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Abstract 

The annotation of small open reading frames (smORFs) of less than 100 codons (<300 nucleotides) is challenging due to the 

large number of such sequences in the genome. The recent development of next generation sequence and ribosome profiling 

enables identification of actively translated smORFs. In this study, we developed a computational pipeline, which we have named 

ORFLine, that stringently identifies smORFs and classifies them according to their position within transcripts. We identified a 

total of 5744 unique smORFs in datasets from mouse B and T lymphocytes and systematically characterized them using 

ORFLine. We further searched smORFs for the presence of a signal peptide, which predicted known secreted chemokines as well 

as novel micropeptides. Five novel micropeptides show evidence of secretion and are therefore candidate mediators of 

immunoregulatory functions. 
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Introduction 

Open reading frames (ORFs) are the regions of the genome which 

contain the triplet nucleotide codons that direct the sequence of amino 

acids (AA) in a protein. ORFs of less than 100 codons, referred to here 

as small ORFs (smORFs), are particularly numerous and have been 

challenging to annotate and to functionally characterise (reviewed in (1-

3)). smORFs have been classified according to their location relative to 

the main ORF within the host transcript (4). The translation products of 

smORFs, termed micropeptides, have been shown to be involved in 

many aspects of life (5-12).These new discoveries complement already 

characterised peptides and small proteins known to be important 

biological regulators. Within the immune system the best characterised 

of these include host defence anti-microbial peptides, chemokines and 

cytokines that are known to play essential roles in normal and 

pathological immune reactions. 

 

The advent of next-generation sequencing technologies and proteomic 

approaches has led to a more comprehensive annotation of genes, 

transcripts and their translated protein products (3). Several large-scale 

genomic studies have revealed that a much larger fraction of the 

genome is transcribed and translated than was anticipated (13,14). A 

large collection of putative translatable smORFs have been identified by 

computational methods based on the level of DNA and protein sequence 

conservation across species, coding potential and context of the 

initiation codon. Ribosome profiling (Ribo-Seq), an approach based on 

deep sequencing of isolated ribosome-protected mRNA fragments, has 

provided extensive evidence for the translation of smORFs (14-21). A 

variety of metrics and algorithms can use Ribo-Seq data to annotate 

translated regions of the genome. Amongst them ORFScore is a metric 

to quantify the bias of the trinucleotide periodicity pattern of ribosome 

protected footprints (RPFs) towards the first reading frame in an ORF 

(18). The periodicity pattern has been used by several algorithms and 

pipelines including ORF-RATER (19), RibORF (20), RiboTaper (22), 

RP-BP (23), and RiboCode (24). A recently described integrated 

platform called RiboToolkit provides a one-step server for 

comprehensive analysis of Ribo-seq data and utilises RiboCode as part 

of its packages (25). In addition to ORFScore, other metrics can be used 

in conjunction to improve actively translated ORF identification. For 

example, the Ribosome Release Score (RRS) detects the termination of 

translation at the stop codon and can robustly distinguish protein-coding 

transcripts from ncRNAs (26). 
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Here we describe a new analytical pipeline that we call “ORFLine” that 

performs a comprehensive and systematic analysis of RNA-Seq and 

Ribosome profiling to identify actively translated smORFs. In 

comparison to previously published pipelines, ORFLine reduces 

computational demands by focusing on smORFs. Also, ORFline applies 

a series of logical filters to improve the stringency of prediction. 

Predicted smORFs are classified according to their host transcript type 

and the position of the smORF relative to other ORFs within the same 

transcript. We have applied ORFLine to datasets of mouse lymphocytes 

and discovered 5744 actively translated smORFs during B and T cell 

activation. We also analysed the genetic conservation, translation 

efficiency, and related biological processes of the predicted smORFs. 

We further identified smORFs containing signal peptides which have a 

potential to be secreted and could act as immune regulators. 

Results 

Overview of ORFLine 

ORFLine takes Ribo-Seq, RNA-Seq, reference genome, transcriptome 

and gene annotation as input data and produces an output list of 

predicted smORFs with genomic coordinates and classification (Figure 

1A). The three main pipeline components to process the raw Illumina 

sequences and perform smORF prediction are: 1) Prediction of putative 

smORFs; 2) Sequencing data QC and processing; and 3) Identification 

of translated smORFs. Prediction of putative smORFs and sequencing 

data processing are independent components and can be executed in 

parallel. The identification of translated smORFs utilises the output of 

the previous two components as input (Table 1). ORFLine is applicable 

to data from any species.  

 

The output of ORFLine is a list of smORFs that have passed the filters 

in the identification of translated smORFs. They are identified as 

smORFs with ribosome protected RNA fragments (RPF) signal. The 

output file (Table 2) contains the genomic location and splicing 

information (including number of exons and exon lengths) of a smORF 

are clearly annotated and can be loaded and visualized in a genome 

browser. The quantitative information about a smORF is also calculated 

including translation efficiency, RNA expression and Ribosome-

protected RNA expression (FPKM value). The nucleotide sequences are 

retrieved and translated into amino acid sequences and presented in 

column 25 of Table 2. 

Fig. 1. Identification of different classes of actively translated smORFs in this study. (A) Computational pipeline (in dashed line square) to identify 
translated smORFs. Sequencing data for RNA-Seq and Ribosome profiling is processed and the reads mapped to the mouse reference genome 
GRCm38/mm10. In parallel, putative smORFs were predicted by scanning the mouse transcriptome. Several experimental metrics for each putative 
smORF were quantified and the smORFs exceeding a threshold for each metric were kept for downstream analysis. (B) Predicted smORFs were 
classified into 7 groups according to their relative location in the host transcript. The number of smORFs in each class is shown in parentheses. (C) Pie 
chart showing the proportion of smORFs of different classes. 
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Comparison between ORFLine and RiboCode 

We characterised smORFs in mouse lymphocytes using datasets 

obtained from ex vivo non-activated B cells; a published dataset from 

our lab of Lipopolysaccharide (LPS)-activated B cells (28); a new 

dataset of B cells activated with LPS plus interleukins IL-4 and IL-5 for 

48 hours, by which time most cells had divided once, and some started a 

second division; naïve CD4+ T cells stimulated with antibodies to CD3 

and CD28 which mimics activation  

by antigen; and a published time-course of Th1 T cells re-stimulated 

with anti-CD3+anti-CD28 (29) see Table S1. ORFLine predicted a total 

of 5744 unique smORFs in all samples analysed (union of 2607 

smORFs predicted in B cells and 4935 smORFs predicted in T cells) 

(Table S3). A lower number (568) of smORFs were predicted for the 

resting B cells than for LPS-activated B cells (2444), most likely 

reflecting an overall increase in RNA abundance associated with 

elevated rates of transcription in activated B cells.  

 

We also analysed the same datasets with the recently published ORF-

detection pipeline RiboCode (24) using its default settings. RiboCode 

predicted a total of 15,920 unique smORFs, of which 3,667 are smORFs 

nested in longer smORFs in the same reading frame and 48 smORFs are 

from non-expressed transcripts. We removed those 3,715. In the 

remaining 12,205 smORFs, 3,337 were predicted as internal or 

frameshift smORFs. These are found nested in the CDS, but in a 

different reading frame. Considering that frameshift translation is a rare 

event (30), they are not included in our results. We removed all 3,337 

frameshift smORFs predicted by RiboCode and compared the 

remaining 8,868 non-internal smORFs predicted by RiboCode with the 

5,744 predicted from ORFLine (Figure S2). Of these, 1,957 (22.1% in 

RiboCode and 34.1% in ORFLine) are found as exact genomic 

coordinate matches by both pipelines (Table 3). For un-annotated 

smORFs, we are not certain they are translated, and we lack a reference 

set of true-positives, therefore we sampled the smORFs which are 

differentially identified by the two pipelines and noticed that smORFs 

predicted by RiboCode typically have low RPF coverage or are 

assigned a low or negative ORFScore, or low RRS, and are filtered out 

by ORFLine (Figure S3). Our criteria for metrics have shown to be 

robust in smORF prediction in previous studies (18,26). ORFLine also 

predicted 356 smORFs encoded by low abundance transcripts (25% 

percentile) that are not predicted by RiboCode. Taken together, these 

comparisons demonstrate that ORFline allows a reliable identification 

of smORFs residing in transcripts of low abundance.  

Fig. 2. smORFs showing different conservation and length distributions according to their classes. (A)  Most smORFs are not conserved at the 
peptide level. Pie chart represents the coding potential (PhyloCSF score). smORFs with PhyloCSF score ≥ 50 are considered conserved. smORFs are 
considered weakly conserved if their PhyloCSF scores are positive but smaller than the threshold 50. (B) Canonical and extended smORFs are enriched 
in conserved peptides. Enrichment heatmap depicts log 2 ratio of the number of smORF observed (obs) to the number of smORF that would be 
expected (exp) by chance given overall distributions of smORF classes and conservation levels. (C) Scatter plot shows the distributions of codon length 
and PhyloCSF score for each smORF type. Marginal densities of length and PhyloCSF score are also shown on the top and the right-hand side of the 
scatter plot. Green dashed line indicates a PhyloCSF score of 50. Here the original classification in Fig 1B was simplified by combining the canonical 
and canonical extended ORFs as canonical; nuORF and ouORF as uORF; and ndORF and odORF as dORF. Canonical smORFs are on average 
longer and more conserved than other types. 
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smORF classification 

ORFLine classified smORFs according to their relative position with 

the annotation, if any, of the host transcript (Figure 1B). It predicted 

canonical smORFs and extended variants of annotated coding DNA 

sequences (CDS) of 100 codons or less in protein-coding mRNAs. 

ORFLine also found upstream ORFs (uORFs) which we subdivided 

into either uORFs starting in the 5’ untranslated region (5’ UTR) of 

annotated protein-coding mRNAs and overlapping with the coding 

region (ouORFs) or non-overlapping uORFs (nuORFs) which 

terminated before the start of the annotated CDS. uORFs are known to 

be prevalent in the genome and they represent 80% of all smORFs 

predicted by ORFLine (Figure 1C). In addition, ORFLine identified 

downstream ORFs (dORFs) as the rarest class of smORFs.  These can 

be subdivided as overlapping dORFs (odORFs) that overlap with the 

CDS and extend into the 3’UTR of known protein-coding mRNAs or 

non-overlapping dORFs (ndORFs) located exclusively in annotated 

3’UTRs. Lastly, 501 smORFs in putative non-coding RNAs (long non-

coding RNAs and pseudogenes) were predicted, which are termed 

ncORF. Direct biochemical and functional evidence is available for 

only ~40% (338) of canonical smORFs in protein databases such as 

UniProt (The UniProt Consortium, 2019) for their protein products, it 

includes diverse entities such as chemokines and subunits of 

mitochondrial complexes. The remainder (~5340) have either not been 

functionally characterised or have not been annotated at all. 

smORF conservation 

To examine the conservation of smORF-encoded micropeptides 

between species, we employed PhyloCSF to analyse signatures of 

evolutionary conservation. 11.4% of smORFs had a PhyloCSF score > 

50, thus showing strong evidence of conservation (Figure 2A), with 

canonical smORFs being enriched among these (Figure 2B). A small 

subset (~6.5%) of uORFs, ncORFs and dORFs showed high PhyloCSF 

scores, indicating conservation of smORFs CDS. There are over 60% of 

smORFs lacking signs of selective pressure to maintain their amino acid 

sequences (no cross-species sequence alignment and not conserved, 

Figure 2A), in which uORFs, ncORFs and dORFs are enriched (Figure 

2B). The median length of canonical smORFs is 79 codons, however,  

the median length of uORF, dORF and ncORF are 24, 34 and 33 codons 

respectively. By comparison with other classes, canonical smORFs are,  

on average, longer and more highly conserved (Figure 2C). Having 

distinct transcript organization, size, conservation and peptide structure, 

the cellular and molecular functions of canonical smORFs, uORFs, 

dORFs and ncORFs are likely to differ from each other, with less 

conserved classes primarily independent of peptide sequences. 

However, we observed that the PhyloCSF score positively correlates  

with the length of coding sequence (data not shown). Therefore, it is 

likely that the conservation of shorter smORFs is underestimated. 

Canonical smORFs 

A total of 338 canonical smORFs were predicted in B and T cells. 88% 

of these are conserved or weakly conserved between species (Figure 

3A). We divided canonical smORFs into “short CDS” and “short 

isoforms”, the latter are the products of alternative splicing of 

transcripts from genes annotated as encoding proteins longer than 100 

amino acids (4). Among the predicted canonical smORFs, 54.4% are 

short CDSs and 45.6% are short isoforms. There are hundreds of 

putative short CDSs in mouse and human, these are typically located on 

monocistronic transcripts and their host transcripts are structurally 

shorter and simpler compared with canonical mRNAs (4). We have 

predicted 184 short CDSs and they have a median size of 79 codons. 

We find short isoforms have a median size of 80 codons and resemble 

short CDSs in size and conservation (Figure 3B). As short isoforms 

share conserved protein sequences with their longer canonical protein  

isoforms, they may have functions that are directly related to their 

longer protein isoforms (4).  

 

To increase confidence that predicted canonical smORFs were indeed 

translated we calculated the translation efficiency of the short CDSs and 

short isoforms. When compared to long CDSs of expressed protein-

coding transcripts, we found their median translation efficiency to be 

greater (Figure 3C). We also conducted GO term enrichment analysis  

comparing the 184 short CDS and the 154 short isoforms against the 

remaining 3536 smORF-encoding genes of B and T cells. The top hits 

of short CDS are related to chemokine activity and mitochondrial 

biology (Figure 3D, Table S4). Seven chemokines are predicted (Ccl1, 

Ccl22, Ccl3, Ccl4, Ccl5, Cxcl10, Cxcl11). We also observed 

enrichment of gene products involved in mitochondrial complexes, for 

example, Uqcr10 is a subunit of Coenzyme Q:cytochrome c reductase 

(Complex III); this complex has a critical role in the oxidative 

phosphorylation pathway for the generation of ATP. Another 

mitochondrial protein is Romo1, which is located in the mitochondrial 

membrane and is responsible for increasing the level of reactive oxygen 

species (ROS) in cells (31). Romo1 also has antimicrobial activity 

against a variety of bacteria by penetrating the bacterial membrane (32). 

Short isoform encoding genes are associated with a broad range of GO 

terms, with no single term for GO biological processes reported as 

enriched.   

Fig. 4. uORFs regulate the translation of their downstream CDS. (A) Translation efficiency distributions of long CDS and uORF. Significance 
was computed using a two-sided Mann-Whitney test. (B) Scatter plot of uORF translation efficiency and PhyloCSF score. Green broken line represents 
a PhyloCSF score of 50 used as a threshold for conservation, blue broken line represents the median TE of long CDS. uORFs that are conserved and 
have a high TE are highlighted. (C) Cumulative distribution of translation efficiency in expressed uORF-containing transcripts versus transcripts lacking 
uORFs as control. Significance was computed using two-sample Kolmogorov–Smirnov test for each uORF set compared to the control. (1 uORF P = 
1.321e-14, 2+ uORFs P = 1.828e-6). (D) Biological process gene ontology terms found to be significantly enriched in the uORF-containing gene list. (E) 
Translational regulation of downstream CDSs by uORFs during T cell activation. Logarithmically transformed fold change of CDS RNA abundance 
(FPKM), RPF abundance (FPKM) and TE between two time points (2h vs 0h and 4h vs 0h) in 0,1, 2+ uORF-containing transcripts. Significance 
was computed using a two-sided Mann-Whitney test. For RNA expression, there is no statistically significant difference between 0 and 1, 0 and 2+ or 1 
and 2+ uORF-containing transcripts for 2h vs 0h (P= 0.4717, 0.4399 and 0.491, respectively) and 4h vs 0h (P= 0.3169, 0.0542 and 0.1057, 
respectively). For abundance of RPFs, the comparisons between 0 and 1, 0 and 2+ or 1 and 2+ uORF-containing transcripts are: 2h vs 0h, P= 0.7073, 
0.2558 and 0.2658, respectively; 4h vs 0h, P= 0.05284, 0.04256 and 0.1409, respectively. For CDS TE, no statistical significance was observed when 
comparing 0 and 1, 0 and 2+ or 1 and 2+ uORF-containing transcripts in 2h vs 0h (P=0.5685, 0.3602 and 0.425, respectively) or 4h vs 0h (P=0.2296, 
0.2481 and 0.4238, respectively). Outliers are not displayed. 
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uORFs 

Approximately 50% of annotated animal mRNAs contain uORFs (4,33) 

and translation of uORFs has been widely reported in different 

organisms (21,34,35). We observed that the median translation 

efficiency of uORFs is greater than that of long CDS (Figure 4A). 

About 4% of the uORFs have a high PhyloCSF score and TE (above the 

median TE of long CDS) and potentially encode conserved functional 

micropeptides (Figure 4B, for B cells activated with LPS and IL-4+IL-

5). However, the sequences of the majority of uORFs are not conserved, 

suggesting that any potential function is largely independent of the 

encoded peptide. The proportion of expressed uORF-containing 

transcripts in B cells and T cells is between 6.2% and 12.4%, except 

resting B cells (2.7%). It has been demonstrated that uORFs may 

regulate the translation of the downstream CDS. Several studies have 

shown a repressive effect of uORFs on the translation of CDS 

(21,36,37). We analysed the effect of uORFs on mRNA translation of 

their associated genes by comparing the translation efficiency of the 

CDS in all uORF-containing transcripts versus those lacking uORFs. As 

expected, the presence of uORFs and overlapping uORFs was 

associated with a translation repression (Figure 4C). We performed GO 

enrichment analysis for all uORF-containing genes to discover their 

associated biological processes (2881 target genes against 3536 

background genes) and these genes are mostly enriched in processes 

linked to protein modification, regulation of gene expression and 

cellular response to stimulus (Figure 4D, Table S4). This indicates that 

uORF-containing genes are broadly involved in complex biological 

pathways such as protein or RNA production and cell signalling. 

Regulatory uORFs may be suited to allow the rapid changes in gene 

expression in response to stress and environmental stimuli.  

 

We then investigated the influence of uORFs on translation of the 

downstream CDS during the first four hours of T cell activation (Figure 

4E). During the first two hours of activation the median RNA and RPF 

abundance for both non-uORF-containing transcripts and for transcripts 

containing a single uORF remains mostly unchanged as the median 

Log2 fold change is close to 0. There were few transcripts with two or 

more uORFs and these had a median 0.35 Log2 fold change of RNA 

and RPF abundance that is not statistically significantly different from 

the other two groups. However, we cannot rule out that we would find a 

difference if the numbers of transcripts in this class was greater. 

By four hours all mRNAs, irrespective of the presence of uORFs, show 

a median Log2 fold change of RNA abundance of around 0.5 compared  

to 0 hours. At 4h RPFs did not increase substantially, indicating a 

possible delay of translation of induced transcripts. As transcripts with 

two or more uORFs show a negative and the lowest median Log2 fold 

change of RPF abundance at 4h compared to 0h (P=0.04256 when 

compared to non-uORF-containing transcripts) the presence of uORFs 

appears to have a negative impact on translation of the downstream 

CDS. For translation efficiency, there is little change during the first 

two hours. The negative median Log2 fold change in TE for all groups 

in 4h vs 0h reflects the increase of RNA abundance at 4h and the lack of 

change of transcripts in RPFs. These results indicate that the rate of 

translation lags behind the increase in transcript abundance and the 

presence of uORFs can affect translation in activated T cells. 

 

smORFs in non-coding RNAs 

Non-coding ORFs (ncORFs) are smORFs that are found in annotated 

long non-coding RNAs (lncRNAs) and pseudogenes. They are typically 

short with a median length of 33 codons. By definition, non-coding 

RNAs are not translated into protein. However, annotated lncRNAs 

have been predicted from their sequences to contain six smORFs on 

average (4). We have predicted 501 translated ncORFs and 14.4% of 

these are considered conserved or weakly conserved. We noticed very 

different distributions of size and PhyloCSF score between ncORFs and 

canonical smORFs (Figure 5A). The distribution of translation 

efficiency for ncORFs is also different from that for long CDS, the 

median TE of ncORFs is greater than long CDS (Figure 5B). Three 

ncORFs identified in LPS-activated B cells (Cct6a, Gm16675 and 

6330418K02Rik) were found to have a high PhyloCSF score and TE, so 

we infer them to encode functional micropeptides (Figure 5C). We 

searched the micropeptides they encode in NCBI BLASTp database 

(38), but did not find any match for Gm16675. The 6330418K02Rik 

gene is annotated as an antisense lncRNA gene in GENCODE and only 

one match was reported for its predicted micropeptide (sequence ID: 

EDL19200.1). The micropeptide was partially aligned to three 

uncharacterized proteins with 35.59% to 78.18% identity in Habropoda 

Fig. 5. Translated smORFs predicted in noncoding RNAs. (A) Canonical smORFs and ncORFs showing very different distributions in length and 
PhyloCSF score. (B) Translation efficiency distributions of long CDS and ncORF. Significance was computed using a two-sided Mann-Whitney test. (C) 
Translation efficiency and PhyloCSF score are shown for ncORFs (LPS-activated B cells). Scatter plot of ncORF translation efficiency and PhyloCSF 
score. Green broken line represents a PhyloCSF score of 50 used as a threshold for conservation, blue broken line represents the median TE of long 
CDSs. ncORFs that are conserved and have high TE are highlighted. Three genes (Cct6, 6330418K02Rik, Gm16675) potentially encode micropeptides. 
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laboriosa and Gulo gulo. The examples likely reflect that these genes 

are misclassified as non-coding, although it is possible that they could  

also have functions as a noncoding RNA in addition to their peptide 

coding capacity. 

dORFs 

243 ndORFs and 17 odORFs were predicted with a median length of 34 

AA. Only 20 (~7.7%) are conserved or weakly conserved (Table S5). 

The translation efficiency of dORFs is lower than the long CDSs in 

general (data not shown). In transcripts that contain multiple ORFs, a 

translation reinitiation mechanism is able to prevent recycling of some 

or all ribosome subunits upon termination of the first translated ORF 

and thereby enable the translation of the dORF (39). The low TE 

indicates a very low level of translational reinitiation after the stop 

codon of the upstream CDS. In B cells activated with LPS and IL-4+IL-

5 we noticed that dORF-containing transcripts show no significant 

difference in TE compared to those without. (Figure 6).  

Signal sequence containing micropeptides 

An N-terminal signal peptide sequence of 16-30 amino acids is 

characteristic of proteins destined to be secreted, resident within cellular 

membranes or within compartments of the secretory pathway. We 

predicted the presence of signal peptides in amino acid sequences of 

micropeptides using SignalP server (40). This predicted 80 candidates 

including known chemokines (CCL-1, -2, -4, -5 and -22) and the cell 

surface protein CD52, as well as the recently identified lncRNA 

encoded Aw112010 (12) and 1810058I24Rik micropeptides (41). 

Amongst these, 28 are canonical micropeptides and they typically have 

high levels of conservation. Of the remaining 52 non-canonical 

micropeptides, 12 show conservation (Figure 7A).  

 

We selected eight putative smORFs for further characterisation (Figure 

7B). First of all, except for the uORF from Zdhhc5, all of uORF-

encoded micropeptides are in different reading frames from the main 

CDS. The coding sequence of Zdhhc5 uORF does not overlap with the 

ZDHHC5 ORF, suggesting it is not an N-terminal extension of the main 

CDS. To examine the expression of signal sequence-containing 

micropeptide host transcripts, we compared mouse RNA-Seq datasets 

for lymphocytes spanning B cell terminal differentiation (42), Th1 cell 

activation (29), and regulatory T cells (43) as well as epidermal cells 

(44). These data revealed dynamic expression patterns for several of the 

host transcripts. For example, BC031181 was downregulated during B 

cell differentiation but upregulated during Th1 cell activation, it was 

also highly expressed in epidermal cells (Figure 7B). Host transcript 

expression patterns provide a lead to where and what stage of cell 

differentiation micropeptides may be produced and can help with 

experimental validation of micropeptide prediction. To determine if the 

selected putative micropeptides are likely functional, we compared the 

conservation of amino acid sequence between different mammalian 

species (Figure S4). All of the micropeptides including those encoded 

in uORFs show evidence of conservation. This indicates positive 

selection pressure of the coding sequence of these micropeptides. 

In vitro characterisation of predicted micropeptides with signal 

sequence 

We sought to validate the potential for secretion of micropeptides with 

signal sequences. To this end, we selected and cloned eight putative 

smORFs with predicted signal sequences into a dicistronic mammalian 

expression vector which allowed synthesis of the micropeptide with a 

FLAG epitope tag at its C-terminus and of GFP driven by an IRES from 

the same transcript. HEK293T cells transfected with micropeptide-

encoding plasmids displayed anti-FLAG signals in both total cell 

lysates (C) and supernatant (S) fractions (Figure 7C). GFP was 

detected in all total cell lysates, but the smORF encoded in the Slc39a9 

transcript showed no evidence of expression. The smORFs encoded by 

Phf21a (uORF), 1500011B03Rik and BC031181 (both canonical 

smORFs) showed the most abundant expression and secretion. The 

small ORFs encoded by Zdhhc5 and Tbpl1 expressed less strongly but 

showed evidence of secretion. By contrast, the smORFs encoded by 

Opa1 and 1190007I07Rik were weakly or not at all secreted (Figure 

7C). A recent report demonstrates that the human ortholog of 

1190007I07Rik, named C12orf73, encodes a functional micropeptide 

named BRAWNIN found at the inner mitochondrial membrane and 

required for respiratory complex III assembly (45). These results 

demonstrate that putative smORFs can be expressed and secreted, but 

further investigations are required to validate their subcellular 

localisation and to demonstrate their biological functions. 

Discussion 

In this study we have developed an improved pipeline for discovery of 

novel smORFs expressed with low abundance. We used this pipeline to 

predict 5744 unique smORFs that show evidence of being translated in 

B and T lymphocytes in different conditions. Apart from 368 annotated 

as short CDSs or isoforms, the others are novel and located in long non-

coding RNAs, pseudogenes or in the 5’UTR and 3’UTRs of canonical 

protein coding transcripts. By assessing the conservation of the amino 

acid sequences and their translation efficiency relative to long proteins 

we inferred whether the translation products of these smORFs were 

likely to be functional.  

 

We compared our pipeline with RiboCode which assesses the triplet 

periodicity of RPFs in an ORF with modified Wilcoxon signed-rank test 

and is claimed to outperform other existing pipelines including 

RiboTaper, Rp-Bp and ORF-RATER (19,22,23).  Ribocode has been 

incorporated into a recently published integrated tool (RiboToolkit) to 

analyse ribosome profiling data (25). When compared with ORFLine,   

Fig. 6. The canonical ORFs of dORF-containing transcripts may be 
translationally enhanced. Cumulative distribution of translation 
efficiency in expressed dORF-containing transcripts versus transcripts 
lacking dORFs as control. Significance was computed using a two-
sample Kolmogorov–Smirnov test, P = 0.437. 
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RiboCode predicted more putative smORFs, some of which appeared to 

be ORFs with the same stop codon but different start codons. RiboCode 

 

 maps Ribo-Seq reads to the transcriptome and can lead to reads being 

mapped to multiple transcripts potentially increasing the number of 

positive signals. By contrast, ORFLine maps reads uniquely to the 

genome. We also observed that for the different putative smORFs 

predicted by RiboCode and ORFLine, those unique to ORFLine have 

higher RPF coverage and ORFScore. Thus, ORFLine produced fewer 

outputs and additionally provided more diverse classification of ORFs 

according to positional information.  

 

Among the predicted smORFs, 80% were located within 5’UTRs. Many 

of these were not conserved at the amino acid level between species and 

may be regulatory. A recent study has shown that non-canonical 

Hoogsteen-paired G-quadruplex (rG4) structures present upstream of 

some uORFs promote 80S ribosome formation on start codons, causing 

inhibition of translation of the downstream CDS (46). Identification of 

rG4 motifs in an uORF context thus may help to distinguish regulatory 

uORFs and this feature could be incorporated into new iterations of 

ORF calling pipelines.  

 

About four percent of our predicted smORFs are dORFs, which is 

consistent with previously reported data (20). dORFs of less than 100 aa 

are poorly characterised. Our pipeline predicted three dORFs encoded 

by Pgs1, Szrd1 and Dpm2 genes which are conserved by amino acid 

sequences between human and mouse (data not shown). These dORFs 

likely encode functional proteins and deserve further investigation. 

Recently, Wu et. al. also reported that dORFs are poorly conserved in 

human and zebrafish genomes, but are readily translated and can 

enhance translation of the main CDS (47). Our results also demonstrate 

no evidence of a statistically significant effect of dORFs on translation 

of the upstream CDS. However, it is important to point out that we 

considered only 32 dORFs in LPS-activated B cells, compared with 

1406 for human and 1153 for zebrafish by Wu et. al. and therefore our 

analysis of TE may be underpowered to detect an effect. 

 

We predicted 8 micropeptides with signal peptide sequences and five 

were found to be secreted in a model system. Little is known regarding 

the abundance or stability of these micropeptides in physiological 

settings. In our attempts to validate the predictions of novel smORFs, 

we observed that overexpression of smORFs in mammalian cells 

yielded varied levels of expression. Specifically, the uORF of Slc39a9 

did not produce any detectable proteins despite codon optimisation, 

indicating possible short half-life of this smORF encoded protein. It has 

been suggested that many peptide products are selectively and rapidly 

degraded within cells, and hence are difficult to detect biochemically 

(48,49). These factors impede their identification by regular mass 

spectrometry as they are often lost during sample preparation thus not 

available for detection. Recently it was proposed that 

immunopeptidomics based on the repertoire of peptides presented by 

MHC class I molecules may be suitable for detection of smORFs 

translation products (50). The immunopeptidome differs from the 

proteome in that it skews away from abundant gene products, enriching 

peptides from non-canonical translation initiation and micropeptides 

with short half-lives (51). 

 

As the ability to predict smORFs far outstrips the ability to validate 

them experimentally only a small number of predicted smORFs have so 

far been validated. For further investigation of the biological functions 

of the potentially secreted micropeptides, investment into the generation 

of antibodies and model organisms will be required. For micropeptides 

with signal sequences, they have the potential to be novel cytokines. If 

so, it will be exciting to validate the existence of receptors and to shed 

light onto the biology of these micropeptides. 

 

Materials and Methods 

Tissue culture 

B lymphocytes from the spleen or lymph nodes (LNs) of C57BL/6 mice 
were isolated using the B Cell Isolation Kit (Miltenyi Biotec). For 
activation, B cells were cultured for 48 hours in RPMI 1640 Medium 
(Dutch Modification) supplemented with 10% FCS, 100 IU/ml penicillin, 
100 μg/ml streptomycin, 2 mM L-GlutaMAX (Gibco), 1 mM Sodium 
Pyruvate and 50 μM β-mercaptoethanol in the presence of 10 μg/ml of 
LPS (Sigma, E. Coli 0127: B8), 10ng/ml of IL4 and 10ng/ml of IL5.  Naïve 
CD4+ T lymphocytes from spleen and LNs were isolated with 
CD4+CD62L+ T Cell Isolation Kit (Miltenyi Biotec) and stimulated in the 
same medium as for B cells using plate bound anti-CD3 (2C11) and 1 
μg/ml of anti-CD28 (37.51) for 24 hours. HEK293T cells were maintained 
in DMEM (Gibco) with 10% FBS (Gibco) and 1× GlutaMAX-I (Gibco). 

cDNA Library preparation  

RNA-Seq libraries were generated using the TruSeq Stranded mRNA 
Sample Prep Kit (Illumina Inc). Ribo-Seq libraries were prepared using 
the ARTseq™ Ribosome Profiling Kit (Epicentre, Illumina) from cells 
treated with cycloheximide (CHX, 100 μg/ml) prior to cell lysis. cDNA 
libraries were sequenced using Illumina HiSeq1000, Illumina HiSeq2000 
or Illumina HiSeq2500 system in a 100-bp single-end (RNA-Seq) or 50-
bp single-end (Ribo-Seq) mode. Summary metrics of libraries used are 
described in Table S1. 

Reference genome, transcriptome and annotation 

GENCODE (52) reference genome sequences (mouse GRCm38/mm10) 
are downloaded from the GENCODE website (Table S2). Transcriptome 
sequences (cDNA sequences) and gene annotation downloaded from the 
same GENCODE source are used to search for putative ORFs. tRNA 
sequences are downloaded from UCSC Table Browser (53). rRNA 
sequences are downloaded from GENCODE (version M20, we have also 
tested M13 and M15) as well as published studies (18,19). The 
transcriptome is defined as the collection of all transcripts on the 
reference chromosomes. GENCODE Transcript biotypes are defined 
here - https://www.gencodegenes.org/pages/biotypes.html. In our 
pipeline, we remove the following biotypes: 

● IG_* and TR_* (Immunoglobulin variable chain and T-cell 
receptor genes) 

● miRNA 

● misc_RNA 

● Mt_rRNA and Mt_tRNA 

● rRNA and ribozyme 

● scaRNA, scRNA, snoRNA, snRNA and sRNA 

● nonsense_mediated_decay 

● Non_stop_decay 

Fig. 7. Predicted signal sequence containing micropeptides and their host transcripts expression under different conditions. (A) Scatter plots 
show the distributions of length (codon) and PhyloCSF score for each predicted signal peptide containing micropeptides. (B) Heatmap analysis of host 
transcript expression during B cell terminal differentiation, Th1 cell activation, resting/activated regulatory T cells and epidermal cells (Epi). Selected 
micropeptides are shown in the heatmap, they are conserved in humans and there is limited or no information regarding their function. They are ordered 
by length. (C) Expression and secretion of micropeptides. Plasmids encoding predicted micropeptides were transfected into 293T cells and 
micropeptides in total cell lysate (C) and total secreted fraction (S) were detected by anti-FLAG antibody. GFP expression indicates transfection 
efficiency. 
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Overview of strategy to identify candidate smORFs 

Using the nucleotide sequences of all transcripts downloaded from 
GENCODE (release M13) (54) as a reference, ORFLine searches for 
putative ORFs beginning with “AUG”, “TUG”, “CUG”, “GUG” and ending 
with "UAG", "UAA", "UGA" in each of the three reading frames. It then 
removes ORFs that are not n*3 (n > 1) nucleotides long and designates 
those that are between 10 to 100 codons in length as putative smORFs. 
The ORF coordinates are initially transcript coordinates and are 
converted to genomic coordinates given exon location information in the 
gene annotation (in GTF/GFF format), the output of this step are genomic 
coordinates and strands for putative smORFs in BED format. Each ORF 
will be assigned two different identifiers, one is called RegionId, the 
second is called ORFId. RegionId is created based on genomic 
coordinates, ORFId is created based on the transcript coordinates. An 
ORF has a unique genomic location, thus RegionId is unique, but it may 
arise from multiple overlapping transcripts, so it may have multiple 
ORFIds (Figure S1). This step is carried out only once and needs to be 
updated when transcriptome annotation is changed. 

Sequencing data processing 

Raw Illumina sequencing data in FASTQ format are trimmed of adapter 
sequences and the resultant reads are aligned against specific 

sequences assembled from a collection of rRNA, tRNA, Mt_rRNA and 
Mt_tRNA snRNA, snoRNA, misc_RNA and miRNA sequences using 
Bowtie v1.2.2 (55) to remove these sequences. The remaining reads are 
aligned to the reference genome (GRCm38). Adaptor trimming and 
quality trimming (including poor quality “N” base at the 5’ end of some of 
the reads) were performed with Trim Galore v0.4.5 
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore), quality 
checked with FastQC v 0.11.8 
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). Authentic RPFs 
will be ~28-30nt in length, therefore, we have kept trimmed reads that 
have a length between 25 and 35 nt, as they account for ~75% of the 
total reads on average (refer to information in Table S1).  

  

Alignment to reference genome  

 

The reads were mapped to the GRCm38/mm10 reference genome using 
the STAR aligner v2.5.2a (56). The aligner reports only uniquely mapped 
reads (mapping quality MAPQ = 255). The following shows an example 
command, and parameters are in bold:  

STAR --runThreadN $THREAD \ 

     --genomeDir $REFGENOMESTAR \ 

     --readFilesIn$OUTPATH/bowtie-contanminant-
removal/${NAME}_trimmed_unfiltered.fq.gz  

     --readFilesCommand zcat \ 

     --outReadsUnmapped Fastx \ 

     --outFileNamePrefix $OUTPATH/star-genome/$NAME/ \ 

 

     --alignIntronMin $ALIGNINTRON_MIN \ 

     --alignIntronMax $ALIGNINTRON_MAX \ 

     --alignEndsType EndToEnd \ 

     --outFilterMismatchNmax $MISMATCH_MAX \ 

     --outFilterMismatchNoverLmax $MISMATCH_NOVERL_MAX \ 

     --outFilterType $FILTER_TYPE \ 

     --outFilterIntronMotifs RemoveNoncanonicalUnannotated \ 

     --outSAMattributes $SAM_ATTR \ 

     --outSAMtype BAM SortedByCoordinate \ 

     --outBAMsortingThreadN $THREAD 

Transcript expression quantification 

In each experiment, sequence alignments (in BAM format) of all 
biological replicates were combined for RNA-Seq and Ribo-Seq 
respectively. Transcript expression was quantified using StringTie v1.3.6 
(57) in FPKM (Fragments Per Kilobase per Million). From a given dataset, 

a minimal expression level was set to FPKM > 0.5 (27) to exclude non-
expressed transcripts. 

P-site offset determination 

A majority of RPFs has a length between 28-31 nucleotides (nt). The 5’ 
P-site offset is the distance from the 5’ end of the read to the ribosomal 
P-site (15). To determine P-site offset, we separated footprints into 
groups based on their lengths, P-site offset was estimated for each read 
length using plastid python library v0.4.8 (58). We observed P-site offsets 
are 12 nt long for RPF in 28-31 nt in our experiments. 

Identification of translated smORFs 

ORFLine takes the gene annotation, putative smORFs, Ribo-Seq and 
RNA-Seq alignment as input to predict actively translated smORFs. 
ORFLine combines alignment files of all biological replicates (pooled 
analysis) to increase the signal intensity in case the smORFs are lowly 
expressed. This component consists of several metrics and filters, 
putative smORFs that have exceeded a confidence threshold for each 
metric (as indicated in Table 1) were kept.  

RPF coverage 

To filter ORFs which are insufficiently covered by reads, we calculated 
the proportion of codons being covered by RPFs. We consider a codon 
covered if there is a mapped RPF with the P-site aligned to nucleotide 1 
of that codon. An ORF is discarded if the ratio of covered codons to the 
total number of codons in the ORF < 0.1 (18). 

ORFScore 

ORFScore was proposed by Bazzini and colleagues (18) and we re-
implemented the ORFScore algorithm in R. The ORFScore was then 
calculated as: 

where 𝐹n is the number of reads in reading frame n, 𝐹 is the total number 
of reads across all three frames divided by 3. RPFs were counted at each 
position within an ORF, excluding the first and last coding codons. To 
filter out putative artifactual peaks, the most abundant read position was 
masked if reads aligning to that position comprised more than 70% of the 
total reads in the ORF. The ORFScore is a log-scaled chi-squared 
goodness of fit test statistic, the p-values associated with the test were 
adjusted using Benjamini-Hochberg FDR-controlling method and 
smORFs with ORFScore > 0 and adjusted p-value < 0.01 were retained. 

Ribosome Release Score (RRS)  

Firstly, the 3’UTRs of smORFs is defined. For canonical smORFs, we 
used annotated 3’UTRs. For other classes of smORFs, their 3’UTRs were 
defined as the region between the stop codon and the next possible start 
codon in any frame. The RRS score is defined as the ratio of the two 
normalized ratios and calculated with the following equation: RRS = 
(FPKM_RF ORF/FPKM_RF 3’-UTR)/ (FPKM_RNA ORF/FPKM_RNA 3’-
UTR). Based on the original study, smORF with RRS > 5 is considered to 
be translated (26). 

Inside/outside read ratio 

The ribosome footprints typically show precise positioning between the 
start and the stop codon of translated ORFs. Low density of footprints 
before start codons and after stop codons and high inside/outside ratio is 
expected. By considering the read distribution of the nearest 3 upstream 
codons outside and the first 3 codons inside an ORF, we used a feature 
called inside/outside read ratio (total RPF of inside 3 codons/total RPF of 
outside 3 codons) to assess whether genuine translation takes place. 
ORFs will be discarded if the ratio ≤ 1 (more reads mapping outside than 
inside). 

Analysis of predicted smORFs 

Translation efficiency (TE) 

A measure of the rate of translation for a given feature (e.g. the CDS of a 
mRNA or a smORF), obtained in ribosome profiling experiments. It was 
calculated as the base 2 logarithmic ratio of RPF expression (FPKM) over 
mRNA expression (FPKM). 

Conservation of the amino acid sequences 

To examine the conservation of smORF-encoded micropeptide 
sequences between species, we performed PhyloCSF (59), a likelihood-
based method to analyse signatures of evolutionary conservation in 
multiple species sequence alignments. PhyloCSF assigned a score to 
each smORF based on conservation within selected vertebrate species 
(https://github.com/mlin/PhyloCSF/wiki#available-phylogenies). For each 
smORF, we selected alignments of mouse, human, chimpanzee, gorilla, 
cow, dog and zebrafish from a publicly available whole genome multiple 
alignment using Galaxy “stitch gene blocks” tool (60). smORFs were 
considered conserved if their PhyloCSF score was > 50 (26), and weakly 

𝑂𝑅𝐹𝑠𝑐𝑜𝑟𝑒 = log2 ((∑
(𝐹𝑖 − �̅�)2

�̅�

3

𝑖=1

) + 1)

× {
−1, 𝑖𝑓(𝐹1 < 𝐹2) ∪ (𝐹1 < 𝐹3)

1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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conserved if they had a PhyloCSF score > 0. PhyloCSF score = 0 
indicates that there is no DNA sequence alignment cross species and 
PhyloCSF score < 0 is considered not conserved. 

Gene ontology (GO) enrichment analysis 

We used the g:Profiler server (61) to perform GO analysis in two 
unranked lists of genes mode. The background list comprised the 
combined expressed transcripts (FPKM > 0.5) of B and T cells. The 
target list contains the host transcripts of the smORFs. For the 
significance threshold, we chose the default option g:SCS threshold and 
the default value 0.05. 

Secreted micropeptide prediction 

We used the SignalP 4.0 server (40) to predict signal peptides present at 
the N-terminus of the micropeptide amino acid sequences. We used 
default parameters. For selected candidates, we ran prediction of 
transmembrane helices using the TMHMM 2.0 Server (62) (default 
parameters) to rule out transmembrane peptides. 

Cloning and expression of candidate secreted micropeptides 

The coding sequences of predicted smORFs were codon optimised for 
mammalian expression (GeneArt from ThermoFisher) and cloned into a 
mammalian expression vector. A C-terminal FLAG epitope tag was 
placed downstream of the micropeptide cDNA sequences flanked by a 
spacer sequence of Glycine-Alanine-Alanine. This is followed by an 
EMCV-IRES upstream of GFP cDNA. The di-cistronic mRNA is controlled 
by a CAG promoter. For transfection, HEK293T were seeded at 50% 
confluency the day before, and transfected at 60-90% confluency. Trans-
IT (Mirus Bio) was used to deliver 1 μg plasmid per well of 6-well plates 
according to the manufacturer’s instruction. 3 hours post transfection, 
cells were replaced with fresh media to remove possible plasmid 
contamination in downstream assays. 21-24 hours post transfection, cells 
were collected by centrifugation at 300 × g for 5 minutes at 4 ℃ and lysed 
using RIPA buffer. Total secreted proteins were obtained by 
centrifugation of the culture media at 300 × g for 5 minutes at 4 ℃. For 
Western blot analysis, total cell lysates and total supernatant were 
resolved with 16% Tris-Tricine/SDS-PAGE (63). After transfer, PVDF 
membranes were blotted with anti-FLAG (clone M2, Sigma) and anti-GFP 
(clone D5.1, Cell Signaling Technology) antibodies. Images were 
acquired and analysed using the Odyssey CLx (LI-COR). 

 

End Matter 

Data Availability 

Cell type RNA-Seq Ribo-Seq 

B cell setup 1 GSE62129 GSE62134 

B cell setup 2 GSE146073 

(GSM4364117-121) 

GSE154491 (all 

samples) 

CD4+ T cell GSE155087 

(GSM4694962-64) 

GSE155087 

(GSM4694968-972) 

Th1 reactivation GSE83351 GSE83351 

Pipeline Availability 

Pipeline code is publicly available on the source code hosting platform 

GitHub. The URL is  https://github.com/boboppie/ORFLine. We also 

created a Singularity image (https://singularity.lbl.gov/) which enables 

the users to execute and test the pipeline easily in a virtual environment. 

All dependencies including bioinformatics tools are pre-installed in the 

image, the URL is https://github.com/boboppie/ORFLine-singularity. 

Supplementary Data 

Supplementary Data are available at BioRxiv online. 
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Tables 

Component Step Cut-offs and 

rationales 

Input Output 

Prediction of all 

putative smORF 

Computational prediction of 

all theoretically possible 

smORFs 

Scan all annotated transcripts Transcriptome sequences; user 

defined start codons (default: 

“AUG”, “TUG”, “CUG”, 

“GUG”) 

List of genomic regions 

with predicted smORFs 

Ribo-Seq and 

RNA-Seq QC and 

processing 

Trimming of sequencing 

adapters and low-quality 

bases 

Trim adapters and low-quality 

bases from 3’ end of reads 

Ribo-Seq and RNA-Seq 

FASTQ files 

Trimmed FASTQ files 

Removal of reads mapped to 

rRNA and tRNA loci 

Align all reads to rRNA/tRNA 

sequences 

Trimmed Ribo-Seq FASTQ 

files; rRNA/tRNA sequences 

rRNA/tRNA depleted 

FASTQ files; 

rRNA/tRNA alignment 

BAM files 

Alignment to the reference 

genome 

Unique mapped reads are kept; 

read length < 36 nt 

rRNA/tRNA depleted FASTQ 

files 

Genome alignment 

BAM files; unmapped 

FASTQ files 

Calculation of P-site offset 

for Ribosome protected 

fragments (RPFs) of each 

length 

Reads are split into groups on the 

basis of length and the 5’ end 

mapping rule is applied to each 

group 

Genome alignment BAM files List of P-site offset 

values for reads of each 

length 

Evaluation of triplet 

periodicity for all RPFs 

The first reading frame should 

show a greater share of reads (> 

50%) 

Genome alignment BAM files Summary of reads share 

for each reading frame 

Estimate of transcript 

expression (by FPKM 

values) 

Transcripts with FPKM > 0.5 are 

considered expressed (27) 

Genome alignment BAM files List of FPKM values for 

each transcript 

Identification of 

translated smORFs 

Filtering out reads of lengths 

for which triplet periodicity 

pattern is not observed 

Reads are split into groups on the 

basis of length; only groups 

which show triplet periodicity are 

kept 

Merged genome alignment 

BAM file; read phasing 

summary 

Read length filtered 

BAM files 

Filtering out regions with 

putative smORFs which 

have no aligned reads 

Read count > 0 Read length filtered BAM 

files; full list of predicted 

smORFs 

Read count filtered 

smORF regions 

Filtering out regions with 

putative smORFs which 

have no aligned RPFs 

RPF count > 0 (some regions 

retained in the previous step may 

contain only reads not derived 

from RPFs) 

Filtered BAM files; read count 

filtered smORFs 

RPF count filtered 

smORF regions 

Filtering smORFs based on 

expression of host 

transcripts 

Only keep smORFs located on 

transcript with FPKM > 0.5 

Host transcript FPKM values; 

RPF count filtered smORFs 

Transcript expression 

filtered smORFs 

Assigning classes to 

smORFs on the basis of 

their position on the host 

transcripts 

Class is added as annotation; the 

number of smORFs is unchanged 

Transcript expression filtered 

smORFs 

Class annotated 

smORFs 

Filtering smORFs on the RPF coverage > 0.1, ORFScore > Class annotated smORFs ORFScore filtered 
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basis of ORFScore  0, adjusted p-value < 0.01 smORFs 

Filtering out smORF 

overlapping with a CDS 

The estimated ratio (RPF 

countCDS/RPF countsmORF) > 1 

Read length filtered BAM 

files; ORFScore filtered 

smORFs 

Region filtered smORFs 

Filtering smORFs on the 

basis of Ribosome release 

score (RRS)  

RRS > 5  Read length filtered BAM 

files; RNA-Seq alignment 

BAMs; Region filtered 

smORFs 

RRS filtered smORFs 

Filtering smORFs with same 

stop but different start 

codons (nested smORFs) 

  

The smORF with the maximum 

ORFScore is retained, otherwise a 

smORF with AUG start codon is 

retained 

RRS filtered smORFs Nested filtered smORFs 

Filtering smORFs on the 

basis of Inside/outside (I/O) 

ratio 

smORFs are retained if 

inside/outside read ratio > 1 

(more reads mapping inside than 

outside) 

Read length filtered BAM 

files; nested filtered smORFs 

I/O ratio filtered 

smORFs 

 

  

Table 1. Summary of steps in the ORFLine. 
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Column  Description 

1 - 12 The first 12 columns are in BED12 format, the fields are described here - https://genome.ucsc.edu/FAQ/FAQformat.html#format1. The 

4th column is ORFId (transcript-based). 

13 smORF class, including canonical, five_prime... 

14 Peptide length 

15 RegionId (genomic-based) 

16 Ensembl transcript Id 

17 Gene symbol 

18 Gene description 

19 ORF score 

20 Ribosome release score 

21 Ribo FPKM 

22 RNA FPKM 

23 Translation efficiency (TE) 

24 CDS TE (NA if host transcript is noncoding) 

25 AA sequence 

Table 2. Pipeline final output format. 
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Class ORFLine RiboCode Commonality Unique to 

ORFLine 

Unique to 

RiboCode 

Annotated (including canonical/ca-

nonical_exte-nded/canoni-cal_truncated) 

368 (338 canonical + 30 

canonical_extended) 

290 183 185 107 

 

Novel (noncoding) 501 990 69 432 921 

nuORF 4,174 5,133 1,401 2,773 3,732 

ouORF 441 1,718 185 256 1,533 

ndORF 243 506 121 122 385 

odORF 17 231 3 14 228 

Total 5,744 8,868 1,957 3,787 6,911 

 

Table 3. ORFLine and RiboCode prediction commonality/difference by class. 
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