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Abstract

We investigated the impact of hearing loss on the neural processing of speech. Using a forward modelling

approach, we compared the neural responses to continuous speech of 14 adults with sensorineural hearing

loss with those of age-matched normal-hearing peers.

Compared to their normal-hearing peers, hearing-impaired listeners had increased neural tracking and

delayed neural responses to continuous speech in quiet. The latency also increased with the degree of

hearing loss. As speech understanding decreased, neural tracking decreased in both population; however,

a significantly different trend was observed for the latency of the neural responses. For normal-hearing

listeners, the latency increased with increasing background noise level. However, for hearing-impaired

listeners, this increase was not observed.

Our results support that the neural response latency indicates the efficiency of neural speech processing.

Hearing-impaired listeners process speech in silence less efficiently then normal-hearing listeners. Our

results suggest that this reduction in neural speech processing efficiency is a gradual effect which occurs as

hearing deteriorates. Moreover, the efficiency of neural speech processing in hearing-impaired listeners is

already at its lowest level when listening to speech in quiet, while normal-hearing listeners show a further

decrease in efficiently when the noise level increases.

From our results, it is apparent that sound amplification does not solve hearing loss. Even when

intelligibility is apparently perfect, hearing-impaired listeners process speech less efficiently.
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Introduction

It is widely known that hearing loss alters the brain (Eggermont, 2017; Peelle and Wingfield, 2016). To study

the functional neural changes, several studies focussed on cortical auditory evoked potentials (CAEP) using

electroencephalography (EEG). CAEPs reflect the cortical responses evoked by repetitions of simple sounds

such as syllables, tone pips, or clicks. These responses represent the detection and/or discrimination of a

sound. The CAEP-response is characterized by a first positive peak (P1) around 50 ms, a first negative peak

(N1) around 100 ms and a later positive peak (P2) around 180 ms (Burkard et al., 2007). Harkrider et al.

(2009) and Campbell and Sharma (2013) reported increased P2-latencies in hearing impaired listeners (HI

listeners) compared to normal hearing listeners (NH listeners). Interestingly, Campbell and Sharma (2013)

reported that P2-latency was also correlated with the person’s speech perception ability in noise. Although

changes in latency are often not reported, in most studies HI listeners showed increased amplitudes compared

to NH listeners (Tremblay et al., 2003; Harkrider et al., 2006; Bertoli et al., 2011; Alain, 2014; Maamor

and Billings, 2017) while Billings et al. (2015) and Koerner and Zhang (2018) did not observe differences

between these two populations or others attributed these differences to decreased audibility of the stimulus

(Oates et al., 2002; Van Dun et al., 2016; McClannahan et al., 2019). No consensus has been reached on

the impact of hearing loss on the P1-N1-P2-complex. The use of continuous speech as the stimulus can be

key to characterize the neural differences between these two populations as it requires more in-depth neural

processing of the stimulus to understand the speech.

A limited number of studies has been conducted to study the effect of hearing loss on the neural responses to

continuous speech. In these studies, the amount of neural tracking, i.e. to what extent speech is tracked by

the brain, has been investigated in a two-talker scenario: an attended speaker and an ignored one (Petersen

et al., 2017; Mirkovic et al., 2019; Presacco et al., 2019; Decruy et al., 2020; Fuglsang et al., 2020). In all these

studies, both NH listeners and HI listeners, showed a higher neural tracking of the attended speech stream

than that of the ignored speech stream. Petersen et al. (2017) reported that adults with a higher degree of

hearing loss showed a higher neural tracking of the ignored speech and no change in the attended stream,

suggesting that they experience more difficulties inhibiting irrelevant information. Although Mirkovic et al.

(2019) and Presacco et al. (2019) did not report a neural difference between the two populations, Decruy

et al. (2020) and Fuglsang et al. (2020) observed, in contrast to Petersen et al. (2017), an enhanced neural

tracking in HI listeners for the attended-speech compared to their normal-hearing peers. This enhancement

can indicate a compensation mechanism: HI listeners need to compensate for the degraded auditory input

and therefore show increased cortical neural responses.
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The difficulties of researching HI listeners are twofold. First, most HI listeners are older, and ageing also has

an impact on brain responses (Tremblay et al., 2003; Harkrider et al., 2006; Burkard et al., 2007; Harkrider

et al., 2009; Decruy et al., 2019; Presacco et al., 2016). Therefore, it is important to compare HI listeners to

age-matched normal-hearing peers. Second, audibility of the stimulus must be taken into account: sound

presented at the same intensity can be less audible for HI listeners than for NH listeners.

In the current study, we investigated whether there are differences in the neural responses to continuous

speech between HI listeners and their age-matched normal-hearing peers. Our results showed delayed neural

responses to continuous speech in HI listeners. We hypothesized that HI listeners recruit more brain regions

to understand speech, which is reflected in enhanced neural tracking of speech as well as a delay of neural

responses.

Materials and Methods

Participants

We used a dataset containing EEG of 14 HI listeners (8♀) with sensorineural hearing loss and 14 aged-matched

normal-hearing peers (13♀) (between 21 and 82 years old). The data were collected in a previous study by

Decruy et al. (2020). Inclusion criteria were: (1) having Dutch as a mother tongue, (2) having symmetrical

hearing and (3) absence of medical conditions and learning disorders. A cognitive screening, the Montreal

Cognitive Assessment (Nasreddine, 2004), was performed for all participants to ensure the absence of cognitive

impairment. Hearing thresholds were determined using pure tone audiometry (125 to 8000 Hz). Normal

hearing was defined for all participants where the hearing threshold did not exceed 30 dB HL for frequencies

125 to 4000 Hz (average of hearing thresholds within this frequency range in the stimulated ear is denoted as

the pure-tone average (PTA)). The hearing thresholds and PTA are shown in Figure 1 (NH listeners: average

PTA= 13.27 ± 5.60 dB HL, HI listeners: average PTA = 44.46 ± 10.54 dB HL).

Experimental Procedures

Behavioural Experiment: Flemish Matrix sentence test

The Matrix sentence test was performed to determine the participant’s Speech Reception Threshold (SRT) in

speech weighted noise (SWN). These Matrix sentences have a standard grammatical structure, consisting of a

name, a verb, a numeral, a colour and an object (Luts et al., 2014). The SRT represents the signal-to-noise

ratio (SNR) at which 50% of the presented words are recalled correctly.
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Figure 1: The hearing thresholds for the stimulated ear (panel A) and PTA as a function of age (panel B) for
NH listeners (orange) and HI listeners (green).

EEG Experiment

Data acquisition A BioSemi ActiveTwo system (Amsterdam, Netherlands) was used to measure EEG

signals during stimuli presentation. This system uses 64 Ag/AgCl electrodes placed according to the 10-20

system (Oostenveld and Praamstra, 2001). The EEG signals were measured with a sampling frequency

of 8192 Hz. All recordings were carried out in a soundproof booth with Faraday cage at ExpORL (Dept.

Neurosciences, KU Leuven).

Stimuli presentation The speech stimuli were presented monaurally through ER-3A insert phones

(Etymotic Research Inc, IL, USA) using the software platform APEX (Dept. Neurosciences, KU Leuven)

(Francart et al., 2008). The stimuli were presented to the right ear unless the participant preferred the left

ear (n = 3; 1 NH; 2 HI). All stimuli were set to the same root mean square level and were calibrated.

For all NH listeners, the speech stimuli’ intensity was fixed at 55 dB SPL (A-weighted). To ensure audible

stimuli for HI listeners, the stimuli were linearly amplified based on the participant’s hearing thresholds

according to the National Acoustics Laboratory-Revised Profound (NAL) algorithm (Byrne et al., 2001).

To ensure a comfortable level, the overall level was adjusted on a subject-specific basis in addition to the

linear amplification so that the stimulus was minimally effortful and comfortable to listen to. The individual

presentation levels are reported by Decruy et al. (2020).

During the EEG recording, 2 Dutch stories were presented: (1) “Milan”, a 12-minute long story narrated by

Stijn Vranken (♂) presented in quiet and (2) “De Wilde Zwanen” narrated by Katrien Devos (♀) presented

in 5 different levels of background speech-weighted noise (each lasted around 2 minutes). The duration of

silences was limited to 200 ms.
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The levels of background noise for the second story depended on the participant’s speech-in-noise performance.

Using an adapted version of the self-assessed Békesy procedure (Decruy et al., 2019), the SRT of the Matrix

sentences was adjusted to obtain a SRT of a story (Decruy et al., 2018, 2019). The noise conditions were

calculated on the participant’s story adjusted SRT, namely: SRT - 3 dB, SRT, SRT + 3 dB, SRT + 6 dB

and a condition without noise, which approximate speech understanding levels of 20%, 50%, 80%, 95% and

100%. In addition to obtaining an estimate of the speech understanding in each noise condition, a subjective

rating of the participant’s speech understanding was obtained after each condition.

Signal Processing

Processing of the EEG signals

The EEG recording with a sampling frequency of 8192 Hz was downsampled to 256 Hz to decrease processing

time. To remove artefacts of eye blinks, we applied multi-channel Wiener filtering to the EEG data to remove

artefacts of eye blinks (Somers et al., 2018). Then we referenced the EEG data to the common-average and

filtered the data between 0.5 and 25 Hz using a zero-phase Chebyshev filter (Type II with an attenuation of

80 dB at 10% outside the passband). Additional downsampling to 128 Hz was performed.

Extraction of the speech features

In this study, we used 2 speech features: spectrogram and acoustical onsets. Both variables are continuous

speech features which represent the acoustical properties of the speech stimulus.

To create the spectrogram representation, the speech stimulus (without amplification) was low-pass filtered

below 4000 Hz (zero-phase low-pass FIR filter with a hamming window of 159 samples) because the ER-3A

insert phones also low-pass filter at this frequency. A spectrogram representation was obtained using the

Gammatone Filterbank Toolkit 1.0 (Heeris, 2014) (centre frequencies between 70 and 4000 Hz with 256 filter

channels and an integration window of 0.01 second). This toolkit calculates a spectrogram representation

based on a series of gammatone filters inspired by the structure of the human auditory system (Slaney,

1998). The resulting 256 filter outputs were averaged into 8 frequency bands (each containing 32 outputs).

Additionally, each frequency band was downsampled to the same sampling frequency as the processed EEG,

namely 128 Hz. The NAL filtering introduced a delay of 5.334 ms, which was compensated for. The acoustical

onsets representation was calculated as a half-wave rectification of the spectrogram’s derivative.
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Prediction accuracies, temporal response function & peak picking method

In this study, we focussed on a linear forward modelling approach which predicts the EEG based on a

linear combination of speech features of the presented speech. This forward modelling approach results in 2

outcomes: (a) a temporal response function (TRF) and (b) a prediction accuracy. (a) A TRF is a linear

approximation of the brain’s impulse response. It is a signal over time which describes how the brain responds

to the speech features. (b) TRFs can be used to predict the EEG by convolving it with the speech features.

The predicted EEG is then correlated with the actual EEG to obtain a prediction accuracy. Prediction

accuracy is considered a measure of neural tracking: the higher the prediction accuracy, the better the brain

tracks the stimulus.

(a) To estimate TRFs, we used the Eelbrain toolbox (Brodbeck, 2020). The toolbox estimates TRFs using

the boosting algorithm by David et al. (2007) (using a fixed step size of 0.005; stopping criteria based on

`2-norm; kernel basis of 50 ms). We used 4-fold cross-validation (4 equally long folds; 3 folds used for training,

1 for validation) and an integration window between 0 and 700 ms. The estimated TRFs, averaged across

folds and frequency bands, were used to determine the peak latencies.

(b) To calculate the prediction accuracy, the TRF is applied to left-out EEG to allow a fair comparison

between models with a different number of speech features. We used the boosting algorithm with a testing

fold. This implies a 4-fold cross-validation with 2 folds for training, 1 fold for validation and 1 fold for testing,

which is left-out during training and validation. Each estimated TRF was used to predict the EEG of the

left-out testing fold. The predicted EEG of all left-out segments are correlated, using Pearson correlation,

with the actual EEG to obtain a prediction accuracy per EEG-electrode. The prediction accuracies were

averaged across EEG-electrodes and denoted as neural tracking. Similarly, as Decruy et al. (2020), we

calculated the neural tracking of the second story, presented in different level of background noise, using the

TRFs estimated on the story in quiet.

From the TRF, we aimed to identify the amplitude and latency of 3 peaks: P1, N1 and P2. As the EEG

data contains 64 different channels, 64 different TRFs were estimated, which made peak picking more

complex. Therefore we applied principal component analysis (PCA), a dimensionality reduction method. The

PCA-method results in (a) signals in component space and (b) corresponding spatial filters which describe

the linear combinations of EEG channels to obtain these components. In our analysis, the first component

was used. Adding more components up to 4 did not change the findings of this study. In addition to the time

course of the component, we also investigated the corresponding spatial filter. As the sign of this spatial filter

is arbitrary, we forced the average of occipital and parietal channels (P9, P7, PO7, O1, Oz, O2, PO8, P8, Iz,

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427550doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427550


P10) to be negative by multiplying the spatial filter with -1 when needed. The PCA-method was applied to

the data per story for each participant.

To identify the different peaks, we performed a z-score normalization of the TRF in component space and

determined the maximal or minimal amplitude for positive and negative peaks in different time regions (P1:

30 to 110 ms, N1: 30 to 210 ms, P2: 110 to 270 ms), respectively. The overlap of these time regions is not an

issue as we identified either the maximal or minimal amplitude to determine the peak latency of a positive or

negative peak, respectively. To only identify prominent peaks, a peak was discarded from the analysis if the

amplitude of the normalized TRF was smaller than the threshold of 1.

Statistical analysis

We used the R software package (version 3.6.3) (R Core Team, 2020). We used the Buildmer toolbox, which

allows identifying the best linear mixed model (LMM) given a series of predictors and all their possible

interactions based on the likelihood-ratio test (Voeten, 2020). We used the following predictors: (a) hearing

status (NH or HI) or the PTA depending on whether we were interested in the group effect or the effect of

the degree of hearing loss, (b) age and (c) peak type (P1, N1, P2). To observe an effect of model choice on

prediction accuracy, we also included the predictor (d) model type (Spectrogram, Acoustic onsets, Acoustic

onsets + Spectrogram) in the statistical analysis. The analysis over different noise conditions also included

the predictor (e) speech understanding. For the latter analysis, all continuous predictors were z-scored to

minimize effects due to differences in scale. A matching factor indicated the participants belonging to the

same age-matched pair. We included a nested random effect: participant nested inside match, as each match

contained a pair of participants, and each participant had multiple dependent observations. The models’

assumptions were checked with a visual inspection of the residual plots to assure homoscedasticity and

normality. The models’ outcomes were reported with the unstandardized regression coefficient (β) with

standard error (SE), t-value and p-value per fixed effect. If significant interaction effects were found or if we

aimed to identify differences between different levels of a factor, additional Holm-adjusted posthoc tests were

performed. A significance level of α = 0.05 was set for all estimated models.

To compare differences in spatial filters or topographies of the peaks between the 2 groups, we applied a

method proposed by McCarthy and Wood (1985) to determine whether the topography, when amplitude

differences are discarded by normalization, depends on either the considered population or speech feature. A

difference in topography or spatial filter is observed when there is a significant interaction between the sensor

and condition, e.g., the considered population or speech feature. To test whether the N1 topography depended

on the speech feature, we only included participants who showed a prominent peak for both speech features.
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To determine whether the topography or spatial filter depended on the speech feature, the participant was

included as a random effect. The p-value of the interaction term is reported. A significance level of α = 0.05

was used.

Results

Neural differences when listening to speech in quiet

Hearing-impaired listeners show higher neural tracking

We identified the speech feature(s) that resulted in the highest neural tracking: acoustic onsets, spectrogram

or a combination of both speech features. As shown in Figure 2 and verified by the statistical analysis,

the highest neural tracking was obtained with a combination of both speech features (analysis using LMM:

Table 1). Additionally, HI listeners showed higher neural tracking compared to the group of NH listeners

(on average 0.017 higher, p = 0.045). Age did not have a significant effect on the neural tracking of speech.

Post-hoc tests confirmed that the highest neural tracking was obtained with a combination of both speech

features which was higher compared to the model using the acoustic onsets (p = 0.019) and higher compared

to the model using the spectrogram variable (p < .001).

Table 1: Liner mixed model: the effect of hearing status and model type on neural tracking. Estimates of the
regression coefficients (β), standard errors (SE), degrees of freedom (df), t-Ratios and p-values are reported
per fixed-effect term. Participant nested in match was included as a random effect.
Formula: neural tracking ∼ 1 + hearing status + model type + (1 | match/participant)

Fixed-effect term β SE df t-Ratio p-value

Intercept (for NH / Spectrogram) 0.029 0.006 26.396 4.918 p < .001
Hearing status: HL 0.017 0.008 26 2.106 p = 0.045
Model type = Acoustic onsets 0.003 0.001 54 3.937 p < .001
Model type = Acoustic onsets + spectrogram 0.006 0.001 54 6.357 p < .001

Delayed peak latencies for hearing-impaired listeners

In Figure 4.A, all TRFs in component space are shown for both populations and speech features. The

TRFs of HI listeners show delayed neural responses to speech compared to those of normal-hearing adults.

Additionally, the average TRF for both speech features show only 2 prominent peaks: P1-peak of acoustic

onsets (P1AO), N1-peak of acoustic onsets (N1AO), N1-peak of spectrogram (N1S), P2-peak of spectrogram

(P2S). The best LMM predicting latency included a main effect of factor peak, hearing status and age

(Table 2). Adults with hearing loss showed later peak latencies (an increase of 22 ms, p = 0.001). The effect

of age depended on the considered peak. No significant interaction between age and hearing status was
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Figure 2: Neural tracking (Pearson’s r) as a function of different combinations of speech features (’spectrogram’,
’acoustic onsets’ and ’acoustic onsets + spectrogram’, respectively) for both NH listeners (left; orange) and
HI listeners (right; green).
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observed. Post-hoc testing showed a significant increase in latency with increasing age for the P2S-latency

(p = 0.029) while this was not observed for the other peak latencies (P1AO: p = 0.398, N1AO: p = 0.398,

N1S : p = 0.398).

We did not observe a significant difference between the spatial filters of HI listeners and NH listeners (for

spectrogram: p = 0.514, for acoustic onsets: p = 0.974; Figure 3.A). HI listeners showed a significantly different

topography for N1S and P2S compared to NH listeners (N1S : p < 0.001; P2S : p < 0.001, respectively) while

this was not the case for P1AO (p = 0.578) and N1AO (p = 0.145) (Figure 3.B). The method by McCarthy

and Wood (1985) does not allow to pinpoint the differences in topography between the two population.

However, from Figure 3.B, we observed that HI listeners showed more left lateralized activity than NH

listeners.

Table 2: Results of the linear mixed model in order to assess peak type, hearing status and age on the peak
latency of P1AO, N1AO, N1S , P2S . Estimates of the regression coefficients (β), standard errors (SE), degrees
of freedom (df), t-Ratios and p-values are reported per fixed-effect term. Participant nested in match was
included as a random effect.
Formula: latency ∼ 1 + peak + hearing status + age + peak:age + (1 | match/participant)

Fixed-effect term β SE df t-Ratio p-value

Intercept (for NH / for P1 - acoustic onsets) 65.427 12.964 57.639 5.047 p < .001
peak = N1 - acoustic onsets 77.141 15.661 61.848 4.926 p < .001
peak = N1 - spectrogram 32.329 15.917 62.021 2.031 p = 0.047
peak = P2 - spectrogram 94.394 16.084 62.433 5.869 p < .001
Hearing status: HL 22.428 5.928 23.694 3.783 p = 0.001
Age -0.322 0.211 61.937 -1.525 p = 0.132
peak = N1 - acoustic onsets:age -0.02 0.253 61.221 -0.078 p = 0.938
peak = N1 - spectrogram:age 0.118 0.255 61.14 0.462 p = 0.646
peak = P2 - spectrogram:age 0.988 0.263 62.12 3.76 p < .001

Longer latencies are associated with higher degrees of hearing loss

As significant differences in peak latencies were observed between the two populations, we hypothesized that

a higher degree of hearing loss is associated with increased latency of the peaks. The best linear mixed

model to predict latency contained main effects of factor peak, degree of hearing loss, age and the interaction

between age and peak type. Post-hoc testing did not show significant effects of age on the peak latencies,

so this effect was not visualized in Figure 4. With increasing degree of hearing loss, the latency of neural

responses increased (β = 0.712, p < .001; Table 3; Figure 4.B).
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Figure 3: Visualization of the PCA spatial filters (panel A) and the topographies of the peaks (panel B)
in the TRFs in sensor space for both speech features, spectrogram and acoustic onsets, and for the two
populations: NH listeners and HI listeners.
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Figure 4: An overview of the neural responses of HI listeners (HI; striped line; green, triangle) and NH
listeners (NH; orange, dot). Panel A: TRF in component space when listening to a story in quiet for both
speech features evaluated for both populations. The thick line represents the average TRF over participants.
The lighter lines represent the subject-specific TRFs. Panel B: The peak latency in function of the degree of
hearing loss (PTA) derived from the neural responses when listening to a story in quiet. Panel C: The peak
latencies in function of speech understanding derived from the neural responses when listening to a story
presented in multiple levels of background noise. The effect of degree of hearing loss was made discrete at 2
levels, the average hearing thresholds of all NH listeners (level NH listeners: 13 dB HL) and subjects with
hearing loss (level HI listeners: 44 dB HL) and is represented by the regression lines with confidence intervals
(shaded area).

Table 3: Results of the linear mixed model in order to assess the effects of degree of hearing loss and age on
the peak latency of P1AO, N1AO, N1S , P2S . Estimates of the regression coefficients (β), standard errors
(SE), degrees of freedom (df), t-Ratios and p-values are reported per fixed-effect term. Participant nested in
the matching factor was included as a random nested effect.
Formula: latency ∼ 1 + peak + degree of hearing loss + age + peak:age + (1 | match/participant)

Fixed-effect term β SE df t-Ratio p-value

Intercept (for P1 - acoustic onsets) 62.136 12.619 60.398 4.924 p < .001
peak = N1 - acoustic onsets 76.879 15.67 61.756 4.906 p < .001
peak = N1 - spectrogram 33.13 15.924 61.914 2.08 p = 0.042
peak = P2 - spectrogram 94.424 16.087 62.406 5.87 p < .001
Degree of hearing loss (PTA) 0.712 0.161 23.625 4.412 p < .001
Age -0.43 0.206 64.874 -2.085 p = 0.041
peak = N1 - acoustic onsets:age -0.008 0.254 61.035 -0.032 p = 0.974
peak = N1 - spectrogram:age 0.113 0.255 60.984 0.441 p = 0.661
peak = P2 - spectrogram:age 0.988 0.263 62.052 3.762 p < .001
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Neural differences when speech understanding decreases

Increased neural tracking with increased speech understanding

The effect of increased neural tracking for HI listeners was robust over different levels of background noise

(β = 1.65e-02, p = 0.001; Table 4; Figure 5). Additionally, higher neural tracking was observed with increasing

age (β = 3.52e-04, p = 0.006; Table 4; Figure 5) and with increasing speech understanding (β = 1.54e-04,

p < .001; Table 4; Figure 5). No significant interaction effect was observed between hearing status and speech

understanding.

Table 4: Linear mixed model: the effect of hearing status and speech understanding on neural tracking.
Estimates of the regression coefficients (β), standard errors (SE), degrees of freedom (df), t-Ratios and
p-values are reported per fixed-effect term. Participant nested in match was included as a random effect.
Formula: neural tracking ∼ 1 + hearing status + age + speech understanding + (1 | match/participant)

Fixed-effect term β SE df t-Ratio p-value

Intercept (for NH) -0.011 0.008 29.734 -1.464 p = 0.154
Hearing status: HL 1.65e-02 4.44e-03 25.175 3.721 p = 0.001
Age 3.52e-04 1.18e-04 24.988 2.981 p = 0.006
Speech understanding 1.54e-04 2.96e-05 115.604 5.185 p < .001

Figure 5: Neural tracking (Pearson’s r) as a function of speech understanding. The effect of age is visualized
by 2 regression lines with confidence intervals (shaded area) for a sample person aged 31 (young; pink) and
68 (old; purple).
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Hearing-impaired listeners do not show a prominent increase in latency

We analysed the effects of speech understanding, age and degree of hearing loss on the peak latencies for the

second story presented in different levels of background noise. The trends of age and speech understanding

on peak latency depended on the considered peak. However, posthoc tests did not show a significant effect of

age on the latencies of the peaks. Therefore this effect is not visualized in Figure 4.C. Interestingly, we found

a significant interaction effect between speech understanding and degree of hearing loss (p < .001; Table 5;

Figure 4.C). Post-hoc testing showed that NH listeners showed a significant increase in latency when speech

understanding decreased (p < .001) while no significant increase was observed for HI listeners (p = 0.34).

This trend significantly differed between the two populations (p < .001).

Table 5: Results of the linear mixed model in order to assess the effects of degree of hearing loss, speech
understanding and age on the peak latency of P1AO, N1AO, N1S , P2S . Estimates of the regression coefficients
(β), standard errors (SE), degrees of freedom (df), t-Ratios and p-values are reported per fixed-effect term.
Participant nested in the matching factor was included as a random nested effect.
Formula: latency ∼ 1 + peak + SI + degree of hearing loss + speech understanding:degree of hearing loss +
peak:speech understanding + age + degree of hearing loss:age + peak:age + speech understanding:age + (1 |
match/participant)

Fixed-effect term β SE df t-Ratio p-value

Intercept (for P1 - acoustic onsets) 65.523 3.149 69.524 20.808 p < .001
peak = N1 - acoustic onsets 71.012 3.015 384.446 23.557 p < .001
peak = N1 - spectrogram 39.875 3.203 385.734 12.449 p < .001
peak = P2 - spectrogram 144.887 3.097 385.778 46.783 p < .001
Speech understanding -2.46 2.336 388.475 -1.053 p = 0.293
Degree of hearing loss (PTA) 5.489 2.324 23.74 2.362 p = 0.027
Age -6.421 2.882 59.27 -2.228 p = 0.03
Speech understanding:Degree of hearing loss (PTA) 4.441 1.071 396.822 4.148 p < .001
peak = N1 - acoustic onsets:speech understanding -4.487 2.968 381.779 -1.512 p = 0.131
peak = N1 - spectrogram:speech understanding -1.148 3.163 382.021 -0.363 p = 0.717
peak = P2 - spectrogram:speech understanding -8.703 3.066 383.334 -2.839 p = 0.005
Degree of hearing loss (PTA):Age 4.797 2.232 24.283 2.149 p = 0.042
peak = N1 - acoustic onsets:age 4.906 2.832 379.405 1.732 p = 0.084
peak = N1 - spectrogram:age 0.94 3.196 384.574 0.294 p = 0.769
peak = P2 - spectrogram:age 13.103 2.897 384.584 4.523 p < .001
Speech understanding:Age -2.121 1.082 390.971 -1.96 p = 0.051

The effect of the degree of hearing loss on the peak amplitude was not consistent for all peaks.

Discussion

We compared the neural responses to continuous speech of adults with a sensorineural hearing loss with those

of age-matched normal-hearing peers. We found that HI listeners show higher neural tracking and increased

peak latencies in their neural responses. Across noise conditions, NH listeners showed increased latencies
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as speech understanding decreased. However, for adults with hearing loss, this increase in latency was not

observed.

Higher neural tracking of speech in hearing-impaired listeners

By evaluating neural tracking, we concluded that (1) higher neural tracking is observed for a combination of

the spectrogram and acoustic onsets compared to the speech features individually and (2) HI listeners show

enhanced neural tracking compared to normal-hearing peers.

The combination of speech features results in higher neural tracking, which implies that both speech features

encode different information. Following Hamilton et al. (2018) and Brodbeck et al. (2020), both speech

features allow a differentiation between sustained activity, represented by the spectrogram, and transient

activity, represented by acoustic onsets. When the TRF is estimated using only the spectrogram, it shows a

positive peak around 50 ms (P1), negative peak around 100 ms (N1) and a positive peak between 100 ms and

200 ms P2 (Di Liberto et al., 2015; Lesenfants et al., 2019b). In our data, the TRF shows only 2 prominent

peaks for each speech feature. We hypothesize that the P1-peak is mainly dominated by transient activity

while the P2-peak is dominated by sustained activity. Although the difference in latency, the N1-peak is

observed in the TRF of both speech features and resulted in a similar topography. This suggests that the

N1-response is evoked by spatially similar neural sources which respond differently to speech.

Using a linear modelling approach, Decruy et al. (2020) and Fuglsang et al. (2020) also reported that HI

listeners have higher neural tracking than NH listeners of the attended speaker. Nevertheless, Presacco et al.

(2019) did not find a difference in neural tracking between the two populations. However, in their study, the

populations were not closely age-matched, while ageing is known to increase neural tracking (Presacco et al.,

2016; Decruy et al., 2019).

Like previous literature, we also observed that neural tracking decreases with decreasing speech understanding

(Vanthornhout et al., 2018; Lesenfants et al., 2019a; Decruy et al., 2020). Even when the speech is presented

with background noise, HI listeners showed enhanced neural tracking of speech. This suggests evidence for

a compensation mechanism: higher neural tracking indicates more neural activity to compensate for the

degraded auditory input (Eggermont, 2017; Fuglsang et al., 2020). Although the enhanced neural tracking

of speech in HI listeners, the effect of speech understanding on the neural tracking was similar for both

populations.
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Hearing-impaired listeners process speech less efficiently

HI listeners showed significantly increased latencies compared to their age-matched normal-hearing peers

when they listened to a story presented in quiet (Figure 4.A). Additionally, the delay in neural responses

increased with a higher degree of hearing loss (Figure 4.B).

We are not aware of any reports in which the effect of hearing loss on the latency of neural responses is

studied using continuous speech presented in quiet and with background noise. However, investigating the

CAEP-response, Campbell and Sharma (2013) and Bidelman et al. (2019b) have reported an increased P2

latency with worse speech perception in noise but not with the degree of hearing loss. However, in both

studies, the same intensity was presented to both populations, therefore McClannahan et al. (2019) remarked

that differences in the audibility of the stimulus might explain the differences in neural response latency.

Recently, Verschueren et al. (2020) observed that reduced audibility increases the latency of the neural

responses to continuous speech. However, at a comfortable loudness (at intensities of 60 dB or higher in a NH

population), the latency reaches a plateau. As our stimulus is amplified based on the participants’ hearing

thresholds and is presented at a subject-specific intensity to assure comfortable listening for HI listeners, we

minimized the effects of differences in audibility of the stimulus.

In several studies, it has been shown that increasing task demand due to lower stimulus intensity or increasing

background noise is associated with an increase in the latency of neural responses in continuous speech

(Mirkovic et al., 2019; Verschueren et al., 2020) or in CAEP-responses (Billings et al., 2015; Van Dun et al.,

2016; Maamor and Billings, 2017; McClannahan et al., 2019). Similarly, for NH listeners, we found that as

speech understanding decreases, the delay of neural responses increases. However, this increase in latency is

absent for adults with a higher degree of hearing loss (Figure 4.C). This could explain why Mirkovic et al.

(2019) did not find a difference between the two populations since they presented only two noise conditions.

As the noise level increases, the difference in latency between the two populations becomes smaller, which

reduces the likelihood of a statistical difference between the two populations.

In addition to an increase in latency of the P2 peak, Campbell and Sharma (2013) and Bidelman et al. (2019b)

also reported increased frontal activation in HI listeners in the neural responses to simple sounds. This

converges with our results using continuous speech: HI listeners show more left-lateralized frontal activity for

the N1S and P2S topographies (Figure 3). This suggest that HI listeners recruit different underlying neural

sources to understand speech.

Similar to the findings of Campbell and Sharma (2013), Bidelman et al. (2019a) and Bidelman et al. (2019b),

our results indicate that the latency of the neural responses reflects the efficiency of neural processing: if
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more or different brain regions are involved to process the speech, suggested by the difference in topography.

Hence it causes longer communication pathways in the brain (Bidelman et al., 2019b) which increases the

processing time, show by the difference in the latency and reduces the efficiency of neural speech processing.

Therefore, we suggest latency as a marker for the efficiency of neural processing of continuous, natural speech.

The latencies of the neural responses when listening to speech in quiet are significantly increased for HI

listeners. This means that hearing loss causes less efficient processing of speech although the sound is amplified

based on the listener’s hearing thresholds. Furthermore, the efficiency of neural processing decreases as the

severity of the hearing loss increases. Therefore, we hypothesize that the recruitment of additional brain

regions and the corresponding decrease in efficiency of neural speech processing, is a gradual effect which

occurs as the hearing deteriorates.

Bidelman et al. (2019b) did not report an effect of noise on the P2-latency. However, investigating the

functional brain connectivity in the same data, Bidelman et al. (2019a) reported that as noise was added

to the stimulus, NH listeners showed more long-range neural signalling whereas this was not seen for HI

listeners (Bidelman et al., 2019a). The latter finding is supported by our data: in NH listeners the neural

response latency increases as the speech understanding decreases due to increasing level of background noise.

This suggests less efficient neural processing to understand speech in noise: more processing time is required

to attend the speech stream and ignoring the noise. However, for HI listeners, this is not the case: when

background noise increases, processing efficiency does not decrease. It can be that HI listeners cannot recruit

additional brain regions in the speech network as they already recruit a maximum number of brain regions in

the speech network to understand speech in quiet.

Finally, we would like to highlight the difference in the trend of neural tracking and neural response latency.

As speech understanding decreases, neural tracking decreases for both NH and HI listeners while the neural

response latency remains constant (HI) or increases (NH). This difference in trend suggests that both measures

represent different underlying neural processes for speech comprehension.

Conclusion

In this study, we compared the neural responses to continuous speech of adults with a sensorineural hearing

loss with those of age-matched normal-hearing peers. HI listeners showed increased peak latencies of their

neural responses. Interestingly, the latency increases as the degree of hearing loss increases. Across noise

conditions, latency generally increases as the listening conditions become more difficult. However, for HI

listeners, this increase in latency is not observed. We here suggest latency as a marker for the efficiency of
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neural processing to understand continuous, natural speech.

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427550doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427550


References

Alain, C. (2014). Effects of age-related hearing loss and background noise on neuromagnetic activity from

auditory cortex. Frontiers in systems neuroscience, 8:8.

Bertoli, S., Probst, R., and Bodmer, D. (2011). Late auditory evoked potentials in elderly long-term

hearing-aid users with unilateral or bilateral fittings. Hearing research, 280(1-2):58–69.

Bidelman, G. M., Mahmud, M. S., Yeasin, M., Shen, D., Arnott, S. R., and Alain, C. (2019a). Age-related

hearing loss increases full-brain connectivity while reversing directed signaling within the dorsal–ventral

pathway for speech. Brain Structure and Function, 224(8):2661–2676.

Bidelman, G. M., Price, C. N., Shen, D., Arnott, S. R., and Alain, C. (2019b). Afferent-efferent connectivity

between auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older adults.

Hearing research, 382:107795.

Billings, C. J., Penman, T. M., McMillan, G. P., and Ellis, E. (2015). Electrophysiology and perception of

speech in noise in older listeners: effects of hearing impairment & age. Ear and hearing, 36(6):710.

Brodbeck, C. (2020). Eelbrain 0.32. http://doi.org/10.5281/zenodo.3923991.

Brodbeck, C., Jiao, A., Hong, L. E., and Simon, J. Z. (2020). Neural speech restoration at the cocktail party:

Auditory cortex recovers masked speech of both attended and ignored speakers. bioRxiv, page 866749.

Burkard, R. F., Eggermont, J. J., and Don, M. (2007). Auditory evoked potentials: basic principles and

clinical application. Lippincott Williams & Wilkins.

Byrne, D., Dillon, H., Ching, T., Katsch, R., and Keidser, G. (2001). Nal-nl1 procedure for fitting nonlinear

hearing aids: characteristics and comparisons with other procedures. Journal of the American academy of

audiology, 12(1).

Campbell, J. and Sharma, A. (2013). Compensatory changes in cortical resource allocation in adults with

hearing loss. Frontiers in systems neuroscience, 7:71.

David, S. V., Mesgarani, N., and Shamma, S. A. (2007). Estimating sparse spectro-temporal receptive fields

with natural stimuli. Network: Computation in neural systems, 18(3):191–212.

Decruy, L., Das, N., Verschueren, E., and Francart, T. (2018). The self-assessed Békesy procedure: validation

of a method to measure intelligibility of connected discourse. Trends in hearing, 22:2331216518802702.

Decruy, L., Vanthornhout, J., and Francart, T. (2019). Evidence for enhanced neural tracking of the speech

envelope underlying age-related speech-in-noise difficulties. Journal of neurophysiology, 122(2):601–615.

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427550doi: bioRxiv preprint 

http://doi.org/10.5281/zenodo.3923991
https://doi.org/10.1101/2021.01.21.427550


Decruy, L., Vanthornhout, J., and Francart, T. (2020). Hearing impairment is associated with enhanced

neural tracking of the speech envelope. Hearing Research, page 107961.

Di Liberto, G. M., O’Sullivan, J. A., and Lalor, E. C. (2015). Low-frequency cortical entrainment to speech

reflects phoneme-level processing. Current Biology, 25(19):2457–2465.

Eggermont, J. J. (2017). Acquired hearing loss and brain plasticity. Hearing Research, 343:176–190.

Francart, T., van Wieringen, A., and Wouters, J. (2008). Apex 3: a multi-purpose test platform for auditory

psychophysical experiments. Journal of neuroscience methods, 172(2):283–293.

Fuglsang, S. A., Märcher-Rørsted, J., Dau, T., and Hjortkjær, J. (2020). Effects of sensorineural hearing

loss on cortical synchronization to competing speech during selective attention. Journal of Neuroscience,

40(12):2562–2572.

Hamilton, L. S., Edwards, E., and Chang, E. F. (2018). A spatial map of onset and sustained responses to

speech in the human superior temporal gyrus. Current Biology, 28(12):1860–1871.

Harkrider, A. W., Plyler, P. N., and Hedrick, M. S. (2006). Effects of hearing loss and spectral shaping on

identification and neural response patterns of stop-consonant stimuli. The Journal of the Acoustical Society

of America, 120(2):915–925.

Harkrider, A. W., Plyler, P. N., and Hedrick, M. S. (2009). Effects of hearing loss and spectral shaping on

identification and neural response patterns of stop-consonant stimuli in young adults. Ear and hearing,

30(1):31–42.

Heeris, J. (2014). Gammatone filterbank toolkit 1.0. https://github.com/detly/gammatone.

Koerner, T. K. and Zhang, Y. (2018). Differential effects of hearing impairment and age on electrophysiological

and behavioral measures of speech in noise. Hearing research, 370:130–142.

Lesenfants, D., Vanthornhout, J., Verschueren, E., Decruy, L., and Francart, T. (2019a). Predicting individual

speech intelligibility from the cortical tracking of acoustic-and phonetic-level speech representations. Hearing

research, 380:1–9.

Lesenfants, D., Vanthornhout, J., Verschueren, E., and Francart, T. (2019b). Data-driven spatial filtering

for improved measurement of cortical tracking of multiple representations of speech. Journal of neural

engineering, 16(6):066017.

Luts, H., Jansen, S., Dreschler, W., and Wouters, J. (2014). Development and normative data for the

Flemish/Dutch matrix test.

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427550doi: bioRxiv preprint 

https://github.com/detly/gammatone
https://doi.org/10.1101/2021.01.21.427550


Maamor, N. and Billings, C. J. (2017). Cortical signal-in-noise coding varies by noise type, signal-to-noise

ratio, age, and hearing status. Neuroscience letters, 636:258–264.

McCarthy, G. and Wood, C. C. (1985). Scalp distributions of event-related potentials: an ambiguity associated

with analysis of variance models. Electroencephalography and Clinical Neurophysiology/Evoked Potentials

Section, 62(3):203–208.

McClannahan, K. S., Backer, K. C., and Tremblay, K. L. (2019). Auditory evoked responses in older adults

with normal hearing, untreated, and treated age-related hearing loss. Ear and hearing, 40(5):1106–1116.

Mirkovic, B., Debener, S., Schmidt, J., Jaeger, M., and Neher, T. (2019). Effects of directional sound

processing and listener’s motivation on eeg responses to continuous noisy speech: Do normal-hearing and

aided hearing-impaired listeners differ? Hearing Research, 377:260–270.

Nasreddine, Z. (2004). Montreal cognitive assessment (MoCA). École des sciences de la réadaptation, Sciences

de la santé, Université d’Ottawa.

Oates, P. A., Kurtzberg, D., and Stapells, D. R. (2002). Effects of sensorineural hearing loss on cortical

event-related potential and behavioral measures of speech-sound processing. Ear and hearing, 23(5):399–415.

Oostenveld, R. and Praamstra, P. (2001). The five percent electrode system for high-resolution eeg and erp

measurements. Clinical neurophysiology, 112(4):713–719.

Peelle, J. E. and Wingfield, A. (2016). The neural consequences of age-related hearing loss. Trends in

neurosciences, 39(7):486–497.

Petersen, E. B., Wöstmann, M., Obleser, J., and Lunner, T. (2017). Neural tracking of attended versus

ignored speech is differentially affected by hearing loss. Journal of neurophysiology, 117(1):18–27.

Presacco, A., Simon, J. Z., and Anderson, S. (2016). Evidence of degraded representation of speech in noise,

in the aging midbrain and cortex. Journal of neurophysiology, 116(5):2346–2355.

Presacco, A., Simon, J. Z., and Anderson, S. (2019). Speech-in-noise representation in the aging midbrain

and cortex: Effects of hearing loss. PloS one, 14(3):e0213899.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria.

Slaney, M. (1998). Auditory toolbox. Interval Research Corporation, Tech. Rep, 10(1998).

Somers, B., Francart, T., and Bertrand, A. (2018). A generic eeg artifact removal algorithm based on the

multi-channel wiener filter. Journal of neural engineering, 15(3):036007.

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427550doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427550


Tremblay, K. L., Piskosz, M., and Souza, P. (2003). Effects of age and age-related hearing loss on the neural

representation of speech cues. Clinical Neurophysiology, 114(7):1332–1343.

Van Dun, B., Kania, A., and Dillon, H. (2016). Cortical auditory evoked potentials in (un) aided normal-hearing

and hearing-impaired adults. In Seminars in hearing, volume 37, page 9. Thieme Medical Publishers.

Vanthornhout, J., Decruy, L., Wouters, J., Simon, J. Z., and Francart, T. (2018). Speech intelligibility

predicted from neural entrainment of the speech envelope. Journal of the Association for Research in

Otolaryngology, 19(2):181–191.

Verschueren, E., Vanthornhout, J., and Francart, T. (2020). The effect of stimulus intensity on neural

envelope tracking. bioRxiv.

Voeten, C. C. (2020). buildmer: Stepwise Elimination and Term Reordering for Mixed-Effects Regression. R

package version 1.6.

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427550doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427550

	Introduction
	Materials and Methods
	Participants
	Experimental Procedures
	Behavioural Experiment: Flemish Matrix sentence test
	EEG Experiment

	Signal Processing
	Processing of the EEG signals
	Extraction of the speech features
	Prediction accuracies, temporal response function & peak picking method
	Statistical analysis


	Results
	Neural differences when listening to speech in quiet
	Hearing-impaired listeners show higher neural tracking
	Delayed peak latencies for hearing-impaired listeners
	Longer latencies are associated with higher degrees of hearing loss

	Neural differences when speech understanding decreases
	Increased neural tracking with increased speech understanding
	Hearing-impaired listeners do not show a prominent increase in latency


	Discussion
	Higher neural tracking of speech in hearing-impaired listeners
	Hearing-impaired listeners process speech less efficiently

	Conclusion

