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Abstract 9 

Background: The combination of sodium bisulfite treatment with highly-parallel sequencing 10 

is a common method for quantifying DNA methylation across the genome. The power to 11 

detect between-group differences in DNA methylation using bisulfite-sequencing 12 

approaches is influenced by both experimental (e.g. read depth, missing data and sample 13 

size) and biological (e.g. mean level of DNA methylation and difference between groups) 14 

parameters. There is, however, no consensus about the optimal thresholds for filtering 15 

bisulfite sequencing data with implications for the reproducibility of findings in epigenetic 16 

epidemiology.  17 

Results: We used a large reduced representation bisulfite sequencing (RRBS) dataset to 18 

assess the distribution of read depth across DNA methylation sites and the extent of missing 19 

data. To investigate how various study variables influence power to identify DNA 20 

methylation differences between groups, we developed a framework for simulating bisulfite 21 

sequencing data. As expected, sequencing read depth, group size, and the magnitude of 22 

DNA methylation difference between groups all impacted upon statistical power. The 23 

influence on power was not dependent on one specific parameter, but reflected the 24 
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combination of study-specific variables. As a resource to the community, we have 25 

developed a tool, POWEREDBiSeq, which utilizes our simulation framework to predict study-26 

specific power for the identification of DNAm differences between groups, taking into 27 

account user-defined read depth filtering parameters and the minimum sample size per 28 

group.  29 

Conclusions: Our data-driven approach highlights the importance of filtering bisulfite-30 

sequencing data by minimum read depth and illustrates how the choice of threshold is 31 

influenced by the specific study design and the expected differences between groups being 32 

compared. The POWEREDBiSeq tool can help users identify the level of data filtering needed 33 

to optimize power and aims to improve the reproducibility of bisulfite sequencing studies.  34 

 35 
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 39 

Background 40 

Epigenetic processes regulate gene expression via modifications to DNA, histone proteins 41 

and chromatin without altering the underlying DNA sequence, and there is increasing 42 

interest and understanding of the role that epigenetic variation plays in development and 43 

disease [1]. The most extensively studied epigenetic modification is DNA methylation 44 

(DNAm), the addition of a methyl group to the fifth carbon position of cytosine that occurs 45 

primarily, although not exclusively, in the context of cytosine-guanine (CpG) dinucleotides. 46 

Despite being traditionally regarded as a mechanism of transcriptional repression, DNAm is 47 

actually associated with both increased and decreased gene expression depending upon the 48 
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genomic context [2], and also plays a role in other transcriptional functions including 49 

alternative splicing and promoter usage [3].  50 

 51 

Inter-individual variation in DNAm has been associated with cancer [4], brain disorders [5–52 

8], metabolic phenotypes [9, 10] and autoimmune diseases [11]. A number of high-53 

throughput methods have been developed to quantify genome-wide patterns of DNAm, 54 

although these differ with regard to enrichment strategy, quantification accuracy and 55 

analytical approach [12]. Many approaches are based on the treatment of genomic DNA 56 

with sodium bisulfite, which converts unmethylated cytosines into uracil (and subsequently 57 

to thymine after amplification) while methylated cytosines are unaffected. The field of 58 

epigenetic epidemiology in human cohorts has been facilitated by the development of cost 59 

effective, standardized commercial arrays such as the Illumina EPIC Beadchip [13]. Data 60 

generated using this platform is relatively straightforward to process and analyze, with a 61 

number of standardized software tools and analytical pipelines [14, 15].  These arrays are 62 

only currently commonly available for human samples and are limited to capturing 63 

predefined genomic positions making up only ~3% of CpG sites in the human genome [16].  64 

 65 

For studies requiring greater coverage of the genome, or for the quantification of DNAm in 66 

non-human organisms, it is typical to employ highly parallel short read sequencing of 67 

bisulfite-treated DNA libraries. A key step in the analytical pipeline of such data is the 68 

mapping or alignment of these short sequences back to the genome of interest, a process 69 

that is complicated by the degenerated sequence complexity of bisulfite-treated DNA [17]. 70 

As well as the need to determine accurately where in the genome a read originates from, 71 

the analysis of bisulfite sequencing data involves distinguishing reads mapping to 72 
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methylated alleles from those mapping to unmethylated alleles. For each cytosine, the level 73 

of DNAm is estimated by quantifying the proportion of methylated (C) to unmethylated (T) 74 

cytosines from the sequenced reads overlapping that position. Bisulfite sequencing data 75 

provides information about cytosine methylation occurring in three distinct sequence 76 

contexts: CpG, CHH or CpH sites.  77 

 78 

In this paper, we sought to characterize the properties of bisulfite sequencing data with the 79 

goal of exploring the experimental variables that influence statistical power and sensitivity 80 

to identify differences in DNA methylation in population-based analyses. We define ‘DNAm 81 

sites’ as vectors, such that each DNAm site has a ‘DNAm point’ per sample, which 82 

incorporates ‘read depth’ (i.e. the total number of reads covering that DNAm site), and 83 

‘DNAm value’ (i.e. the proportion of methylated reads at that DNAm site). As with all 84 

sequencing applications, the total coverage, defined here as the total number of reads 85 

across the genome, is critical to the success of an experiment, as it will result in a higher 86 

average read depth at any individual DNAm point. Read depth influences both accuracy and 87 

statistical power. DNAm is measured as a proportion, therefore, when read depth is low 88 

there are only a finite number of possible values and the sensitivity of bisulfite sequencing is 89 

constrained. For example, a DNAm point covered by only four reads can only have five 90 

possible configurations of the ratio of methylated to unmethylated reads (4:0, 3:1, 2:2, 1:3, 91 

0:4) resulting in the possible DNAm proportions of 0.00, 0.25, 0.50, 0.75, or 1.00. This lack of 92 

sensitivity has a direct effect on the magnitude and accuracy of differences that can be 93 

detected between groups, meaning that DNAm points with low average read depth may not 94 

have sufficient power for the detection of small or even moderate changes in DNAm. This is 95 

particularly pertinent as many studies of differential DNAm in complex phenotypes and 96 
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disease typically identify changes of <5% [8, 18]; such small differences are likely to require 97 

precise proportions of the DNAm to be detected.  98 

 99 

An additional challenge for the interpretation of bisulfite sequencing data compared to 100 

array-based methods, which have a fixed content, is that the precise regions of the genome 101 

covered by sequencing reads generated in any given experiment can be highly variable. This 102 

means that DNAm sites captured in a sequencing experiment may not contain many DNAm 103 

points, and that even where the DNAm points have been assayed across many of the 104 

samples, the read depth is potentially highly variable. This results in a matrix of DNAm 105 

values with a high proportion of missing data, effectively lowering the sample size at that 106 

DNAm site, in turn reducing the power to detect associations in analysis.  107 

 108 

The gold standard bisulfite-sequencing method is whole genome bisulfite sequencing 109 

(WGBS) [19], although this can be cost prohibitive for many studies and is not yet amenable 110 

for large epidemiological analyses. Furthermore, in a study where the main interest is 111 

cytosines, in particular at CpG sites, a high number of WGBS reads are uninformative.  112 

Reduced representation bisulfite sequencing (RRBS), in contrast, involves a target 113 

enrichment step using the methylation-insensitive enzyme Mspl to target CpG-rich regions 114 

of the genome [20] prior to bisulfite conversion. This increases the proportion of 115 

informative sequencing reads, and RRBS typically interrogates DNAm sites in 85-90% of CpG 116 

islands [21, 22]. 117 

 118 

While multiple tools exist for the alignment and quantification of DNAm from bisulfite-119 

sequencing data (e.g. Bismark [17], GSNAP [23], BSMAP [24], BS-Seeker3 [25]), there is no 120 
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consensus about the optimal approach for determining the appropriate minimum read 121 

depth or number of DNAm points required to ensure high-quality data for a well-powered 122 

statistical analysis. For example, existing studies have utilized a huge variety of read depth 123 

thresholds; a relatively arbitrary value between 5-20 reads per DNAm point is often used in 124 

filtering steps [26–29], most commonly with no justification provided for the use of that 125 

threshold. There is also no consensus as to what to do with DNAm sites that have very few 126 

DNAm points. Part of this inconsistency arises from a lack of guidelines or studies exploring 127 

how read depth and missingness influence statistical power.  128 

 129 

The aim of this study was to determine the relationship between read depth and the 130 

accuracy of DNAm quantification, as well as the effect of missing DNAm points on statistical 131 

power for identifying group differences in DNAm with a particular focus on RRBS studies. 132 

Using properties derived from a large RRBS dataset generated by our group, we designed a 133 

simulation framework to explore how accuracy changes as a function of read depth, as well 134 

as comparing the DNAm level estimated from RRBS data with levels quantified using a novel 135 

Illumina array [30]. We then extended our simulation framework to investigate how 136 

statistical power to identify differences in DNAm level between groups varies as a function 137 

of read depth and sample size while also considering the effect of i) the level of DNAm at 138 

individual DNAm sites, ii) the expected difference in DNAm between groups, and iii) the 139 

balance of sample sizes between comparison groups. Our data-driven approach highlights 140 

the importance of filtering by minimum read depth and minimum number of DNAm points 141 

per DNAm site, and illustrates how the choice of threshold is influenced by the specific study 142 

design and the expected differences between groups being compared. Finally, we present 143 

an approach for estimating statistical power for a bisulfite sequencing study for a given read 144 
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depth and minimum DNAm points filtering threshold which can be used to improve the 145 

detection of true positives and reproducibility of findings. Our tool, POWer dEtermined 146 

REad Depth filtering for Bisulfite Sequencing (POWEREDBiSeq), is available at 147 

https://github.com/ds420/POWEREDBiSeq as a resource to the community. 148 

 149 

Results 150 

Read depth in RRBS data follows a negative binomial distribution, while the level of DNAm is 151 

bimodally distributed 152 

As part of an ongoing study of aging, we profiled DNAm in 125 frontal cortex samples 153 

dissected from mice aged 2-10 months old using a modified version of the original RRBS 154 

protocol [20] (see Methods). Prior to quality control filtering, a mean of 41,199,876 (SD = 155 

6,753,486) single end reads were generated per sample (Additional File 2). The quality of 156 

the sequencing data was assessed using FastQC [31], before reads were aligned to the 157 

mm10 reference (GRCm38) genome using Bismark [17]. Here, we define DNAm sites as 158 

vectors, such that each DNAm site has a DNAm point per sample, containing read depth and 159 

DNAm values. That is, DNAm site = {DNAm point1 = {m1, rd1}, …, DNAm pointi = {mi, rdi}, …, 160 

DNAm pointn = {mn, rdn}}, for i in 1 to n samples, where mi represents the proportion of 161 

DNAm at a DNAm pointi, and rdi is the read depth, defined here as the total number of 162 

reads at the DNAm point. If rdi is 0, there will be no DNAm point associated with sample i. 163 

Across all samples, there was a total of 64,199,621 distinct DNAm points covered (including 164 

CpG, CpH and CHH sites), with a total of 3,419,677 different DNAm sites assayed, and each 165 

sample containing a mean of 2,170,454 (SD = 124,281) DNAm points across all DNAm sites. 166 

We characterized the distribution of read depth for each sample across DNAm points, 167 

observing a unimodal discrete distribution, skewed to the left and characterized by a long 168 
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tail (Figure 1A). This distribution is typical of count data and is expected in sequencing 169 

datasets where the vast majority of DNAm points are covered by relatively few reads and a 170 

minority of DNAm points are covered by a large number of reads.  Across all DNAm points, 171 

22.1% (60,117,549) had less than or equal to than 5 reads and 3.30% (8,941,868) had more 172 

than 100 reads. Next, we visualized the distribution of DNAm levels across all DNAm points, 173 

observing the expected bimodal distribution, with the majority of DNAm sites being either 174 

completely methylated (50% of DNAm sites > 0.95) or unmethylated (49% of DNAm sites < 175 

0.05) [32] (Figure 1B).   176 

 177 

Read depth has a dramatic, non-linear effect on accuracy of DNAm estimates  178 

One consequence of low read depth in RRBS data is reduced sensitivity for the 179 

quantification of DNAm at DNAm points. While DNAm points that are either completely 180 

methylated or unmethylated can theoretically be characterized precisely with a single read, 181 

this is not the case for DNAm points with intermediate levels of DNAm, which may be 182 

inaccurately classed as methylated or unmethylated at low read depths. To understand the 183 

extent of this problem, we compared the proportion of DNAm values at extremes (less than 184 

0.05 or greater than 0.95), with increasing read depths across DNAm points (Figure 2A). As 185 

expected, the proportion of DNAm sites estimated to have extreme levels of DNAm was 186 

greater at lower read depths; 86.1% (SD = 4.94) of sites were estimated to have DNAm 187 

>0.95 or <0.05 at a read depth of 5, compared to 64.7% (SD = 6.90) at a read depth of 50. 188 

This suggests that, compared to DNAm points with a read depth of 50, more than 20% of 189 

DNAm points with a read depth of 5 may have been inaccurately classified as having an 190 

extreme level of DNAm. 191 

 192 
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To formally quantify the error in estimating DNAm, we used simulations of increasing read 193 

depth to estimate DNAm for a hypothetical DNAm site with an intermediate level of DNAm 194 

(0.50), calculating the difference between the estimated and true DNAm level.  For read 195 

depths <10, we observed a discrete distribution of estimated DNAm (Figure 2B), with the 196 

range of predictions spanning 0.00 – 1.00 but centered on 0.50. In line with the Central Limit 197 

Theorem, we observe that as read depth increases, the distribution of estimated DNAm 198 

levels becomes more continuous and normally distributed around a DNAm value of 0.50. 199 

We expanded these simulations to consider DNAm sites with DNAm levels across the full 200 

distribution of possible values. We simulated 10,000 DNAm points with DNAm uniformly 201 

sampled between 0.00 – 1.00 and sampled 10,000 RRBS DNAm points with matched DNAm 202 

levels for comparison (see Methods). We found that as read depth increases, the 203 

correlation across DNAm points between estimated and actual DNAm level tends towards 204 

1.00 (Figure 2Ci) and the RMSE tends towards 0.00 (Figure 2Cii). However, these effects are 205 

non-linear, with more dramatic improvements in accuracy occurring at lower read depths; 206 

i.e. there is a jump from a correlation of 0.589 to 0.926 between 1 and 10 reads with 207 

relatively minimal gains after that. Similarly, the RMSE drops from 0.404 at a read depth of 208 

1.00 to 0.124 at a read depth of 10. 209 

 210 

RRBS and Illumina arrays DNAm values correlate highly 211 

Commercial DNAm arrays, such as the Illumina EPIC BeadChip array, are commonly utilized 212 

as an alternative strategy to bisulfite sequencing approaches in large human studies, due to 213 

their relatively low cost and the ease of interpreting data [33]. To further characterize the 214 

accuracy and sensitivity of RRBS, we performed a comparison with DNAm levels quantified 215 

using a novel Illumina Beadchip vertebrate DNAm array [30] on an overlapping set of 80 216 
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mouse frontal cortex DNA samples. A total of 3,552 unique DNAm sites were quantified in 217 

both the RRBS and array datasets, with each RRBS sample containing a mean of 2,263 218 

overlapping DNAm data points (SD = 104). First, we compared the distribution of DNAm 219 

estimates across all DNAm points between the two technologies, observing the expected 220 

bimodal distribution with both approaches (Supplementary Figure 1). Of note, the array 221 

data contains a higher proportion of DNAm sites with intermediate levels of DNAm (0.05-222 

0.95), and the unmethylated and methylated peaks are shifted inwards from the 223 

boundaries, highlighting the reduced sensitivity of the array for quantifying extreme levels 224 

of DNAm [16]. In contrast, the peaks in the RRBS data are at 0.00 and 1.00. The array 225 

samples also have less variability between samples, with distributions looking nearly 226 

identical, due to DNAm points being consistently characterized for each DNAm site. Directly 227 

comparing the estimated level of DNAm between the two assays, we observed a strong 228 

positive correlation (Pearson correlation = 0.794) even with no read depth filtering in the 229 

RRBS data (Figure 2D). The correlation between assays increases as more stringent read 230 

depth filtering is applied to the RRBS data, with the maximum correlation (Pearson 231 

correlation = 0.840) obtained at a read depth threshold of 22 (Figure 2E, Fi). Although this 232 

correlation indicates a relatively strong relationship between the estimates of DNAm 233 

quantified using RRBS and the Illumina array, it does not necessarily indicate that the DNAm 234 

estimates generated by the two platforms are equal. Closer inspection showed that the 235 

relationship between RRBS- and array-derived DNAm estimates is not linear (Figure 2D), and 236 

therefore we also explored absolute differences in DNAm estimates between the two 237 

assays. We observed a notable skew, with DNAm estimates from the array being generally 238 

higher than those from RRBS (mean difference = 0.112, SD = 0.223), and this relationship 239 

was observed regardless of read depth (Supplementary Figure 2). As expected, the root 240 
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mean squared error (RMSE) between DNAm estimates generated using array and RRBS 241 

decreases as the stringency of read depth filtering in the RRBS dataset increases (Figure 242 

2Fii), plateauing at a read depth of ~30. Of note, the minimum RMSE observed was 0.180, 243 

suggesting some systemic differences between the two platforms in estimated DNAm levels.  244 

 245 

A subset of DNAm sites have consistent read depth across DNAm points 246 

In order to perform a statistical analysis of DNAm differences between groups (e.g. in a 247 

study of cases vs controls), multiple samples, usually representing biological replicates, are 248 

required. We have demonstrated the importance of filtering RRBS data by read depth on 249 

obtaining accurate estimates of DNAm, however, this has the consequence of increasing the 250 

number of missing DNAm points (Figure 3A). Of note, we found that read depth is not 251 

random across DNAm sites, but highly correlated between pairs of samples (Figure 3B). To 252 

demonstrate this further, we iteratively increased the number of samples and calculated the 253 

proportion of DNAm points shared across DNAm sites (Figure 3C). The proportion of DNAm 254 

points present decreases in a non-linear manner before plateauing at 0.20, demonstrating 255 

that there is a subset of DNAm sites for which read depth is greater than 0 across all or most 256 

DNAm points. DNAm sites containing all possible DNAm points, that is, each DNAm point 257 

had a read depth >1, were found to have consistently higher read depth, with a strong 258 

correlation in read depths between DNAm points (Figure 3D). We hypothesized that the 259 

correlation in read depth between samples resulted from the enrichment strategy used in 260 

RRBS, meaning that specific CpG-rich regions are dramatically overrepresented in the 261 

sequencing data across all samples, and as expected, the common DNAm sites containing all 262 

possible DNAm points were enriched in CpG islands compared to all DNAm sites (Figure 3E). 263 

 264 
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Simulated data demonstrates the consequence of read depth, sample size, and mean DNAm 265 

difference per group on power 266 

Statistical power to identify differences in DNAm between two groups (e.g. cases vs 267 

controls), defined as the proportion of successfully detected true positives, will vary across 268 

DNAm sites and is influenced by multiple variables. In bisulfite sequencing studies, these 269 

include read depth, the number of samples in each group, the ratio of group sizes, the mean 270 

DNAm level, and the expected difference in DNAm between groups. We explored how each 271 

of these variables influences power by simulating bisulfite sequencing data for a given 272 

DNAm site following the framework laid out in Supplementary Figure 3. Briefly, a two group 273 

comparison was simulated, with sample size, mean read depth, μDNAm (the mean DNAm 274 

across the DNAm point) and ΔμDNAm (the mean difference in DNAm between groups) used 275 

as input variables that were either kept constant or varied to observe the effect on power. 276 

Each exemplar DNAm site was simulated 10,000 times, containing all DNAm points for the 277 

given sample size. A two-sided t-test was used to compare groups and power calculated as 278 

the proportion of p-values smaller than 5x10-6. It is important to note that all parameters, 279 

including r, the p value threshold for power, and number of DNAm sites simulated, were 280 

selected with the aim of visualising how power might change with each variable in turn. 281 

Subsequent findings are based on exemplar DNAm sites, and exact values should be taken 282 

as such; they may not be representative of a wider study, as our aim was solely to 283 

characterize the relationship between each variable and statistical power. The values used 284 

to generate the results for each variable shown in Figure 4 can be found in Supplementary 285 

Table 1. 286 

 287 
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As expected, increased read depth had a positive effect on power across each of the 288 

scenarios we considered, however, the potential gains are highly dependent upon the 289 

specific combination of parameters (Figure 4A). For example, in a scenario where each 290 

group contains 30 samples and the mean DNAm level is 0.25, there is a relatively dramatic 291 

increase in power to detect a DNAm difference of 0.20 between groups as read depth 292 

increases, with 80% power at a mean read depth of 37, although there are minimal gains 293 

with read depths > 50. In contrast the gain in power with increased read depth is much less 294 

pronounced when detecting a mean DNAm difference of 0.10, and there is very little power 295 

at any read depth to detect a DNAm difference of 0.05. Therefore, if small effect sizes are 296 

relevant for the phenotype under study, power will need to be increased through other 297 

methods, e.g. increased sample size, as read depth filtering alone will not be sufficient.  298 

 299 

We next investigated the effect of sample size and the ratio of group sizes on power (Figure 300 

4B), concluding that the optimal design in terms of maximizing power is to have equal sized 301 

comparison groups, assuming that the total sample size is constant. Fixing mean read depth 302 

to be 20 and a mean DNAm level of 0.25, our simulations showed that to have 80% power 303 

to detect a DNAm difference of 0.20 between groups a total sample size of 94 is required 304 

when the sample size ratio between groups is 60:40 (56 and 38 samples, respectively), 305 

which is only two more samples than required when the sample size ratio is balanced (i.e. 306 

50:50). In the most extreme scenario we considered, an 80:20 ratio between groups, a total 307 

of 154 samples (123 and 31, respectively) are needed to have 80% power to detect a DNAm 308 

difference of 0.20 between groups. This has implications for the handling of DNAm sites 309 

where DNAm points are missing; it suggests that there may be a tolerable level of 310 

‘missingness’ when comparing DNAm between groups that can be ‘rescued’ by having a 311 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2021. ; https://doi.org/10.1101/2021.01.22.427791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427791
http://creativecommons.org/licenses/by/4.0/


   
 

14 
 

greater sample size in the second comparison group. As with read depth (Figure 4A), we 312 

found a non-linear relationship with power for both sample size (Figure 4B) and mean 313 

DNAm difference between groups (Figure 4C). Where each of these variables is the limiting 314 

factor, we found that the greatest gains in power occurred initially, with diminishing returns 315 

at higher levels and an eventual plateau. Where other variables act to reduce the overall 316 

power, the power curve is flattened and a plateau is not reached. One interesting 317 

observation from our simulations was the U-shaped relationship between power and mean 318 

level of DNAm at a given site (Figure 4D). Power is highest at DNAm sites with either very 319 

low or very high levels of DNAm, and decreases to a minimum at intermediate levels of 320 

DNAm. We hypothesize that this reflects the relationship between the mean and variance in 321 

DNAm [34] (Figure 4E), where the variance is lowest at the extremes, an artefact of DNAm 322 

being measured as proportion bounded at 0.00 and 1.00.  323 

 324 

Simulated bisulfite sequencing studies can be utilized to estimate power given suggested 325 

filtering 326 

Our results indicate that, given the complex interplay of multiple experimental parameters, 327 

the choice of threshold for filtering DNAm sites is not always straightforward and will 328 

depend on the specific research question being addressed. Furthermore, the power 329 

calculations presented so far only consider a single DNAm site, whereas genome-wide 330 

comparisons of DNAm typically involve the analysis of hundreds of thousands of DNAm 331 

sites; given the effect of the properties of DNAm sites (e.g. in mean DNAm level) on power, 332 

no DNAm site can be considered to be ‘representative’ of the others. Therefore, we 333 

extended our simulation framework to quantify a study-level power statistic that considered 334 

all DNAm sites, allowing for the calculation of power given an RRBS dataset, and the read 335 
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depth and minimum DNAm points per DNAm site filtering to be carried out. The extension 336 

of the simulation framework can be seen in Supplementary Figure 4 and is described in 337 

Methods. Briefly, an actual RRBS data set was used to estimate the simulation parameters 338 

(namely, sample size, μDNAm, μRD and negative binomial parameter, r) so that simulations 339 

reflect the real data. We compared the real and simulated data finding that the distribution 340 

of simulated read depths is highly comparable to real data for lower read depths (Figure 341 

5Ai). Higher read depths do not seem to be captured as accurately by the negative binomial 342 

distribution, however, given that 95% of DNAm points have read depth < 85 (Figure 5Aii), 343 

this should be less important to the simulation. Overall, simulated DNAm estimates were 344 

similar to real DNAm levels across DNAm points, although there was some deviation, for 345 

example, a slight under representation of DNAm points with DNAm proportions above 0.25 346 

and an overrepresentation of DNAm points with DNAm proportions above 0.25 (Figure 5B). 347 

 348 

To demonstrate the methodology, we considered a hypothetical study design with a total of 349 

125 samples, specifying an expected mean DNAm difference between groups of 0.06, picked 350 

arbitrarily to allow for power visualization. To profile how read depth influences the power 351 

of the study, we incrementally increased the minimum read depth from 1 to 75, and to 352 

investigate the effect of the minimum number of DNAm points needed to find a difference 353 

between groups, we chose three arbitrary values: 2, 30 and 60. Power only increased subtly 354 

as read depth filtering became more stringent (Figure 5C), compared to the gain of 355 

increasing the number of DNAm points. However, the gain is not consistent across all study 356 

designs, with greater gains in smaller studies (Figure 5D). For example, with a minimum of 357 

two DNAm points per group, increasing the read depth threshold from 1 to 75 resulted in an 358 

increase in power of 10.9%, compared to a smaller increase of 4.83% and 4.89%, 359 
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respectively, when the minimum DNAm points were set at 30 or 60. Our analysis reaffirms 360 

the interplay between all study-specific experimental variables. However, it should be noted 361 

that even with the most extreme read depth filtering, the maximum power for a group with 362 

a minimum of two DNAm points is still dramatically lower that the power of a study with a 363 

larger minimum and no or negligible filtering.  Finally, we summarized our study wide power 364 

calculation in the R function POWer dEtermined REad Depth filtering for Bisulfite 365 

Sequencing (POWEREDBiSeq), which is available as a resource to the community at 366 

https://github.com/ds420/POWEREDBiSeq. The calculation results in largely consistent and 367 

normally distributed predictions of power, however, outliers can occur, suggesting that 368 

multiple iterations should be performed (Supplementary Figure 5).  369 

 370 

 371 

Discussion  372 

In this paper, we systematically characterize the properties of a representative RRBS 373 

dataset, assessing the distribution of read depth and missing data across DNAm sites. Using 374 

our framework of bisulfite sequencing data simulation, we investigate the impact of various 375 

study variables (e.g. read depth, group size, skewness in group size, and magnitude of 376 

DNAm difference) on the accuracy of DNAm quantification, and power to detect DNAm 377 

differences between two groups. As a resource to the community, we have developed a tool 378 

(POWEREDBiSeq), which utilizes our findings to predict power for individual study designs, 379 

accounting for the filtering to be applied. 380 

 381 

When comparing to simulated data, we found that the accuracy to detect a given DNAm 382 

difference between groups improves with increased read depth. This likely reflects the fact 383 
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that count data is only able to represent continuous data if the number of counts (i.e. 384 

sequencing reads) is high enough. Overall, we found a strong correlation in DNAm estimates 385 

derived from RRBS and Illumina DNAm array data; this relationship increases with minimum 386 

read depth filtering and reaches a maximum when excluding DNAm sites covered by less 387 

than 22 reads. The high correlation between platforms and the relationship with read-depth 388 

concurs with previous analyses comparing RRBS and Illumina array in human samples [35]. 389 

This finding has implications for studies using RRBS to identify differences in DNAm as it 390 

highlights the importance of read depth filtering in generating an accurate measure of the 391 

true DNAm level.  392 

 393 

We investigated the impact of various experimental variables on power, defined as the 394 

proportion of true positives detected in a two-group comparison, in a bisulfite-sequencing 395 

study utilizing simulated data. We observed that these variables (read depth, sample size, 396 

DNAm difference between groups and mean DNAm at a given DNAm site) act together to 397 

influence power. Read depth, sample size and DNAm difference between groups will all limit 398 

power in a certain range, with power plateauing at 100% when they are no longer the 399 

limiting factor. DNAm level at a DNAm site has a U-shaped relationship with power, where 400 

DNAm points with extreme DNAm (near 0 and 1) are more powered to identify between-401 

group differences primarily because the variance in DNAm at these DNAm sites is smaller. 402 

Our findings highlight the importance of data filtering for maximizing power; the minimum 403 

number of DNAm points needed across each DNAm site to be compared has a dramatic 404 

effect on power, as it dictates the minimum effective sample size at any one DNAm site. 405 

Read depth also influences power, although we observed that read depth filtering alone 406 

cannot overcome an inadequate study design (i.e. too few samples). As a resource to the 407 
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community, we have summarized our data simulations so that others can apply them to 408 

their data to calculate the power to identify between-group differences in DNAm within the 409 

context of their specific study design. Our scripts are packaged into the POWEREDBiSeq 410 

application (https://github.com/ds420/POWEREDBiSeq) which allows users to optimize 411 

their power by, for example, simulating the effects of increasing their sequencing read 412 

depth filtering threshold or minimum DNAm points across groups.  413 

 414 

Although our analyses and simulations focused on RRBS datasets, many of our conclusions 415 

are valid for other types of bisulfite sequencing data. For example, the relationship between 416 

read depth and accuracy applies to any bisulfite sequencing based DNAm experiment that 417 

profiles DNAm at a single nucleotide resolution. Additionally, the relationship between 418 

power and read depth, sample size, DNAm difference, and mean DNAm is also relevant for 419 

other sequencing based DNAm studies. Various methods differ in read depth and the 420 

distribution of DNAm sites sequenced across the genome. Targeted bisulfite sequencing 421 

(TBS), for example, typically profiles a more restricted set of DNAm sites than RRBS, as only 422 

regions of interest are enriched. This results in a more uniform distribution of reads across 423 

DNAm points, which acts to improve power across the study. In whole genome bisulfite 424 

sequencing (WGBS) studies, however, while more DNAm sites are interrogated across the 425 

genome as a whole, the read depth per DNAm point tends to be lower than that obtained 426 

using RRBS or TBS. POWEREDBiSeq can be applied to other bisulfite sequencing types 427 

because the internal variables, such as DNAm distribution and number of DNAm sites, are 428 

calculated based on input data.  For the same reason, POWEREDBiSeq is also applicable to 429 

DNAm at CHH and CGH sites, which are often covered in bisulfite sequencing studies but 430 

have dramatically different properties to DNAm at CpG sites, although it is important to 431 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2021. ; https://doi.org/10.1101/2021.01.22.427791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427791
http://creativecommons.org/licenses/by/4.0/


   
 

19 
 

verify that the simulated and real data distributions are alike. In datasets with a frequent 432 

occurrence of high read depths across DNAm points (>100), some caution in the use of 433 

POWEREDBiSeq is warranted, as we found that the negative binomial distribution 434 

underestimates higher read depths when simulating data. This was not pertinent in our case 435 

as the 95% of sites had a read depth below 85. 436 

 437 

The results of POWEREDBiSeq will be dependent on the planned filtering stringency of the 438 

user, as well as the biological question that the bisulfite sequencing experiment aims to 439 

address; for example, a study looking into DNAm changes between cancer and non-cancer 440 

samples will have higher power due to the comparatively large DNAm differences between 441 

groups [36] compared to those observed in many complex disease case and control studies 442 

[8, 18]. Bisulfite sequencing data generated in cell lines and genetically identical mouse 443 

models will be comparatively less ‘noisy’ than analyses of diverse human populations using 444 

heterogeneous tissues such as blood, resulting in increased power. Retaining poor quality 445 

(i.e. low read depth) DNAm sites in a bisulfite sequencing dataset increases the multiple 446 

testing burden, meaning it will be harder to identify true between-group differences in 447 

DNAm at higher quality, more adequately powered, DNAm sites. A limitation of 448 

POWEREDBISEQ and our data simulations is that they are based on a two-group comparison 449 

(e.g. cases vs controls), meaning our findings are not specifically applicable to more complex 450 

study designs. One question not addressed by our analysis is whether, for a given amount of 451 

available resource, it is optimal to sequence more samples at the same level or increase 452 

sequencing depth for a smaller number of samples. To explore this further, data from 453 

additional RRBS studies with a sufficient range of coverage would be needed.  454 

 455 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2021. ; https://doi.org/10.1101/2021.01.22.427791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427791
http://creativecommons.org/licenses/by/4.0/


   
 

20 
 

To our knowledge, this is the first attempt to develop recommendations for bisulfite 456 

sequencing experiments based on sequencing read depth, minimum number of DNAm 457 

points and statistical power. We believe findings from this work will improve the 458 

reproducibility of bisulfite sequencing studies; we encourage researchers working in this 459 

field to clearly detail any data filtering steps and ensure an appropriate filter for read depth 460 

and other parameters has been applied, with justification for the choice of threshold. 461 

 462 

 463 

Methods  464 

DNAm quantification by RRBS   465 

Genomic DNA was isolated from mouse cortex [37] using the AllPrep DNA/RNA Mini Kit 466 

(QIAGEN) and assessed for quality and quantity using the NanoDrop 8000 467 

spectrophotometer (Thermo Fisher Scientific) and the Qubit high sensitivity assay (Qubit 468 

dsDNA HS Assay, Thermo Fisher Scientific). RRBS libraries were prepared using the Premium 469 

RRBS kit (Diagenode). The final RRBS library pools were distributed across thirty-two 470 

HiSeq2500 (Illumina) lanes and subjected to 50 bp single-end sequencing as previously 471 

described [20]. 472 

 473 

Preprocessing the dataset 474 

RRBS sequencing quality was assessed using FastQC (version v0.11.7) [31] with all samples 475 

characterized by high quality base calls (quality score >28 across all bases). Sequences were 476 

trimmed using TrimGalore (version 0.4.4_dev) [38], with a quality score of 20 and an error 477 

rate of 0.2 used to remove poor quality bases at the ends of reads. Reads with fewer than 478 

20 base pairs after trimming were then removed. Reads were aligned to the mm10 479 
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(GRCm38) mouse genome [39] using Bismark v0.19.0 with default parameters [17], which 480 

implements SAMtools 1.8 [40] and Bowtie2 v2.3.4.1 [41]. The total number of aligned reads 481 

and cytosines can be found in Additional File 2. 482 

 483 

Statistical methods 484 

All subsequent analysis was carried out in R 3.5.2 (2018-12-20)[42] using the R packages 485 

ggplot2 (version 3.2.1)[43], Cowplot (version 1.0.0) [44], Tidyr (version 1.0.0) [45], Viridis 486 

(version 0.5.1), viridisLite (version 0.3.0) [46], colortools (version 0.1.5) [47], and reshape2 487 

(version 1.4.3)[48].   488 

 489 

Annotating RRBS to the CpG islands 490 

R packages annotatr (version 1.8.0)[49] and GenomicRanges (version 1.34.0)[50] were used 491 

to annotate CpGs to features for the analyses shown in Figure 3E. The annotatr package 492 

assigned CpG islands as per the mm10 reference annotation, with CpG shores defined as 493 

2Kb upstream/downstream from the ends of the CpG islands, and CpG shelves as another 494 

2Kb upstream/downstream of the farthest upstream/downstream limits of the CpG shores. 495 

The remaining genomic regions make up the inter-CGI annotation. 496 

 497 

DNAm quantification quantified by array 498 

A subset of 80 DNA samples were additionally profiled using a custom Illumina DNAm array 499 

(the “HorvathMammalMethylChip40” [30]). Briefly, this array includes ~36k CpGs that are 500 

located in genomic regions highly-conserved across 50 mammalian species. Data was loaded 501 

from idat files into an RGChannelSet object using the minfi package (version 1.28.4) [51–57] 502 

and processed through the following steps: 1) checking the methylated and unmethylated 503 
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intensities and excluding samples < 800, 2) confirming successful bisulfite conversion 504 

excluding samples with low conversion rates (<80%), 3) confirming correct sex using profiles 505 

from the X chromosome, and 4) confirming tissue type, excluding any sample predicted 506 

incorrectly based on DNAm profile. Prior to analysis data was normalised using the Sesame 507 

package (version 1.4.0)[58], and filtered to DNAm sites classed as mapping uniquely  to the 508 

mouse genome, leaving 23,633 DNAm sites.  509 

 510 

Framework for simulating RRBS data 511 

We developed an analytical framework to profile the power of RRBS DNAm sites, enabling 512 

us to vary different parameters such that we could explore a number of research questions.  513 

The DNAm site-level simulation workflow is described in Supplementary Figure 3, which 514 

aims to compare the DNAm between two groups, A and B. For each DNAm site simulated, 515 

there are 8 parameters to consider: N1 and N2 are the sample size each group, respectively, 516 

μRD is the mean read depth of the DNAm site to be simulated, r is a negative binomial 517 

parameter, described in more detail below, μDNAm is the mean DNAm across the DNAm 518 

site, ΔμDNAm is the mean difference in DNAm between groups, nSites is the number of 519 

DNAm sites to be simulated, and pValue is the p-value used to assess power. 520 

When simulating a DNAm site, the first step is to simulate read depth. Read depth could be 521 

assigned an arbitrary value, or, where realistic variation across DNAm points was required, 522 

could be sampled from a negative binomial distribution [59]. The negative binomial 523 

distribution is defined by the parameters r and p, although within the R function rnbinom() 524 

can be defined by μRD and r, which can calculated from real data using equation (6), the 525 

derivation of which is as follows: 526 

The negative binomial equations are: 527 
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𝜇 =  
𝑝𝑟

1 − 𝑝
    (1) 528 

𝜎2 =  
𝑝𝑟

(1 − 𝑝)2
    (2) 529 

Where 𝜇 is the mean (in this case, μRD) and 𝜎2 is the variance of the read depth data 530 

calculated across all samples. We want 𝑟 in terms of 𝜇 and 𝜎2. Multiply (2) by  1 − 𝑝 and 531 

equate that and (1) to get: 532 

𝜎2(1 − 𝑝) = 𝜇     (3) 533 

Rearrange for p: 534 

𝑝 = 1 −  
𝜇

𝜎2
     (4) 535 

Substitute (4) into (1) and simplify: 536 

𝜇 =  
(1 −  

𝜇
𝜎2)𝑟

1 − (1 −  
𝜇

𝜎2)
 537 

𝜇 =  
(1 −  

𝜇
𝜎2)𝑟

 
𝜇

𝜎2

      (5) 538 

Rearrange (5) for 𝑟: 539 

𝑟 =  

𝜇2

𝜎2

 1 −
𝜇

𝜎2

     (6) 540 

Once read depth was established, a binary value representing DNAm status was assigned to 541 

each read using the binomial distribution. For each read in group A, the probability of being 542 

methylated was μDNAm, and for group B was μDNAm ± ΔμDNAm, where the probability 543 

was bound between 0 and 1. The proportion of DNAm was calculated as the mean DNAm at 544 

each DNAm point.  545 
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The process was repeated for nSites. To calculate power, a two-sided t-test was performed 546 

between groups A and B. Power was defined as the proportion of DNAm sites for which the 547 

t-test p-value was smaller than pValue. 548 

 549 

Profiling the accuracy of RRBS data 550 

To investigate how the distribution and accuracy of DNAm changed with increasing read 551 

depth, we considered a range of read depths (1 - 50). To profile accuracy across levels of 552 

DNAm in an RRBS study, we simulated 10,000 DNAm points per read depth, with DNAm 553 

sampled uniformly between 0 – 1. 10,000 DNAm points with matching DNAm were sampled 554 

from the RRBS data and correlation and RMSE were calculated between the true and the 555 

estimated DNAm points for each read depth.  556 

 557 

Profiling the power of RRBS data  558 

To calculate the power of RRBS DNAm sites, we investigated a hypothetical two-group 559 

comparison study design (e.g. a case vs control analysis). We aimed to explore the effects of 560 

read depth, mean DNAm level, the sample size and sample size balance of groups, and the 561 

mean DNAm difference between groups on power. To this end, we utilized the simulation 562 

framework described above and in Supplementary Figure 3 to simulate specific DNAm sites 563 

so that the resulting shift in power, given a change in a variable or combination of variables, 564 

could be visualized. The parameters assigned can be seen in Supplementary Table 1, where 565 

the variable parameter took a range of discrete values as seen in the x axes in Figure 4. μRD 566 

set was used as a negative binomial parameter, from which read depth (>0) was sampled. 567 

For group A, μDNAm was used as the probability of DNAm, sampled from the binomial 568 

distribution. For each set of parameters chosen, 10,000 DNAm sites were simulated. The r 569 
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value was 1.5, and pValue 5x10-6, which were chosen arbitrarily to allow for the visualization 570 

of changing power. 571 

 572 

Profiling the power of RRBS studies given data filtering 573 

We aimed to create a power calculator to determine the statistical power of a bisulfite 574 

sequencing study with specified read depth and minimum DNAm point filtering thresholds 575 

and specified mean DNAm difference between groups across a two-group study design. To 576 

this end, we utilized the simulation framework described above and in Supplementary 577 

Figure 3 to simulate filtered data. The following input data was required (also described in 578 

Supplementary Figure 4): RRBSTrue - the unfiltered matrix of RRBS data, ΔμDNAm - the 579 

mean difference in DNAm between groups expected given the biology of the samples, 580 

nDNAmPoint - the minimum number of DNAm points needed per DNAm site, RDFilter – the 581 

minimum read depth filter to be applied, pheno – an optional variable dictating group 582 

membership.  583 

These were used to estimate the variables for the framework in Supplementary Figure 3: N1 584 

and N2 were assigned using pheno, or if pheno was not given, assigned as half of the number 585 

of samples in RRBSTrue. The data being simulated represented data that remained was 586 

post-filtering, therefore, given that we need at least nDNAmPoint DNAm points with 587 

sufficient read depth, μRD was calculated separately for the first nDNAmPoint DNAm points 588 

to the latter. For the first nDNAmPoint DNAm points, μRD was the larger of the mean read 589 

depth across RRBSTrue (estimated using 60,000 DNAm sites) and RDFilter, and subsequent 590 

read depth must be > RDFilter. For the remaining DNAm points, the mean read depth was 591 

used, where all simulated read depths < RDFilter were assigned a read depth of 0 to 592 

represent that they would get filtered out of the data. r was estimated using equation 6 and 593 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2021. ; https://doi.org/10.1101/2021.01.22.427791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427791
http://creativecommons.org/licenses/by/4.0/


   
 

26 
 

a subset of 60,000 DNAm sites from RRBSTrue. To estimate μDNAm, we first estimated the 594 

probability that a filtered DNAm site falls into one of the following ranges: 0-0.05, 0.05-0.95, 595 

0.95-1, using a subset of 100,000 DNAm sites from RRBSTrue. The ranges were sampled 596 

using the probabilities calculated and a uniform distribution used to set μDNAm from the 597 

values across the selected range. To ensure that the subsets of RRBSTrue used to estimate 598 

variables were enough, we investigated the decline in prediction variability for each 599 

(Supplementary Figure 6-8). 600 

 601 

40,000 DNAm sites were simulated, using the above inputs and step 1 of the workflow 602 

presented in Supplementary Figure 3 and above. The resulting p-values were bootstrapped 603 

to result in the same number as the number of DNAm sites remaining in RRBSTrue after 604 

filtering by RDFilter and nDNAmPoint. The power was calculated using a Bonferroni 605 

correction for the number of DNAm sites remaining. 606 

We created POWEREDBiSeq so that others can calculate their statistical power in bisulfite 607 

sequencing studies. The R function is available at 608 

https://github.com/ds420/POWEREDBiSeq. 609 
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Figure Legends 800 

Figure 1: Characterization of read depth and mean DNAm across the DNAm points profiled 801 

by RRBS. The distribution of A) read depth across DNAm points and B) proportion of DNAm 802 

across DNAm points. Each line represents one sample. Read depth plots were capped at a 803 

read depth of 200 to facilitate the interpretation of plots, with less than 0.5% (1140174) of 804 

DNAm points being characterized by >200 reads. 805 

 806 

 807 
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Figure 2: The consequence of ‘missingness’ in RRBS data demonstrated by array and 809 

simulation bisulfite-sequencing data. A) A boxplot showing the proportion of DNAm points 810 

that have ‘extreme’ DNAm (0.05 <  DNAm < 0.95) calculated for DNAm points with different 811 

read depths (x axis). B) Violin plots showing the distribution of estimated DNAm values from 812 

a simulated bisulfite sequencing experiment for a DNAm site where the true value is 0.50, as 813 

a function of read depth. Line graphs showing the Pearson correlation (Ci) and root mean 814 

squared error (RMSE) (Cii) between simulated and ‘real’ DNAm values for 1000 DNAm 815 

points as a function of read depth. These analyses used a subset of real data selected to 816 

contain DNAm points with read depth >10 and evenly distributed DNAm (see Methods). 817 

Scatterplots of DNAm values quantified using RRBS (x-axis) and a custom vertebrate Illumina 818 

DNAm array [30] (y-axis) in matched samples (n = 80) for D) all DNAm points and E) the 819 

subset of DNAm points with read depth greater than the peak Pearson correlation read 820 

depth in Fi (i.e. 22 reads). Line graphs showing Fi) the Pearson correlation and Fii) error 821 

(RMSE) of RRBS data and array data as a function of the read depth filter applied to the 822 

RRBS dataset. 823 
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Figure 3: A subset of higher read depth DNAm sites are over-represented in RRBS 826 

datasets.  A) A line graph of the mean proportion of DNAm sites remaining (y-axis) after 827 

filtering by increasing read depth thresholds (x-axis). B) The Spearman’s correlation of read 828 

depth between all pairs of samples. C) The proportion of overlap in the DNAm points 829 

present across an increasing number of samples compared. D) Read depth plotted from two 830 

randomly selected samples, colored by the number of DNAm points that the DNAm site that 831 

have a read depth > 0. 1000 DNAm points were randomly selected and read depth is plotted 832 

up to 200 to facilitate the interpretation of plots. E) The proportion of DNAm sites in 833 

intergenic regions (purple), CpG islands (blue), shelves (green) and shores (yellow) for all 834 

DNAm sites and all DNAm sites with read depth >1 across all samples.  835 
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Figure 4: Power is influenced by read depth, sample size, and mean DNAm level in two-838 

group comparisons. Power curves plotting statistical power to detect significant differences 839 

in DNAm between two groups as a function of A) read depth, B) sample size and the effect 840 

of an unbalanced sample size between groups, C) the mean difference in DNAm between 841 

the groups and D) the mean DNAm at simulated DNAm sites. E) The variance for the 842 

simulated data shown in panel D. Simulations were performed 10,000 times with a negative 843 

binomial parameter of r = 1.5.  844 
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Figure 5: Summarizing the simulation and predictions of POWEREDBiSeq. Ai) A QQplot 848 

comparing the read depth of 10,000 simulated DNAm points to 10,000 randomly sampled 849 

true DNAm points from an RRBS dataset. Aii) The proportion of DNAm points remaining in 850 

the RRBS dataset with read depths >x.  B) A QQplot comparing the DNAm of 10,000 851 

simulated DNAm points to a 10,000 randomly sampled true DNAm points. C) The 852 

relationship between the difference in power predicted by POWEREDBiSeq at different 853 

minimum sample sizes (n = 2, 30 and 60) as the minimum read depth threshold is increased, 854 

with a mean difference between groups of 0.06. D) The relationship between the increase in 855 

power to detect a mean difference in DNAm between groups of 0.06 predicted by 856 

POWEREDBiSeq at a read depth of 75 compared to power at a read depth of 1 as a function 857 

of the number minimum of samples per group. 858 
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Additional File 1: Supplementary Figures 862 

.docx file containing Supplementary Figures 1-10 and Supplementary Table 1 863 

 864 

Additional File 2: RRBS sample alignment and read depths 865 

.xlsx file containing RRBS information on total number of reads aligned, unaligned 866 

ambiguously aligned, and total number of reads, as well as the number of methylated and 867 

unmethylated CpGs, CpH, and CHH’s, and total number of cytosines. 868 
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