N

UV j Uj Vjj
D p p

=
=                          (15) 
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As shown in Eq. 13, the species-wise dissimilarity function of the Bray-Curtis coefficient can be 

formulated as ( )( , )Uj Vj Uj Vj Uj Vjp p p p p p = − + . However, other functions, such as the Marczewski-

Steinhaus dissimilarity  ( , ) max ,Uj Vj Uj Vj Uj Vjp p p p p p = −  or any other dissimilarity function 

sensu Legendre (2014) with a numerator that summarizes the dissimilarity of species j between U and 

V, and a denominator that normalizes the index in the unit range may be equally used. 

Another class of functions that conforms to Eq. 15 is composed of the many evenness-based 

dissimilarity coefficients proposed by Ricotta (2018) ( , ) 1Uj Vj jp p EVE = − , where 
jEVE  is a 

measure of the evenness of species j in plots U and V. For all these functions, the values of ( , )Uj Vjp p  

range from zero for two compositionally identical plots, to one for two maximally dissimilar plots. 

From what we learned in the previous paragraphs, it is now possible to generalize the dissimilarity 

function in Eq. 15 in two steps: first, by substituting the abundances Ujp  with the ordinariness Uj  in 

the species-wise dissimilarity function Δ (see Pavoine and Ricotta 2019), and next by substituting the 

arithmetic mean of Δ with the generalized mean: 

 

( )
1

1
( , )

N

UV j Uj Vjj
D

    
=

=                        (16) 

 

Eq. 16 represents a parametric formulation of plot-to-plot dissimilarity that includes pairwise 

differences between species. For 1 = , if all species in U and V are maximally dissimilar from each 

other, Eq. 16 reduces to Eq. 15, thus recovering all classical dissimilarity measures of the ‘Bray-Curtis 

family’. In addition, if all species are maximally dissimilar from each other and 

( , ) ( )Uj Vj Uj Vj Uj Vjp p p p p p = − + , Eq. 16 can be expressed as a weighted version of the classical 

Minkowski distance ( )
1

1

N

UV j Uj Vjj
M

    
=

=  −  with ( )Uj Uj Uj Vjp p p = +  and 

( )Vj Vj Uj Vjp p p = + . Like for the Minkowski distance, in Eq. 16 the parameter alpha is related to the 

distinctness between plots, such that increasing the value of alpha increases the importance of large 

species-wise differences between plots compared to small differences. 

It is easily shown that the generalized dissimilarity in Eq. 16 conforms to the branching 

requirement. According to this requirement, the functional dissimilarity between plots U and V does 

not change if one species in U or V is replaced by two identical species with the same total abundance. 

For details and proofs, see Pavoine and Ricotta (2019, Appendix 1). 
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7. Worked example 

7.1 Methods 

We used data on Alpine vegetation collected by Caccianiga et al. (2006). The data, which have 

been used in several papers for exploring community assembly rules along ecological gradients (e.g. 

Caccianiga et al. 2006; Ricotta et al. 2016; Ricotta et al. 2020) can be found in Ricotta et al. (2016, 

Appendix S2) and contain the abundances of 45 Alpine plant species collected in 59 plots of roughly 

25 m2 in size along a primary succession on glacial deposits of the Rutor glacier (northern Italy). The 

species abundances in each plot were measured with a five-point ordinal scale transformed to ranks. 

The plots were then assigned to three successional stages based on the age of the glacial deposits: 

early successional stage (ESS; 17 plots), mid successional stage (MSS; 32 plots), and late successional 

stage (LSS; 10 plots). See Caccianiga et al. (2006) for additional details. 

For each species, six quantitative traits were selected: canopy height (CH; mm), leaf dry matter 

content (LDMC; %), leaf dry weight (LDW; mg), specific leaf area (SLA; mm2 × mg−1), leaf nitrogen 

content (LNC; %), and leaf carbon content (LCC; %). Overall, these traits provide a good 

representation of the species global spectrum of form and function (Diaz et al. 2016). All data can be 

found in Caccianiga et al. (2006, pp. 16-17). All traits were standardized to zero mean and unit 

standard deviation. Based on the standardized trait values, we calculated a matrix of functional 

Euclidean distances ijd  between all 45 Alpine species. These distances were then rescaled in the range 

[0,1]  by dividing each distance by the maximum value in the dataset. 

First, we averaged the species abundances across the plots within each stage. Next, we calculated 

the species relative abundances within each stage. Finally, based on the species relative abundances, 

we calculated the parametric dissimilarity between all successional stages according to Eq. 16 with 

( , ) ( )Uj Vj Uj Vj Uj Vj      = − + . All calculations were done with a new R script available in 

Appendix 1. The reason for using the species relative abundances instead of absolute abundances for 

the calculation of functional dissimilarity is that we were interested in exploring how the ecological 

strategies of the vegetation change along the primary succession (i.e. how the functional characters are 

proportionally distributed among the species), irrespective of the species absolute abundances at each 

stage. 

 

7.2 Results 

According to previous work of Caccianiga et al. (2006) and Ricotta et al. (2020), the three 

successional stages are functionally well distinct. Along the primary succession, the vegetation is 

characterized by significant increase of leaf dry matter and leaf carbon content and a decrease of 

specific leaf area and leaf nitrogen content (see Ricotta et al. 2020). The functional dissimilarity 
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profiles of 
UVD  vs. α among the three successional stages of the Rutor glacier are shown in Figure 1. 

For all curves, functional dissimilarity tends to increase with increasing values of the parameter α 

according to a sigmoid pattern. For negative values of α, the curves show very low dissimilarity 

values. For values of α around zero, functional dissimilarity experiences a sharp growth. Finally, for 

increasingly positive values of α, functional dissimilarity increases asymptotically to its upper limit of 

max ( , )Uj Vj  . 

Overall, the lowest functional differences are observed between the mid and the late successional 

stages, whereas, as expected, the highest differences are observed between the early and the late 

successional stages. These differences are particularly clear for positive values of α, thus emphasizing 

large species-wise differences between successional stages compared to small differences. In contrast, 

for negative values of α the curves of ESS vs. MSS and ESS vs. LSS cross, such that for 0   we 

cannot unambiguously say which of the two curves shows the largest functional differences. 

 

8. Discussion 

In this paper, we showed that generalized means represent an effective tool to develop a unifying 

notation for a large family of parametric diversity and dissimilarity functions. From a technical 

viewpoint, Chao et al. (2014) found that the diversity measures based on species ordinariness Uj  

typically yield very low diversity values when the similarity matrix is computed from the species 

functional traits, and this causes problems for the interpretation. However, we suspect that this effect 

is due to the fact that in many cases the selected traits are too general and do not have any direct 

ecological association to the process of interest. Lavorel et al. (2008) emphasized that the traits that 

are actually relevant for ecosystem functioning depend case by case on the analyzed process. 

Therefore, a relevant aspect of functional analysis is the selection of an appropriate set of traits that 

optimize their association to the process of interest (Ricotta and Moretti 2010). We believe that 

advanced statistical methods, such as machine learning or artificial intelligence (Lucas et al. 2020) 

will greatly contribute to the construction of such ‘optimal’ functional spaces. In addition, like for 

many other summary statistics, for diversity and (dis)similarity indices, only ‘larger than’ 

comparisons may be valid. That is, the numerical values of those indices usually cannot be used as 

absolute indicators; they can only be used to rank the within- or between-plot heterogeneity in ways 

that are consistent with our ecological hypothesis (Kvålseth 2015). 

From a more general perspective, in his comment on Patil and Taillie (1982), George Sugihara 

(1982) noted: “Truly ground-breaking contributions to the theory of species diversity are not likely to 

arise in vitro from a mathematical analysis of indices but will most probably depend on an interplay of 

analysis with real data”. A textbook example of this approach is the paper of Campbell Webb (2000) 
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on the phylogenetic structure of ecological communities. Nonetheless, we think that addressing 

diversity theory in a more detached way may be equally beneficial, especially if our aim is to analyze 

the properties that diversity and dissimilarity measures should meet to summarize within- and 

between-plot heterogeneity in an ecologically appropriate manner. 

Ecologists have developed a multitude of diversity and dissimilarity indices based on distinct goals 

and motivations. However, the choice of the most adequate index for solving a given ecological 

problem remains a complex question which does not have a clear and unequivocal answer (Ricotta 

and Podani 2017). Various properties have been advocated for diversity and dissimilarity indices; 

some of them are considered necessary by many authors, while others appear less relevant. However, 

given the multivariate nature of community data, the blanket is always too short and it is generally 

recognized that no single index can simultaneously possess even the most basic of these properties 

(Routledge 1983). For example, effective numbers of species usually do not possess the sum property. 

Therefore, in spite of their name, effective numbers of species cannot be decomposed into species-

level patterns (Ricotta 2010). 

Given this ‘uncertainty principle’, which is typical of most ecological indicators, we suggest to 

evaluate the index properties not (or not only) in abstract terms, but with reference to the needs of the 

specific questions at hand. For example, concavity which is generally considered an indispensable 

requirement for a diversity function, is really useful only if we want to calculate a measure of plot-to-

plot community (dis)similarity that is based on the excess of γ-diversity with respect to mean α-

diversity. Otherwise, if we focus solely on α-diversity, this requirement may no longer be needed. 

Note that, by relaxing the assumption that diversity needs to increase by mixing, we could also 

adopt a looser definition of concavity, for example by imposing that  min ,U V   (see Avriel et 

al. 1988). Note also that the standard definition of concavity is based on an arithmetic mean, whereas 

some parametric diversity functions, such as all effective numbers of species in Eq. 7 and 12 are based 

on generalized means. Therefore, the standard definition of concavity does not necessarily fit these 

diversity functions perfectly (but see Routledge 1979; Chao et al. 2019). 

A second important requisite for diversity and dissimilarity measures containing interspecies 

differences is that diversity/dissimilarity should not change if a given species j is replaced by two 

identical species with the same total abundance of j (Leinster and Cobbold 2012; Pavoine and Ricotta 

2019). In functional terms, we can say that the measures that fulfill this branching requirement 

summarize the diversity/dissimilarity of ecosystem functions irrespective of the identity of the species 

that support them. In contrast, the measures that do not fulfill this requirement, such as Walker et al. 

(1999), Guiasu and Guiasu (2012), or Chiu and Chao (2014) to make only a few examples, basically 

summarize classical within- and between plot compositional heterogeneity calibrated by the functional 
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or phylogenetic resemblance among species. Therefore, they are closer to classical measures of 

species diversity/dissimilarity than to their functional or phylogenetic analogues. 

A final relevant requisite for diversity/dissimilarity measures is their ecological interpretability. 

According to Hurlbert (1971), the ecological meaning of the Shannon entropy and its parametric 

generalizations is at least dubious: “no one has yet specified exactly what significance the ‘number of 

bits per individual’ has to the individuals and populations in a community”. In addition, to the best of 

our knowledge, the foremost property of the Shannon entropy, additivity, has virtually never been 

used in modern community ecology and diversity theory. Therefore, the use of an overly complex 

logarithmic index without a clear ecological meaning is not necessarily the most appropriate choice 

for summarizing biological diversity. 

On the other hand, the Simpson and the Rao diversity both have a clear and intuitive probabilistic 

meaning, the former in terms of interspecific encounters (see Hurlbert 1971; Patil and Taillie 1982), 

and the latter in terms of expected dissimilarity among species. Since probabilistic diversities are 

easier to interpret ecologically, a new class of parametric measures may be thus constructed by 

directly generalizing the Rao quadratic diversity. For example, Guiasu and Guiasu (2011) proposed to 

express the Rao quadratic diversity as a linear function of the joint distribution of the relative 

abundance of the species pairs. Let ij Ui Ujp p =  be the joint probability of the pair of species ( , )i j  in 

this order. Rao’s quadratic diversity can be thus rewritten as: 
1 1 ,

N N N

U Ui Uj ij ij ijj i i j
Q p p d d

= =
= =   . 

Accordingly, a natural way to generalize this function is by substituting the arithmetic mean with a 

power mean such that: 

 

( )
1

,

N

U ij iji j
Q d

 =                           (17) 

 

with 0  . Eq. 17 thus represents the generalized mean of the pairwise interspecies distances ijd  

weighted by the relative abundance of the corresponding species pairs. This index was first used by 

Rocchini et al. (2021) to summarize the diversity of remotely sensed primary productivity of the 

Earth’s terrestrial ecosystems. Although UQ  is generally not concave, except for the case 1 = , in 

Appendix 2 we will show that for 0 1   it can be used to obtain a dissimilarity coefficient that is 

based on the excess of between-plot diversity with respect to mean within-plot diversity. Like for Eq. 

16, increasing the value of the parameter alpha in Eq. 17 increases the importance of large differences 

between species, showing once again a direct relationship between parametric dissimilarity and 
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diversity. In addition, like for all diversity measures discussed in this paper, for maximally dissimilar 

species, ( )
1

2

1
1

N

U Ujj
Q p



=
= −  is maximized if all species occur in equal abundance. 

This short example demonstrates that if we get out of the rather narrow cage of information-

theoretical diversity and dissimilarity measures, there is virtually infinite space for new ‘targeted’ 

measures that are able to summarize within- and between-plot heterogeneity from many different 

viewpoints. In this paper, we focused mainly on generalized means, but this does not exhaust the 

range of available possibilities. Like any other ecological indicator, diversity and dissimilarity 

coefficients are part of a ‘complex, plural and dynamic approach to ecological studies’ (Juhász-Nagy 

1984). Therefore, thinking about the existence of the ‘perfect index’ would simply be an illusion. 

Rather, a wide variety of imperfect measures are available, and their significance should be assessed 

based on their ability to address the specific ecological question under consideration. We hope, our 

present framework will contribute to transform this seemingly chaotic patchwork of unrelated 

diversity and dissimilarity measures into a coherent and structured system. 
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Figure 1. Dissimilarity profiles showing the functional differences among the three successional stages 

of the Alpine vegetation as a function of the sensitivity parameter α. ESS = early successional stage; 

MSS = mid successional stage; LSS = late successional stage. 
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