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Abstract

In recent years, the cognitive neuroscience literature has come under
criticism for containing many low-powered studies, limiting the ability to
make reliable statistical inferences. Typically, the suggestion for increas-
ing power is to collect more data with neural signals. However, many
studies in cognitive neuroscience use parameters estimated from behav-
ioral data in order to make inferences about neural signals (such as fMRI
BOLD signal). In this paper, we explore how cognitive neuroscientists can
learn more about their neuroimaging signal by collecting data on behav-
ior alone. We demonstrate through simulation that knowing more about
the marginal distribution of behavioral parameters can improve inferences
about the mapping between cognitive processes and neural data. In real-
istic settings of the correlation between cognitive and neural parameters,
additional behavioral data can lead to the same improvement in the preci-
sion of inferences more cheaply and easily than collecting additional data
from subjects in a neuroimaging study. This means that when conduct-
ing an neuroimaging study, researchers now have two knobs to turn in a
design analysis: the number of subjects collected in the scanner and the
number of behavioral subjects collected outside the scanner (in the lab or
online).
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1 Statistical Power and Neuroimaging

One factor which limits progress in human cognitive neuroscience is statistical
precision and power (Munafò et al., 2019; Cremers et al., 2017; Yarkoni, 2009).
Many reported effects are small relative to the noise in neuroimaging signals, a
problem compounded by the small samples sizes used in most studies. Within
a hypothesis testing framework, a lack of precise estimates of some measure-
ments can make it difficult to replicate reported effects. For example, even
quite strong, known effects such as the relationship between motor movements
and fMRI BOLD activation in sensorimotor regions can be unlikely to reach
significance in current standard sample sizes of around 25-30 subjects (Poldrack
et al., 2017). Having lower precision also means that any estimated effect that is
significant will also have a high probability of the estimate being much greater
in magnitude or even having the wrong sign compared to the true effect (Gel-
man and Tuerlinckx, 2000; Cremers et al., 2017; Yarkoni, 2009). However, due
to a combination of factors (including lack of sufficient funding for large sample
studies), research in human cognitive neuroscience tends to be under-powered
in many cases (Poldrack et al., 2017).

Several remedies have been proposed for this situation, the most obvious
being to simply collect more neuroimaging data (Poldrack et al., 2017; Munafò
et al., 2019). Because the funding available to most labs is relatively small
(compared to the cost of a large scale neuroimaging study), this might require
a move towards working in larger consortia around critical topics. Another ap-
proach might be to leverage the power of publicly available open datasets, which
can allow for meta-analyses across several smaller experiments (Poldrack et al.,
2017). However, increasing sample sizes is not the only option for dealing with a
lack of precision. For example, increasing the signal-to-noise ratio of neuroimag-
ing measures by creating more detailed statistical models of the neuroimaging
signal (Lindquist et al., 2009), improving experimental design (Durnez et al.,
2017) or even improving the measurement process itself (Feinberg and Yacoub,
2012; Lombardo et al., 2016) are all measures that are likely to help. In addi-
tion, it has been suggested that a focus on computational cognitive modeling
and behavior can also allow for extracting more signal (Krakauer et al., 2017;
Palmeri et al., 2017) by creating better models of the underlying cognitive and
neural processes. In that theme, this paper explores a potentially under-studied
option for improving the statistical precision of human cognitive neuroscience
studies: collecting additional behavioral data without neural recordings.

We begin by noting that many common statistical analyses in cognitive
neuroscience involve behavioral data, typically collected from the subjects who
also provided neural data. In one common scenario, the interest is in the re-
lationship between individual differences in behavioral traits and more static
measures of neural activity, such as performance in a task and functional con-
nectivity (Rosenberg et al., 2016). In another typical analysis, researchers are
interested in how within-subject changes in a cognitive state variable over time
relate to changes in the neural signal from a particular brain region, such as
the prediction error in a reinforcement learning task (O’Doherty et al., 2003).
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One interesting, but often overlooked, point is that these behavioral measure-
ments (i.e. survey questionnaires, behavioral responses to stimuli, summaries
of task performance or estimates of cognitive model parameters) are themselves
noisy estimates of an individual’s underlying cognitive processes and the dis-
tributions of these patterns that exist in the population. Thus our ability to
infer relationships between brain and behavior is limited by sampling error and
estimation error. While we define these types of error in greater detail below,
we give a quick summary here. Sampling error is a result of the fact that a
small sample may not be representative of the population, so estimates of the
relationship based on the sample may be far from the true relationship. A small
sample therefore prevents us from being confident about the value of a parame-
ter in a statistical model. Estimation error is a form of measurement error that
arises because researchers cannot measure latent cognitive variables directly and
instead use models to estimate their values. The relationship between neural
recordings and cognitive variables measured with error will necessarily not be as
strong as the relationship involving the true values, a notion sometimes known
as regression dilution or attenuation. Ignoring these two sources of error can
prevent us from learning as much as possible from our neural data.

In the following, we demonstrate that one way to reduce both sources of
error and improve statistical estimates of the relationship between the brain
and behavior is to collect behavioral data from subjects without collecting cor-
responding neuroimaging data. This idea is somewhat counterintuitive in light
of the fact that most common approaches in neuroimaging analyses assume that
the only relevant data is from individuals who’s neural activity was recorded.
However, our interest in this issue stems from the fact that behavioral data
(especially data collected over the Internet) is often significantly less resource-
intensive to collect than neuroimaging data, in terms of money and the time
and effort of both researchers and human subjects. We show how using modern
statistical methods that can leverage information from the additional behavioral
data can help mitigate the two types of error. To anticipate one consequence of
our analysis, we are able to provide a cost-benefit analysis (in terms of statistical
power and precision) of collecting data from subjects with only behavior against
collecting more expensive additional data from subjects with both behavior and
neural recordings. This analysis shows that in some cases, due to its relatively
low cost, a more effective use of resources is to collect more behavioral data
instead of additional neuroimaging subjects. This result has implications for
designing studies in cognitive neuroscience both prospectively and retrospec-
tively (i.e., the re-analysis of archived open-science data sets.)

1.1 Common paradigms for relating brain and behavior
in neuroimaging studies

For the purposes of articulating our thesis, it will be useful to describe two
common types of analyses used in cognitive neuroscience that use behavioral
data to interpret neural signals and lay out some notation for the rest of the
paper. While this is by no means an exhaustive list, we claim that many analyses
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can be understood as falling into two broad categories.

Regression (Conditional Distribution) In many cognitive neuroscience stud-
ies, researchers are interested in how the conditional distribution of neural
measures changes as a function of variation in cognitive states induced by a
task. For instance, researchers might be interested in regions of the brain
that track whether or not it is viewing a face (Kanwisher et al., 1997),
what the valence of a stimulus is (Chikazoe et al., 2014) or the prediction
error in a reinforcement learning model of decision making (O’Doherty
et al., 2003). More formally, a subject i presented with a set of stimuli
sithatoccurontrials(ortimes)t ∈ {1..Ti}. Each stimulus presentation sit
is assumed to induce some latent cognitive state cit that is associated with
some neural activity nit. Researchers can identify neural signals related
to the cognitive states by fitting a regression model where

nit = αi + βcicit + εit (1)

where εit is uncorrelated noise (for the purposes of this discussion, we ig-
nore features of particular signals like the fMRI BOLD hemodynamic re-
sponse). However, this is not quite so straightforward because researcher
need to derive estimates of the cognitive state for these analyses. The
most common assumption is that the relevant states are closely tied with
objective features of the stimulus, such as the color of an image or experi-
mental conditions like the reward offered for a choice, so cit can reasonably
be replaced by the stimulus feature or experimental condition itself.

In other cases, the cognitive states of interest are tied to subjective features
of the stimulus, such as the valence associated with sit or the typicality of
sit for a particular category. In some cases, researchers collect behavioral
ratings bit which depend on these latent states. Researchers then assume
that the ratings come from a cognitive process C such that bit ∼ C(cit, sit)
and obtain the cit from that model. In the simplest case, this can mean
simply using the valence ratings given by subjects (Chikazoe et al., 2014)
or using the average typicality from a group of subjects tested separately
(Wilson-Mendenhall et al., 2015).

More recently, “model-based” neuroimaging analyses have investigated
cognitive states that are involved in a particular cognitive process C such
that in addition to the current stimulus sit, cit may also depend on θi
are latent cognitive “trait” variables that do not vary over the relevant
time as well as the past states ci1:(t−1)

. Researchers can then use the
behavioral data to fit the model bit ∼ C(θi, cit, sit) and obtain the relevant
cit. These states may be, for instance, the reward prediction error or
predicted value in a reinforcement learning model of sequential decision
making (O’Doherty et al., 2003).

Because the latter two types of analyses involve behavioral data, those will
be our focus in this paper. In particular, we will focus on the model-based
case but nearly all of our analyses will also apply to the second case.
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Modern multivariate pattern analysis techniques (Polyn, 2005; Haxby,
2001) invert this regression and try to predict the cognitive state from
neural signals. Typically, this means predicting stimulus properties or
experimental conditions but in some cases the cognitive state will be in-
ferred from behavioral data (e.g. Mack et al., 2013; Kragel and Polyn,
2016). While the example analyses in the rest of the paper do not directly
apply to this setting, similar principles of collecting additional behavioral
data may hold there as well.

Correlation (Joint Distribution) In other cases, researchers are interested
in the joint distribution of behavioral measures and neural measures (often
across subjects). For instance, is there a relationship between individual
differences in behavior and individual differences in static measures of the
brain? Researchers often use a direct measure of a subject’s behavior bi
such as answers to a questionnaire (Treadway et al., 2013) or performance
on a behavioral task (such as a sustained attention task Rosenberg et al.,
2016). More recently (e.g. Homan et al., 2019), researchers have also used
cognitive ”trait” variables which can be related to behavioral data through
cognitive models (i.e. θi above). Static measures can include measures
like functional connectivity or average resting state activity that do not
depend on time. Typically we only get one ni per subject and the measure
is not always collected simultaneously to the task where bi is recorded. In
this setting, researchers are typically interested in characterizing the joint
distribution of neural measures ni and behavioral (bi) or latent cognitive
(θi) trait variables. In particular, if the neural measures and behavioral
variables can be approximated by a bivariate normal, researchers want to
find neural measures where the correlation ρ is non-zero.

Another common analysis that involves correlation is Representational
Similarity Analysis (Kriegeskorte, 2008). In these analyses, researchers
correlate the similarities of the neural response to pairs of stimuli with
the similarities of the two stimuli according to a model. Most often, these
models are created based on stimulus properties but they are sometimes
derived from behavioral ratings (Chikazoe et al., 2014; Bruffaerts et al.,
2013). In these cases, our analyses about the benefits of additional behav-
ioral data will apply as well.

We argue that these two categories of research design and inferential tech-
niques cover a vast array of studies in cognitive neuroscience and neuroimaig-
ing in particular. Each of these analyses can be thought of as attempting to
learn about the conditional distribution of neural signals given behavioral data
(regression) or the joint distribution of neural and behavioral data (correlation).
The focus of this paper asks whether we can improve inferences for these two
types of analyses by learning more about the marginal distribution of behavioral
data, that is, collecting more behavioral data without neural data.
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2 Two Sources of Error in Neuroimaging Anal-
yses

As the Introduction laid out there are two key sources of error in neuroimag-
ing analyses. In this section, we describe each of the two sources of error in
more detail as well as how they can affect the precision of inferences about the
relationship between neural signals and behavior.

2.1 Sampling Error

In a correlation analysis, we want to know what ρ is in the general population
but estimate it by using the sample correlation r. With a small number of
subjects, r can be quite far from the true ρ. An approximate confidence interval
for ρ can be constructed as arctanh(r) ± 1√

N−3 , where N is the number of

subjects or, more generally, the number of data points used to estimate r (Fisher,
1915). As this makes clear, the precision of the estimate (and thus finding a ρ
that we can say is non-zero with confidence) is constrained by the size of our
sample. In many neuroimaging studies this is often relatively small because
neuroimaging data is expensive and time consuming to collect. In Figure 1, we
show an example of where the smaller sample size can lead to noisy estimates
and larger error bars. 1 Sampling error can also be an issue in regression
analyses as well. However, because in that case we are only interested in the
conditional distribution of the neural signals, we cannot reduce sampling error
by collecting more behavioral data so do not discuss it here.

2.2 Estimation Error

In the model-based regression analysis described above, we want to find a set
of neural signals that have a linear relationship with a subject’s latent cognitive
states ci.

2 The true model we are interested in is

nit = αi + βcicit + εit (2)

where in particular we are interested in which neural signals have a significant
βci parameter (typically, at the group level). In practice, because we don’t have
direct access to cit we typically replace it with estimates ĉit by fitting the model
C(θ, cit, sit) to the behavioral data bit. It is typically assumed that the model
doesn’t perfectly account for behavior and that there is some variability in re-
sponses beyond what can be predicted by the model. For instance, when fitting
a reinforcement learning model, a decision noise parameter is often used to deal
with variability beyond what can be accounted for by the latent representations

1All figures and simulations in this paper are created using custom code in python 3.7.7

using the packages pandas (McKinney, 2010), numpy (van der Walt et al., 2011), matplotlib
(Hunter, 2007) and seaborn (Waskom et al., 2020)

2In the following we will focus on the case where we are interested in a single latent cognitive
variable.
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Figure 1: 25 samples from a multivariate Gaussian distribution are overlaid
over an additional 100 samples from the same distribution. Regression lines are
plotted showing how estimates from smaller samples can add significant variance
to the estimated correlation. Error bars show that we cannot rule out a zero
correlation in the smaller sample.

in the model. Because we don’t have infinite data, this typically means that
several sets of parameters could account for the data even if the model is well
identified. In other words, the parameters ĉit are estimated with some uncer-
tainty. This may seem obvious to many readers but standard techniques that
are typically used in cognitive neuroscience do not easily allow this uncertainty
to be taken into account in the above regression. Instead of the model above,
researchers often simply plug in the estimated ĉi into the regression, i.e.

nit = αi + βĉi ĉit + εit (3)

In this model, the value of the slope estimate using the estimated latent
variables, βĉi , will not necessarily be the same as when using the true parameter

βci . In fact, it can be shown that on average, the least squares estimate of β̂ĉi
will be

E(β̂ĉi) = βciρ(ci, ĉi) (4)

where ρ(ci, ĉi) is the correlation between the true ci and the estimates ĉi (Wilson
and Niv, 2015). This is perhaps not always relevant since the neuroimaging
signal can often only be known up to a multiplicative constant. However, Wilson
and Niv (2015) also showed that, as long as the estimates are uncorrelated with

the regression error term εit, the expected t-statistic for the β̂ĉi is

t̂(βci , ρ(ci, ĉi), Ti, σ
2
ε ) = βciρ(ci, ĉi)

√
Ti − 2

σ2
ε + β2

ci(1− ρ(ci, ĉi)2)
(5)
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Figure 2: Here we show a case where the latent behavioral measure is estimated
with error. The correlation with the estimates is lower than it would be with
the true latent behavioral measure.

where Ti is the number of trials from subject i used to estimate the regression
and σ2

ε is the variance of the residuals εit, due to noise in the neuroimaging
signal. We can see that this t-statistic gets closer to 0 as ρ(ci, ĉi) gets further
from 1. A smaller t-statistic means that the standard error (or any multiple of
it such as a confidence interval) is more likely to overlap with 0. Thus having a
lower correlation between the estimates and the true values, or, in other words,
greater estimation error, can make it harder to find relevant signals in the typical
regression setting.

Estimation error can also be relevant for correlation analyses looking at
correlations between latent cognitive trait variables and neural signals. If we
estimate the trait variable θi from behavioral data, Katahira (2016) showed

that the correlation between estimates θ̂ and structural neural signals n, can be
decomposed as

ρ(n, θ̂) = ρ(n, θ)ρ(θ, θ̂) (6)

Therefore, the correlation is upper bounded by the true correlation between
the neural signals and latent trait variables ρ(n, θ) and will decrease as the

correlation between the estimates and the true values ρ(θ, θ̂) decreases (or as
estimation error increases). Because the size of confidence intervals for a corre-
lation coefficient only depend on the total number of subjects, the intervals for a
correlation with a noisier estimate will be more likely to overlap with zero. This
means that again, greater estimation error will make it harder to find relevant
signals.

3 The Benefits of Additional Behavioral Data

Having laid out why these two errors can deteriorate our inferences, we now
demonstrate how collecting additional behavioral data can help. In addition,
for each case, we lay out a tradeoff between collecting cheaper behavioral data
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and more expensive imaging data in terms of how much each improves our
inferences. These analyses show in which cases it may actually be more valuable
to collect behavioral data than neuroimaging data, even if the main object of
interest is the relationship between brain and behavior. To preface, section
3.1 demonstrates how little known estimators are able to make use of additional
behavioral data to reduce sampling error for correlation analyses. We then follow
with simulations to understand where this estimator improves over standard
ones. Section 3.2 then documents how the use of hierarchical modeling can
allow for combining datasets and improving estimation for common regression
analyses as well as correlation analyses. Further analytical work shows the
benefits of decreasing estimation error for making group-level inferences about
the relationship between cognitive processes and neural signals.

3.1 How to Decrease Sampling Error: Behavioral Data as
Neuroimaging Data with a Missing Variable

Typically we are interested in generalizing beyond our sample and characterizing
the joint distribution of neural signals and behavioral variables in the popula-
tion. However, as mentioned, most neuroimaging studies are limited by getting
a relatively small sample. One somewhat counter-intuitive notion from the field
of statistics focused on missing data is that we can often get better estimates
of a parameter in the population (in terms of a lower mean squared error) by
including data points that do not have every variable recorded in our analysis
(Little and Rubin, 2019). This is because we are often assuming that variables
have some joint distribution. If the correlation between two variables is not zero
then we can know something about the value of what a missing variable must
be from knowing the value of the other variable. If we have collected neural and
behavioral data from Nnb subjects and only behavioral data from an additional
Nb subjects, Anderson (1957) showed that the maximum likelihood estimates
of the mean and standard deviation of n, as well as the correlation between n
and b, ρ, are not the same when we include all of the data points as they would
be if we only include the data with all variables recorded (the complete data).
We can see this by rewriting the likelihood for a bivariate normal. If

(n,b) ∼ N(µ,Σ) (7)

where µ = (µn, µb) and Σ =

(
σ2
n ρσnσb

ρσnσb σ2
b

)
then, we can factor the likeli-

hood as

P (n,b) = P (n|b)P (b) = N(n;αnb + βnbb, σnb)N(b;µb, σb) (8)

The advantage of writing the joint distribution as we did above is that the first
term is just the regression of n on b which is only defined for the data points that
have both variables recorded. Therefore, we can get the maximum likelihood
likelihood estimate for αnb, βnb and σnb using standard least squares regression
estimates with the Nnb data points. Maximizing the likelihood of the second
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term only depends on the b data so we can use standard estimates of the mean
and variance using all of the data. We can write the correlation as

ρ =
Cov(b,n)

σnσb
(9)

Then plugging in the maximum likelihood estimates β̂nb, σ̂nb and σ̂b, we get the
maximum likelihood estimate for ρ using all of the data:

ρ̂ =
βnbσ

2
b

σb
√
σ2
nb + β2

nbσ
2
b

=
βnbσb√

σ2
nb + β2

nbσ
2
b

(10)

Because the maximum likelihood estimate of σb using all Nnb +Nb data points
will not in general be the same as only using the Nnb data points, the maximum
likelihood estimate of ρ using all the data will not be the same as using only
the complete data.

We can now try to illuminate how this new estimate is different from the
correlation estimate based on only the Nnb complete cases. Little and Rubin
(2019) derive the missing data estimator ρ̂ in a different way, showing that

ρ̂ = r

(
σ̂b
σ̃b

) 1
2
(
σ̃n
σ̂n

) 1
2

(11)

where r, σ̃b, σ̃n are the estimates of the correlation (i.e. Pearson’s r), the
variance of the behavioral variable and the variance of the neural variable among
theNnb complete cases. σ̂n is the variance of n after adjusting for the σ̂b estimate
based on all of the data. Little and Rubin (2019) derive the formula for σ̂n as

σ̂n = σ̃n + β̂2(σ̂b − σ̃b) (12)

We can instead write this in terms of r and rearrange terms, i.e.

σ̂n = σ̃n +
r2

σ̃n
(σ̂b − σ̃b) = σ̃n

(
1 + r2

(
σ̂b
σ̃b
− 1

))
(13)

Plugging this back in, we get

ρ̂ = r

(
σ̂b
σ̃b

) 1
2

(
σ̃n

σ̃n(1 + r2( σ̂bσ̃b − 1))

) 1
2

(14)

= r

(
σ̂b
σ̃b

) 1
2

 1(
1 + r2

(
σ̂b
σ̃b
− 1
))
 1

2

(15)

To our knowledge, we are the first to show that the Anderson (1957) esti-
mate, ρ̂, only depends on the correlation estimate in the complete cases, r and
the ratio of the variance of the behavioral variable in the complete cases and
the full data set, σ̂b

σ̃b
. This form makes clear how the new information on the

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.21.427334doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427334
http://creativecommons.org/licenses/by-nc/4.0/


5.0 2.5 0.0 2.5 5.0
log( 2

b) - log( 2
b)

0.0

0.2

0.4

0.6

0.8

1.0

r
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 3: Anderson (1957) estimate (ρ̂) of the correlation using all of the data
as a function of Pearson’s r using only Nnb complete cases and the difference in
the log of the variance of the behavioral data in the Nnb complete cases and all
Nb cases. In general ρ̂ is modified up or down by the relationship between the
variance of the behavioral data on the full data set and that for the complete
cases.

marginal distribution of the behavioral data contributes to the estimated mea-
sure of association. In figure 3, we plot how ρ̂ changes as a function of these
two variables. In general, if the variance increases when including the additional
data, the correlation estimate increases and visa versa.

3.1.1 When does it work?

Garren (1998) showed analytically that asymptotically, the maximum likelihood
estimate ρ̂ using all the data will have lower error than estimates for r using
only the complete data. This result suggests that there can be cases where,
if one variable is more expensive to collect than the other one (for instance
neuroimaging data and behavioral data), the same quality of estimates of the
correlation can can be achieved for lower cost by collecting some data with
the more expensive variable missing (Hocking and Smith, 1972). However, the
result is an asymptotic result, meaning that it is only guaranteed to apply in
the limit of infinitely large data sets. It is therefore still unclear when collecting
more behavioral data will be better than collecting more neuroimaging data
in practice. In the following, we conduct a simple simulation to explore this
tradeoff.

Following the description above, suppose we have collected a behavioral vari-
able (b) and a neuroimaging variable (n) from Nnb subjects. In addition, we
collected just behavioral data from Nb subjects. For simplicity, we assume that
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we have a single behavioral measure and a single neuroimaging measure from
each subject.

In order to specify the generative model with missing data, we can create a
matrix of data BN from our neuroimaging subjects, an Nnb-by-2 matrix with
n as the first column and b1:Nnb as the second. The data matrix is generated
for i ∈ [1, Nnb] according to

(ni, bi) ∼ N(µnb,Σnb) (16)

where Σnb1,1 = σ2
n, Σnb2,2 = σ2

b and Σnb1,2 = Σnb2,1 = ρσ2
nσ

2
b . The additional

behavioral subjects then have distribution

b(Nnb+1):Nb ∼ N(µb, σ
2
b ) (17)

For the purposes of our simulation, we set µnb = 0 and σ2
n = σ2

b = 1.
Having generated data according to the above model, we now compare two

ways of estimating the correlation, standard Pearson’s r using only data with
both variables and the Anderson (1957) estimate of the correlation using all of
the data.

We compare estimates with for four values of Nnb (25, 50, 100 and 200)
and ten values of ρ from 0 to .9. To investigate the benefit of the additional
behavioral data for methods that can make use of the information, for each
value of Nnb, we test five values of Nb (0, 25, 50, 100, 200). Finally, to compare
the benefit of the additional behavioral data to collecting an additional neu-
roimaging subject, we compare all estimates to Pearson’s r with one additional
nueroimaging subject. For each set of (Nnb, Nb, ρ), we generate 10,000 datasets.

Of note here is that collecting neuroimaging data can be quite expensive.
For instance in 2019, collecting fMRI data at New York University’s Center
for Brain Imaging costs around $450 per hour of subject time. In addition
to the price, collecting neuroimaging data can have many other non-monetary
costs such as requiring the subject to come into the lab, requiring the time of
trained researchers or technicians to run the machine and only being able to
run one subject at a time. In contrast, many behavioral studies can be easily
run in parallel online without significant monitoring by researchers for a cost
of around $11 per hour of subject time (Hara et al., 2018; Crump et al., 2013).
Thus, if 40 behavioral subjects can improve inferences more than a single fMRI
subject, this might be a worthwhile tradeoff in many experimental designs.

Figure 4 plots how additional behavioral data can influence the mean squared
error of the correlation estimate using Anderson’s estimator. Comparing the
two methods of correlation estimation, we find that the effect of the additional
behavioral data can be nonlinear in the size of the underlying neuroimaging
dataset and the true value of ρ. Having too few neuroimaging data points to
estimate a weak correlation (e.g. only 25 subjects for a correlation of .1) makes
the behavioral data less useful and it can be better to collect more neuroimaging
data. This finding resembles similar simulation results from Garren (1998). At
low amounts of neuroimaging data and lower true values of ρ, the Anderson
estimate of the correlation using all of the behavioral data can actually perform
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Figure 4: Mean squared estimation error, averaged over 10,000 simulated
datasets, for the estimate of ρ from the two estimators as a function of the true
correlation, the number of neuroimaging subjects Nnb and number of additional
behavioral subjects Nb. We also compare to estimates from a neuroimaging
dataset with Nnb + 1 subjects. The orange line is generally below the blue
line showing the improved estimate that comes from one additional neuroimag-
ing subject. The curved green line shows the Anderson (1957) ρ̂ changes in
the estimate as the number of addition behavior only subject are added to the
analysis.
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worse than the standard Pearson estimate. However, as the true ρ and number
of neuroimaging subjects increase, the value of the additional data increases
such that collecting additional behavioral data can be better than collecting a
smaller amount of additional neuroimaging data. In some cases, collecting just
25 behavioral subjects can improve precision more than another neuroimaging
subject. At the cost levels described above, this can mean that behavioral
data can be a better investment than equivalently priced neuroimaging data.
Therefore, a design analysis that takes costs into account has the potential to
recommend collecting behavioral data rather than neuroimaging data.

However, as shown in Figure 4, that is not true across the whole parameter
range and, perhaps in particular, it isn’t true for low sample sizes and low
true correlation values, which is exactly where we might hope to gain in terms
power. Why is is that the Anderson estimator performs worse here? To answer
this question, we can decompose the mean squared error into the bias and the
variance, i.e.

MSE(ρ̂, ρ) = E((ρ̂− ρ)2) = Bias(ρ̂, ρ)2 + V ar(ρ̂) (18)

where Bias is defined as
Bias(ρ̂, ρ) = E(ρ̂− ρ) (19)

As with mean squared error, we can also look at how various methods perform
in terms of bias, i.e. is the estimate of ρ equal to ρ on average? It is well known
that Pearson’s r is biased downward such that, on average, correlation estimates
will be lower than their true value (Olkin and Pratt, 1958). In Figure 5, we can
see that the Anderson estimator of ρ always decreases the bias in estimating ρ,
relative to an Nb of 0 where it is equivalent to the Pearson r. This means that
the increase in mean squared error in the Anderson estimate for lower values
of ρ and Nnb is due to the behavioral data adding variance to the estimate. It
may be that the adjustment shown in Figure 3 is only likely to be in the right
direction when there is enough data to estimate ρ and σb precisely. We hope
that future statistical work will address this question and potentially develop
new estimators that can control this variance better in the low sample size, low
correlation regime. For now, the choice of whether to use the Anderson (1957)
estimator will depend on the research question.

One somewhat counter-intuitive consequence of the above discussion is that
Anderson’s estimator can help not only in studies of individual differences across
subjects but also in studies using representational similarity analyses where the
matrix of item-item similarities based on a model is correlated with the similari-
ties based on the multivariate neural signal (Kriegeskorte, 2008; Edelman et al.,
1998). If researchers simply increase the number of similarities computed for the
model, the above analyses suggest that there may be cases where this increases
the power to detect a correlation with neural measures. In practice, since rep-
resentational similarity matrices are often created from behavioral ratings (e.g
Chikazoe et al., 2014; Bruffaerts et al., 2013), this is yet another way in which
collecting additional behavioral data can increase power. While it is common
in this literature to use Spearman’s rank correlation to assess similarities, we
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Figure 5: Bias in the Anderson (1957) estimate of ρ, over 10,000 simulated
datasets, as a function of as a function of the true correlation, the number of
neuroimaging subjects Nnb and number of additional behavioral subjects Nb.

can put this within the linear correlation framework by first ranking the two
variables and then computing the correlation. For Pearson’s r, this is exactly
equivalent to computing the Spearman correlation.

3.2 How to Decrease Estimation Error: Improving Within-
Subect Model Estimates by Collecting Data from Ad-
ditional Subjects

We now investigate how collecting additional behavioral data can also help re-
duce estimation error, making it applicable to the regression analyses described
above. In our previous description of estimation error, we were agnostic as
to how exactly parameters were estimated from behavioral data. The most
common method of estimating cognitive model parameters for use in a model-
based regression is to use maximum likelihood estimation (Myung, 2003).
The maximum likelihood estimate of parameters θi for subject i is the set of pa-
rameters in a cognitive model C that maximizes the probability of that subject’s
behavioral data bi i.e.

θ̂i = argmaxθiP (bit|C, θi, cit) (20)

One problem is that many neuroimaging experiments are relatively short so
not many trials can be collected per subject. In complex cognitive models, when
the number of data points is small, many sets of parameters can be consistent
with the data and, therefore, two datasets generated from the cognitive model
with the same θi could result in very different maximum likelihood estimates θ̂i,
i.e. ρ(θ̂i, θi) can be low on average. As demonstrated in the above estimation
error section, this will result in lower power for estimating correlations and
regression slopes when attempting to relate such variables to neural recordings.

Two methods have been used in the literature to increase ρ(θ̂i, θi) and
ρ(ĉit, cit): sharing information across subjects or constraining the possible pa-
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rameter values. One way to use information from other subjects data is to
simply assume that all subjects have the same θ values which means that they
can be estimated using all of the behavioral data collected in the experiment
(Daw, 2011). This increases the data used to fit the parameters by a factor of
n. The cit will still vary by subject because of the dependence on the stimuli in
the experiment. If the variability in true parameters θi across subjects is small
relative to the estimation error, this can be an effective, heuristic way to increase
ρ(ĉit, cit). However, this is not an option in a correlation analysis when we
are often interested the variation across subjects itself. In addition, many cogni-
tive processes do have large individual differences so this may actually decrease
ρ(ĉit, cit).

Another option is to constrain parameter values by adding a prior, P (θi|φ).
If φ is chosen correctly, using a prior can decrease the likelihood of implausible
parameter values such as a learning rate of 0 (Daw, 2011). We can then find
the parameters that maximize the posterior, i.e.

θ̂i = argmaxθiP (bit|C, θi, cit)P (θi|φ) (21)

This is known as the maximum a posteriori (or MAP) estimation. By using the
prior, we can force θi to be closer to more plausible values. However, it can be
difficult to know in general if your priors are constraining the parameters to be
in the correct space. If your priors are wrong, this could also decrease ρ(θ̂i, θi).

One principled way to incorporate information from other subjects and use
priors is hierarchical modeling (Gelman, 2006). This is an increasingly popu-
lar method in cognitive science and cognitive neuroscience (Ahn et al., 2011;
Rouder and Lu, 2005) that assumes that there is a potentially nonuniform dis-
tribution P (θi|φ) of parameters in the population. Functionally, this constrains
the possible values of θi as in the prior above but because this is describing the
population distribution, we can now estimate φ from all of the subjects data
rather than setting φ by hand. The resulting estimate of θi will be a weighted
average of the estimate from the population with the estimate that just uses an
individual’s data. The weights are determined by the strength of the individual
data. For a subject whose data provides less constraint on the parameters of the
cognitive model (i.e. if they had fewer trials or made more inconsistent choices),
their estimates will be closer to the prediction from the prior. If a subject made
very consistent choices, we might already have a lot of information about the
parameters of their cognitive processes and we do not need to use as much in-
formation from the population. Thus, hierarchical modeling provides a way to
decide from the data how much we should pool information from the popula-
tion in creating each individual estimate. Katahira (2016) demonstrates that
estimates from a hierarchical model strictly dominate both individual maximum
likelihood estimates and population maximum likelihood estimates in terms of
bias and variance.

While there exist frequentist methods for estimating hierarchical models
(such as restricted maximum likelihood as implemented in popular packages for
fitting hierarchical linear models like lmer (Bates et al., 2015)), for arbitrary
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cognitive models, fitting in this way often requires a complicated derivation
or numerical integration which can be challenging in high dimensions. With
modern Bayesian inference tools like Stan (Carpenter et al., 2017), it is usually
much more straightforward to place a prior on φ and use Bayesian inference to
compute a joint posterior over φ and θ. The posterior for the hierarchical model
is then

P (θ, φ|b) ∝ P (b|C, θ, c)P (θi|φ)P (φ) (22)

In addition to Stan, many R or python packages have made hierarchical Bayesian
versions of specific cognitive models particularly easy to fit (e.g. (hddm (Wiecki
et al., 2013) for drift diffusion models or hBayesDM (Ahn et al., 2017)) for many
types of decision making models).

One feature of hierarchical modeling is that individual hierarchical estimates
can often be improved simply by sampling more data from the population. That
is, the cognitive model parameter estimates for subjects whose data you already
have, i.e. subjects who contributed neuroimaging data, can be improved by
adding data from new subjects. This is because the error of the estimates of φ
(or the standard deviation of the prior) will, for most models, converge towards
the correct estimates with increasing the number of subjects.

To demonstrate this, we conduct a simulation with a very simple hierarchical
model to show that additional behavioral data from new subjects can improve
inference for latent cognitive parameters θi for subjects i ∈ [1, (Nnb +Nb)], Nnb
of whom were collected in an original set neuroimaging experiment and Nb who
were collected in a separate behavioral experiment. We assume each subject’s
latent cognitive parameter θi is drawn from a Gaussian population distribution
with mean µθ = 0 and variance σ2

θ = 1. Each subject then provides behavioral
data bit and to keep things simple, we assume that the cognitive state variables
cit are essentially equal to bit such that

bit ∼ N(θi, σbi) (23)

where σbi is drawn from a uniform distribution between .5 and 1 for each sub-
ject. Further simplifying, we summarise bit by its mean b̄i and assume that
there are enough trials t that we can treat σbi as known.

For the hierarchical model, we need to put a prior on σθi . While in practice
it is often better to use a weakly or strongly informative prior, for generality, in
these simulations, we assume an improper uniform prior, i.e. P (σ1) ∝ 1. Using
the derivation in (Gelman et al., 2013), we construct a grid approximation to
the posterior for θ given b. We now investigate how the correlation between
the true subject parameters θi and their posterior mean estimate θ̂i for the Nnb
neuroimaging subjects changes as we add a number of new behavior-only sub-
jects, Nb, to the experiment. Note that we are only computing the correlation
within the original Nnb subjects. As we demonstrated in the section on estima-
tion error, this correlation is what limits the power to detect true correlations
or regression slopes between model estimates and neural signals.

Figure 6 shows that across a range of Nnb values, the addition of Nb new
behavioral subjects can increase the correlation between model estimates for
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Figure 6: Correlation between the estimated θ̂[1:Nnb] and θ[1:Nnb] from the hi-
erarchical model, averaged over 10,000 simulated datasets, as a function of the
number of neuroimaging subjects Nnb and number of additional behavioral sub-
jects Nb.

the Nnb neuroimaging subjects θ̂[1:Nnb] and true parameters θ[1:Nnb].

This implies that one way to increase ρ(θ̂i, θi) (and therefore also increase
ρ(ĉit, cit)) for subjects in a neuroimaging experiment is to simply collect behav-
ioral data from more subjects. However, the exact rate at which more subjects
improve the model estimates will in general depend on the distribution of un-
certainty in the individual θi as well as the particular form of the model you
use.

Beyond it’s use in improving hierarchical estimates of cognitive model pa-
rameters, collecting additional behavioral data can improve neuroimaging re-
gression inferences in several other ways. While not computationally feasible
yet for most neuroimaging analyses, joint modeling (Turner et al., 2013) is a
recently proposed technique in which the cognitive model and the neuroimaging
model are jointly fit, hierarchically, to both the neuroimgaging and behavioral
data. This can allow for even more efficient use of information by allowing both
sources of data to inform the cognitive model parameters. In addition, it allows
the uncertainty in the cognitive model parameters to be propagated into the
estimates of the regression or correlation, resulting in more powerful estimates
without the biases mentioned above. Turner et al. (2016) demonstrated how
joint modeling can be used to improve multimodal inferences even when we
don’t have data for every mode for every row in the dataset (i.e. some subjects’
data were collected with EEG and others with fMRI). This can be generalized
to the case we discuss where we only have rows in the dataset with only one
type of data (e.g. behavior).

In addition, to improving estimates within a particular model, collecting
additional behavioral data can be useful in many other ways for improving model
estimates. For instance, collecting additional behavioral data in experimental
conditions or on novel stimuli not in the neuroimaging experiment could assist
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in model selection. Choosing the correct model could potentially have a much
larger impact on the correlation between model estimates and true parameters.

Finally, we can view reducing estimation error as relevant not only for model-
based regression but also for regression approaches where the stimulus features
are subjective or latent, such as the valence of a stimulus. The covariates in
this case are often created from ratings based either on subjects in the experi-
ment or outside behavioral subjects. Similar to their use with cognitive models,
hierarchical models with additional behavioral data can reduce error in these
stimulus ratings as well. Even just aggregating the average rating however, will
be improved through greater amounts of data per item. Indeed, going back
to at least Kent and Rosanoff (1910), it is already quite common in cases like
this to use large “norming” studies to understand stimuli, particularly for word
stimuli.

3.2.1 When does it work?

Having demonstrated that it is possible to reduce estimation error in a neu-
roimaging dataset by collecting more behavioral data, we might now wonder
when this is likely to help. As we mentioned above, the amount that hierarchi-
cal modeling can help will in general depend on the model and the experimental
design. In addition, collecting additional behavioral data can improve estimates
in other ways such as through model selection. In order to say something gen-
eral about how improvements in estimation improve statistical power to find
neuroimaging effects, we will simply assume that it is possible to increase the
correlation between model estimates and true parameters using behavioral data
by a certain amount and investigate how that changes estimates about the re-
lationship with neural data. To begin, we will build on the derivation from
Wilson and Niv (2015) where they showed how the least squares estimate of the
regression slope is impacted by misestimation (i.e., equations 4 and 5). Wilson
and Niv (2015) only solved this for the case where the analyst is trying to infer a
single regression slope from the data (i.e. a non-hierarchical regression model).
But in model-based neuroimaging analyses, it is rarely assumed that all sub-
jects have the same effect size. Therefore, the most common analysis method
in model-based analysis is to use a two stage approach where a first-stage re-
gression is fit to each subject (or each run) and then the subject regressions are
aggregated at the group-level by approximating a hierarchical model, testing
whether the average effect is significantly different from zero (Beckmann et al.,
2003; Woolrich et al., 2004). This means that the benefit of collecting an addi-
tional neuroimaging subject cannot be captured by the Wilson and Niv (2015)
equations alone. Following Friston et al. (2002) and Beckmann et al. (2003), we
assume a Gaussian hierarchical model of population effects:

βci = βG + ηi (24)

nit = βcicit + εit (25)
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where the noise distributions are both Guassian:

ηi ∼ N(0, σ2
G) (26)

εit ∼ N(0, σ2
ε ) (27)

Using the same notation as above, for subject i on trial t, cit is that subject’s
cognitive state at that time and nit is the associated neural signal. βci repre-
sents the relationship between the cognitive state and the neural signal for a
particular subject and β represents that average relationship in the population.
σ2
G represents the variance of the magnitude of the relationship in the popula-

tion and σ2
ε represents the additional variance in the neural signal that is not

due to the cognitive state (either due to noise in the measurement or the signal
being related to other unrelated cognitive processes as well.)

From Wilson and Niv (2015), we know the distribution of estimates in the
first level regression, i.e.

β̂ci ∼ N
(
ρ(ci, ĉi)βci ,

σ2
ε + β2

ci(1− ρ(ci, ĉi)
2)

T − 2

)
(28)

Given the population distributions above and using standard formulas for
linear combinations of Gaussian random variables, we can get

ρ(ci, ĉi)βci ∼ N
(
ρ(ci, ĉi)βci , ρ(ci, ĉi)

2σ2
G

)
(29)

We can now write the distribution of first level estimates as

β̂ci ∼ N
(
ρ(ci, ĉi)βG,

σ2
ε + β2

ci(1− ρ(ci, ĉi)
2)

T − 2
+ ρ(ci, ĉi)

2σ2
G

)
(30)

The parameter we are interested in is βG, the average effect in the popula-
tion. While there are more efficient but computationally expensive estimators
(Beckmann et al., 2003; Woolrich et al., 2004), the most common way to esti-
mate βG is the OLS method, i.e.

β̂G =

∑Nnb
i=1 β̂ci
Nnb

(31)

β̂G is then just the mean of independent Gaussian random variables and will
therefore have a Gaussian distribution with mean ρ(ci, ĉi)βG and variance

σ2
β̂G

=

(
1

Nnb

)2 Nnb∑
i=1

(
σ2
ε + β2

ci(1− ρ(ci, ĉi)
2)

T − 2
+ ρ(ci, ĉi)

2σ2
G

)
(32)

=

(
1

Nnb

)2
(
Nnb

(
ρ(ci, ĉi)

2σ2
G +

σ2
ε

T − 2

)
+

(1− ρ(ci, ĉi)
2)

T − 2
σ2
G

Nnb∑
i=1

β2
ci

σ2
G

)
(33)
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The first term is a constant. In the second term, because βc is a Gaussian
random variable, the normalized squared sum has a non-central chi-squared
distribution,

Nnb∑
i=1

β2
ci

σ2
G

∼ χ2(Nnb,
β2
G

σ2
G

) (34)

and a non-central chi-squared multiplied by a constant will have a generalized
chi-squared distribution. Plugging in the mean of that distribution, the expec-
tation of the variance is now:

E(σ2
β̂G

) =

(
1

Nnb

)2(
Nnb

(
ρ(ci, ĉi)

2σ2
G +

σ2
ε

T − 2

)
+

(1− ρ(ci, ĉi)
2)

T − 2
σ2
G

(
Nnb +Nnb

β2
G

σ2
G

))
(35)

=
1

Nnb(T − 2)
(ρ(ci, ĉi)

2σ2
G(T − 2) + σ2

ε + (1− ρ(ci, ĉi)
2)(σ2

G + β2
G))

(36)

Combining this with the expected estimate, we can get an t-statistic at the
expected variance

t̂(ρ(ci, ĉi), βG, Nnb, T, σ
2
G, σ

2
ε ) =

ρ(ci, ĉi)βG

√
Nnb(T − 2)

ρ(ci, ĉi)2σ2
G(T − 2) + σ2

ε + (1− ρ(ci, ĉi)2)(σ2
G + β2

G)
(37)

Rather than parameterizing this in terms of the raw effect size, βG, it can
be useful for understanding to standardize the variables by the total standard
deviation,

√
σ2
ε + σ2

G, similar to the derivation in Wilson and Niv (2015). For
clarity, we define two new variables. Following Wilson and Niv (2015), we call
the standardized effect size, βG√

σ2
ε+σ

2
G

, the contrast-to-noise ratio (CNR). In mul-

tilevel modeling, an important statistic is the intra-class correlation coefficient
or ICC which is the proportion of the total variance that is explained by the

subject level variance, i.e.
σ2
G

σ2
G+σ2

ε
(Chen et al., 2018; Shrout and Fleiss, 1979).

If we multiply the right hand side of the above equation by

√
σ2
ε+σ

2
G√

σ2
ε+σ

2
G

, we can

now write the equation in terms of these two variables, i.e.,

t̂(ρ(ci, ĉi),CNR, ICC, Nnb, T ) =

ρ(ci, ĉi)CNR

√
Nnb(T − 2)

ρ(ci, ĉi)2ICC(T − 2) + (1− ICC) + (1− ρ(ci, ĉi)2)(ICC + CNR2)

(38)

Having derived the expected t-statistic, we can now compute the power
under that t-statistic using standard formulas. This allows us to ask the question
“how much would additional behavioral data have to improve our latent variable
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Figure 7: Power as a function of ρ(ci, ĉi) for a range of CNR, T and Nnb values.
ICC is set to 2

3 corresponding to a between subjects variance that is twice as
large as the neuroimaging noise. In general, power increases as the number
of subjects increases, as the number of trials increases and as accuracy of the
model estimates (the inverse of the estimation error) increases.
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estimates in order to improve power as much as another neuroimaging subject?”
That is, what is the increase in ρ(ci, ĉi) that is equivalent to increasing Nnb by
one? More formally, if P (t,N) is the power of the one-sample t-test with a t-stat
of t and N subjects, we can write

P (t̂(ρ(ci, ĉi) + δρ,CNR, ICC, Nnb, T ), Nnb) =

P (t̂(ρ(ci, ĉi),CNR, ICC, Nnb + 1, T ), Nnb + 1) (39)

and ask what value of δρ makes this equation true?
Since δρ must be between 0 and 1 − ρ(ci, ĉi), this is a straightforward con-

strained root finding problem that we can solve exactly using numerical meth-
ods. We can solve this for several values of the other parameters (CNR, ICC,
T and Nnb) using Brent’s method (Brent, 1972) as implemented in the scipy

package (SciPy 1.0 Contributors et al., 2020) in python 3.7.7. We plot the
power as a function of CNR, T and Nnb values in Figure 7.

Which settings of the parameters in equation 39 are reasonable for neu-
roimaging experiments? Wilson and Niv (2015) derive estimates for CNR from
two different studies with a very wide range of .4 to 11. Their CNR definition
was only normalized by σε and not the total standard deviation including the
group variance as we have done here. Therefore, to translate those values to val-
ues in equation, we need to take into account the ICC. In for this simulation, we
set the ICC to 2

3 , corresponding to a between subjects variance that is twice as
large as the neuroimaging noise, which seems to be quite large. With that value
of ICC, Wilson and Niv (2015)’s CNR of .4 corresponds to a CNR of .4√

3
which

is approximately .231. We can see in Figure 7 that a value of .2 for the CNR
leads to somewhat implausible power estimates for most cognitive neuroscience
task-based studies (Button et al., 2013; Turner et al., 2018). Therefore, we will
assume that the CNR is closer to .1 in the following simulation. However, with
the above derivation, it is easy to compute this for other values of the generative
model and task parameters. Also of note in these plots is that for a particular
value of Nnb the power function will asymptote as a function of ρ(ci, ĉi). This
means that given a good enough model estimate, it is impossible to improve
power more by improving the estimate than by collecting more subjects.

Figure 8 shows the solution to equation 39 in terms of δρ as a function of the
correlation between estimate and true parameters with one more neuroimaging
subject. Overall, as noted above, there is a range of parameter settings where
improving model fit (potentially by collecting more behavioral subjects) cannot
help improve the power more than collecting another neuroimaging subject.
Wilson and Niv (2015) showed that, for a reinforcement learning model, it is
fairly easy to obtain a high ρ(ci, ĉi), even if the latent subject-level parameters
are severely misestimated. This suggests that in that setting, model-fitting “isn’t
necessary”, or at least improving the model fit may be unlikely to significantly
affect power. However, this may not be the case for other cognitive models,
although it seems unlikely that a model that is fit to the data will have a
correlation as low as .2 or .3.
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Figure 8: Solution to equation 39 as a function of parameters ρ(ci, ĉi) for a
range of T and Nnb. CNR is set to .1 and ICC is set to 2

3 . Lines end when it is
no longer possible to achieve better performance by increasing the correlation.

While in this paper we have assumed that data collected in the scanner and
out of the scanner (or with and without an EEG cap) are exchangeable, that
is unlikely to be exactly true in practice. This does not make the described
methods impossible to use but does potentially require more complex models
that allow for differences between the data collected under different modalities.
That being said, there is relatively little work documenting the magnitude of
these purported differences. If these differences were found to be large, this
would likely have implications for learning about cognition through neuroimag-
ing in general, not just with the statistical methods described here. We strongly
encourage both future empirical work documenting these differences and future
statistical work on how to aggregate inferences across data collection modalities.

In future work, we hope to explore this in the context of other cognitive
models. Assuming that correlations between are reasonably high and that a
smaller δρ is easier to achieve, Figure 8 shows that improving the model fit with
additional behavioral data is most useful when there is already a reasonably
sized Nnb and T is smaller. While even 50 subjects is already significantly
above average for a neuroimaging study, most use numbers of trials that are
much higher than 50. One thing that this suggests is that using extra behavioral
data may be particularly useful for neuroimaging studies with small numbers
of trials. These are not common because of the low power they achieve but
methods like those mentioned in the previous section may make them more
feasible. This opens the door to more neuroimaging studies that are difficult
to run with high numbers of trials such as long-term memory studies where
subjects are unlikely to be able to remember a large number of items over a
long delay.

4 Discussion

In this paper, we have presented two ways in which collecting additional behav-
ioral data outside of a neuroimaging experiment has the potential to improve
the precision of an estimate of the relationship between brain measures and cog-
nition. We also attempted to quantify a tradeoff between collecting each type
of data, showing how this could potentially affect the design of future studies
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or reanalyses of past work. In both cases, behavioral data had the potential
to help but not in all cases. Unfortunately, it was particularly unhelpful when
both true effect sizes and the number of subjects were small, which is exactly
the case when more power is needed. However, our analyses pointed to possi-
ble future statistical work, in particular the potential to improve the Anderson
(1957) correlation estimate by appropriately reducing the variance. In addition,
our analyses suggest new regimes where behavioral data could be helpful; for
instance, the potential for improving model fits with behavioral data could al-
low for feasibly running neuroimaging studies with small numbers of trials. In
many cases, such as in long term memory studies, it is not feasible to run large
numbers of trials because participants cannot reasonably remember hundreds
of items. Both of these directions will require more work to be put into practice
but we hope this paper will inspire collaborations between cognitive neurosci-
entists and statisticians to work more on ways of fusing data sources in order
to learn about brain and behavior correlations.

Finally, while we have mostly discussed collecting additional behavioral data
in the context of designing a new study, it could also be a consideration in a study
that resuses an old dataset. It could be that a model is not identifiable with a
particular dataset but it could become identifiable by collecting behavioral data
in more conditions. With the advent of more open neuroimaging data sets, and
particularly with the current difficulty in collecting new data, these methods
point to a way to learn new things from old datasets simply by collecting more
cheap behavioral data.
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