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Abstract 
Small Cell Lung Cancer (SCLC) tumors are heterogeneous mixtures of transcriptional subtypes. 

Understanding subtype dynamics could be key to explaining the aggressive properties that make SCLC a 
recalcitrant cancer. Applying archetype analysis and evolutionary theory to bulk and single-cell 
transcriptomics, we show that SCLC cells reside within a cell-state continuum rather than in discrete 
subtype clusters. Gene expression signatures and ontologies indicate each vertex of the continuum 
corresponds to a functional phenotype optimized for a cancer hallmark task: three neuroendocrine 
archetypes specialize in proliferation/survival, inflammation and immune evasion, and two non-
neuroendocrine archetypes in angiogenesis and metabolic dysregulation. Single cells can trade-off between 
these defined tasks to increase fitness and survival. SCLC cells can easily transition from specialists that 
optimize a single task to generalists that fall within the continuum, suggesting that phenotypic plasticity 
may be a mechanism by which SCLC cells become recalcitrant to treatment and adaptable to diverse 
microenvironments. We show that plasticity is uncoupled from the phenotype of single cells using a novel 
RNA-velocity-based metric, suggesting both specialist and generalist cells have the capability of becoming 
destabilized and transitioning to other phenotypes. We use network simulations to identify transcription 
factors such as MYC that promote plasticity and resistance to treatment. Our analysis pipeline is suitable 
to elucidate the role of phenotypic plasticity in any cancer type, and positions SCLC as a prime candidate 
for treatments that target plasticity. 
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Introduction 
Small cell lung cancer (SCLC) is a lethal malignancy of the airway epithelium, originating from 

pulmonary neuroendocrine cells (PNECs), and possibly other related cell types.1–5 SCLC tumors have long 
been considered homogeneous due to histological appearance as a carpet of uniform "small blue round 
cells,"6,7 and to the virtually ubiquitous biallelic inactivation of tumor suppressors Rb and TP53.8 However, 
in recent years, accumulating molecular and functional evidence has led to the identification of distinct 
intratumoral SCLC transcriptional subtypes across several model systems, including cell lines, human 
tumors, and genetically engineered mouse models (GEMMs).5,9–13 Phenotypic heterogeneity, both genetic 
and non-genetic, is intensively studied across cancer types because of its perceived impact on progression, 
acquired resistance, and relapse.14–25 Studies of intratumoral heterogeneity are especially relevant for SCLC, 
since cooperativity and transitions among SCLC subtypes have been reported but remain poorly 
understood.11,12,26  

The phenotypic heterogeneity of SCLC cells has been provisionally classified into four consensus 
subtypes defined by enrichment for the transcription factors (TFs) ASCL1 (A), NEUROD1 (N), YAP1 (Y), 
or POU2F3 (P).5,9–13 We also identified a fifth subtype, A2, which is driven by ASCL1 but is clearly distinct 
from the SCLC-A neuroendocrine subtype.27,28 However, stark delineation of bulk cell lines or tumors into 
single subtypes has proven difficult and may inadequately describe SCLC intratumoral heterogeneity, since 
it is often the case that either multiple or none of the eponymous TFs are expressed in a population of SCLC 
cells. For instance, our work using CIBERSORT29 decomposition showed all tested SCLC tumors are 
composed of multiple subtypes, and several studies have reported changes of subtype prevalence during 
tumor progression or in response to treatment.11,27,28,30  Bulk RNA-seq analyses confirm some samples are 
positive for more than one TF, such as human cell lines and tumors that are positive for both ASCL1 and 
NEUROD1.31 In bulk data, it is unclear if this is due to a mix of discrete subpopulations of cells, or if SCLC 
cell states are better represented as a continuum of gene expression between subtypes. These layers of 
heterogeneity suggest that single cell data may be necessary to fully parse subtype prevalence in SCLC cell 
lines and tumors. While approaches using various methods such as bulk sequencing,9,11,28,32 DNA 
methylation profiling,33–36 or CRISPR5 experiments have been used to define subtypes of SCLC, the 
prevalence of subtypes at the single cell level has not been well-studied, and comprehensive gene signatures 
of each subtype for single cells currently do not exist. 

Clustering methods, which identify “prototypical” gene expression profiles of cluster centers, have 
often been used in other systems to characterize subtypes. These clusters are easily interpretable but are 
often too rigidly defined in the case of mixed or intermediate samples. One method that is more flexible 
than clustering and yet remains easily interpretable is Archetypal Analysis (AA)37,38 (Figure 1A).  
Archetypal analysis has been used on systems ranging from cancer to development in order to explore 
heterogeneous gene expression by finding archetypes, or “pure subtypes,” in gene expression space that 
best explain the heterogeneity seen in the samples.37–46 Using AA on SCLC cells from cell lines and tumors 
gives us the flexibility to understand how plastic cells may pass through intermediate states,26,47 which 
cannot be described in a discrete-clustering framework, to transition between subtypes.   

Furthermore, in several other systems low-dimensional geometry of data has recently been 
attributed to evolutionary tradeoffs between multiple functional tasks.38,45 When cancer cells with limited 
resources (e.g. metabolic constraints) must optimize fitness in the face of multiple competing tasks, such 
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as proliferation and migration,48,49 they fill a polygonal shape between archetypes in gene expression space. 
Each archetype optimizes a single task, and cells between archetypes fall somewhere within the Pareto 
front, which is the set of gene expression profiles that cannot optimize all tasks at once.38 We analyzed the 
low-dimensional polytope of single cell data from SCLC cell lines within this context and found the main 
trade-offs SCLC cells include proliferation, invasion, and immune regulation, which mirror the cancer 
hallmarks proposed by Hanahan et al.50,51 and the corresponding universal cancer tasks proposed by Alon 
and coworkers.45 Where each cell falls with respect to the archetypes determines how specifically it 
optimizes a single task (specialists near an archetype), or how it has generalized in order to complete several 
tasks (near the center of the polytope or along an edge/face between two/three tasks) (Figure 1A). If the 
proportions of tasks needed changes rapidly, such as during tumor evolution and metastasis, a population 
of generalists that exists along a continuum of states may have an advantage. We show here that SCLC cell 
lines and tumors comprise continuums with both specialists and generalists. 

SCLC has been shown to contain low amounts of non-tumor cells relative to other tumor types,8 
raising the question of how SCLC compensates for the lack of trophic support usually provided by other 
non-cancer cell types in the tumor microenvironment. One hypothesis is that SCLC cells can easily 
diversify and shift between phenotypes to fulfill these different tasks.52  Using a novel metric to quantify 
plasticity, Cell Transport Potential, we found that SCLC cells from human cell lines diversify across the 
archetype space; in the cell lines studied, we found subpopulations of high and low plasticity within each 
sample. Similarly, SCLC tumors tended to have high-plasticity non-neuroendocrine cells that could shift 
phenotypes to generalists and other cell types to optimize specific tasks. We visualized plasticity within 
archetype space to determine how SCLC cells can traverse the landscape (Figure 1B). Importantly, our 
continuous subtyping and plasticity framework allows for characterization of these phenotypic transition 
paths, including characterization of TF network dynamics over transition paths, which cannot be adequately 
captured by a 4-TF framework (Figure 1C).  

Overall, our work advances the field’s understanding of SCLC heterogeneity and plasticity by 
unveiling the prevalence of cells that fall in between extreme subtypes, thus demonstrating a need for a 
more flexible method of phenotype characterization. We provide a theoretical basis for the existence of 
intermediate “generalist” cells, which have not been captured in previous subtyping efforts using single 
TFs, by enumerating tasks that SCLC tumors must trade-off between to thrive. We propose a new 
quantitative definition of cell plasticity, Cell Transport Potential, and use this method to determine that 
SCLC subtypes are capable of manipulating their plasticity according to the tasks required of them and the 
context in which they grow. Lastly, we show that TF network modification and dynamics may be key in 
understanding ubiquitous SCLC tumor relapse and acquired resistance. 

Results 

Archetype analysis defines a phenotypic continuum for SCLC subtypes. 

Phenotypic heterogeneity of Small Cell Lung Cancer (SCLC) is reflected in the large number of 
established SCLC cultured cell lines that span morphologies (classic vs. variant), gene expression profiles, 
and treatment response.10,53,54  Therefore, to characterize SCLC transcriptional heterogeneity we analyzed 
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the gene expression variance of a bulk RNA-seq dataset comprising 120 SCLC cell lines (Supplemental 
Figure 1). Resulting SCLC clusters were not compact and well-separated, as determined by the Dunn Index 
(Figure 2A, Supplemental Figure 2A and B). In addition, several cell lines fell in-between clusters, 
possibly because they comprise two or more canonical subtypes.31 Therefore, we analyzed the bulk RNA-
seq cell line dataset with Archetype Analysis (AA), a method that allows for a more flexible characterization 
of SCLC gene expression space.55  

Briefly, AA approximates the cell-phenotype space as a low dimensional shape called a convex 
polytope. The vertices of this multi-dimensional shape represent archetypes (Figure 1A), constrained to be 
linear mixtures of some set of data points.38 To determine the optimal number and location of the archetype 
vertices in gene-expression space, we applied the Matlab package ParTI.55 Considering the variance each 
archetype was able to explain, we found that 5 archetypes best fit the data (Figure 2B, p-val = 0.034, t-ratio 
test, see Methods and Supplemental Figure 2C). By bootstrapping the location of the vertices, the 
archetypes in gene expression space were robust and not dependent on any extreme points in the dataset 
(Supplemental Figure 2D). Within this 5-dimensional polytope, data points corresponding to bulk RNA-
seq from each of the 120 cell lines were then represented as linear combinations of the archetypes (Figure 
2B). In summary, AA explained SCLC cell line heterogeneity in bulk transcriptomics data as a low-
dimensional phenotypic continuum between 5 archetype vertices (Figure 2B).  

To reconcile these archetypes with the canonical SCLC consensus subtypes,11,28 we computed the  
enrichment of SCLC subtype labels (Supplementary Figure 2A) in cell lines closest to each archetype 
versus the remaining cell lines (hypergeometric test, q < 0.1, see Methods). After binning the data into ten 
bins by distance to archetype, we found that each archetype was enriched in cell lines from one of the five 
SCLC subtypes (Figure 2C, Supplemental Table 1). For example, canonical SCLC-A-labeled cell lines 
were enriched in the bin closest to archetype 1 (orange line), but no SCLC-A cell lines were found in bins 
closest to the other four archetypes (Figure 2C). Likewise, bins closest to the remaining 4 archetypes each 
contained cell lines from the remaining 4 canonical subtypes (Figure 2C). Thus, the AA-derived 5-
dimensional SCLC phenotypic continuum integrated well with the canonical SCLC subtypes, with the 
distinct advantage that cell lines with a bulk transcriptome that does not adhere to any of the canonical 
subtypes can now be understood as intermediate between archetypes, rather than being forced into discrete 
clusters unrepresentative of their phenotype. Furthermore, cell lines previously ill-defined due to lack of 
expression of one of the eponymous TFs can be classified in the phenotypic continuum based on distance 
from archetype. 

Trade-offs between cancer hallmark tasks define the continuous 
phenotypic space of SCLC  

In AA, a phenotypic continuum can arise when each archetype corresponds to a functional task. 
Multi-objective evolutionary theory suggests that in tissues where multiple tasks are required, such as the 
intestinal crypt and liver,38,40,44,55 cell trade-offs between these tasks form the low-dimensional polytope 
shape of the data. In the case of cancer cells in a tumor, such trade-offs presumably occur among tasks that 
promote tumor growth and survival, such as cancer hallmarks.45,50,51 To assign possible cancer tasks, we 
evaluated enrichment of gene ontologies at each SCLC archetype location (Figure 2B, Supplemental 
Tables 2-4).56–58 We used the molecular signatures database (MSigDB) to evaluate hallmark gene sets57 
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and ontology biological processes, and the Cancer Hallmark Genes database (CHG59) to evaluate ten cancer 
hallmarks.50,51 For each archetype, we then considered as significant the gene sets that were maximal in the 
ten percent of cell lines closest to that archetype compared to the remaining cell lines (Bonferroni-
Hochberg-corrected q < 0.1). We used a leave-one-out procedure for each gene in the gene sets to avoid 
circularity for when a gene is also used to define the archetype location.55 

Archetype 1 corresponded to the SCLC-A Subtype (Figure 2B and C) and was enriched in 
neuronal differentiation genes (Table 1). While no hallmark gene sets from CHG were significantly 
upregulated in this archetype, we found evidence of lung cell-specific and neuronal type-specific 
proliferation and growth in enriched GOs. The highly proliferative nature of these cells was consistent with 
the large proportion of SCLC-A cells in primary SCLC tumors and high sensitivity to DNA damaging 
agents, and the neuronal-specific GO enrichment reflected their neuroendocrine nature.53,60,61 Archetype 2 
(SCLC-A2) was also driven by neuronal programs but was enriched for the cancer hallmarks evading 
immune destruction and tumor-promoting inflammation. As shown in Table 1, the SCLC-A2 archetype is 
also enriched in response to the environment and chemical homeostasis functions. Together, optimization 
of these tasks may allow SCLC-A2 cells to quickly and effectively respond to and interact with the tumor 
microenvironment by sensing and responding to immune infiltration and signals from other stromal cells.  

Archetype 3 (SCLC-N) was enriched in neurogenesis terms, including synapse and actin 
cytoskeleton terms. Specific to neuronal cell types, these may enhance tumor survival by specifying a 
protruding, axon-like morphology. Such a morphology is related to the slithering observed in PNECs62, 
whereby cells transiently downregulate adhesion genes and use axon-like protrusions to migrate. Thus, 
Archetype 3 may be relevant to invasion and metastasis, yet another cancer hallmark. Archetype 4 (SCLC-
P) was enriched in the cancer hallmarks of genomic instability and dysregulated energy metabolism. 
Enrichment in glycolysis, mitochondrial respiratory chain, and other metabolic terms corroborated this task. 
Archetype 5 (SCLC-Y) was the only archetype enriched in all ten cancer hallmarks, suggesting it may be 
the key to understanding the aggressiveness of SCLC. Specific to this archetype, we found enrichment in 
inducing angiogenesis and invasion hallmarks.  Cells closest to this archetype vertex were enriched in tissue 
remodeling functions such as regulation of extracellular matrix (ECM), endodermal differentiation, cell 
migration, and inflammation, further confirming the cancer hallmark tasks we ascribe to this archetype. 
Furthermore, this archetype was optimized for resisting cell death, as shown by enrichment in anti-
apoptotic genes (Table 1), consistent with the role of SCLC-Y cells in tumor relapse.11,32  

These findings indicated that the vertices of the SCLC phenotypic continuum derived from AA 
were well aligned with the known biological properties of SCLC tumors and subtypes, supporting the 
validity of this approach. Thus, it is expected that cell lines closer to the archetypes would behave as 
“specialist” populations that specialize in the corresponding task, while cell lines in between archetypes 
may comprise multiple specialist subpopulations or contain intermediate “generalist” cells. Distinguishing 
between these two possibilities cannot be done with bulk RNA-seq and requires projection of these bulk-
derived archetypes onto single-cell data, as we did in the next section. 
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Projection of SCLC archetype signatures onto single cells shows a 
continuum of phenotypic states in human cell lines 

For cell lines falling in-between archetypes (Figure 2A, B), two possibilities could be envisioned: 
they may comprise multiple subpopulations each optimized for a different task, or they may have an 
intermediate, “generalist” phenotype with suboptimal task performance. To distinguish between these 
possibilities, we used the archetype locations to generate archetype gene expression signatures capable of 
identifying phenotypes at the single-cell level (Supplemental Figure 3A). We found genes that were 
enriched in cell lines closest to each archetype (Mann-Whitney Test, q < 0.1, Supplemental Table 5). We 
then selected genes with the largest enrichment in cell lines binned closest to each vertex versus the 
remaining cell lines, in order to ensure that these genes were maximized in the bin closest to the archetype 
(see Methods, Supplemental Figure 3B, Supplemental Table 6).  

Several genes were able to distinguish between the SCLC-A and the SCLC-A2 archetypes, 
including ELF3, GRP, and ISL1, while others, such as ASCL1 and FLI1, were shared by both. This 
corroborated our finding28 of two distinct transcriptional programs. For example, in the SCLC-A archetype, 
but not A2, SOX1 may promote neuronal stemness since this TF acts as an oncogene in glioblastoma, 
suppresses cell migration in non-neuroendocrine lung cancers, and maintains an active neural progenitor 
state in normal development.63–66 The SCLC-N signature, which included NEUROD1 and other NEUROD 
family genes (NEUROD2 and NEUROD6), was enriched for the biological process “nervous system 
development” (GO:0007399, p = 0.0014), consistent with the neuroendocrine nature of this subtype.12 MYC 
absence in the N  gene signature was notable, but most likely due to upregulation across multiple archetypes 
(Supplemental Figure 3C), consistent with recent literature suggesting MYC plays an important role in 
the transitions between subtypes N and Y, and possibly P. 11,12,47,67 

POU2F3 was significantly overexpressed in the tuft cell-like SCLC-P archetype signature, as 
expected. Several other genes previously associated with tuft cells and SCLC-P5—SOX9, GFI1B, and 
AVIL—were enriched in this archetype signature as well.  Lastly, in the SCLC-Y subtype signature, YAP1 
expression was enriched, as well as multiple genes regulated by the transcription factors RARG and SOX2 
(adjusted p = 0.055 and 0.034, respectively), as determined using ENRICHR.68,69 These two factors are 
overexpressed in lung squamous cell carcinoma,70 consistent with the non-NE nature of SCLC-Y. SOX2 
has also been implicated in lineage plasticity71 and SCLC progression.72,73 The top two genes enriched in 
the SCLC-Y archetype, LGALS1 and VIM, are associated with a mesenchymal phenotype and have 
previously been implicated with SCLC chemoresistance.36,74–77 

To examine enrichment of these signatures at the single-cell level, we sequenced a panel of 8 cell 
lines chosen to maximally span the phenotypic continuum (Figure 3A). We then projected the single cell 
expression data into “archetype space” by the signature matrix using least-squares approximation (see 
Methods, Supplemental Figure 4). We thus derived archetype scores for each single cell sampled and 
investigated the subtype composition of each cell line with respect to these scores. To visualize these five 
archetype scores for each cell in two-dimensional plots, we used a Locally Linear Embedding (LLE, Figure 
3B). Figure 3B shows that each cell line occupied a distinct region in archetype space, as expected from 
the bulk transcriptomes shown in Figure 3A. Furthermore, for each of the cell lines, the single cells did not 
comprise several discrete specialist populations, but instead formed a continuum between archetype 
subsets.  
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We then used the archetype scores to evaluate the distance of each single-cell population (i.e., a 
cell line) to the archetypes to determine the dominant tasks being optimized. Cells closest to each archetype, 
defined by a score greater than 0.5 for a single archetype (see Methods), were considered specialists for 
that archetype task. Cells with an intermediate phenotype, where multiple archetype tasks were represented, 
were considered generalists, and cells without any high scores (>0.1) were considered unclassified 
(“None”). The ubiquity of single cells with a mixed phenotype in each cell line confirmed the need for a 
continuous framework (Figure 3C). Each of the cell lines formed a continuum between subsets of SCLC 
archetypes, with varying proportions of specialists and generalist cells (Figure 3C). For example, 
CORL279, which is positive for both ASCL1 and NEUROD1 at the bulk expression level, had a large 
proportion of generalists and formed a continuum between the A and N archetypes. The cell line H82, 
which falls between SCLC-N and SCLC-Y (Figure 3A), had the highest proportion of generalist cells. 
Virtually all cells could be assigned to specialists or generalists, with negligible numbers of cells left 
unclassified.  

These results indicated that applying archetypal signature scores to SCLC cell lines, some of which 
fall in-between archetypes in bulk RNAseq transcriptomics (Figure 3A), reveals to what extent they are a 
composite of specialist (close to a single archetype) and generalist (mixed phenotype) single cells. While 
archetypal signatures are flexible enough to uncover such mixed cells, the framework does not ensure a 
priori that mixed generalist cells will exist. In other words, such a framework could also describe 
populations of entirely-specialist cells, suggesting the generalist cells we detected here are truly of an 
intermediate phenotype. 

A phenotypic continuum of specialist and generalist cells is detected in 
SCLC tumors  

To determine whether a continuum of cell states exist in tumors as well, we applied our archetypal 
signature score to single-cell gene expression data from SCLC human tumors (Supplemental Figure 5) 
and GEMMs (Supplemental Figure 6 and 7).  

In human tumors (Figure 4A), archetype signature scoring shows that Tumor 1, a bronchoscope 
biopsy from an SCLC relapse, was enriched in A and A2 cells. Instead, Tumor 2, a treated, limited-stage 
(1B) SCLC tumor with a large cell neuroendocrine carcinoma (LCNEC) component, was enriched for 
SCLC-Y. In both cases, a subpopulation of generalist cells spanned the A, A2, P, and Y archetypes to 
different degrees, again supporting the presence of a cell-state continuum. Furthermore, generalist cells 
with intermediate phenotypes were present in every sample tested. 

In primary (Triple Knockout Models TKO1 and TKO2) and metastatic (TKO3) mouse tumors from 
the Sage laboratory,28 archetype signatures revealed a large proportion of SCLC-A2 subtype cells in TKO1. 
In contrast, TKO2 and TKO3, originated in the same mouse, had higher proportions of SCLC-A (Figure 
4B). Each tumor had a sizable portion of non-neuroendocrine cells as well. We next applied our analysis to 
Myc-driven mouse tumors (Rb1fl/fl; Trp53fl/fl; Lox-Stop-Lox [LSL]-MycT58A, RPM) (Figure 4C). The 
specialists in RPM tumors, in contrast to TKO tumors, were predominantly SCLC-Y, with varying 
proportions of SCLC-A cells. In all mouse tumors analyzed, regardless of relative archetype composition, 
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a large proportion of cells were generalists. This suggested that intermediate cell states are a staple of 
GEMM tumors, however generated, further supporting the notion of a cell-state continuum.   

Taken together, single-cell gene expression data indicated that SCLC cell lines, human tumors, and 
GEMMs each formed a continuum of expression at the single-cell level, rather than as mixes of discrete 
(specialist) subpopulations near the archetypes.  

Novel plasticity metric, CTrP, captures potential for cell state transitions 

A continuum of phenotypes often arises when cells traverse diverse regions of gene expression 
space to adaptively fulfill function.38,44,55,78,79 In this dynamic continuum, intermediate generalists may 
represent either stem-like cells acting as a source for specialists at archetype vertices or cells in transition 
from one archetype vertex to another. To determine which SCLC cells can traverse the phenotypic 
continuum, or whether there exists a specific stem-cell like state from which all traversing cells originate, 
we quantified the plasticity of individual cells. Briefly, we computed RNA velocity80 by modeling spliced 
versus unspliced counts of individual genes using scVelo81 (Supplemental Figure 8A). This assigned a 
velocity vector to each individual cell in gene expression space, where each dimension (and thus each 
component of the vector) is a gene. To visualize cell state dynamics, we projected the velocity vectors into 
archetype space using the same method for single cell gene expression profiles described above. Based on 
average splicing kinetics, the time-step between measured gene expression and extrapolated expression 
based on the velocity is around 3-4 hours.80 To extrapolate beyond this, we used RNA velocity and the 
relative locations of sampled data points to generate a transition matrix that defines a Markov Chain model, 
where each sampled point is a state in the model (Supplemental Figure 8B). Finally, we inferred plasticity 
by calculating an expected distance of transition for each single cell, which we called Cell Transport 
Potential (CTrP, Supplemental Figure 8C).  

CTrP should be zero for steady states (or end states) in the system, and higher for cells that are able 
to change their gene expression profile by a large amount to reach a steady state. In this way, CTrP should 
capture the average (expected) change in gene expression each cell is capable of, a proxy for the height 
(potential) of a cell state in a phenotypic landscape. By averaging potential transitions for each cell, we are 
necessarily deconvoluting two distinct characteristics of plastic stem-like cells: (1) the average change in 
expression expected increases with stemness, which we term CTrP, and (2) the variance in possible cell 
state transitions increases with stemness, which we term pluripotency and is outside the scope of the 
manuscript (see Methods and Discussion for more).  

We tested this metric in two biological differentiation systems where the ground truth is known, as 
highlighted in Supplemental Methods (Supplemental Figure 9). In both systems, CTrP scoring was 
capable of capturing potential for cell state transitions, with classic stem cells and lineage progenitors 
having high plasticity and terminally differentiated cells showing low or no plasticity.  
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CTrP quantifies high plasticity of generalists and SCLC-Y cells in SCLC 
cell lines 

We then turned to analyzing cell state dynamics within human cell lines using our CTrP analysis. 
We found that the RNA velocity field of each sample varies widely, suggesting that each cell line we 
measured contained different proportions of transitioning and phenotypically stable subpopulations (Figure 
5A and Supplemental Figure 10A). Some of the high-velocity regions show directed, coherent movement, 
such as in the cell lines H1048, H841, H524, and DMS454, while the others are more stochastic and less 
directed. In the cell lines with coherent velocity, we found that only SCLC-Y specialists (in H841 and 
H1048) consistently moved towards generalists; in other words, Y cells act more like sources for the rest 
of the population. Conversely, H524 cells trend from intermediate phenotypes towards the SCLC-N 
archetype, suggesting the N phenotype acts as a sink in this cell line. The cell line populations showed little 
movement on average across the phenotypic continuum (small black arrows in center figure of Figure 5A), 
suggesting each sample is close to a dynamic equilibrium, where individual cells move within the archetype 
space but the overall cell density change across the landscape is close to zero. This was expected for 
relatively stable cell lines grown in controlled environments.  

When we calculated CTrP, we found that all cell lines spanned degrees of plasticity, with most 
showing distinct high and low plasticity subpopulations (Figure 5B and Supplemental Figure 10B and 
C). Cells with high CTrP that are likely to traverse the continuum of states exist in multiple regions in 
Figure 5B, suggesting that there is not a single stem cell phenotype for SCLC cell lines but rather a “stem-
like” functional state that can span SCLC archetype space. However, the presence of distinct root cells for 
most phenotypes (Supplemental Figure 10B) showed that it is possible different high CTrP states are 
subtype-specific progenitors already committed to the cell line subtypes and analyzing cell line data would 
miss the existence of a true SCLC stem cell state. When we compared CTrP to archetype scores from 
Figure 3, we found a negative correlation between plasticity and archetype scores, suggesting generalist 
cells with lower archetype scores are more plastic (Supplemental Figure 10D). Indeed, generalists (and 
unclassified cells) were significantly more plastic than all other cell types except SCLC-Y cells, which may 
reflect SCLC-Y cells’ source-like nature described above (Figure 5C). Overall, CTrP analysis of SCLC 
cell lines showed that: i) generalists across the continuum are likely to be high-plasticity transitioning cells; 
ii) SCLC-Y specialists may act as a plastic source, if present; and iii) other specialists are more likely to act 
as end states with low plasticity. 

SCLC tumors show SCLC-Y cells are most plastic in vivo 
We next applied our plasticity pipeline to the SCLC tumors mentioned previously (Figure 6). Each 

of the two SCLC human tumors showed no easily discernible pattern of RNA velocity in archetype space 
(Supplemental Figure 11). However, the transport potential of each tumor clearly indicated that cells close 
to SCLC-Y have high CTrP on average compared to the rest of the tumor cells (Figure 6A). The clarity 
gained by our CTrP analysis over RNA velocity alone demonstrated its utility in understanding cancer cell 
plasticity. Furthermore, these results suggested highly plastic SCLC-Y cells may play a role in tumor 
relapse by regenerating intermediate generalists that are adaptable to external perturbations. However, this 
does not preclude the possibility that other human SCLC tumors have different plasticity landscapes.   
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In GEMMs tumors, RNA velocity also did not report easily identifiable patterns (Supplemental 
Figures 12 and 13). Conversely, in all three TKO mouse tumors, CTrP clearly identified a subpopulation 
of highly plastic SCLC-Y cells (Figure 6B). Similarly, four RPM tumors showed that SCLC-Y specialists 
have the highest plasticity on average (Figure 6C). However, the SCLC-Y specialists ranged from high-
plasticity cells to end states with CTrP equal to zero, suggesting that plasticity is not an immutable 
characteristic of subtype. 

In summary, SCLC-Y cells were the most plastic in all tumors and most cell lines analyzed, 
regardless of source (mouse or human) or genetic background (TKO or RPM).  

MYC drives high-plasticity neuroendocrine SCLC cells towards non-
neuroendocrine generalist states through TF network regulation 

To determine whether plasticity is a property exclusive to SCLC-Y cells or applies to other subtypes 
as well, we analyzed a single-cell time-course of RPM progression from Ireland et al47 (Figure 7 and 
Supplemental Figure 14). Early-stage tumor cells from Ad-Cgrp-Cre-infected RPM mice were macro-
dissected, placed in culture, and harvested over six timepoints for sequencing. Applying our archetypal 
signature to the time series data, we predictably found a shift from neuroendocrine subtype cells to non-
neuroendocrine, consistent with the results of the original paper.47 The plots in Figure 7A showed that 
earlier timepoints (days 4-7) were mostly composed of SCLC-A, -A2, and -N phenotype cells (>50%), 
which formed a continuum of specialists and generalists. Day 7 was slightly enriched in generalists 
compared to day 4 and had fewer SCLC-A and SCLC-A2 specialists, which was representative of cells 
moving away from NE archetypes between these two timepoints. By day 11, cells had transitioned towards 
the SCLC-Y archetype, with a high proportion of non-NE generalists. We found that, from day 14 on, the 
cells seemed to be close to equilibrium, with relatively stable proportions of generalists between the SCLC-
A, SCLC-A2 and SCLC-Y archetypes, as well as a substantial proportion of unclassified cells that slightly 
increased with each timepoint (20-30%, Figure 7B; interactive 3D plots can be found in the supplement).  

This trajectory over the time course could be explained by either cell state transitions and/or 
selection. If cells were traversing the phenotypic continuum, transitioning from an initial NE phenotype to 
non-NE phenotypes, we would expect high plasticity in early time-points that decreased across the time 
course. By contrast, if cells were not transitioning, the shift in subpopulation proportions between day 4 
and day 21 (Figure 7A) would require that (undetected) non-NE cells from early time points were highly 
proliferative and able to outgrow NE subpopulations. In this case, we would observe low plasticity for each 
subtype. To distinguish between these possibilities, we applied our plasticity pipeline. Based on RNA-
velocity, we observed significant movement across phenotypic space, particularly around day 11 (Figure 
8A and Supplemental Figure 14). By calculating plasticity using CTrP (Figure 8B), we found that cells 
from the first two timepoints had the highest plasticity, and plasticity decreased over the six time points 
with end states only found in the last three timepoints. We therefore conclude that cell state transitions 
caused the shift in subpopulation composition from day 4 to day 21. Furthermore, these analyses indicated 
that plasticity is a property that can be acquired by virtually any subtype, since in the RPM time series 
SCLC-A2, SCLC-N, and NE generalists in early time points had high CTrP (Figures 7A and 8B), while 
SCLC-Y cells were the most plastic in the other tumors analyzed (Figure 6).  
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When we further investigated the relationship between subtype and plasticity, we found that SCLC-
N cells showed higher plasticity compared to other cell types (Figure 8C). This may indicate that the SCLC-
N state is an unstable cell state, likely existing as a transient intermediate state during the MYC-driven 
transition from SCLC-A/A2 to SCLC-Y. While SCLC-Y cells had lower plasticity than other specialist 
states in this time course, we found that generalists and unclassified cells had significantly lower plasticity 
than SCLC-Y (Figure 8C). Therefore, neuroendocrine cells from the first time points, particularly plastic 
SCLC-A2 and SCLC-N cells, transitioned over the time course to SCLC-Y states and then to generalist 
states.  

Based on this plasticity analysis of RPM tumor cells, we conclude that MYC was capable of 
influencing the distribution of SCLC cell states by increasing CTrP in neuroendocrine specialists. However, 
this increase in plasticity for SCLC-A2 and SCLC-N cells was only observed in early time points along the 
time course. Indeed, by day 21 of the time course, SCLC-Y cells were once again the most plastic 
subpopulation (Figure 8D), which was consistent with the high plasticity seen in SCLC-Y cells in RPM 
mouse tumors in vivo (Figure 6C). This may reflect the re-equilibration of SCLC subtypes seen by day 14 
(Figure 7A and B). Therefore, we conclude that the plastic potential of each phenotype shifted over the 
time course, stabilizing by day 21 to result in the plasticity landscape seen in RPM tumors in vivo.  

Finally, we sought a mechanistic explanation for the marked ability of MYC to modulate plasticity 
of cell states. Because each SCLC archetype corresponds to a semi-stable TF network attractor state,28 we 
reasoned that degrees of plasticity for a specific cell state may primarily vary by modulation of TF-TF 
interactions in the network. Unlike transient upregulation of MYC, RPM tumors constitutively express 
MYC, and we therefore hypothesized that RPM tumors exhibit modified TF-TF interactions in the network 
and shifted dynamics of cell state transitions from the human cell lines, human tumors, and TKO mouse 
tumors. We therefore introduced MYC into a previously derived SCLC network and applied our 
BooleaBayes28 algorithm to determine its effect on subtype stability (See Methods and Supplemental 
Figure 16). Constitutive MYC activation destabilized the SCLC-A and SCLC-A2 states, decreasing the 
number of steps it takes to leave those attractor’s basins (Figure 8E). This result indicated that SCLC 
plasticity could be modulated at the epigenetic level. Specifically, modifications of network dynamics, e.g., 
by MYC, could increase the plasticity of neuroendocrine specialists such that these cells transition towards 
non-neuroendocrine generalists.  

Discussion 
SCLC is a heterogeneous cancer comprising neuroendocrine and non-neuroendocrine subtypes, 

classified by eponymous transcription factors. In this study, our goal was to understand dynamics amongst 
the canonical subtypes A, A2, N, P and Y, since plasticity is likely to play a key role in supporting SCLC 
aggressive features.26,28 However, in analyzing SCLC datasets from diverse sources we found that the 
current subtype classification is insufficient to fully capture SCLC phenotypic heterogeneity, because large 
numbers of SCLC single cells, regardless of source (cell lines or human and mouse tumors), fall in-between 
subtype clusters (Figure 2A, 3, 4). Furthermore, a discrete subtype space hinders analysis of continuous 
dynamics between SCLC single-cell phenotypes, which may take place during progression, drug response 
and relapse. Here, to overcome limitations of discrete subtype clustering, we proposed an alternative view 
of SCLC heterogeneity, based on SCLC archetypes that define a phenotypic continuum (Figure 1). While 
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correspondence between gene signatures of archetypes and canonical subtypes was largely maintained, the 
archetype-bounded phenotypic continuum paradigm presented several advantages that better represent 
SCLC cell state space: i) the transcriptional profile of each single cell can be evaluated based on distance 
from archetype gene signatures (e.g., a cell between archetypes N and Y is assigned a properly apportioned 
intermediate N/Y phenotype); ii) it allows us to quantify plasticity of intermediate phenotypes, by tracing 
transition paths between archetypes and identifying regions of high SCLC cell plasticity; iii) cell transitions 
are rooted in multi-objective evolutionary theory such that movement across the continuum fulfills the goal 
of trading off between cancer hallmarks tasks, providing a functional interpretation of SCLC phenotypes; 
and, iv) the continuous framework allows us to identify TFs that drive plasticity and suggest strategies for 
targeting plastic SCLC cells, which we propose should be a high priority for effective SCLC treatment. 

Our analysis, inspired by the work of Alon and co-workers,40,44,45,55,82 used a novel pipeline to 
quantify the role of heterogeneity and plasticity in SCLC tumors, which can easily be applied to new 
samples and datasets as they become available. In previous methods for subtyping SCLC, single cells that 
did not closely adhere to subtype signatures (e.g., co-expressing multiple eponymous TFs such as ASCL1 
and NEUROD1,31 or expressing none of them) were difficult to classify. In contrast, archetype analysis 
easily described these single cells, positioning them in the phenotypic continuum at appropriate distances 
from the relevant archetype vertices. In this continuum of gene expression space, cells closest to a vertex 
can be considered specialists, i.e., performing the specific functional tasks that gene ontology enrichment 
assigns to that archetype. Cells located between archetypes can be considered generalists, i.e., performing 
multiple tasks sub-optimally. Our results suggested that both SCLC cell lines and tumors comprise 
specialist and generalist cells, with cells traversing the continuum to optimize fitness of the population. It 
is tempting to speculate that such levels of adaptability may be responsible for the extremely aggressive 
features of SCLC tumors, as mentioned below. For instance, an altered balance in favor of the more 
adaptable generalist cells may be expected in tumors immediately after treatment, a scenario that could be 
tested experimentally in GEMM or CDX tumors. These dynamics may begin to explain the exceptional 
initial response to standard of care in SCLC tumors (as specialist cells may succumb to treatment), 
inevitably followed by relapse (driven by generalist cells). 

Using gene set enrichment analysis, we identified the tasks optimized by each specialist cell type, 
such as vasculogenesis for archetype Y, proliferation for archetype A, and inflammation for archetype A2. 
This palette of biological tasks is in agreement with recent reports indicating that lung tumors are capable 
of building their own microenvironment, as well as with the low amounts of non-tumor cells usually found 
in SCLC tumors compared to other tumor types.8,26,83,84 A specific example is trophic support provided by 
archetype Y cells via vasculogenic mimicry, which was recently described in experimental CDXs.85,86 

Overall, the high proportion of adaptable generalists we found across SCLC samples is consistent with the 
aggressiveness of SCLC and may partially explain its ability to rapidly invade and metastasize, by quickly 
adapting and thriving in inhospitable microenvironments. 

 An unanswered question in the field is whether SCLC phenotypes are plastic, i.e,  capable of state 
transitions.11 The dispersal of SCLC cells across the phenotypic continuum suggests that cell state 
transitions occur, and therefore we interrogated cell dynamics using RNA velocity.80 We defined a novel 
metric, Cell Transport Potential (CTrP), which quantifies the expected change in transcriptomic state for a 
cell in a dynamic population. This metric is akin to the height of a cell state in a phenotypic landscape, 
relative to cells in the system that are not predicted to change cell state at all (endpoints with CTrP = 0). 
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Another form of plasticity that is often convolved with potential is the concept of pluripotency, which is 
akin to the local depth of the basin in which a particular cell state resides. In other words, CTrP describes 
how “far” a cell is likely to go in phenotype space (here, defined by gene expression), while pluripotency 
describes the ability to reach multiple different endpoints. Further analysis is needed to quantify 
pluripotency, which will most likely require additional experiments such as lineage tracing in scRNA-seq. 
We may find upon further analysis that cells can possess high plasticity of one type (e.g. CTrP) and not the 
other (e.g. pluripotency). For example, it may be possible that early SCLC-A/A2 cells in the RPM time 
course have high CTrP but later SCLC-Y cells have increased pluripotency.  

CTrP is dependent on the underlying genetics that determine the shape of the phenotypic landscape, 
the particular cellular state in which a cell resides, and any external conditions that may transiently “tilt” 
the landscape.  For example, in the RPM time series, it may be the case that MYC promotes plasticity of 
SCLC-A/A2 cells to non-neuroendocrine states, such that early states have high CTrP, but only under the 
specific condition of constitutive MYC expression. We argue here that plasticity is not an immutable quality 
of a location in phenotypic space (i.e., a gene expression profile), but a functional state that may, for 
example, characterize the SCLC-Y archetype in treated human tumors and characterize the SCLC-A/A2 
archetype in ex vivo RPM tumor progression. While SCLC-Y cells had high plasticity in all of the tumors 
tested, further analysis is needed to clarify how they acquired this characteristic. It may be that SCLC-Y 
cells acquire stemness that is used by the tumor to invade surrounding tumors and subsequently 
transdifferentiate to seed metastases. Appropriate experimentation should be able to clarify this important 
point, which negates the existence of a single, immutable stem-like cell type in SCLC tumors, in favor of 
“stemness” as a functional state that can be adopted by any cell. Recently a PLCG2-expressing stem-like 
subpopulation was reported in a survey of human SCLC tumors.87 This stem-like cell may not be 
inconsistent with a diverse, stem-like functional state, since it was reported to be present across A, N, and 
P subtypes. Similarly, previously identified tumor propagating cells (TPCs) common to all SCLC tumors 
may fall into this stem-like functional state.  

We speculate that the plasticity of SCLC cells may derive from dysregulation of the innate plasticity 
in normal PNECs, believed to be the cell of origin for SCLC.1,2,88 After injury to the lung epithelium, PNECs 
can de-differentiate to perform repair tasks and regenerate club cells.3,89–91 This ability to reversibly 
(de)differentiate under injury suggests that non-genetic mechanisms allow cells to traverse phenotypic 
space from specialist PNECs, whose main task is chemosensory hypoxia detection and response,92–95 to 
generalist transit-amplifying populations,89,91 to specialist club cells, whose main task is secretion of 
protective proteins.96–100 SCLC cells can likewise transition from neuroendocrine to non-neuroendocrine 
subtypes through generalist phenotypes, as shown in the tumors analyzed here. Furthermore, in SCLC 
tumors and cell lines, generalist cells exhibit variable plasticity levels: in all cases, generalists span high 
plasticity states and low plasticity end states, and the average level of plasticity of generalists in each case 
varies with respect to that of specialist cells (Figures 5 and 6). SCLC generalist cells therefore appear to 
be a highly adaptable cell state, poised to become plastic in response to perturbations, such as treatment or 
changes in microenvironmental conditions. These cells may therefore correspond to the transit-amplifying 
population of de-differentiated PNECs that arise after club cell injury.91 

The current standard-of-care for SCLC, i.e., chemotherapy and/or radiation, is predicated upon 
targeting highly proliferative cells. However, this treatment inevitably results in resistant relapse. The large 
amount of highly plastic cells we detected in SCLC cell lines and tumors (Figure 5, 6, and 8) suggest that 
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plasticity may drive resistance in SCLC. The phenotypic continuum also shows that plasticity enables 
SCLC cells to trade off cancer hallmark-related tasks, which translates to high level of adaptability to 
diverse microenvironments. Thus, plasticity may also be responsible for SCLC aggressive traits, such as 
local invasion and early metastatic spread. Plasticity itself, then, should be considered as an effective target 
for SCLC treatment. For example, we found that human tumors have plastic SCLC-A and SCLC-A2 cells 
that can transition to a non-neuroendocrine subtype. A strategy to restrict this movement of SCLC-A cells 
could be silencing MYC, a destabilizing factor for ASCL1-driven phenotypes (i.e., it increases their 
plasticity) previously implicated in SCLC acquired resistance. We therefore propose a paradigm shift for 
SCLC treatment towards targeting plasticity. Inhibition of phenotype switching has been suggested as a 
target for therapy in other cancer types, such as breast cancer and melanoma.20,71,101–104 For SCLC, we point 
to epigenetic strategies that can be derived from analyses of TF network dynamics, such as the MYC 
inhibition strategy proposed in Figure 8. Given the primary role of TFs in driving SCLC phenotype, as 
well as transitions across the phenotypic continuum, SCLC should be a prime candidate for epigenetic 
therapy targeted to plasticity.  
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Methods 

Bulk SCLC Cell Line RNA-seq Data Preprocessing 

Bulk RNA sequencing expression data on SCLC cell lines was taken from two sources: 50 cell 
lines were taken from the Cancer Cell Line Encyclopedia,105,106 and 70 cell lines (not including H69 
variants) were taken from cBioPortal107,108 deposited by Dr. John Minna (2017). 29 cell lines overlapped 
between the datasets, so a “c” (CCLE) or “m” (Minna) was used to denote the source of each cell line. Each 
dataset was filtered and normalized independently and then batch corrected together. For each source, genes 
and cell lines with all NAs were removed, as well as mitochondrial genes. The counts data is then 
normalized by library size and transcript abundance to TPM values. The two datasets were combined using 
overlapping genes and log-transformed, and genes with low expression across all samples were removed 
(cutoff of log(TPM) >= 1). The two datasets were then batch corrected using the sva R package, which 
includes a COMBAT-based integration method.109,110 SVA, or surrogate variable analysis, uses a null model 
and a full model to derive hidden variables, such as batch, that may contribute to gene expression variance 
across samples. The four SCLC TF factors that define broad subtypes— ASCL1 (A), NEUROD1 (N), 
YAP1 (Y) and POU2F3 (P)— were used to align the two datasets to each other.  Batch-corrected 
distributions of gene expression are shown in Supplemental Figure 1. The resulting dataset contained 120 
samples and 15,950 genes.  

For labelling cell lines by subtype cluster (Supplemental Figure 2A), hierarchical clustering with 
the Spearman distance metric was calculated using the R function hclust and cluster cutoffs were 
determined manually. Cell lines previously characterized as SCLC-A28 comprised two branches of the 
dendrogram separated by SCLC-N cell lines, most likely due to the dual positivity of ASCL1 and 
NEUROD1 in some SCLC-A cell lines. Cell line H82 (from both data sources) was considered 
“unclustered,” as it has previously28 been considered an SCLC-N cell line (with positive expression of 
NEUROD1) but was clustered with SCLC-Y cell lines here. As shown in Figure 3A, H82 falls in between 
SCLC-Y and SCLC-N archetypes, corroborating our conclusion that clustering cannot adequately describe 
all cell lines.  

To quantify the goodness of fit for clustering, internal validation metrics were computed using the 
R package clValid (Supplemental Figure 2B).111 Data was clustered into k=[2,6] clusters using 
hierarchical, k-means, and pam methods. Optimal scores for the Dunn Index were calculated with two 
clusters using hierarchical clustering. Because we know from previous literature that more than two SCLC 
subtypes exist, this suggests that the additional subtypes are not well separated. 

Principal Component Analysis (PCA) was run on the bulk RNA-seq dataset using the R prcomp 
function. The R package factoextra was used to visualize percentage explained variance for each principal 
component up to 30. The elbow method on explained variance per component was used to choose 12 
principal components for downstream analysis (Supplemental Figure 2C). The top 12 principal 
components were able to explain ~50% of the variance in the dataset, suggesting a low-dimensional 
representation of the data was possible. 
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Archetypal Analysis using PCHA 

Using an AA method known as Principle Convex Hull Analysis (PCHA),37 we found a low-
dimensional Principal Convex Hull (PCH) for the dataset. The convex hull is the minimal convex set of 
data, which can be thought of as a rubber band that “wraps” around the dataset (Supplemental Figure 3A, 
top). The PCH is a subset of the convex hull that comprises a set of vertices, or archetypes, still able to 
capture the shape of the data. By comparing the convex hull to the PCH, one can determine how well a 
low-dimensional shape fits the dataset, and thus ascertain the optimal number of vertices, or archetypes, 
that define the shape.  

Archetypal Analysis was done using the Matlab package ParTI.55 To determine the best k, where k 
equals the number of archetypes, the function Parti_lite was used, varying k from 2 to 12. As suggested by 
ParTI based on the explained sample variance for each number of archetypes (Supplemental Figure 2C), 
5 was chosen for k, which is consistent with the current literature on SCLC subtypes. The function ParTI 
was then used for the full analysis with parameters: dim = 12 (dimensions) and algNum = 5 (PCHA59) to 
find the location of the archetypes in gene expression space. Empirical p-values were computed by 
comparing the ratio of the polytope volume to that of the convex hull (t-ratio), the shape made with the 
constraint that all data must be contained inside it. This t-ratio is then computed on bootstrapped shuffled 
samples 1000 times to generate a background distribution to determine if the shape of the data is 
significantly different from a cloud of points. The p-value is the fraction of random t-ratios that are equal 
to or higher than the observed t-ratio. This p-value = 0.034, suggesting that 5 archetypes fit the data well. 
Errors were then calculated on each archetype location by sampling the data with replacement and 
calculating the archetypes on the bootstrapped data sets (1000 times, Supplemental Figure 2D). Error on 
the archetypes gives an idea of the variance in archetype position expected, and a smaller variance suggests 
the archetype is robust to outlier samples. 

Enrichment of subtype labels was determined using the ParTI function DiscreteEnrichment. Cell 
lines were binned into 10 bins according to distance from each archetype. For each subtype label (from 
hierarchical clustering above), the percentage of labels in the bin closest to the archetype was compared to 
the percentage in the rest of the data using a hypergeometric test. Enrichment was considered significant, 
as it was for all five subtypes, if the bin closest to the archetype was maximal for that label and the FDR-
corrected p-value for the hypergeometric test was significant (Benjamini-Hochberg, q < 0.1). These results 
are shown in Supplemental Table 1. 

Gene expression and ontology enrichment at archetype locations 

To find genes and gene sets enriched by each archetype, we tested the enrichment of each feature 
on the bin closest to archetypes versus the rest of the data. For each archetype, data was separated into 10 
bins according to the distance from the archetype (12 samples in each bin). The ParTI function 
ContinuousEnrichment was used to analyze gene expression of all 15,950 genes (Supplemental Table 5) 
and gene sets downloaded from MSigDB on October 14, 2020: Hallmark gene sets (H; h.all.v7.2.symbols) 
and biological process ontology gene sets (C5; c5.go.bp.v7.2.symbols), as well as Cancer Hallmark Gene 
Sets (Supplemental Tables 2-4). Gene sets are transformed into a matrix using the function 
MakeGOMatrix such that each row is a sample, each column represents an MSigDB category, and 
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expression values represent the average expression of genes belonging to that MSigDB category. Similar 
to discrete feature enrichment above, data was binned into 10 bins according to distance from each 
archetype. The expression of each feature was compared between the closest bin to each archetype and the 
rest of the data using a Mann-Whitney test (FDR-corrected p-value, q<0.1). 

Gene signature matrix generation 

After testing each gene with a Mann-Whitney test as described above, genes that are not maximal 
close to an archetype or with a p-value higher than 0.05 are considered insignificant and are removed from 
the analysis. Remaining genes are assigned to the archetype for which the mean difference (log-ratio) of 
log-transformed gene expression in the closest bin to the archetype compared to rest is highest 
(Supplemental Figure 3A, middle). The matrix (with size [G, n], where G = total number of genes and n 
= number of archetypes) is populated with the archetype gene expression profiles (i.e. the average location 
in gene expression space after bootstrapping the archetype analysis). To reduce the size of the gene matrix 
and choose the most salient genes for each archetype, an algorithm is used to optimize the condition number, 
or stability, of the matrix (Supplemental Figure 3A, bottom). The condition number of the matrix is the 
value of the asymptotic worst-case relative change in output for a relative change in input. Minimizing this 
value ensures that genes that do not well-distinguish between the archetypes are not included in the matrix. 
With genes sorted by mean difference for each archetype, the top g genes are chosen for each archetype, 
with g ranging from 20 to 200. For each g, the condition number of the matrix is calculated using the Python 
function cond from numpy.linalg using the 2-norm (largest singular value, p = 2). The gene signature matrix 
size with the lowest condition number, which includes g* genes, is chosen. For our archetypes, g* = 21, so 
the resulting size of the gene signature matrix is [g* x n, n] = [105, 5] (Supplemental Figure 3B and 
Supplemental Table 6). This method can be extended to other sorted lists of genes, such as genes sorted 
by adjusted p-value in an ANOVA test between archetypes. For SCLC, the gene signature included the four 
consensus TFs: ASCL1, NEUROD1, POU2F3, and YAP1 (Supplemental Figure 3C). Myc is shown in 
Supplemental Figure 3C as an example of a gene that has been found to be important for SCLC phenotype 
characterization but is not included in the gene signature because it does not define a single archetype, with 
expression that spans several archetypes (SCLC-N, SCLC-P, and SCLC-Y). 

Single cell RNA sequencing: experimental methods for cell lines 

Eight SCLC human cell lines from the bulk data above were chosen for single cell RNA-
sequencing. We chose two cell lines from each neuroendocrine subtype (A: H69 and CORL279, A2: 
DMS53 and DMS454; N: H82 and H524) and one cell line from each non-neuroendocrine subtype (P: 
H1048; Y: H841) (Figure 2A). This approximates the distribution of subtypes seen in bulk tumor data, 
where most tumors are largely neuroendocrine. 11 We also aimed to pick cell lines that ranged in their 
distance from their “assigned” archetype, to better understand intermediate samples as compared to ones 
close to an archetype location.  

In preparation for single cell RNA-sequencing, cells were washed with PBS three times, and then 
the cells were counted and concentration was adjusted to 100 cells/μL. Droplet-based single cell 
encapsulation and barcoding was performed using the inDrop platform (1CellBio), with an in vitro 
transcription library preparation protocol.112 After library preparation, the cells were sequenced using the 
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NextSeq 500 (Illumina). DropEst pipeline was used to process indrops scRNA-seq data and to generate 
count matrices of each gene in each cell.113 Specifically, cell barcodes and UMIs were extracted by dropTag, 
reads were aligned to the human reference transcriptome hg38 using STAR,114 and cell barcode errors were 
corrected and gene-by-cell count matrices and three other count matrices for exons, introns and exon/intron 
spanning reads were measured by dropEst. Spliced and unspliced reads were annotated and RNA expression 
dynamics of single cells were estimated by velocyto.80 

Single cell RNA sequencing: experimental methods for tumors 

The two human SCLC tumors were collected in collaboration with Vanderbilt University Medical 
Center. Tumor #1 was a relapsed tumor collected via bronchoscopy with transbronchial needle aspiration 
of a left hilar mass. Tissue was washed in an RBC lysis buffer, passed through a 70 μm filter, and washed 
in PBS. Cells were dissociated with cold DNAse and proteases and titrated every 5-10 minutes to increase 
dissociation. Cells were then filtered with a 40 μm filter, washed, and droplet-based single cell 
encapsulation and barcoding was performed using the inDrop platform (1CellBio), as described above 
(Single cell RNA sequencing: experimental methods for cell lines). The tumor was then sequenced on a BGI 
MGI-seq. Human tumor #2 was stage 1B SCLC tumor with a mixed large cell neuroendocrine component 
treated with etoposide and cisplatin and was surgically removed via right upper lobectomy. Tumor was 
immediately placed in cold RPMI on ice for dissociation. Droplet-based single cell encapsulation and 
barcoding was then performed using the inDrop platform (1CellBio), as described above (Single cell RNA 
sequencing: experimental methods for cell lines). Cells were prepared for sequencing using TruDrop and 
sequenced on Nova-seq.  

Single cell RNA sequencing: preprocessing 

Single cell RNA-seq counts matrices were analyzed using the Python packages Scanpy and 
scVelo.81,115 For the cell lines (Supplemental Figure 4), the data was subset randomly to 20% of the original 
data for computational efficiency, leaving 17298 cells. We batch corrected the cell line samples using 
scanorama,116 with default parameters and the “approximate” solver, because this method can integrate 
multiple samples even if they do not all share a common subpopulation. Using the function correct_scanpy 
with return_dimred = True, the corrected dataset was used to generate PCA dimensionality-reduced 
embeddings for visualization. Un-batch-corrected data was used for downstream analyses such as 
subtyping, neighborhood identification and RNA velocity, and plasticity calculations. 

For all of the datasets—8  cell lines (Supplemental Figure 4) vs 6 RPM time points & 7 GEMMs 
(Supplemental Figure 5) vs 2 human tumors (Supplemental Figure 6)—cells were filtered using Scanpy’s 
filtering and normalization functions with a threshold of 200 minimum genes per cell and 3 minimum cells 
per gene, and log-transformed. We used Scanpy’s score_genes_cell_cycle function to regress out cell cycle 
effects. For all samples, we predicted cell doublets using Scrublet.117 
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Bulk gene signature subtyping of single cells 

In order to apply the gene signature matrix (Supplemental Table 6) to single cells, we first 
subsetted the data to the genes in the archetype signatures. Due to dropouts, the intersection of genes from 
the signatures and the single cell data may be less than the full signature (105 genes), and we refer to this 
intersection as “shared genes.” We scale the gene signature and the single cell gene expression data by the 
L2 norm for each archetype or cell, respectively, to remove differences caused by different platforms (bulk 
vs. single cell sequencing). Each archetype’s and each cell’s gene expression vector were therefore scaled 
to have a length of 1, so that the archetype space has basis vectors of length 1. For RNA velocity analyses, 
we scaled the velocity vectors by the associated gene expression norm for each cell, so that the velocity 
vector was scaled the same way each cell’s gene expression vector was scaled. We then used least squares 
approximation to transform each cell into archetype space by solving Ax = b, where A is the signature 
matrix (shared genes g by subtypes s) and b is the single cell matrix (shared genes g by cells c). This is 
solved using numpy.linalg.lstsq to generate a “pattern matrix” x (subtypes s by cells c). Cells with a 
maximum signature score greater than 0.5 were considered specialists for that subtype. Cells with a 
maximum signature score of less than 0.1 (i.e., all five archetype scores are less than this threshold) were 
considered unclassified. An example in two dimensions is shown in Supplemental Figure 4D. These cells 
with low scores may be due to cells that have transformed into phenotypes far from the defined SCLC 
archetype space. Notably, the number of unclassified cells in cell lines and GEMMs (tumors) was 
negligible, while the RPM time series had increasing amounts over time, and the human tumor with an 
LCNEC component had a large proportion of unclassified cells.  

Visualization of Single Cells in Archetype Locally-Linear Embedding 

To visualize subtype scores for individual cells, we use Locally-Linear Embedding (LLE)118 using 
the Python package scikit-learn. The LLE model estimates potentially nonlinear global structure using 
locally-linear fits to the data. For each sample, we use an LLE model with two components and the 
“modified” method to fit and transform 5 simulated cells, one for each archetype (e.g. [1,0,0,0,0] for an 
SCLC-A cell, [0,1,0,0,0] for SCLC-A2, etc.), into two dimensions, allowing for an archetype diagram 
where each vertex is an archetype signature. We use the same model to transform the archetype scores of 
the data into this space. To transform velocity vectors into this space, we use 5-dimensional archetype 
scores for velocity (described below) of each cell. Velocity grids are generated by binning the data 
according to the 2-dimensional LLE locations of the data and averaging over each bin.  

RNA Velocity Calculation and Analysis 

We interrogated the dynamics of SCLC cells and tumors by analyzing RNA velocity.80 RNA 
velocity uses a splicing model to predict directionality and magnitude of gene expression change in the near 
future for each cell sampled. We used the Python package scVelo to infer movement through the SCLC 
phenotypic continuum for each cell line independently.81 A neighborhood graph (adjacency matrix) and 
first-order moments were calculated using scvelo.pp.neighbors and scvelo.pp.moments, respectively. We 
used ScVelo’s deterministic velocity method with samples grouped independently (using groupby) within 
sets of data where the samples are independent of each other: human cell lines, human tumors, and GEMMs 
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(TKO and RPM tumors), while RPM time series samples were calculated together. This allowed us to 
compute velocity independently for appropriate samples, while still using the neighbors in each full dataset 
for downstream analyses. We then computed velocity graphs, confidences (coherence of velocities), and 
velocity lengths.  

Cell Transport Potential Calculation and Analysis 

While plasticity has been discussed in the context of differentiation89,119–127 and cancer17,21–

23,25,47,71,120,123,128–134 many times, it has not been rigorously quantified for individual cells. In quantifying 
plasticity, we wanted to capture the local likelihood of phenotypic transition (that is, change in gene 
expression profile) for each transcriptional state sampled. Furthermore, we would like to take into account 
size and variance of the phenotypic change. Colloquially, “plastic” cells, such as stem cells, generally are 
considered plastic because they have at least one of these characteristics: they are poised to change their 
gene expression profile by a large amount (differentiation potency), and/or they are able to change into 
multiple different end states (multipotency). We argue below that these types of plasticity are captured by 
the theoretic notion of a phenotypic landscape. The phenotypic landscape can be quantified using a 
population balance analysis, as shown in work from Klein and coworkers.135 The fundamental equation for 
this analysis begins by considering the dynamics of cell density across a landscape as a function of cell flux 
through that landscape and cell accumulation and loss due to proliferation or death.  

Because multiple dynamics could potentially explain the same cell density distribution, we 
constrain the solution using a set of reasonable assumptions, as is done in Weinreb et al.135 For example, 
we make the assumption that hidden features, or any cell measurements besides transcriptomics such as 
DNA methylation, do not impact cell fate over multiple state transitions through the landscape. In a more 
complete model that includes these complementary ‘omics, we would be able to deconvolve multiple 
superimposed dynamic processes, which could explain the incoherent velocity directionality sometimes 
seen in RNA velocity analysis.80,81,135 Instead, we must assume that the transcriptomics state dynamics are 
fully captured at each state by splicing dynamics at the point of sampling, and that a cell’s fate can be 
predicted based on its multi-step path through other defined gene expression states.135–137 This assumption 
guarantees that measured transcriptomics can fully encode a probability distribution of cell states, and thus 
that the process we are modeling is Markovian. As such, the dynamics of our system can be encoded as a 
biased random walk that includes both cell state stochasticity and deterministic movement through the 
landscape. We also assume that there are no oscillations, such as cell cycling, which is common in trajectory 
inference methods.135 Weinreb et al. found that useful predictions may still be made with this assumption, 
particularly in cases where oscillations such as changes in cell cycle genes are orthogonal to the process we 
are interested in.135 This implies that the velocity field is the gradient of a potential function and is the key 
to connecting velocity inference to the theoretical notion of a potential landscape. This potential can be 
decomposed into two terms: a “transport” term and a “constraint” term.135 The deterministic transport term 
counteracts sources and sinks in the landscape to keep the cell density in dynamic equilibrium and quantifies 
the average, and it assumes the stochastic diffusion matrix is zero such that there is no diffusion out of high-
density areas in gene expression space. As a proxy for this potential term, we calculate the Cell Transport 
Potential (CTrP). We consider transport to be an average movement over the landscape that ignores 
stochasticity. For this reason, CTrP is the expected value for the movement of each individual cell. More 
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formally, it is the expected distance of travel for a cell, weighted by the time spent in each other cell state 
before absorption (reaching an end state). The method is detailed below. 

CTrP is a measure of the average distance a cell may travel according to its RNA velocity.80 For each 
independent sample (untreated or treated), we ran the following pipeline: 
1. Using RNA velocity calculated as described above, and for each category (‘treatment’), compute a 
Markov Chain Model transition matrix. This is calculated using an adapted version of ScVelo’s 
transition_matrix function, in which transition probabilities between each two cells, i and j, is calculated 
from the velocity graph pairwise. Each entry is a probability describing the likelihood of moving from state 
i to state j, and each row is the probability distribution of transitions from state i. RNA velocity is compared 
to distances between other cells to get a pairwise cosine correlation matrix (velocity graph). A scale 
parameter (default 10) is used to scale a Gaussian kernel applied to the velocity graph, restricted to 
transitions in the PCA embedding. This transition matrix, T, has dimensions nxn, where n = number of 
cells. It is then normalized to ensure each row adds to 1 (because each row is the probability of cell i 
transitioning to any other cell j, which should total 100%. Diffusion for T is scaled to 0 (i.e., ignored). 
2. Calculate absorbing states (end states) using eigenvectors. Eigenvalues are calculated for the 
transition matrix. Any eigenvalue l = 1 (here, with a tolerance of 0.01), is associated with an end state 
distribution (eigenvector v); i.e., T(v) = lv implies that a distribution of states v will not change under further 
transformation (transitions) from T. If the Markov Chain is an absorbing Markov Chain, it will contain both 
transient states (t = number of transient states, where T(i,i) < 1), and absorbing states (r = number of 
absorbing states, where  T(i,i) = 1). For every absorbing state in the matrix, there will be an associated 
eigenvalue/vector pair, with l =1, because any initial configuration of states will continue to evolve until 
every cell has reached an absorbing state. Therefore, the multiplicity of l = 1 is equal to the number of end 
states (absorbing states, or irreducible cycles). The associated eigenvectors v thus correspond to the 
absorbing states in the Markov Chain, within the tolerance of 0.01. 
3. Calculate the fundamental matrix. In an absorbing Markov Chain, it is possible for every cell to reach 
an absorbing state in a finite number of steps. Let us rewrite T, the transition matrix, as P:  

 
where Q is a t X t matrix, R is a non-zero t x r matrix, 0 is an r X t zero matrix, and Ir is an r X r identity 
matrix. Thus, Q describes the probability of transitioning between transient states, and R describes the 
probability of transitioning from a transient state to an absorbing state. The fundamental matrix N of P 
describes the expected number of visits to a transient state j from a transient state i before being absorbed. 
Because the Markov Chain is absorbing, this number is the sum for all k of Qk (k in (0, inf)): 
 Because Qk eventually goes to the zero matrix (all cells are absorbed), this sum converges for all absorbing 
chains. Furthermore, each rowi of the fundamental matrix describes the expected amount of time spent in 
state j starting from state i, and thus the row can be thought of as a distribution of weights associated with 
each state j for each starting state i. N is calculated as written above: the inverse of Q subtracted from the 
identity matrix. In practice, Numpy’s function numpy.linalg.inv(I-Q) is used to calculate N.  If, however, 
the determinant of I-Q = 0, which occurs when I-Q is a singular matrix, the pseudoinverse is instead 
calculated using numpy.linalg.pinv(I-Q). 
4. Calculate a distance matrix. A distance matrix D (n X n) is then calculated using scipy’s function 
scipy.spatial.distance.cdist. Here, we calculate the Euclidean distance on the PCA embedding of each 
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sample. Because PCA is a linear transformation, it preserves the Euclidean distance metric between states 
while reducing extraneous noisy dimensions, increasing the efficiency of the calculation. Distance may also 
be calculated directly on nonlinear dimensionality reduction techniques, such as UMAP and tSNE, but these 
distances tend to break down for samples that are highly discontinuous (discrete clusters) and should only 
be applied to continuous data that falls on a single manifold. 
5. Calculate Cell Transport Potential. Finally, CTrP is calculated as the inner product of fundamental 
matrix N, and the distance matrix D. This gives an expected distance (sum of distances to j from i, weighted 
by time spent in j before absorption). 

The advantage of this metric over similar techniques, such as pseudotime and other trajectory inference 
metrics, is that CTrP is an expected distance in linear (PCA) space, which can be compared across samples 
(assuming they have been embedded in the same PCA). In other words, unitless measures such as 
pseudotime cannot be compared between samples because their scales are arbitrary; alternatively, CTrP has 
a scale set across all samples, dependent only on transformations of the data itself (such as log-
normalization and PCA). 

Testing CTrP as a Metric for Plasticity 

To test this metric, we applied it to two different well-studied differentiation datasets: two 
developmental time points (P12 and P35) of the dentate gyrus of the hippocampus138 and embryonic day 
15.5 of endocrinogenesis.139 In the dentate gyrus, RNA velocity clearly shows continuous differentiation 
pathways from radial glia-like cells through neuronal intermediate progenitor cells (nIPC) to some of the 
cell types, such as neuroblasts. Other differentiated cell types, such as oligodendrocytes (OL), are 
disconnected from the main “island” in the UMAP. Using our CTrP analysis, we can place these cells in 
order of plasticity to find that radial glia-like cells and astrocytes have very high plasticity; and microglia, 
OL, and mature granule cells have low plasticity. This corresponds well with the differentiation program 
found in Hochgerner et al.138 Radial glia-like cells are neuronal stem cells; neuroblasts and nIPCs were 
identified as transient cell types, which is concordant with their intermediate CTrP levels; and fully mature 
granule cells show low plasticity. Interestingly, astrocytes showed high plasticity in this analysis, which 
has been confirmed in several other studies and may be due to the immaturity of the astrocytes in early 
development sampled here.138,140,141 For the pancreatic cell differentiation dataset, we found that 
ductal/endocrine progenitors have high plasticity, as expected, and beta cells represented a terminal state 
with significantly lower CTrP values (Supplemental Figure 9). While alpha, delta, and epsilon cells are 
also differentiated cell types, our analysis shows these cell states have slightly higher plasticity than beta 
cells, consistent with the original findings in the paper that at stage E15.5 the majority of progenitors 
showed velocities toward beta cells. Furthermore, alpha cells may be capable of serving as progenitors for 
beta cells as well.142–144  

Single Cell Network Inference using BooleaBayes 

In order to explain our expanded dataset analyzed here, we updated the network structure from 
Wooten et al. to include MYC and NEUROD1. The updated network structure included 2 new TFs with 43 
new edges between them, derived from ChIP-seq databases as detailed previously. Methods for predictions 
of regulators, stability, and reprogramming strategies are detailed in Wooten et al.28 
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Main Figures 
Figure 1: Analysis pipeline.  

A. Is the SCLC phenotypic landscape discrete or continuous? Archetype analysis (AA) and 

single cell subtyping are used to determine the geometry of the gene expression space for 

SCLC phenotypes. AA defines tasks optimized by each archetype that cells must tradeoff 

between. Single cell RNA sequencing data is then placed within this framework using a 

novel subtyping method.  

B. How do individual cells move within the SCLC phenotypic landscape? Using RNA 

velocity, a Markov Chain model defines likelihood of transitions between cell states in the 

landscape. Cell transport potential (CTrP) is calculated as the expected distance of travel 

for each cell in gene expression space.  

C. How do we control plasticity within the SCLC phenotypic landscape? Using TF network 

analysis with BooleaBayes, we investigate the structure of the network and inferred rules 

of interaction between nodes. Network simulations show likely paths of transition under 

normal dynamics of the system, which can be used to efficiently trade-off between 

archetype tasks. 

 

Figure 2: PCA and Archetype Analysis on SCLC Cell Line Bulk RNA-Seq Data. 

A. PCA of bulk RNA-seq on 120 cell lines showing the first two components. Cells are 

colored according to subtype clustering from Supplemental Figure 2A. 

B. PCHA shows 5 archetypes fit the cell line data well (p = 0.034). Each archetype location 

is enriched in one or more cancer-related tasks and corresponds to a previously defined 

subtype (A = orange, A2 = teal, N = yellow, P = blue, or Y = pink). 

C. Subtype label enrichment by distance from each archetype. Data was binned according to 

distance from each archetype (x-axis), and enrichment of each subtype label (y-axis) was 

computed using a hypergeometric test. Enriched subtypes are highest at X=0, in the bin 

closest to one of the archetypes, and lowest near all other archetypes. Each archetype shows 

enrichment in one of the five SCLC subtypes from literature.  

 

Figure 3: Single Cell Subtyping on 8 SCLC Cell Lines that Span the Phenotypic Space. 

A. Cell lines for scRNA-seq were chosen to span the phenotypic space of SCLC. Two cell 

lines from each neuroendocrine subtype (A, A2, and N) were chosen, and one from each 

non-neuroendocrine subtype (P and Y) was chosen. 

B. Locally linear embedding (LLE) of subtype composition for each cell line. As detailed in 

Methods, cells were scored using a least squares approximation method and embedded in 

two dimensions using LLE. Each cell line fills a different region of SCLC phenotypic 

space.  

C. LLE of subtype scores by cell line. Vertices in each figure represent one of the 5 archetypes. 

Cells with a maximum score greater than 0.5 were assigned to the corresponding subtype. 
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Cells with a mix of positive scores between 0.1 and 0.5 were assigned a label of 

“generalist,” and cells with scores less than 0.1 for all archetypes were assigned a label of 

“None.” LLE allows for a reduction in dimensionality from five subtype scores to two 

dimensions and shows that each cell line spans a continuum of generalists between at least 

two subtypes. 

 

Figure 4: Single Cell Subtyping on Human and Mouse Tumors. 

A. Similar to Figure 3C, LLE plots for each human tumor. Stacked bar plots show overall 

composition of each sample, including generalist and unclassified cells. The human tumors 

show distinct subtype composition; Tumor 1 comprises SCLC-A and SCLC-A2 cells and 

NE generalists, while Tumor 2 is mostly SCLC-Y cells and non-NE generalists. These two 

tumors demonstrate the high level of inter-tumoral and intra-tumoral heterogeneity of 

SCLC. 

B. LLE plots for each TKO tumor. These three tumors are largely similar, with varying 

proportions of SCLC-A, SCLC-A2, and SCLC-P specialists. TKO1 has the largest 

proportion of SCLC-A2 cells and the fewest unclassified cells. TKO2 and TKO3, which 

are derived from the same mouse, have very similar profiles, with slight differences in the 

proportion of SCLC-N, SCLC-P, and SCLC-Y cells.  

C. LLE plots for each RPM tumor. Each RPM tumor is composed of SCLC-A and SCLC-Y 

specialists, with varying proportions of generalist cells. RPM1 has the largest proportion 

of SCLC-A cells, concordant with results from the original paper suggesting this tumor 

falls early in pseudotime inferred from the trajectory between SCLC-A, SCLC-N, and 

SCLC-Y.47 RPM 2-4 have more SCLC-Y cells, which is expected for tumors that fall later 

along the same trajectory. 

 

Figure 5: Plasticity of Human Cell Lines. 

A. RNA velocity by cell line in SCLC archetype space. Using the same LLE from Figure 3, 

single cells from human cell lines are embedded into archetype space, defined by 5 SCLC 

archetype vertices. Center plot shows average velocity for each cell line, with length of 

arrow corresponding to magnitude of the average velocity vector. All cell lines show low 

average velocity, suggesting little movement of the population within archetype space, 

consistent with the relative consistency of cell line populations over time. Each cell line is 

also shown individually, overlaid with a velocity grid that averages velocity within small 

neighborhoods of the graph. While some cell lines, such as H841 and H1048, show small 

amounts of directed movement (away from SCLC-Y, in both cases), several other cell lines 

show little coherence of movement across archetype space. 

B. Cell transport potential (CTrP) for human cell lines. CTrP is a measure of plastic potential 

for individual cells based on an RNA-velocity-derived Markov Chain model. Higher CTrP, 

shown by color of data points in archetype space, signifies a higher expected distance of 

travel in gene expression space. Overall, SCLC-Y and generalist cells have higher CTrP, 
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though the full range of CTrP values can be found in virtually every region (archetype 

specialists or generalists) of the archetype space (Supplemental Figure 10). 

C. CTrP by phenotype. Generalists, unclassified cells, and SCLC-Y specialists show 

significantly higher plasticity than the remaining phenotypes. Overall, plasticity values are 

relatively low, ranging from around 3.5 at high-plasticity root cells to 0 at absorbing end 

states that are present in every specialist type (Supplemental Figure 10) (t-test, **** p-

value < 0.0001, ns = not significant). 

 

Figure 6: Plasticity of Human and Mouse Tumors. 

A. CTrP analysis of human tumors. Human tumors show little directed movement across the 

archetype space according to RNA velocity (Supplemental Figure 11), but CTrP analysis 

shows clear dependence of plasticity on subtype. SCLC-Y cells have higher plasticity than 

most other cell types, followed by SCLC-P and SCLC-N specialists.  

B. CTrP analysis of TKO mouse tumors. Similar to human tumors, TKO mouse tumors do 

not have coherent RNA velocity fields (Supplemental Figure 12), but CTrP shows clear 

dependence of subtype, with SCLC-Y cells significantly more plastic than all other cell 

types. 

C. CTrP analysis of RPM mouse tumors. RNA velocity fields show slight movement towards 

the SCLC-N archetype in some of the RPM tumors (Supplemental Figure 13). CTrP 

analysis reveals that SCLC-Y cells are the most plastic (t-test, **** p-value < 0.0001, ns 

= not significant). 

 

Figure 7: Single Cell Subtyping on RPM Time Series  

 

A. LLE plots of archetype scoring for RPM time series. Subtype composition drastically 

changes over the RPM time course, with early time points dominated by SCLC-A/A2/N 

mixed (generalist) cells and later time points increasing in SCLC-Y and unclassified cells. 

Contour plots show a shifting population of generalists that moves from NE regions 

between SCLC-A, -A2, and -N archetypes towards SCLC-Y, and finally toward a semi-

stable equilibrium between SCLC-A and SCLC-Y.  

B. Stacked bar plots show overall composition change from NE specialists and generalists to 

non-NE cells, with an increasing proportion of unclassified cells after day 11.  

C. Archetype scores across time points show that early time points have higher SCLC-A, -

A2, and -N scores. Day 11 shows the highest average SCLC-Y scores, consistent with the 

LLE plots in A. By days 14-21, cells have low but relatively consistent levels of all subtype 

scores, consistent with the increase in generalist and unclassified cells in B. 

 

Figure 8 

A. (Left) RNA velocity of RPM time series data. In the first two timepoints (days 4 and 7), 

the cells do not show significant directed movement across archetype space. By day 11, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2021. ; https://doi.org/10.1101/2021.01.22.427865doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427865


34 

gene expression for a large proportion of the population of cells increases in the SCLC-N 

signature, shown as movement toward the SCLC-N archetype. Days 14-21 show changes 

to the direction of this average movement, with velocity that is redirected towards the 

SCLC-Y archetype by the end of the time series. (Right) Average velocity of time series 

by time point. Days 4 and 7 show small average velocity vectors from SCLC-A2 towards 

SCLC-N, which greatly increases by day 11. Day 11 shows the highest average velocity of 

any time point. Days 14 to 21 show less average movement directed towards the SCLC-Y 

archetype. 

B. (Top) Cell transport potential (CTrP) for all cells across RPM time series. Cells closer to 

neuroendocrine archetypes A and A2 have higher plasticity, which correspond to earlier 

time points. (Bottom) CTrP decreases over time, consistent with cells that transition from 

earlier neuroendocrine phenotypes with high plasticity to later non-neuroendocrine 

phenotypes with low plasticity. End states, where CTrP is 0, arise in the last three time 

points and tend to fall between A, A2 and N as generalist cells (Supplemental Figure 
15C). Plasticity does not significantly change between days 4 and 7 and days 14 and 17 (t-

test, **** p-value < 0.0001, ns = not significant). 

C. CTrP by phenotype of all six time points combined. SCLC-N and SCLC-A2 cells have the 

highest plasticity on average. SCLC-Y cells have significantly lower plasticity than these 

neuroendocrine specialists, and generalists and unclassified cells show the lowest plasticity 

on average, though generalists also show the greatest variability (t-test, * p-value <0.05, 

*** p-value < 0.001, **** p-value < 0.0001, ns = not significant). 

D. When restricted to cells from the last time point (day 21), the plasticity of each phenotype 

is more similar to in vivo RPM tumors (Figure 6C). SCLC-Y cells in the last time point 

show significantly higher plasticity than other cell types, with SCLC-A cells showing the 

lowest CTrP values on average. 

E. In silico destabilization of neuroendocrine specialists by MYC activation. Using 

BooleaBayes simulations, we determined the effect of MYC activation on the stability of 

different phenotypes. By counting the number of steps a random walk takes to leave the 

basin of attraction for a specific state, we can quantify the destabilizing effect of any 

perturbation. We repeated the random walks for 1000 iterations to generate a distribution 

of the number of steps it takes to leave each basin. Fewer steps to leave suggests that the 

perturbation has a destabilizing effect, while more steps to leave suggests a stabilizing 

effect. As shown, SCLC-A and SCLC-A2 states are significantly destabilized by 

constitutive MYC activation, suggesting it is capable of increasing plasticity in RPM 

tumors.  
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2. Main Tables 
Table 1: SCLC Archetype Gene, Gene Set, and Task Enrichment. This table details gene sets from 

MSigDB that are enriched in cell lines closest to each archetype by Mann-Whitney test on 

binned data (FDR q <0.1). Only features that are highest in the bin closest to archetype are 

considered. 

 

 

3. Supplemental Figures 
Supplemental Figure 1: Supplement to Bulk RNA-seq Preprocessing. 

A. Gene expression distribution before batch correction ... 

B. … and after batch correction for CCLE and Minna datasets. 

C. Cell line source in PCA. 

 

Supplemental Figure 2: Supplement to PCA and Archetype Analysis.  

A. Cell line clustering by hierarchical clustering (HC).  

B. Dunn Index calculated from internal validation tests. Dunn Index is a measure of the 

minimum inter-cluster Euclidean distance relative to the maximum intra-cluster Euclidean 

distance. A higher score signifies well-separated clusters. Dunn Index for hierarchical 

clustering with number of clusters k between 2 and 6 is shown for the cell line data (orange 

line) and twenty randomized datasets of the same size (blue lines). As shown, five clusters 

for the SCLC cell lines are comparable to that of randomized data, suggesting the clusters 

are well-separated. 

C. Explained variance by PCA components and archetypes. (Left) Explained variance by PCA 

components was used to determine the optimal number of components for downstream 

analyses. Here, 12 components were chosen based on the elbow of the curve. (Right) 

Explained sample variance by archetype number shows the amount of variance in the data 

that can be explained by different numbers of archetypes, where each data point is then 

some composition of archetype gene expression profiles. Five archetypes were chosen as 

suggested by ParTI. 
D. Error on archetype locations calculated using a leave-one-out method on the dataset. 

Relatively small error ranges suggest that the locations of the five archetypes are not 

dependent on outliers in the data. 

 

Supplemental Figure 3: Archetype Analysis and Signature Generation 

A. Pipeline for AA and signature generation. Archetype analysis is used to define archetype 

vertices that describe the shape of SCLC cell line RNA-seq data. Gene enrichment at each 

archetype is used to order genes according to importance in defining archetypes. Condition 
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number optimization determines the best number of genes to include in the archetype gene 

signature. See Methods for more details. 

B. Archetype Gene Signature for SCLC. Select genes are highlighted; all genes are reported 

in Supplemental Table 6. 

C. PCA plots of expression of specific genes (ANYP + MYC). Notably, ASCL1 and 

NEUROD1 expression overlap on the right side of the figure, and MYC expression is too 

dispersed to be considered a marker for a specific phenotype. Regions of high YAP1 and 

POU2F3 expression values are relatively compact, specific to a small region of gene 

expression space for human cell lines.  

 

Supplemental Figure 4: Single Cell RNA-seq on Cell Lines 

A. G2M and S-associated genes are scored based on average expression compared to average 

expression of a reference set. Scores are visualized using Locally Linear Embedding (LLE) 

and show that location of cells within the archetype plot is not dependent on cell cycle, as 

most cells show very low average expression of G2M or S phase-related genes.  

B. Predicted doublets using Scrublet are shown as bar plots for each phenotype (Detailed in 

C and Methods). Very few cells are predicted to be doublets, which are virtually 

unnoticeable in the bar plot. Critically, generalists are not significantly more likely to be 

doublets as shown in the table, which would have an intermediate expression profile and 

confound results. Black = predicted doublets, grey = not predicted to be a doublet.  

C. Boxplots of archetype scores using least squares approximation described in Methods. 

Scores generally range between 0 (no similarity) and 1 (cell is at archetype location in 

reduced gene expression space). Scores for each of the five archetypes range in values 

across cell lines, with higher archetype score distributions generally corresponding to the 

expected subtype according to hierarchical clustering (Supplemental Figure 2A). A few 

cell lines, such as H82, show high levels for multiple archetype scores (e.g., N, P, and Y). 

D. Two example scatterplots of archetype scores show classification of cells into specialists, 

close to a specific archetype, or generalists, which have scores < 0.5 for all five archetypes. 

(Left) SCLC-A vs. SCLC-A2 scores show two distinct populations of cells, one along the 

Y axis (SCLC-A) and the other showing a negative correlation between SCLC-A and 

SCLC-A2 scores. (Right) SCLC-N vs SCLC-Y scores show a trade-off between the two 

archetypes, with very few cells high in both scores. 

 

Supplemental Figure 5: Single Cell Preprocessing on Human Tumors 

A. Cell cycle scoring using G2M and S phase-associated gene lists. While some cells show 

higher average expression for G2M or S phase genes compared to human cell lines in 

Supplemental Figure 4A, most cells show low scores.  

B. Predicted doublets using Scrublet. Similar to human cell lines, very few cells are predicted 

to be doublets.  
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C. Archetype scores for each tumor. As expected from Figure 4A, Tumor 1 has higher scores 

for SCLC-A and SCLC-A2, while Tumor 2 shows higher scores for SCLC-N, -P, and -Y. 

Tumor 2 has an LCNEC component, which may contribute to its higher SCLC-Y score, as 

several studies have shown that SCLC-Y is most similar to non-SCLC lung cancer with 

lower neuroendocrine scores.28,31 

 

Supplemental Figure 6: Single Cell Processing on TKO Mouse Tumors 

 

A. Cell cycle gene scores for S and G2M-associated genes. Location in archetype space shows 

no correlation to cell cycle position, which range from S and G2M (cycling) to low scores 

for both gene sets (not actively cycling). 

B. Predicted doublets using Scrublet by phenotype. Very few cells are predicted to be 

doublets, shown in black. Critically, generalists are not significantly more likely to be 

doublets, which would have an intermediate expression profile and confound results.  

C. Archetype scores for each timepoint. The score for the SCLC-A2 archetype is higher in 

TKO1, while SCLC-A and SCLC-P scores are higher in TKO2 and TKO3. SCLC-N and 

SCLC-Y are low, on average, across all tumors. 

 

Supplemental Figure 7: Single Cell Preprocessing on RPM Mouse Tumors 

A. Cell cycle gene scores for S and G2M-associated genes. A majority of cells are not actively 

cycling, with low scores for both S and G2M genes. 

B. Predicted doublets using Scrublet. Similar to human cell lines and tumors, very few cells 

are predicted to be doublets.  

C. Archetype signature scores for each tumor. RPM1 has much higher SCLC-A scores, while 

SCLC-A2 scores are slightly higher in RPM3. SCLC-P is enriched in RPM2 and RPM4, 

and SCLC-Y is much higher in RPM 2-4 than RPM1. This suggests RPM1 is more 

neuroendocrine, and RPM 2-4 are more non-neuroendocrine. 

 

 

Supplemental Figure 8: Plasticity Pipeline. Steps for calculating Cell Transport Potential from 

RNA velocity on single cell data. 

- Step 1. A. RNA splicing model allows for prediction of future transcriptomic state for 

individual cells. B. Example of RNA velocity overlaid on neuronal differentiation using 

scVelo package (See Methods and Supplemental Figure 9 for more details). 

- Step 2: C. A Markov Chain model (MC model) is generated in which each sampled cell is 

its own state and can transition to any other state. Velocity-inferred MC models are 

generally absorbing chains in which end states (which transition to other states with 

negligible probability) constitute a steady state of the system. D. Example transition matrix 

for an MC model. E. Mock steady states of the system, showing the distribution across 

states in the chain. 
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- Step Three: F. Fundamental matrix of MC is calculated using the inverse of the transition 

matrix in E. For each state, this matrix defines the time spent in other states before 

absorption. G. Distances between all states are calculated on low-dimensional manifold 

(UMAP space) or linear PCA space. H. Transport potential is calculated as the dot product 

of proportion of time in each state (normalized to sum to 1 for each cell) and distance. I. 

Plasticity can be visualized on UMAP, as shown here, or other dimensionality reduction 

embeddings (such as LLE). 

 

Supplemental Figure 9: Test cases with known ground truth for CTrP pipeline 

A. Dentate Gyrus development UMAP with RNA velocity streams overlaid by scVelo. 

Significant, directed movement can be seen starting by progenitor cell types (Radial Glia-

like cells and nIPCs). Differentiation of these cells results in several easily distinguishable 

clusters representing different cell types. Cell type cluster labels are from scVelo dataset, 

originally described in Hochgerner et al. (2018).81,138 

B. PAGA velocity graph for Dentate Gyrus development. Cells are clustered by the Leiden 

clustering method, shown by color on plot. Dotted arrows signify clusters with high 

connectivity, and arrows show significant transitions between clusters. Of note, pink 

cluster 13 overlaps with progenitor cells and shows transitions to neighboring cell types. 

C. CTrP analysis shown by color scale, with black dots signifying absorbing end states for 

Markov Chain model. High plasticity cell types correspond to progenitor cells and 

immature astrocytes, while low plasticity end states fall in terminally differentiated regions 

of the UMAP.  

D. CTrP by cell type, ordered by median value. Progenitor cells show highest CTrP on the left 

side of the plot, with more differentiated cell types showing decreasing plasticity towards 

the right side of the plot. 

E. Endocrinogenesis process showing differentiation of ductal cells into pancreatic beta cells 

from Bastidas-Ponce et al.139RNA velocity streams overlaid on UMAP show trajectory of 

differentiation. 

F. PAGA velocity graph shows movement from early progenitors on the left to differentiated 

pancreatic cells on the right. 

G. CTrP analysis shown by color scale, with black dots signifying absorbing end states. High 

plasticity cells fall in the Ductal cell cluster, with decreasing plasticity along the trajectory 

to beta cells. 

H. CTrP by cell type, ordered by median value. End states with low plasticity are only found 

in the beta cell cluster. 

 

Supplemental Figure 10: Plasticity analysis for SCLC human cell lines 

A. (Left) Velocity length shows the magnitude of velocity in gene expression space for each 

cell. When compared to Supplemental Figures 11-13, we can see that these cells have 

lower velocities, possibly due to their consistent in vitro environments. (Right) Velocity 
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confidence shows coherence of velocities within a defined neighborhood for each cell. 

Higher confidence for a cell suggests that velocities for cells within a neighborhood are 

similar in direction to the cell. A majority of cells have confidence levels above 0.6. 

B. (Top) Absorbing states, as defined in Methods and Supplemental Figure 8B. Absorbing 

cells (end points) are shown as small black circles, while transition cells are gray. Large 

black circles provide archetype reference locations in LLE. (Middle) Distribution of 

absorbing states by phenotype. Most end states are generalists, reflective of the fact that a 

large proportion of cells in the cell lines are generalists. Every archetype specialist has 

associated absorbing states. (Bottom) Root cells from Markov Chain analysis show starting 

states by phenotype. Each phenotype except SCLC-A2 cells have root cells in human cell 

lines. 

C. CTrP by cell line. Most cell lines have two distinct subpopulations of high and low 

plasticity, and every cell line has end states with plasticity equal to 0. 

D. Scatterplots of CTrP values versus sum of archetype scores by cell line are shown with 

lines of best fit. Five archetype scores (one for each vertex: A, A2, N, P, and Y) are summed 

to give the overall similarity of each cell to SCLC archetype signatures. A negative trend 

was found for plasticity vs. archetype scores in every cell line, suggesting that cells less 

similar to SCLC archetypes (generalists and unclassified “None” cells) have higher 

plasticity.   

 

Supplemental Figure 11: Plasticity analysis for SCLC human tumors 

A. RNA velocity fields for human tumors. Neither tumor shows coherent directionality across 

the archetype space. 

B. (Left) Velocity length showing the magnitude of velocity for each cell shows slight 

dependence on location in archetype space. SCLC-P and SCLC-Y cells have higher 

velocity than other cell types, shown in the boxplot below the LLE plot. (Right) Velocity 

confidence shows little dependence on archetype space location, with a majority of cells 

having confidence above 0.6. 

C. Absorbing states shown in the LLE space. End states, shown as small black dots, are found 

across the archetype space between SCLC-A and SCLC-A2 archetypes. A large proportion 

of absorbing states are generalists. 

 

Supplemental Figure 12: Plasticity analysis for TKO mouse tumors 

A. (Left) Velocity length shows little dependence on location in archetype space. Similarly, 

no major patterns emerge between velocity length for each phenotype in the boxplot below 

the LLE plot. (Right) Velocity confidence shows little dependence on archetype space 

location, with a majority of cells having confidence above 0.8. 

B. RNA velocity fields for TKO tumors. None of the tumors shows coherent directionality 

across the archetype space, with overall low velocity across the archetype space. 
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C. Absorbing states shown in the LLE space. End states, shown as small black dots, are found 

across the archetype space. A large proportion of absorbing states are generalists and 

unclassified cells, and SCLC-A, -A2, and -P are all represented. 

D. CTrP for SCLC-Y cells across tumors. TKO1 has slightly more plastic SCLC-Y cells than 

the other two tumors. Different distributions between TKO2 and TKO3 demonstrate that, 

even within the same mouse, each phenotype (i.e., SCLC-Y) is capable of different levels 

of plasticity depending on unknown factors. We predict that these differences are due to 

differences in environmental conditions between a primary and metastatic tumor that affect 

the transcription factor network regulating cell identity. 

 

Supplemental Figure 13: Plasticity analysis for RPM mouse tumors 

A. (Left) Velocity length showing the magnitude of velocity for each cell shows slight 

dependence on location in archetype space. SCLC-Y cells have slightly lower velocity than 

other cell types, shown in the boxplot below the LLE plot. Overall, cells in these tumors 

have high velocity on average compared to other samples. (Right) Velocity confidence 

shows little dependence on archetype space location, with a majority of cells having 

confidence above 0.8. 

B. RNA velocity fields for human tumors. The tumors show little consistent directionality in 

the RNA velocity field through archetype space. Some cells show large velocities towards 

the SCLC-N archetype, though it is unclear when in the pseudotime trajectory introduced 

by Ireland et al.47 these cells are transitioning.  

C. Absorbing states shown in the LLE space. End states, shown as small black dots, are found 

across the archetype space between SCLC-A and SCLC-Y archetypes. Again, a large 

proportion of absorbing states are generalists. 

 

Supplemental Figure 14: Single cell subtyping for RPM time series data 

A. Cell cycle scoring using G2M and S phase-associated gene lists. Most cells show high 

scores for G2M or S phase-associated genes, suggesting the cells are actively cycling.  

B. Predicted doublets using Scrublet. Very few cells are predicted to be doublets.  

C. Expression of important genes across timepoints. Genes expected to change across 

timepoints from Ireland et al. ASCL1 clearly decreases over the time course, as YAP1 and 

NOTCH pathway genes increase by day 11. MYC expression is relatively constant 

throughout, consistent with its stable overexpression in the RPM mouse model. 

 

Supplemental Figure 15: Plasticity analysis on RPM time series data 

A. Velocity length shows highest velocity cells between SCLC-A, -A2, and -N, consistent 

with their quickly changing gene expression profiles early on in the time course.  

B. Velocity confidence, showing coherence of velocity directions, is high across cells and not 

dependent on location in archetype space. 
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C. Absorbing states, or end points in the Markov Chain model, are shown as small black 

circles and mostly consist of generalist and unclassified cells. 

 

Supplemental Figure 16: SCLC transcription factor network with MYC and NEUROD1 

A. Network adopted from Wooten et al.28 to include MYC (and subsequently NEUROD1). 

Red arrow: inhibiting; Green arrow: activating.  

 

4. Supplemental Tables 
Supplemental Table 1: Enriched subtype labels (from hierarchical clustering) at each archetype 

location. 

 

Supplemental Table 2: Table of q values for gene set/task enrichment at archetypes for bulk RNA-

seq data. Q <.1 is considered significant; Mann-Whitney test. 

 

Supplemental Table 3: Table of q values for Hallmark Gene Set enrichment at archetypes for bulk 

RNA-seq data. Q <.1 is considered significant; Mann-Whitney test. 

 

Supplemental Table 4: Table of q values for cancer hallmark gene set enrichment at archetypes for 

bulk RNA-seq data. Q <.1 is considered significant; Mann-Whitney test. 

 

Supplemental Table 5: Table of q values for gene enrichment at archetypes for bulk RNA-seq data. 

Q <.1 is considered significant; Mann-Whitney test. 

 

Supplemental Table 6: Archetype gene signature expression data. 
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*Hallmark is inferred from enriched gene sets rather than CHG database 
 

Archetype Main Task Hallmark Enriched Gene Sets Log-Mean 
Difference 

P-Value 

1 
SCLC-A 

Lung tissue 
proliferation 
and growth 

 

Sustaining 
proliferative 
signaling* 

Forebrain neuron fate commitment 0.777 0.0047 
Thalamus development 0.363 0.0085 
Regulation of long-term synaptic 
depression 

0.5594 0.0047 

Positive regulation of oligodendrocyte 
differentiation 

0.297 0.017 

Dendritic transport 0.256 0.017 
G0 to G1 transition 0.185 0.0032 

2 
SCLC-A2 

Inflammation 
and evasion 
of immune 

system 
 

Evading 
immune 

destruction 
Tumor-

promoting 
inflammation 

Histamine secretion 0.74 0.00027 
CD8+ Alpha Beta T Cell 
Differentiation 

0.661 0.00017 

Detection of other organism 0.641 0.00041 
Tolerance induction 0.604 0.0057 
Detection of external biotic stimulus 0.577 0.000798 
Negative regulation of Alpha Beta T 
Cell Proliferation 

0.502 0.0018 

Negative regulation of B cell apoptotic 
process 

0.501 0.0022 

Regulation of T cell mediated 
cytotoxicity 

0.495 0.0085 

3 
SCLC-N 

Neurogenesis 
and slithering 

 

Sustaining 
proliferative 
signaling* 
Activating 

invasion and 
metastasis* 

Synapse maturation 0.80651 0.00034 
Oxygen transport 0.77952 0.00408 
Synaptic plasticity 0.77358 0.00027 
Response to L glutamate 0.65875 0.00021 
Locomotory exploration behavior 0.51113 0.0077 
Modification of postsynaptic actin 
cytoskeleton 

0.45939 0.0031 

Response to electrical stimulus 0.45091 0.00015 
Neuromuscular synaptic transmission 0.43283 0.0016 

4 
SCLC-P 

Dysregulated 
metabolism 

Genomic 
instability 

Reprogrammi
ng energy 

metabolism 

Detoxification of inorganic compound 1.37 0.0014 
Regulation of glucocorticoid metabolic 
process 

0.873 0.00025 

L Ascorbic Acid metabolic process 0.528 0.0011 
Cardiolipid biosynthetic process 0.528 0.00022 
AMP metabolic process 0.418 0.0017 
Mitochondrial respiratory chain 
complex assembly 

0.233 0.0042 

Glycolysis 0.21 0.012 
Base excision repair 0.218 0.002 

5 
SCLC-Y 

Invasion and 
vasculo-
genesis 

Activating 
invasion and 
metastasis 
Inducing 

angiogenesis 
Resisting cell 

death 

Antigen processing and presentation of 
peptide antigen 

1.6162 
 

0.0007 
 

Response to interferon alpha 1.4831 0.00015 
Negative regulation of ECM 
organization 

1.3279 0.0017 

Positive regulation of cell migration 
involved in sprouting angiogenesis 

1.2126 
 

0.00005 

Endodermal cell differentiation 1.186 0.00005 
Inflammatory response to wounding 1.1685 0.00018 
Collagen biosynthetic process 1.0459 0.000056 
Regulation of programmed necrotic cell 
death 

0.897 0.00014 
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