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 49 

Abstract  50 

 51 

 52 

Neurotransmitter release is a highly controlled process by which synapses can critically regulate 53 

information transfer within neural circuits. While presynaptic receptors –typically activated by 54 

neurotransmitters and modulated by neuromodulators– provide a powerful way of fine tuning 55 

synaptic function, their contribution to activity-dependent changes in transmitter release remains 56 

poorly understood. Here, we report that presynaptic NMDA receptors (preNMDARs) at 57 

hippocampal mossy fiber boutons can be activated by physiologically relevant patterns of 58 

activity and selectively enhance short-term synaptic plasticity at mossy fiber inputs onto CA3 59 

pyramidal cells and mossy cells, but not onto inhibitory interneurons. Moreover, preNMDARs 60 

facilitate brain-derived neurotrophic factor (BDNF) release and contribute to presynaptic calcium 61 

rise. Taken together, our results indicate that preNMDARs, by increasing presynaptic calcium, 62 

fine tune mossy fiber neurotransmission and can control information transfer during dentate 63 

granule cell burst activity that normally occur in vivo. 64 

 65 

 66 
 67 
 68 

  69 
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 70 
 71 
Introduction 72 
 73 

Neurotransmission is a dynamic and highly regulated process. The activation of ionotropic and 74 

metabotropic presynaptic receptors provides a powerful way of fine tuning neurotransmission via 75 

the facilitation or inhibition of neurotransmitter release (Burke & Bender, 2019; Engelman & 76 

MacDermott, 2004; Miller, 1998; Pinheiro & Mulle, 2008; Schicker, Dorostkar, & Boehm, 2008). 77 

Due to their unique functional properties, including high calcium-permeability, slow kinetics and 78 

well-characterized role as coincidence-detectors (Cull-Candy, Brickley, & Farrant, 2001; Lau & 79 

Zukin, 2007; Paoletti, Bellone, & Zhou, 2013; Traynelis et al., 2010), presynaptic NMDA receptors 80 

(preNMDARs) have emerged as key regulators of synaptic transmission and plasticity (Banerjee, 81 

Larsen, Philpot, & Paulsen, 2016; Bouvier, Bidoret, Casado, & Paoletti, 2015; Bouvier, Larsen, 82 

Rodriguez-Moreno, Paulsen, & Sjostrom, 2018; Duguid, 2013; Duguid & Smart, 2009; Wong, 83 

Rannio, Jones, Thomazeau, & Sjostrom, 2020). Regulation of neurotransmitter release by NMDA 84 

autoreceptors in the brain was suggested three decades ago (Martin, Bustos, Bowe, Bray, & 85 

Nadler, 1991). Anatomical evidence for preNMDARs arose from an immuno-electron microscopy 86 

study revealing NMDARs at the mossy fiber giant bouton of the monkey hippocampus (Siegel et 87 

al., 1994), followed by functional studies in the entorhinal cortex indicating that preNMDARs 88 

tonically increase spontaneous glutamate release and also facilitate evoked release in a 89 

frequency-dependent manner (Berretta & Jones, 1996; Woodhall, Evans, Cunningham, & Jones, 90 

2001). Since these early studies, although evidence for preNMDARs has accumulated throughout 91 

the brain (Banerjee et al., 2016; Bouvier et al., 2018; Duguid & Smart, 2009), the presence and 92 

functional relevance of preNMDARs at key synapses in the brain have been called into question 93 

(Carter & Jahr, 2016; Duguid, 2013).  94 

 95 

Mossy fibers – the axons of dentate granule cells (GCs) – establish excitatory synapses onto 96 
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proximal dendrites of CA3 pyramidal neurons, thereby conveying a major excitatory input to the 97 

hippocampus proper (Amaral, Scharfman, & Lavenex, 2007; Henze, Urban, & Barrionuevo, 98 

2000). This synapse displays uniquely robust frequency facilitation both in vitro (Nicoll & Schmitz, 99 

2005; Salin, Scanziani, Malenka, & Nicoll, 1996; Vyleta, Borges-Merjane, & Jonas, 2016) and in 100 

vivo (Hagena & Manahan-Vaughan, 2010; Vandael, Borges-Merjane, Zhang, & Jonas, 2020). The 101 

molecular basis of this short-term plasticity is not fully understood but likely relies on diverse 102 

presynaptic mechanisms that increase glutamate release (Jackman & Regehr, 2017; Rebola, 103 

Carta, & Mulle, 2017). Short-term, use-dependent facilitation is believed to play a critical role in 104 

information transfer, circuit dynamics and short-term memory (Abbott & Regehr, 2004; Jackman 105 

& Regehr, 2017; Klug et al., 2012). The mf-CA3 synapse can strongly drive the CA3 network 106 

during short bursts of presynaptic activity (Chamberland, Timofeeva, Evstratova, Volynski, & Toth, 107 

2018; Henze, Wittner, & Buzsaki, 2002; Vyleta et al., 2016; Zucca et al., 2017), an effect that likely 108 

results from two key properties of this synapse, namely, its strong frequency facilitation and 109 

proximal dendritic localization. In addition to CA3 pyramidal neurons, mossy fiber axons establish 110 

synaptic connections with hilar mossy cells (MC) and inhibitory interneurons (IN) (Amaral et al., 111 

2007; Henze et al., 2000). These connections also display robust short-term plasticity (Lysetskiy, 112 

Foldy, & Soltesz, 2005; Toth, Suares, Lawrence, Philips-Tansey, & McBain, 2000), which may 113 

contribute significantly to information transfer and dynamic modulation of the dentate gyrus (DG)-114 

CA3 circuit (Bischofberger, Engel, Frotscher, & Jonas, 2006; Evstratova & Toth, 2014; Lawrence 115 

& McBain, 2003). Despite early evidence for preNMDARs at mossy fiber boutons (Siegel et al., 116 

1994), whether these receptors modulate neurotransmission at mossy fiber synapses is unknown.  117 

Intriguingly, mossy fibers contain one of the highest expression levels of brain-derived 118 

neurotrophic factor, BDNF (Conner, Lauterborn, Yan, Gall, & Varon, 1997). While preNMDARs 119 

were implicated in BDNF release at corticostriatal synapses (Park, Popescu, & Poo, 2014), 120 

whether putative preNMDARs impact BDNF release at mossy fiber synapses remains 121 

unexplored. 122 
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 123 

Here, to examine the potential presence and impact of preNMDARs at mossy fiber synapses, we 124 

utilized multiple approaches, including immunoelectron microscopy, selective pharmacology for 125 

NMDARs, a genetic knockout strategy to remove NMDARs from presynaptic GCs, two-photon 126 

imaging of BDNF release, and presynaptic calcium signals in acute rodent hippocampal slices. 127 

Our findings indicate that preNMDARs, likely by increasing presynaptic calcium, contribute to 128 

mossy fiber short-term plasticity and promotes BDNF release. Thus, preNMDARs at mossy fibers 129 

may facilitate information transfer and provide an important point of regulation in the DG – CA3 130 

circuit by fine-tuning both glutamate and BDNF release. 131 

 132 

Results 133 

 134 

Electron microscopy reveals presynaptic NMDA receptors at mossy fiber terminals 135 

To determine the potential localization of NMDA receptors at the mossy fiber terminals of the 136 

rodent hippocampus, we performed electron microscopy and post-embedding immunogold 137 

labeling in rats using a validated antibody for the obligatory subunit GluN1 (Petralia, Yokotani, & 138 

Wenthold, 1994; Siegel et al., 1994; Takumi, Ramirez-Leon, Laake, Rinvik, & Ottersen, 1999; 139 

Watanabe et al., 1998). Gold particles were detected in the main body of the postsynaptic density 140 

as well as presynaptic mossy fiber terminals (Figure 1A-C). GluN1 localized in mossy fiber 141 

boutons in a relatively high proportion to the active zone, as compared to associational-142 

commissural (ac) synapse in the same CA3 pyramidal neuron (Figure 1D; mf, ~32% presynaptic 143 

particles; ac, <10% presynaptic particles; n = 3 animals). Similar quantification for AMPA receptors 144 

did not reveal presynaptic localization of these receptors in either mossy fiber or associational 145 

commissural synapses (Figure S1A-C; ~5% presynaptic particles, n = 3 animals).  Together, 146 

these results provide anatomical evidence for preNMDARs at mf-CA3 synapses. 147 

 148 
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Both NMDAR antagonism and genetic deletion from presynaptic granule cells reduce 149 

mossy fiber low-frequency facilitation 150 

Presynaptic short-term plasticity, in the form of low-frequency (~1 Hz) facilitation (LFF), is uniquely 151 

robust at the mf-CA3 synapse (Nicoll & Schmitz, 2005; Salin et al., 1996). To test a potential 152 

involvement of preNMDARs in LFF, we monitored CA3 pyramidal neurons in acute rat 153 

hippocampal slices. Neurons were held at Vh= -70 mV to minimize postsynaptic NMDAR 154 

conductance, and mossy fibers were focally stimulated with a bipolar electrode (theta glass 155 

pipette) in stratum lucidum ~100 µm from the recorded cell.  LFF of AMPAR-mediated 156 

transmission was induced by stepping the stimulation frequency from 0.1 Hz to 1 Hz for ~2 min 157 

in the presence of picrotoxin (100 µM) to block fast inhibitory synaptic transmission, and a low 158 

concentration of the AMPAR noncompetitive antagonist LY303070 (0.5 μM) to minimize CA3-CA3 159 

recurrent activity (Kwon & Castillo, 2008).  Bath-application of the NMDAR irreversible open 160 

channel blocker MK-801 (50 μM) significantly reduced LFF (Figure 1E). In addition, the 161 

competitive NMDAR antagonists D-APV (100 µM) or R-CPP (50 µM) yielded a comparable 162 

reduction of facilitation (Figure 1F). To confirm that these synaptic responses were mediated by 163 

mossy fibers, the mGluR2/3 agonist DCG-IV (1 µM) was applied at the end of all recordings 164 

(Kamiya, Shinozaki, & Yamamoto, 1996). To control for stability, we performed interleaved 165 

experiments in the absence of NMDAR antagonists and found that LFF remained unchanged 166 

(Figure S2A). These findings indicate NMDAR antagonism reduces mf-CA3 short-term plasticity 167 

(LFF), suggesting that preNMDARs could contribute to this form of presynaptic plasticity. 168 

 169 

The reduction in facilitation of AMPAR-transmission could be due to dampening of CA3 recurrent 170 

activity by NMDAR antagonism (Henze et al., 2000; Kwon & Castillo, 2008; Nicoll & Schmitz, 171 

2005).  To discard this possibility, we repeated our experiments in a much less excitable network 172 

in which AMPAR-mediated synaptic transmission was selectively blocked by a high concentration 173 

of the noncompetitive antagonist LY303070 (15 μM), and monitored the kainate receptor (KAR)-174 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2021. ; https://doi.org/10.1101/2021.01.21.427714doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427714
http://creativecommons.org/licenses/by/4.0/


7 
 

mediated component of mossy fiber synaptic transmission (Castillo, Malenka, & Nicoll, 1997; 175 

Kwon & Castillo, 2008).  In addition, 2 mM MK-801 was included in the intracellular recording 176 

solution to block postsynaptic NMDARs (Corlew, Brasier, Feldman, & Philpot, 2008) (Figure 177 

S3A). To further ensure postsynaptic NMDAR blockade, we voltage-clamped the CA3 pyramidal 178 

neuron at -70 mV and waited until NMDAR-mediated transmission was eliminated and only KAR-179 

EPSCs remained. Under these recording conditions, bath-application of MK-801 (50 μM) also 180 

reduced LFF of KAR-mediated transmission (Figure 1G), whereas LFF remained unchanged in 181 

interleaved control experiments (Figure S2B).  At the end of these recordings, 10 μM NBQX was 182 

applied to confirm KAR-transmission (Figure 1G; Figure S2B) (Castillo et al., 1997; Kwon & 183 

Castillo, 2008). It is therefore unlikely that the reduction of LFF mediated by NMDAR antagonism 184 

could be explained by recurrent network activity, suggesting a direct effect on transmitter release.  185 

 186 

To further support a role of preNMDARs in mossy fiber LFF, we took a genetic approach by 187 

conditionally removing NMDARs from GCs in Grin1 floxed mice. To this end, an AAV5-CamKII-188 

Cre-GFP virus was bilaterally injected in the DG to selectively delete Grin1 expression, whereas 189 

AAV5-CamKII-eGFP was injected in littermates as a control (Figure 2A). Two weeks after surgery, 190 

we prepared acute hippocampal slices and examined the efficacy of Grin1 deletion by analyzing 191 

NMDAR-mediated transmission in GFP+ GCs of Grin1-cKO and control mice. We confirmed that 192 

in contrast to control mice, no NMDAR-EPSCs were elicited by electrically stimulating medial 193 

perforant path inputs in Grin1-cKO GCs voltage-clamped at +40 mV in the presence of 100 μM 194 

picrotoxin and 10 μM NBQX (Figure 2B).  As expected, the NMDAR/AMPAR ratio was 195 

significantly reduced in Grin1-cKO mice compared to control (Figure 2C). Only acute slices that 196 

exhibited robust GFP fluorescence in the DG were tested for LFF of AMPAR-transmission in CA3. 197 

We found that LFF was significantly reduced in Grin1-cKOs as compared to controls (Figure 2D), 198 

indicating that genetic removal of NMDARs from GCs recapitulated NMDAR antagonism (Figure 199 

1E-G). Grin1 deletion did not affect basal transmitter release as indicated by the lack of change 200 
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in paired-pulse ratio (Control: 2.5 ± 0.36, n = 13 cells; Grin1 cKO: 2.4 ± 0.31, n = 13 cells; U = 201 

0.758, Mann-Whitney test). Collectively, our findings using two distinct approaches strongly 202 

suggest that NMDAR activation in GCs increases LFF of mf-CA3 synaptic transmission. 203 

  204 

Reduced facilitation by NMDAR antagonism is independent of the granule cell 205 

somatodendritic compartment 206 

Bath application of MK-801 could have blocked dendritic NMDARs in GCs and potentially affected 207 

transmitter release (Christie & Jahr, 2008; Duguid, 2013). To address this possibility, we repeated 208 

our experiments after performing a surgical cut in the granular layer of the DG in order to isolate 209 

mossy fiber axons from GCs (Figure S4A). Under these conditions, MK-801 bath application still 210 

reduced LFF (Figure 3A), and LFF was stable in control, acutely transected axons (Figure 3B). 211 

In addition, puffing D-APV (2 mM) in stratum lucidum near (~200 µm) the recorded neuron also 212 

reduced LFF (Figure 3C), whereas puffing ACSF had no effect (Figure 3D). Lastly, in a set of 213 

control experiments we confirmed that D-APV puffs were sufficient to transiently block NMDAR-214 

mediated transmission in CA3 but not in DG (Figure S4B,C). Together, these results support the 215 

notion that LFF reduction was due to the blockade of preNMDARs but not somatodendritic 216 

NMDARs on GCs.  217 

 218 

PreNMDARs impact burst-induced facilitation and information transfer 219 

GCs in vivo typically fire in brief bursts (Diamantaki, Frey, Berens, Preston-Ferrer, & Burgalossi, 220 

2016; GoodSmith et al., 2017; Henze et al., 2002; Pernia-Andrade & Jonas, 2014; Senzai & 221 

Buzsaki, 2017). To test whether preNMDARs contribute to synaptic facilitation that occurs during 222 

more physiological patterns of activity, mossy fibers were activated with brief bursts (5 stimuli, 25 223 

Hz). We first took an optogenetic approach and used a Cre-dependent ChiEF virus to selectively 224 

light-activate mf-CA3 synapses in Grin1-cKO and control mice. Thus, animals were injected with 225 

a mix of AAV5-CamKII-CreGFP + AAV-DJ-FLEX-ChiEF-tdTomato viruses in the DG (Figure 4A). 226 
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At least four weeks after surgery, acute slices were prepared and burst-induced facilitation of 227 

AMPAR-mediated transmission in CA3 was assessed (Figure 4B,C). Burst-induced facilitation 228 

triggered by light activation and measured as the ratio of EPSCs elicited by the 5th and 1st pulse 229 

(P5/P1 ratio), was significantly reduced in Grin1-cKO animals as compared to controls. Because 230 

these bursts of activity can activate the CA3 network (Henze et al., 2000; Kwon & Castillo, 2008; 231 

Nicoll & Schmitz, 2005), we next monitored KAR-EPSCs under conditions of low excitability (as 232 

in Figure 1G). MK-801 bath application also reduced burst-induced facilitation, whereas facilitation 233 

remained unchanged in naïve slices (Figure 4D,E). Lastly, we tested whether preNMDARs, by 234 

facilitating glutamate release during bursting activity, could bring CA3 pyramidal neurons to 235 

threshold and trigger postsynaptic action potentials. To test this possibility, we monitored action 236 

potentials elicited by KAR-EPSPs (resting membrane potential -70 ± 2 mV) from CA3 pyramidal 237 

neurons intracellularly loaded with 2 mM MK-801. Under these recording conditions, MK-801 bath 238 

application significantly reduced the mean number of spikes per burst (Figure 4F).  No changes 239 

in mean spikes per burst were observed in naïve slices over time (Figure 4G).  Application of 10 240 

μM NBQX at the end of these experiments confirmed that action potentials were induced by KAR-241 

mediated synaptic responses. In control experiments we found that intracellular MK-801 242 

effectively blocked postsynaptic NMDAR transmission during burst stimulation (Figure S3B). 243 

Altogether, these results indicate that preNMDARs at mf-CA3 synapses can contribute to 244 

information transfer from the DG to CA3.   245 

 246 

 247 

PreNMDARs contribute to presynaptic calcium rise and can be activated by glutamate 248 

PreNMDARs could facilitate glutamate and BDNF release by increasing presynaptic Ca2+ rise 249 

(Bouvier et al., 2016; Buchanan et al., 2012; Carter & Jahr, 2016; Corlew et al., 2008; Park et al., 250 

2014). To test this possibility at mf-CA3 synapses we combined a conditional knockout strategy 251 

with calcium imaging using two-photon microscopy.  We deleted preNMDARs by injecting AAV5-252 
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CamKII-mCherry-Cre virus in the DG of Grin1 floxed mice, and littermate animals injected with 253 

AAV5-CamKII-mCherry virus served as control (Figure 5A).  Two weeks after surgery, we 254 

confirmed the efficacy of Grin1 deletion by activating medial perforant path inputs and monitoring 255 

NMDAR/AMPAR ratios in GCs of control and Grin1-cKO animals (Figure 5A).  Virtually no 256 

NMDAR-EPSCs were detected at Vh= +40 mV in Grin1-cKO animals (Figure 5A).  Acute slices 257 

that exhibited robust mCherry fluorescence in the DG were taken for calcium imaging 258 

experiments.  To maximize our ability to detect preNMDAR-mediated calcium signals, we used a 259 

recording solution that contained nominal Mg2+, 4 mM Ca2+ and 10 μM D-Serine (Carter & Jahr, 260 

2016).  GCs expressing mCherry were patch-loaded with 35 µM Alexa 594 and 200 µM Fluo-5F, 261 

and mossy fiber axons were imaged and followed towards CA3 until giant boutons (white arrows) 262 

were identified (Figure 5B).  We found that calcium transients (CaTs) elicited by direct current 263 

injection in the GC soma (5 action potentials, 25 Hz) were significantly smaller in Grin1-cKO 264 

animals as compared to control (Figure 5C-E). Thus, preNMDARs contribute significantly to 265 

presynaptic Ca2+ rise in mossy fiber boutons, and by this means facilitate synaptic transmission. 266 

 267 

Lastly, we sought to determine if direct activation of preNMDARs could drive Ca2+ influx in mossy 268 

fiber giant boutons.  To test this possibility, we elicited CaTs by two-photon uncaging (2PU) of 269 

glutamate on mossy fiber boutons of control and Grin1-cKO animals (Figure 6A).  As previously 270 

described mCherry GCs were patch-loaded with Alexa 594 and Fluo-5F in a recording solution 271 

designed to maximize the detection of preNMDAR-mediated calcium signals (as in Figure 5).  We 272 

first verified that glutamate 2PU-induced CaTs in dendritic spine heads of GCs were strongly 273 

reduced in Grin1-cKO animals as compared to controls (Figure 6B,C).  To verify that reduced 274 

ΔG/R signals were a result of Grin1 deletion and not differences in uncaging laser power, we 275 

performed a laser power intensity–response curve, and found that Grin1-cKO animals exhibited 276 

reduced ΔG/R signals as compared to control regardless of laser power intensity (Figure S5).  277 

We next measured glutamate 2PU-induced CaTs in mossy fiber giant boutons (identified as in 278 
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Figure 5B) and found that single uncaging pulses were insufficient to drive detectable CaTs in 279 

control boutons (Figure S6).  However, a burst of 2PU stimulation (5 pulses, 25 Hz) induced CaTs 280 

in mossy fiber boutons of control but not in Grin1-cKO animals (Figure 6D,E).  These findings 281 

indicate that brief bursts of glutamate 2PU, a manipulation that mimics endogenous release of 282 

glutamate during physiological patterns of activity, induces presynaptic Ca2+ influx in mossy fiber 283 

boutons by activating preNMDARs. 284 

 285 

PreNMDARs promote BDNF release from mossy fiber boutons 286 

Previous work implicated preNMDARs in the release of BDNF at corticostriatal synapses following 287 

repetitive activity and presynaptic calcium elevations (Park et al., 2014). Given the uniquely high 288 

expression levels of BDNF in mossy fibers (Conner et al., 1997; Yan et al., 1997), we examined 289 

the potential role for preNMDARs in BDNF release from mossy fiber terminals. To this end, a Cre-290 

dependent BDNF reporter (BDNF-pHluorin) was injected in Grin1-floxed and control animals.  291 

Littermate mice were injected with a mix of AAV5-CamKII-mCherry-Cre + AAV-DJ-DIO-BDNF-292 

pHluorin viruses in the DG (Figure 7A).  At least four weeks after surgery, acute slices were 293 

prepared for two-photon microscopy to image mossy fiber boutons.  After acquiring a stable 294 

baseline of BDNF-pHluorin signals, mossy fibers were repetitively activated (see Methods) 295 

(Figure 7B).  BDNF-pHluorin signals were analyzed by measuring ΔF/F, where ΔF/F reductions 296 

indicate BDNF release (Park et al., 2014).  We found that GluN1-deficient mossy fiber boutons 297 

showed a significant (~50%) reduction of BDNF release as compared to control (Figure 7C-D), 298 

suggesting preNMDARs contribute significantly to BDNF release during repetitive activity of 299 

mossy fiber synapses. 300 

 301 

PreNMDAR-mediated regulation of mossy fiber synapses is input-specific  302 

In addition to providing a major excitatory input to the hippocampus proper, mossy fiber axons 303 

also synapse onto excitatory hilar mossy cells and inhibitory neurons in CA3 (Amaral et al., 2007; 304 
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Henze et al., 2000; Lawrence & McBain, 2003).  To test whether preNMDARs could also play a 305 

role at these synapses, we visually patched mossy cells and interneurons, loaded them with 35 306 

µM Alexa 594 (Figure 8A) and 2 mM MK-801, and monitored AMPAR-EPSCs (Vh = -70 mV). 307 

Unlike mf-CA3 synapses, mossy fiber synapses onto CA3 interneurons in stratum lucidum do not 308 

express LFF, but can undergo burst-induced facilitation or depression (Toth et al., 2000). We found 309 

that MK-801 bath application had no significant effect on burst-induced facilitation or depression 310 

(Figure 8B), suggesting preNMDARs do not play a role at mf-Interneuron synapses in CA3.  311 

Mossy fiber inputs onto hilar mossy cells undergo robust activity-dependent facilitation (Lysetskiy 312 

et al., 2005). Like for mf-CA3 synapses, we found that MK-801 reduced LFF (Figure 8C). These 313 

findings strongly suggest that preNMDARs facilitate mossy fiber transmission onto excitatory 314 

neurons but not onto inhibitory interneurons. 315 

 316 

Discussion 317 

 318 

In this study, we provide evidence that hippocampal mossy fiber boutons express preNMDARs 319 

whose activation fine-tunes mossy fiber synaptic function. Specifically, our results show that 320 

preNMDARs enhance mossy fiber short-term plasticity in a target cell-specific manner. By 321 

enhancing glutamate release onto excitatory but not inhibitory interneurons, preNMDARs 322 

increase GC-CA3 spike transfer. Moreover, using two-photon calcium imaging, we demonstrate 323 

that preNMDARs contribute to presynaptic Ca2+ rise in mossy fiber boutons. Lastly, upon 324 

repetitive activity preNMDARs promote BDNF release from mossy fiber boutons. Taken together, 325 

our findings indicate that preNMDARs act as autoreceptors to boost both glutamate and BDNF 326 

release at mossy fiber synapses. By regulating information flow in the DG-CA3 circuit, 327 

preNMDARs may play a significant role in learning and memory. 328 

 329 

Early studies using immunoperoxidase electron microscopy revealed NMDARs in presynaptic 330 
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compartments in multiple brain areas (for a review, see Corlew et al., 2008). Subsequent studies 331 

that used immunogold electron microscopy, a more precise localization method, identified 332 

NMDARs on the presynaptic membrane in a number of brain structures, including neocortex 333 

(Fujisawa & Aoki, 2003; Larsen et al., 2011), hippocampus (Berg, Larsson, Morland, & 334 

Gundersen, 2013; Jourdain et al., 2007; McGuinness et al., 2010), and amygdala (Pickel, Colago, 335 

Mania, Molosh, & Rainnie, 2006). In agreement with these studies, and using a previously 336 

validated antibody (Siegel et al., 1994), we identified prominent presynaptic labeling of the 337 

obligatory subunit GluN1 in mossy fiber boutons (Figure 1A-D). Moreover, we found that these 338 

receptors are close to the active zone and therefore well positioned to modulate neurotransmitter 339 

release. 340 

 341 

Previous work in the cerebellum and neocortex suggested that somatodendritic potentials 342 

generated by NMDARs could signal to nerve terminals and lead to presynaptic Ca2+ elevations 343 

(Christie & Jahr, 2008, 2009). Thus, changes in neurotransmitter release resulting from NMDAR 344 

antagonism could be due to somatodendritic NMDARs but not necessarily preNMDARs residing 345 

on nerve terminals (Duguid, 2013). However, focal NMDAR antagonism far from the 346 

somatodendritic compartment and in transected axons still reduced short-term plasticity at mossy 347 

fiber synapses (Figure 3), making it extremely unlikely that somatodendritic NMDARs could 348 

explain our results. In further support of functional preNMDARs at mossy fibers, we found that 349 

2PU of glutamate induced Ca2+ rise in control but not in GluN1-deficient boutons. Together, our 350 

findings strongly support the presence of functional preNMDARs facilitating neurotransmission at 351 

mf-CA3 synapses. Remarkably, the somatodendritic compartment of GCs can generate sub-352 

threshold depolarizations at mossy fiber terminals (a.k.a. excitatory presynaptic potentials) (Alle 353 

& Geiger, 2006). By alleviating the magnesium blockade, these potentials could transiently boost 354 

the functional impact of mossy fiber preNMDARs.  355 

 356 
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While the presence of preNMDARs is downregulated during development both in neocortex 357 

(Corlew, Wang, Ghermazien, Erisir, & Philpot, 2007; Larsen et al., 2011) and hippocampus 358 

(Mameli, Carta, Partridge, & Valenzuela, 2005), we were able to detect functional preNMDARs in 359 

young adult rats (P17-P28) and mice (P30-P44), once mossy fiber connections are fully 360 

developed (Amaral & Dent, 1981). Functional preNMDARs have been identified in axonal growth 361 

cones of hippocampal and neocortical neurons, suggesting these receptors are important for 362 

regulating early synapse formation (Gill et al., 2015; Wang, Petralia, Wang, Wenthold, & 363 

Brenowitz, 2011). Because GCs undergo adult neurogenesis, and adult born GCs establish new 364 

connections in the mature brain, preNMDARs could also play an important role in immature mossy 365 

fiber synapses and functional integration of new born GCs into the mature hippocampus (Toni & 366 

Schinder, 2015). Moreover, experience can modulate the expression and composition of 367 

preNMDARs in neocortex (Larsen et al., 2014), a possibility not investigated in our study.  368 

 369 

The glutamate that activates preNMDARs may originate from the presynaptic terminal, the 370 

postsynaptic cell, nearby synapses or neighboring glial cells. Our results indicate that activation 371 

of preNMDARs at mossy fiber synapses requires activity-dependent release of glutamate that 372 

likely arises from mossy fiber boutons, although other sources cannot be discarded, including 373 

astrocytes. At medial entorhinal inputs to GCs, preNMDARs appear to be localized away from the 374 

presynaptic release sites and facing astrocytes, consistent with preNMDAR activation by 375 

gliotransmitters (Jourdain et al., 2007; Savtchouk et al., 2019). In contrast, at mf-CA3 synapses 376 

we found that preNMDARs are adjacent to the release sites suggesting a direct control on 377 

glutamate release from mossy fiber boutons. 378 

 379 

The precise mechanism by which preNMDARs facilitate neurotransmitter release is poorly 380 

understood but it may include Ca2+ influx through the receptor and depolarization of the 381 

presynaptic terminal with subsequent activation of voltage-gated calcium channels (Banerjee et 382 
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al., 2016; Corlew et al., 2008). In support of this mechanism is the high Ca2+ permeability of 383 

NMDARs (Paoletti et al., 2013; Rogers & Dani, 1995). Besides, presynaptic subthreshold 384 

depolarization and subsequent activation of presynaptic voltage-gated calcium channels is a 385 

common mechanism by which presynaptic ionotropic receptors facilitate neurotransmitter release 386 

(Engelman & MacDermott, 2004; Pinheiro & Mulle, 2008). PreNMDARs may also act in a 387 

metabotropic manner (Dore, Aow, & Malinow, 2016) and facilitate transmitter release in a Ca2+-388 

influx-independent manner (Abrahamsson et al., 2017). Our findings demonstrating that the open 389 

channel blocker MK-801 robustly reduced short-term plasticity at mossy fiber synapses support 390 

an ionotropic mechanism that involves calcium influx through preNMDARs. In line with previous 391 

studies that detected presynaptic Ca2+ rises following local activation of NMDARs (e.g. NMDA or 392 

glutamate uncaging) in visual cortex (Buchanan et al., 2012) and cerebellum (Rossi et al., 2012), 393 

we provide direct evidence that preNMDAR activation either by repetitive activation of mossy 394 

fibers or 2PU of glutamate increases presynaptic Ca2+ (Figures 5 and 6). Although the calcium 395 

targets remain unidentified, these may include proteins of the release machinery, calcium-396 

dependent protein kinases and phosphatases, and calcium release from internal stores (Banerjee 397 

et al., 2016). In addition to facilitating evoked neurotransmitter release, preNMDARs can promote 398 

spontaneous neurotransmitter release as indicated by changes in miniature, action potential-399 

independent activity (e.g. mEPSCs) (for recent reviews, see Banerjee et al., 2016; Kunz, Roberts, 400 

& Philpot, 2013; Wong et al., 2020). A potential role for preNMDARs in spontaneous, action 401 

potential-independent release at mossy fiber synapses cannot be discarded. 402 

 403 

Our results show that activation of preNMDARs by physiologically relevant patterns of presynaptic 404 

activity enhanced mossy fiber transmission and DG-CA3 information transfer (Figure 4). Studies 405 

found NMDAR genetic deletion in GCs resulted in memory deficits (e.g. pattern separation) 406 

(McHugh et al., 2007). Although the mechanism is unclear, it could involve activity-dependent 407 

preNMDAR regulation of mossy fiber excitatory connections. We found that preNMDARs facilitate 408 
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neurotransmitter release in a target cell-specific manner. Like in neocortex (Larsen & Sjostrom, 409 

2015), such specificity strongly suggests that preNMDARs have distinct roles in controlling 410 

information flow in cortical microcircuits. Thus, preNMDAR facilitation of mossy fiber synapses 411 

onto glutamatergic neurons but not GABAergic interneurons (Figure 8) may fine-tune the CA3 412 

circuit by increasing the excitatory/inhibitory balance.  413 

 414 

Given the multiple signaling cascades known to regulate NMDARs (Lau & Zukin, 2007; Sanz-415 

Clemente, Nicoll, & Roche, 2013), preNMDARs at mossy fiber synapses may provide an 416 

important site of neuromodulatory control. PreNMDARs have been implicated in the induction of 417 

LTP and LTD at excitatory or inhibitory synapses in several brain areas (Banerjee et al., 2016; 418 

Wong et al., 2020). While most evidence, at least using robust induction protocols in vitro, 419 

indicates that long-term forms of presynaptic plasticity at mossy fiber synapses can occur in the 420 

absence of NMDAR activation (Castillo, 2012; Nicoll & Schmitz, 2005), our findings do not discard 421 

the possibility that preNMDARs could play a role in vivo during subtle presynaptic activities. As 422 

previously reported for corticostriatal LTP (Park et al., 2014), preNMDARs could regulate long-423 

term synaptic plasticity by controlling BDNF release (Figure 7), which is consistent with BDNF-424 

TrkB signaling being implicated in mf-CA3 LTP (Schildt, Endres, Lessmann, & Edelmann, 2013). 425 

In addition, BDNF could facilitate glutamate release by enhancing preNMDAR function (W. Chen 426 

et al., 2014; Madara & Levine, 2008). By potentiating mf-CA3 transmission, BDNF could also 427 

promote epileptic activity (McNamara & Scharfman, 2012). Lastly, dysregulation of NMDARs is 428 

commonly implicated in the pathophysiology of brain disorders such as schizophrenia, autism, 429 

and epilepsy (Lau & Zukin, 2007; Paoletti et al., 2013). PreNMDAR expression and function have 430 

been suggested to be altered in experimental models of disease, including neuropathic pain (Y. 431 

Chen, Chen, Chen, Zhang, & Pan, 2019; Zeng, Thomson, Aicher, & Terman, 2006), and epilepsy 432 

(Yang, Woodhall, & Jones, 2006). At present, however, in vivo evidence for the involvement of 433 

preNMDARs in brain function and disease is rather indirect (Bouvier et al., 2015; Wong et al., 434 
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2020). The development of specific preNMDAR tools is required to determine the functional 435 

impact of these receptors in vivo. 436 

 437 

 438 

Methods 439 

 440 
Antibodies  441 

A monoclonal antibody against GluN1 (clone 54.1 MAB363) was obtained from Millipore 442 

(Germany) and its specificity was characterized previously (Siegel et al., 1994). An affinity-purified 443 

polyclonal rabbit anti-GluA1-4 (pan-AMPA), corresponding to aa 724–781 of rat, was used and 444 
characterised previously (Nusser et al., 1998). 445 
 446 

Immunohistochemistry for electron microscopy  447 

Immunohistochemical reactions at the electron microscopic level were carried out using the post-448 
embedding immunogold method as described earlier (Lujan, Nusser, Roberts, Shigemoto, & 449 

Somogyi, 1996). Briefly, animals (n = 3 rats were anesthetized by intraperitoneal injection of 450 

ketamine-xylazine 1:1 (0.1 mL/kg b.w.) and transcardially perfused with ice-cold fixative 451 
containing 4% paraformaldehyde, 0.1% glutaraldehyde and 15% saturated picric acid solution in 452 

0.1 M phosphate buffer (PB) for 15 min. Vibratome sections 500 μm thick were placed into 1 M 453 
sucrose solution in 0.1 M PB for 2 h before they were slammed on a Leica EM CPC apparatus. 454 
Samples were dehydrated in methanol at -80°C and embedded by freeze-substitution (Leica EM 455 

AFS2) in Lowicryl HM 20 (Electron Microscopy Science, Hatfield, USA), followed by polimerization 456 
with UV light. Then, ultrathin 80-nm-thick sections from Lowicryl-embedded blocks of the 457 
hippocampus were picked up on coated nickel grids and incubated on drops of a blocking solution 458 

consisting of 2% human serum albumin in 0.05 M TBS and 0.03% Triton X-100. The grids were 459 

incubated with GluN1 or pan-AMPA antibodies (10 μg/mL in 0.05 M TBS and 0.03% Triton X-100 460 
with 2% human serum albumin) at 28 °C overnight. The grids were incubated on drops of goat 461 

anti-rabbit IgG conjugated to 10 nm colloidal gold particles (Nanoprobes Inc.) in 2% human serum 462 

albumin and 0.5% polyethylene glycol in 0.05 M TBS and 0.03% Triton X-100. The grids were 463 
then washed in TBS and counterstained for electron microscopy with 1% aqueous uranyl acetate 464 

followed by Reynolds’s lead citrate. Ultrastructural analyses were performed in a JEOL-1010 465 

electron microscope. 466 
 467 
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Hippocampal slice preparation 468 

Animal handling followed an approved protocol by the Albert Einstein College of Medicine 469 

Institutional Animal Care and Use Committee in accordance with National Institute of Health 470 

guidelines.  Acute hippocampal slices (400 µm thick) were obtained from Sprague-Dawley rats 471 
postnatal day 17 (P17) to P28 of either sex.  The hippocampi were isolated and cut using a 472 

VT1200s microslicer (Leica Microsystems Co.) in a solution containing (in mM): 215 sucrose, 2.5 473 

KCl, 26 NaHCO3, 1.6 NaH2PO4, 1 CaCl2, 4 MgCl2, 4 MgSO4 and 20 glucose.  Acute slices were 474 
placed in a chamber containing a 1:1 mix of sucrose cutting solution and extracellular artificial 475 

cerebrospinal fluid (ACSF) recording solution containing (in mM): 124 NaCl, 2.5 KCl, 26 NaHCO3, 476 

1 NaH2PO4, 2.5 CaCl2, 1.3 MgSO4 and 10 glucose incubated in a warm-water bath at 33-34˚C.  477 
The chamber was brought to room temperature for at least 15 min post-sectioning and the 1:1 478 

sucrose-ACSF solution was replaced by ACSF.  All solutions were equilibrated with 95% O2 and 479 
5% CO2 (pH 7.4).  Slices were allowed to recover for at least 45 min in the ACSF solution before 480 
recording.  481 

 482 
Electrophysiology 483 

Electrophysiology experiments were performed at 26.0 ± 0.1˚C in a submersion-type recording 484 

chamber perfused at 2 ml/min with ACSF supplemented with the GABAA receptor antagonist 485 
picrotoxin (100 µM) and the selective AMPA receptor (AMPAR) antagonist LY303070 at a low 486 
concentration (0.5 µM) to minimize CA3-CA3 recurrent activity, or at a high concentration (15 µM) 487 

to isolate KAR-EPSCs and KAR-EPSPs to assess monosynaptic mossy fiber transmission.  488 
Whole-cell recordings were made from CA3 pyramidal cells voltage clamped at -70 mV using 489 
patch-type pipette electrodes (3-4 mΩ) containing (in mM): 131 cesium gluconate, 8 NaCl, 1 490 

CaCl2, 10 EGTA, 10 glucose, 10 HEPES, and 2 MK-801 pH 7.25 (280-285 mOsm) unless 491 
specified otherwise. KOH was used to adjust pH.  Series resistance (8-15 MΩ) was monitored 492 

throughout all experiments with a -5 mV, 80 ms voltage step, and cells that exhibited a series 493 

resistance change (>20%) were excluded from analysis.  A stimulating bipolar electrode (theta 494 
glass, Warner Instruments) was filled with ACSF and placed in stratum lucidum to selectively 495 

activate mossy fibers using a DS2A Isolated Voltage Stimulator (Digitimer Ltd.) with a 100 µs 496 

pulse width duration.  AMPAR-EPSCs were recorded for a baseline period of two minutes and 497 
low-frequency facilitation (LFF) was induced by stepping the stimulation frequency from 0.1 to 1 498 

Hz for two minutes.  Facilitation was measured by taking a ratio of the mean EPSC during the 499 

steady-state, LFF period of activity and the two minute baseline (EPSC1Hz/EPSC0.1Hz) before and 500 
after bath-application of NMDAR antagonists.   501 
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 502 
To qualify for analysis, mossy fiber responses met three criteria: 1) The 20-80% rise time of the 503 

AMPAR-EPSC was less than 1 ms 2) LFF was greater than 150% 3) The AMPAR-EPSC displayed 504 

at least 70% sensitivity to the group 2/3 mGluR agonist, DCG-IV (1 µM).  Isolated KAR-EPSCs 505 
were elicited by 2 pulses with a 5 ms inter-stimulus-interval for LFF experiments.  Baseline 506 

measurements were acquired at least 10 min after “break-in” to achieve optimal intracellular 507 

blockade of postsynaptic NMDARs by MK-801 (2 mM) in the patch-pipette.  To transect mossy 508 
fiber axons in acute slices, a 45˚ ophthalmic knife (Alcon Surgical) was used to make a diagonal 509 

cut across the hilus from the dorsal to ventral blades of the DG, and the subregion CA3b was 510 

targeted for patch-clamp recordings. For D-APV (2 mM) puff experiments, a puffer device (Toohey 511 
Company) was set to deliver 2-3 puffs of 100 ms duration at 3-4 psi during the two minutes of LFF 512 

activity.  The puffer pipette was placed at least 300 µm away from the recording site and both the 513 
puff pipette and hippocampal slice were positioned to follow the direction of the laminar flow in 514 
the low profile, submersion-type chamber (RC-26GLP, Warner Instruments).  Burst-induced 515 

facilitation was elicited by 5 pulses at 25 Hz with a 0.03 Hz inter-trial-interval for a baseline period 516 
of 10 min. Facilitation was measured by taking a ratio of the mean KAR-EPSC peak of the 5th 517 
pulse to the 1st pulse (P5/P1) before and after bath-application of MK-801 (50 µM).  To study KAR 518 

induced action potentials, CA3 pyramidal cells were patch-clamped with internal solution 519 
containing in (mM): 112 potassium gluconate, 17 KCl, 0.04 CaCl2, 0.1 EGTA, 10 HEPES, 10 NaCl, 520 
2 MgATP, 0.2 Na3GTP and 2 MK-801, pH 7.2 (280-285 mOsm). Current-clamped CA3 cells were 521 

held at -70 mV during burst stimulation of mossy fibers (5 pulses at 25 Hz) to monitor action 522 
potentials.  Spike-transfer was measured by mean spikes/burst quantified for a 10 min period 523 
before and after bath application of MK-801 (50 µM).  Robust sensitivity to the AMPAR/KAR 524 

selective antagonist NBQX (10 µM) confirmed KAR-EPSC responses.  Both hilar mossy cells and 525 
CA3 interneurons were visually patched-loaded with Alexa 594 (35 µM) and morphological identity 526 

was confirmed by two-photon imaging at the end of experiments.  Hilar mossy cells were voltage 527 

clamped at -70 mV and a bipolar electrode was placed in the DG to activate mossy fibers.  The 528 
data analysis and inclusion criteria used for mossy fiber experiments was also implemented for 529 

hilar mossy cell recordings. CA3 interneurons were voltage clamped at -70 mV and burst-530 

stimulated, facilitation was assessed as previously mentioned.  Both facilitating and depressing 531 
mossy fiber responses were included for analysis given the diversity of mossy fiber-CA3 532 

interneuron transmission (Toth et al., 2000).  Whole-cell voltage and current clamp recordings 533 

were performed with an Axon MultiClamp 700B amplifier (Molecular Devices). Signals were 534 
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filtered at 2 kHz and digitized at 5 kHz. Stimulation and acquisition were controlled with custom 535 
software (Igor Pro 6). 536 

 537 
Transgenic animals 538 

Grn1-floxed littermate mice of either sex (P16-20) were injected with 1 μl of AAV5-CamKII-eGFP, 539 

AAV5-CamKII-CreGFP, AAV5-CamKII-mcherry, or AAV5-CamKII-mcherry-Cre viruses at a rate 540 

of 0.12 μl/min at coordinates (±1.9 mm A/P, ±1.1 mm M/L, ±2.4 mm D/V) targeting the DG using 541 
a stereotaxic apparatus (Kopf Instruments).  Two weeks post-surgery mice were sacrificed for 542 

electrophysiology or calcium imaging experiments.  Mice were perfused with 20 ml of cold NMDG 543 

solution containing in (mM): 93 NMDG, 2.5 KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 544 
glucose, 5 sodium ascorbate, 2 Thiourea, 3 sodium pyruvate, 10 MgCl2, 0.5 CaCl2, brought to pH 545 

7.35 with HCl.  The hippocampi were isolated and cut using a VT1200s microslicer in cold NMDG 546 
solution.  Acute mouse slices were placed in a chamber containing ACSF solution that was 547 
incubated in a warm water bath 33-34 ˚C.  All solutions were equilibrated with 95% O2 and 5% 548 

CO2 (pH 7.4).  Post-sectioning, slices were allowed to recover at room temperature for at least 45 549 
min prior to experiments.  For NMDAR/AMPAR ratios, GCs were patch-clamped with the cesium 550 
internal solution previously mentioned containing either Alexa 594 (35 µM) for GFP+ cells (laser 551 

tuned to 830 nm/910 nm, respectively) or Alexa 488 (35 µM) for mCherry+ cells (laser tuned to 552 
910 nm/780 nm, respectively).  AMPAR-EPSCs were recorded at -65 mV in the presence of 553 
picrotoxin (100 µM) by placing a bipolar electrode near the medial perforant path and delivering 554 

a 100 μs pulse width duration using an Isoflex stimulating unit.  AMPAR-EPSCs were acquired for 555 
at least 5 min followed by bath-application of NBQX (10 µM) to isolate NMDAR-EPSCs. GCs were 556 
brought to +40 mV to alleviate magnesium block and record optimal NMDAR-EPSCs.  557 

NMDAR/AMPAR ratios were measured by taking the mean NMDAR-EPSC/AMPAR-EPSC for a 558 
5 min period of each component.  Only acute mouse slices with optimal GFP and mCherry 559 

reporter fluorescence (i.e. robust expression) were used for electrophysiology and calcium 560 

imaging experiments.  Grin1-floxed animals (The Jackson Laboratory) were kindly provided by 561 
Dr. Michael Higley (Yale University). 562 

 563 
Optogenetics 564 

Grin1 floxed and control mice of either sexes (P17-20) were injected with a 1:2 mix of AAV5-565 

CamKII-CreGFP/AAV-DJ-FLEX-ChiEF-tdTomato viruses targeting the DG.  At least four weeks 566 

post-surgery acute hippocampal slices were prepared as previously described and slices showing 567 
optimal GFP and tdTomato expression were used for electrophysiology experiments. Mossy fiber 568 
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optical burst-stimulation was elicited by using a Coherent 473 nm laser (4-8 mW) delivering 5 569 
pulses at 25 Hz with a 1-2 ms pulse width duration.  Facilitation was measured by taking a ratio 570 

of the mean AMPAR-EPSC peak of the 5th pulse to the 1st pulse (P5/P1) in control and Grin1-cKO 571 

animals.   572 
 573 

Two-photon calcium imaging and MNI-glutamate uncaging 574 

mCherry+ GCs were patch-loaded with an internal solution containing in (mM): 130 KMeSO4, 575 
HEPES, MgCl2, Na2ATP, NaGTP, phosphocreatine, .035 Alexa 594, and .2 Fluo-5F. GCs near 576 

the hilar border were avoided and GCs that exhibited adult-born GCs properties were excluded 577 

from analysis.  The cells were kept in voltage clamp configuration at -50 mV for at least 1 hr to 578 
allow the diffusion of dyes to mossy fiber boutons in ACSF solution containing in (mM):  124 NaCl, 579 

2.5 KCl, 26 NaHCO3, 1 NaH2PO4, 4 CaCl2, 0 MgSO4, 10 glucose, 0.01 NBQX, 0.1 picrotoxin, and 580 
0.01 D-serine. Using an Ultima 2P microscope (Bruker Corp) with and Insight Deep See laser 581 
(Spectra Physics) tuned to 830 nm the "red" PMT was turned on and with minimal pockel power 582 

the red signal was used to identify the mossy fiber axon. With 512 x 512 pixel resolution mossy 583 
fiber axons were followed for at least 200 µm until bouton structures were morphologically 584 
identified and measured at least 3 μm in diameter. GCs were switched to current clamp mode 585 

held at -70 mV and 1 ms current injections were used to elicit a burst of 5 action potentials at 25 586 
Hz.  Using line scan analysis software (PrairieView 5.4, Bruker Corp.) a line was drawn across 587 
the diameter of the bouton at a magnification of at least 16X. The “green” PMT channel was turned 588 

on and 1,000 lines were acquired in a 2 sec time period. Action potential induction was delayed 589 
for 400 ms to collect a baseline fluorescence time period.  Calcium transients (CaTs) were 590 
acquired with a 1 min inter-trial-interval and analyzed using the ΔG/R calculation.  CaTs from 591 

control animals were compared to Grin1-cKO by taking the mean peak ΔG/R value for a 30 ms 592 
period of the 5th action potential.   593 

 594 

For uncaging experiments GCs that were mCherry+ were patch-loaded using the internal solution 595 
previously described in the presence of a 12 ml ACSF solution containing in (mM):  124 NaCl, 2.5 596 

KCl, 26 NaHCO3, 1 NaH2PO4, 4 CaCl2, 0 MgSO4, 10 glucose, 2.5 MNI-glutamate, 0.01 NBQX, 597 

0.1 picrotoxin, and 0.01 D-serine that was recirculated in a submersion type chamber.  A MaiTai 598 
HP laser (Spectra Physics) was tuned to 720 nm to optimally uncage glutamate and elicit CaTs 599 

in GC spines.  Following successful CaTs in GC spines, mossy fiber boutons were identified and 600 

to mimic bursting activity, 5 uncaging pulses (1 ms duration) were delivered at 25 Hz.  The 601 
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acquired CaTs in spines and boutons were analyzed using the ΔG/R calculation in control and 602 
Grin1-cKO animals. 603 

 604 
Two-photon BDNF-phluorin imaging 605 

Grin1 floxed and control mice of both sexes (P16-20) were injected with a 1:2 mix of AAV5-606 

CamKII-mCherryCre/AAV-DJ-DIO-BDNF-phluorin viruses targeting the DG.  At least four weeks 607 

post-surgery acute hippocampal slices were prepared as previously described and slices showing 608 
optimal GFP and mCherry expression were taken for imaging sessions. Briefly, a stimulating 609 

monopolar micropipette electrode was placed in the stratum lucidum at least 250 µm away from 610 

the imaging site.  The Insight Deep See laser (Spectra Physics) was tuned to 880 nm and the 611 
imaging site was selected by the appearance of fibers and bouton structures in the stratum 612 

lucidum.  Using 512 X 512 pixel resolution identified boutons measuring at least 3 μm in diameter 613 
were selected as a region of interest (ROI) magnified to 4-6X and a baseline acquisition of 100 614 
consecutive images at 1 Hz using T-series software (PrairieView 5.4, Bruker Corp.) was acquired 615 

(Park et al., 2014).  Following the baseline acquisition a burst-stimulation consisting of 125 pulses 616 
at 25 Hz was delivered 2x, triggering an acquisition of 200 consecutive images at 1 Hz.  The 617 
fluorescence intensity of the bouton ROI was measured using ImageJ software to calculate ΔF/F 618 

of the BDNF-pHluorin signal.  To verify reactivity of the ROI an isosmotic solution of NH4Cl (50 619 
mM) was added at the end of the imaging session as previously reported (Park et al., 2014).  620 
 621 
Viruses 622 

AAV5-CamKII-eGFP and AAV5-CamKII-CreGFP viruses were acquired from UPenn Vector Core. 623 
AAV5-CamKII-mcherry and AAV5-CamKII-mcherry-Cre were obtained from UNC Chapel Hill 624 

Vector Core.  The AAV-DJ-FLEX-ChiEF-tdTomato and AAV-DJ-DIO-BDNF-phluorin viruses were 625 
custom ordered and obtained from UNC Chapel Hill Vector Core. The DNA of the ChiEF virus 626 

was a generous gift from Dr. Pascal Kaeser (Harvard University), and the DNA of the BDNF-627 

pHluorin was kindly provided by Dr. Hyungju Park (Korea Brain Research Institute). 628 
 629 
Chemicals & Drugs 630 

Picrotoxin and all chemicals used to prepare cutting, recording, and internal solutions were 631 
acquired from Sigma-Aldrich.  All NMDAR antagonists (D-APV, MK-801, R-CPP), NMDAR agonist 632 

(D-serine), and the group 2/3 mGluR agonist (DCG-IV) were purchased from Tocris.  D-APV was 633 

also acquired from the NIMH Chemical Synthesis Drug Program.  NBQX was purchased from 634 
Cayman Chemical Company.  The noncompetitive AMPAR selective antagonist LY303070 was 635 
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custom ordered from ABX Chemical Company.  Alexa 594 morphological dye and the calcium 636 
indicator Fluo-5F were purchased from Thermo Scientific.  For uncaging experiments MNI-637 

glutamate was ordered from Tocris.   638 

 639 
Statistical analysis and Data Acquisition 640 

All data points from experiments were tested for normality using a Shapiro-Wilk test where the p 641 

value was set to < 5% for a normal distribution.  Experiments with a normal distribution and an N 642 
> to 7 cells were tested for statistical significance with a paired Student t-test with p value set to 643 

< 5%.  Experiments with N < 7 cells or skewed distributions were tested for statistical significance 644 

using a paired Wilcoxon signed rank sum test with p value set to < 5%.  For experiments 645 
comparing control and Grin1-cKO animals statistical significance was determined using Unpaired 646 

t-test and Mann-Whitney test with p values set to < 5% for normal distributions or rejected 647 
normality, respectively.    All statistical tests were calculated using Origin Pro 9 (Origin Lab).  648 
Experimenters were blind to the identity of the virus injected in transgenic Grin1 floxed mice during 649 

the acquisition of data in CA3 electrophysiology and two-photon imaging.  However, data analysis 650 
could not be performed blind in those experiments in which NMDAR/AMPAR ratios in GCs were 651 
examined in order to assess the efficiency of the cKO. 652 
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Figure 1. Anatomical and functional evidence for preNMDARs at mossy fiber synapses. (A) Image of

a mossy fiber (mf) giant bouton and postsynaptic spines (s). (B, C) Higher magnification of mossy fiber

synapses. Arrows indicate postsynaptic GluN1 whereas arrowheads indicate presynaptic GluN1. Calibration

bars: 500 nm. (D) Mossy fiber (mf) and associational commissural (ac) synaptic GluN1 immuno-particle

radial distribution (30 nm bins), mf: 34 synapses, 100 presynaptic particles; ac: 25 synapses, 24 presynaptic

particles; 3 animals. (E) AMPAR-ESPCs were recorded at Vh= -70 mV in the presence of 0.5 µM LY303070

and 100 µM picrotoxin. Low-frequency facilitation (LFF), induced by stepping stimulation frequency from 0.1

to 1 Hz, was assessed before and after bath application of MK-801 (50 µM). MK-801 significantly reduced

LFF (baseline 378 ± 57%, MK-801 270 ± 48%, n = 10 cells; baseline vs MK-801, p = 3.8 x 10-5, paired t-

test). In all panels of this figure: representative traces (top), representative experiment (middle), normalized

LFF and summary plot (bottom). DCG-IV (1 µM) was applied at the end of all recordings to confirm mf-CA3

transmission. (F) D-APV or R-CPP (50-100 µM) application also reduced LFF (baseline 546 ± 50%, D-

APV/R-CPP 380 ± 38%, n = 7 cells; baseline vs D-APV/R-CPP, p = 0.00743, paired t-test). (G) KAR-EPSCs

were recorded at Vh= -70 mV in the presence of 15 µM LY303070 and 100 µM picrotoxin. In addition,

NMDAR-mediated transmission was blocked intracellularly by loading MK-801 (2 mM) in the patch-pipette.

Bath application of MK-801 (50 µM) significantly reduced LFF (baseline 278 ± 40%, MK-801 195 ± 26% n =

8 cells; baseline vs MK-801, p = 0.00259, paired t-test). Data are presented as mean ± s.e.m. ** p < 0.01; ***

< 0.005; **** p < 0.001.
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Supplementary Figure 1 related to Figure 1.

Immunogold-EM reveals negligible presynaptic

AMPAR particle distribution. (A,B) Images of

mossy fiber (mf) and associational commissural

(ac) synapses, postsynaptic spines (s). (C)

AMPAR immuno-particle distribution (30 nm

bins), mf: 102 synapses, 8 presynaptic particles;

ac: 75 synapses, 6 presynaptic particles; 3

animals. Dashed line represents synaptic cleft.
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Figure 2. GluN1 deletion from granule cells reduces mf-CA3

facilitation. (A) Representative images showing GCs patch-loaded

with Alexa 594 (35 µM) (left), and GFP expression in GCs (right). (B)

Representative EPSCs recorded from control (GFP+) and Grin1-cKO

(Cre-GFP+) GCs. Synaptic responses were elicited by activating medial

perforant-path inputs. AMPAR-ESPCs were recorded at Vh= -65 mV in

the presence of 100 µM picrotoxin, NMDAR-EPSCs were isolated with

10 µM NBQX and recorded at +40 mV. MK-801 (20 µM) was applied at

the end of each recording. (C) Summary plot demonstrating that GluN1

deletion from GCs virtually abolished NMDAR-mediated transmission

indicated by a strong reduction of NMDAR/AMPAR in Grin1-cKO GCs

as compared to controls (control 1.61 ± 0.18, n = 9 cells, Grin1-cKO

0.18 ± 0.04, n = 10 cells; control vs Grin1-cKO, p = 9.2 x 10-6, unpaired

t-test). (D) LFF was significantly reduced in GluN1-deficient animals

(control, 430 ± 5 %, n = 13 cells; Grin1-cKO, 291 ± 6 %, n = 11 cells; p

= 0.0239, unpaired t-test). Representative traces (left) and summary

plot (right). LFF was induced by stepping stimulation frequency from

0.1 to 1 Hz. DCG-IV (1 µM) was added at the end of each experiment.

Data are presented as mean ± s.e.m. * p < 0.05; **** p < 0.001
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Supplementary Figure 2 related to Figure 1. (A) Stable low-

frequency facilitation (LFF) of AMPAR-EPSCs. In naïve slices

(interleaved experiments), LFF remained unchanged throughout the

recording session (baseline 335 ± 62%, naïve 363 ± 63%, n = 10

cells, p = 0.185, Wilcoxon-Signed Ranks test baseline vs naÏve).

DCG-IV (1 µM) was applied at the end of all recordings to confirm

mf-CA3 transmission. (B) LFF of KAR-EPSCs was also stable in

interleaved, naïve slices (baseline 274 ± 33%, naïve 278 ± 25%, n =

9 cells; p = 0.236, Wilcoxon Signed Ranks test, baseline vs naïve).

NBQX (10 µM) was applied at the end of all recordings to confirm

mossy fiber KAR transmission. Data are presented as mean ±

s.e.m.
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Figure 3. Reduced facilitation by NMDAR antagonism is independent of the

GC somatodendritic compartment. (A) KAR-EPSCs were recorded at Vh= -70

mV in the presence of 15 µM LY303070 and 100 µM picrotoxin. In addition,

NMDAR-mediated transmission was blocked intracellularly by loading MK-801 (2

mM) in the patch-pipette. LFF of KAR-EPSCs was assessed as in Fig. 1G but with

transected mossy fiber axons (see Methods). Bath application of MK-801 (50 µM)

significantly reduced LFF (baseline 213 ± 9%, MK-801 181 ± 10%, n = 8 cells;

baseline vs MK-801, p = 0.002, paired t-test). In all panels of this figure: recording

arrangement (inset), representative traces (top), representative experiment

(middle), normalized LFF and summary plot (bottom). (B) Stable LFF in

transected, naïve slices (baseline 186 ± 10%, naïve 196 ± 5%, n = 8 cells, baseline

vs naïve, p = 0.278, paired t-test). (C) LFF was induced before and during puff

application of D-APV (2 mM) in stratum lucidum. This manipulation significantly

reduced facilitation (baseline 220 ± 19%, D-APV puff 176 ± 11%, n = 7 cells;

baseline vs D-APV puff, p = 0.003, paired t-test). (D) Stable LFF in acute slices

during puff application of ACSF (baseline 210% ± 12, naïve 213% ± 9, n = 7 cells;

baseline vs naïve, p = 0.778, paired t-test). NBQX (10 µM) was applied at the end

of all recordings to confirm mossy fiber KAR transmission. Data are presented as

mean ± s.e.m. *** p < 0.005.
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Supplementary Figure 3 related to Figures 1 & 4. Intracellular MK-801 effectively blocked

postsynaptic NMDARs. In each panel of this figure, representative NMDAR-EPSCs from

CA3 pyramidal neurons patch-loaded with 2 mM MK-801 (left) or naïve internal solution

(right). Mossy fiber inputs were stimulated with a bipolar electrode (theta-glass pipette) in

stratum lucidum delivering 1 pulse or 5 pulses at 25 Hz in the presence of PTX (100 µM) and

NBQX (10 µM). (A) NMDAR currents were recorded at Vh = + 40 mV in intracellular MK-801

(iMK-801) and naïve conditions. Bath-application of MK-801 (50 µM) blocked NMDAR

currents in naïve cells to a similar magnitude as cells patch-loaded with MK-801 (n = 5 cells

in each condition, U = 0.0122, Mann-Whitney test). Note that CA3 pyramidal neurons were

loaded for at least 3-5 minutes before recording started at +40 mV. (B) NMDAR currents

were recorded at Vh= + 40 mV (gray shaded area) followed by a voltage jump to -70 mV in

iMK-801 conditions and -50 mV in naïve recordings. Bath-application of MK-801 (50 µM)

blocked NMDAR currents of the 5th pulse to a similar magnitude as iMK-801 (n = 5 cells per

condition, U = 0.008, Mann-Whitney test). Data are presented as mean ± s.e.m.
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Figure 4. PreNMDARs contribute significantly to burst-induced facilitation and spike transfer. (A)

Representative images showing expression of GFP-Cre (left) and ChiEF-tdTomato (right) in the DG of

control and Grin1-cKO animals. (B) Representative AMPAR-EPSCs from control (left) and Grin1-cKO

(right) CA3 pyramidal neurons recorded at Vh= -65 mV and evoked by optical burst-stimulation (5 pulses at

25 Hz) of stratum lucidum. Blue arrows indicate light stimulation. (C) Summary plot of burst-induced

facilitation measured as P5/P1 ratio of optical responses; facilitation was significantly reduced in Grin1-cKO

animals as compared to control (Grin1-cKO 187 ± 16%, n = 12 cells, control 255 ± 22%, n = 9 cells; Grin1-

cKO vs control, p = 0.0167, unpaired t-test). (D) Burst-stimulation induced KAR-EPSCs that were isolated

and recorded as described in Fig. 3, bath-application of MK-801 (50 µM) significantly reduced facilitation

(baseline 601 ± 107%, MK-801 464 ± 84%, n = 13 cells; baseline vs MK-801, p = 0.00042, paired t-test). In

panels D and E of this figure: representative traces (left), representative experiment (middle), and summary

plot (right). (E) Burst-induced facilitation was stable in interleaved, naïve slices (baseline 369 ± 45%, naïve

367 ± 48%, n = 9 cells, p = 0.863, paired t-test). (F) Bath-application of MK-801 (50 µM) reduced KAR-

mediated action potentials induced by burst-stimulation (baseline 0.93 ± 0.17, MK-801 0.46 ± 0.09, n = 6

cells, p = 0.036, Wilcoxon Signed Ranks test). In panels F and G of this figure: representative traces (top),

representative experiment and summary plot (bottom). (G) Stable KAR-mediated action potentials in

interleaved naïve slices (baseline 0.76 ± 0.07, naïve 0.88 ± 0.1, n = 6 cells, p = 0.2084, Wilcoxon Signed

Ranks test). NBQX (10 µM) was applied at the end of all experiments in panels D-G. Data are presented

as mean ± s.e.m. * p < 0.05; **** p < 0.001
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Supplementary Figure 4 related to Figure 3. Targeting preNMDARs in mf axons

but not granule cells. (A) Field view of a representative hippocampal slice showing

a surgical cut between DG and CA3. (B) Local D-APV puff application (vertical

arrow, 2 puffs at 0.1 Hz) blocks NMDAR currents recorded at Vh= -50 mV and

washes out in less than 10 minutes (n = 7 cells, p = 5 x 10-8, paired t-test). Inset

depicts the recording paradigm of the experiment (left), the representative NMDAR

currents (top) and the summary time course (bottom) where arrows denote the

onset of D-APV (2 mM) puff application. Mossy fiber were stimulated with a bipolar

electrode (theta-glass pipette) in stratum lucidum in the presence of 100 µM PTX

and 10 µM NBQX. (C) D-APV puff application in CA3 did not reduce NMDAR

transmission in GCs (n = 6 cells, control vs D-APV puff, U = 0.594, Mann Whitney

test). Excitatory inputs were stimulated with a monopolar electrode placed in the

medial molecular layer, in the presence of 100 µM PTX and 10 µM NBQX, and

while GCs were clamped at Vh= +40 mV. Data are presented as mean ± s.e.m.
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Figure 5. preNMDARs contribute to presynaptic Ca2+ rise. (A) Representative images showing

GCs patch-loaded with Alexa 488 (35 µM) to confirm expression of mCherry (bottom).

Representative EPSCs recorded from control (top) or Grin1-cKO (middle) GCs. Synaptic responses

were elicited by activating medial perforant-path inputs. AMPAR-ESPCs were recorded at Vh= -65

mV in the presence of 100 µM PTX, NMDAR-EPSCs were isolated with 10 µM NBQX and recorded

at +40 mV. MK-801 (20 µM) was applied at the end of each experiment. Summary plot (bottom)

demonstrating that GluN1 deletion from granule cells virtually abolished NMDAR-mediated

transmission indicated by a strong reduction of NMDAR/AMPAR in Grin1-cKO granule cells as

compared to controls (control 0.90 ± 0.17, n = 7 cells, Grin1-cKO 0.13 ± 0.05, n = 6 cells; control vs

Grin1-cKO, p = 3.81 x 10-7, unpaired t-test). (B) Representative control and Grin1-cKO granule cells

patch-loaded with Fluo-5F (200 µM) and Alexa 594 (35 µM). Arrows indicate the identification of a

mossy fiber giant bouton. (C) Three representative mossy fiber boutons (top) and line scan analysis

of calcium transients (CaTs) elicited by action potential stimulation of 5 APs at 25 Hz (bottom), in

Control and Grin1-cKO animals. Dotted line (yellow) indicates line scan. Red Channel, Alexa 594;

Green Channel, Fluo5-F. (D, E) Peak analysis of the 5th pulse ΔG/R revealed a significant reduction

in calcium rise of Grin1-cKO animals as compared to Control (control 0.046 ± 0.01, n = 10 boutons,

Grin1-cKO 0.025 ± 0.004, n = 10 boutons; control vs. Grin1-cKO, U = 0.017, Mann-Whitney test).

Arrows indicate mossy fiber activation. Data are presented as mean ± s.e.m. * U < 0.05; **** p <

0.001
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Figure 6. Uncaging glutamate induces Ca2+ rise mossy fiber boutons. (A) Representative images

showing dendritic spines in GCs (left) and mossy fiber boutons (right), and the associated line scan analysis

of calcium transients (CaTs) elicited by uncaging of MNI-glutamate (see Methods), in control and Grin1-cKO

animals. Blue dots indicate uncaging spots. Red Channel, Alexa 594; Green Channel, Fluo5-F. (B) Line

scan analysis of CaTs measuring ΔG/R in dendritic spines when MNI-glutamate is uncaged in control or

Grin1-cKO animals. Blue dots indicate 2PU pulses. (C) Summary plot demonstrating a significant reduction

in dendritic spine CaTs in Grin1-cKO as compared to Control (control 0.053 ± 0.01 ΔG/R, n = 6 dendritic

spines, Grin1-cKO 0.004 ± 0.003 ΔG/R, n = 6 spines; ΔG/R control vs. Grin1-cKO, p = 0.00088, unpaired t-

test). (D) Line scan analysis of CaTs measuring ΔG/R in mossy fiber boutons when MNI-glutamate is

uncaged in control or Grin1-cKO animals. (E) Summary plot demonstrating significant CaTs in boutons of

control as compared to Grin1-cKO (control 0.014 ± 0.005, n = 6 boutons, Grin1-cKO -0.00012 ± -0.0006, n =

6 boutons; control vs. Grin1-cKO, p = 0.015, unpaired t-test). Data are presented as mean ± s.e.m. * p <

0.05; **** p < 0.001.
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Supplementary Figure 5 related to Figure 6. Grin1-cKO exhibit reduced CaTs at varying uncaging

laser power intensities. (A) Representative images of CaTs from control (top) and Grin1-cKO animals

(bottom) after MNI-glutamate uncaging (2 mM, 3 pulses at 25 Hz) on GC dendritic spines. Dotted line

(yellow) indicates line scan, and blue dots indicate uncaging spots. (B) Quantified ΔG/R signals (top)

and uncaging induced NMDAR-EPSCs (bottom) from control and Grin1-cKO animals. Blue dots indicate

2PU pulses (C) Control animals display robust ΔG/R signals as compared to Grin1-cKO animals at

varying laser power intensities (6 spines per group, U = 0.00507 per power intensity, Mann-Whitney

test). Data are presented as mean ± s.e.m. ** U < 0.01.

100 ms

5 pA

Control

Grin1-cKO

A B C
Fluo5-F

Alexa-594

Fluo5-F

Alexa-594

2 µm

300 ms
0.01 ΔG/R

Control

Grin1-cKO

0 5 10 15 20

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Δ
G

/R

Power (mW)

Control

Grin1-cKO

**

200 ms

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2021. ; https://doi.org/10.1101/2021.01.21.427714doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427714
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 6 related to Figure 6. Bouton CaTs can be detected after repetitive

uncaging of MNI-glutamate. (A) Representative images of CaTs from single-trial: 1 pulse (top) and 5

pulses, 25 Hz (bottom) of MNI-glutamate uncaging (2 mM). Dotted line (yellow) indicates line scan,

and blue dots indicate uncaging spots. (B) Quantified ΔG/R signals from 1 pulse (black) and 5 pulses

(dark gray) from all trials. (C) Repetitive pulses display robust ΔG/R signals as compared to single

pulses (n = 6 boutons, p = 0.03603, Wilcoxon-Signed Ranks test). Data are presented as mean ±

s.e.m. * p < 0.05.
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Figure 7. preNMDARs contribute significantly to BDNF release

following repetitive activity. (A) Representative images showing

expression of BDNF-pHluorin in the DG and CA3 area (arrows indicate

mossy fiber axon, arrowheads indicate mossy fiber boutons). Control

images (top), Grin1-cKO images (bottom). (B) Representative images of

BDNF-pHluorin signal intensity at baseline and after repetitive stimulation

of mossy fibers (125 pulses, 25 Hz, x 2). Control images (left), Grin1-cKO

images (right), arrowhead indicates region of interest. (C) Time course of

BDNF-pHluorin signal intensity measured as ΔF/F (%): control (black),

Grin1-cKO (red), Naïve (gray). (D) Quantification of BDNF-pHluorin signal

in (C) during the last 100 seconds reveals larger BDNF release in control

animals as compared to Grin1-cKO (control -18% ± 3%, n = 12 slices,

Grin1-cKO -8 ± 1%, n = 10 slices, Grin1-cKO vs. control, p = 0.00648,

unpaired t-test). Data are presented as mean ± s.e.m. ** p < 0.01.
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Figure 8. preNMDARs contribute to synaptic facilitation of

mossy fiber inputs onto mossy cells but not inhibitory

interneurons. (A) Representative images showing a CA3

interneuron and a hilar mossy cell patch-loaded with Alexa 594 (35

µM) for morphological identification in acute slices. (B) AMPAR-

EPSCs were recorded from CA3 interneurons at Vh= -65 mV and

burst-stimulation was elicited by 5 pulses at 25 Hz, see traces (top).

Representative experiment (bottom, left), and summary plot

(bottom, right) showing bath-application of MK-801 (50 µM) had no

significant effect on facilitation measured by P5/P1 ratio (Baseline:

248 ± 51%; MK-801: 275 ± 60%, n = 11, MK-801 vs baseline, p =

0.1411, paired t-test). (C) AMPAR-ESPCs were recorded at Vh = -

70 mV from hilar mossy cells, LFF was induced by stepping

stimulation frequency from 0.1 to 1 Hz, see traces (top).

Representative experiment (middle), normalized LFF and summary

plot (bottom) indicating bath-application of MK-801 (50 µM) reduced

facilitation (baseline 350 ± 10%, MK-801 225 ± 25%, n = 9 cells;

baseline vs MK-801, p = 0.00152, paired t-test). DCG-IV (1 µM) was

applied at the end of all experiments. Data are presented as mean ±

s.e.m. *** p < 0.005.
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Figure Normality Test 
(Shapiro-Wilk) 

Test used N P value 

1D   3 animals  
1E passed paired t-test 10 cells p < 0.001    p = 0.000038 
1F passed paired t-test 7 cells p < 0.01   p = 0.00743 
1G passed paired t-test 8 cells p < 0.005   p = 0.00259 
S1C   3 animals  
2C Control: passed 

Grin1-cKO: passed 
unpaired t-test Control: 9 cells 

Grin1-cKO: 10 
cells 

p < 0.001   p = 0.0000092 

2D  Control: passed 
Grin1-cKO: passed 

unpaired t-test Control: 13 cells 
Grin1-cKO: 11 
cells 

p < 0.05   p = 0.0239 

S2A rejected Wilcoxon Signed 
Ranks test 

10 cells p > 0.1   p = 0.185 

S2B rejected Wilcoxon Signed 
Ranks test 

9 cells p > 0.1   p = 0.236 

3A passed paired t-test 8 cells p < 0.005   p = 0.002 
3B passed paired t-test 8 cells p > 0.1   p = 0.278 
3C passed paired t-test 7 cells p < 0.005   p = 0.003 
3D passed paired t-test 7 cells p > 0.1   p = 0.778 
S3A Naïve: passed 

iMK-801: passed 
Mann-Whitney test Naïve: 5 cells 

iMK-801: 5 cells 
U = 0.0122 

S3B Naïve: passed 
iMK-801: passed 

Mann-Whitney test Naïve: 5 cells 
iMK-801: 5 cells  

U = 0.008 

4C Control: passed  
Grink1-cKO: passed  

unpaired t-test 
 
 
 

Control: 9 cells 
Grin1-cKO: 12 
cells 
 

p < 0.05  p = 0.0167 
 
 
 

4D passed paired t-test 13 cells p < 0.001    p = 0.00042 
4E passed paired t-test 9 cells p > 0.5     p = 0.863 
4F passed Wilcoxon Signed 

Ranks test 
6 cells p < 0.05   p = 0.036 

4G passed Wilcoxon Signed 
Ranks test 

6 cells p > 0.2   p = 0.2084 

S4B passed paired t-test 7 cells p < 0.001   p = 
0.00000005 

S4C passed Mann-Whitney test 6 cells U = 0.594 
5A Control: passed 

Grin1-cKO: passed 
unpaired t-test Control: 7 cells 

Grin1-cKO: 6 
cells 

p < 0.001   p = 
0.000000381 

5E Control: passed 
Grin1-cKO: rejected 

Mann-Whitney test Control: 10 
boutons 
Grin1-cKO: 10 
boutons 

U = 0.017 

6C Control: passed 
Grin1-cKO: passed 

unpaired t-test Control: 6 
spines 
Grin1-cKO: 6 
spines 

p < 0.001 p = 0.00088 
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6E Control: passed 
Grin1-cKO: passed 

unpaired t-test Control: 6 
boutons 
Grin1-cKO: 6 
boutons 

p < 0.05    p = 0.015 

S5C Control: passed 
Grin1-cKO: rejected 

Mann-Whitney test Control: 6 
spines 
Grin1-cKO: 6 
spines 
 

U = 0.00507 

S6C 1 pulse: passed 
5 pulses: passed 

Wilcoxon Signed 
Ranks test 

1 pulse: 6 
boutons 
5 pulses: 6 
boutons 

p < 0.05    p = 0.03603 

7D Control: passed 
Grin1-cKO: passed 

unpaired t-test Control: 12 
slices 
Grin1-cKO: 10 
slices 

p < 0.01   p = 0.00648 

8B passed paired t-test 11 cells p > 0.1    p = 0.1411 
8C passed paired t-test 10 cells p < 0.005   p = 0.00152 
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