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Running title 

GABA neurons inhibit VTA-BLA-NAc circuit 

Abstract 

Anhedonia, inability to experience pleasure from rewarding or enjoyable 

activities, is the prominent symptom of depression that involves dysfunction of 

the reward processing system. Both genetic predisposition and life events are 
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thought to increase the risk for depression, in particular life stress. The cellular 

mechanism underlying stress modulating the reward processing neural circuits 

and subsequently disrupting reward-related behaviors remains elusive. We 

identify the VTA-BLA-NAc pathway as being activated by sex reward. 

Blockade of this circuit induces depressive-like behaviors, while reactivation of 

VTA neurons associated with sexual rewarding experience acutely ameliorates 

the impairment of reward-seeking behaviors induced by chronic restraint 

stress. Our histological and electrophysiological results show that the VTA 

neuron subpopulation responding to restraint stress inhibits the 

responsiveness of the VTA dopaminergic neurons to sexual reward. Together, 

these results reveal the cellular mechanism by which stress influences the 

brain reward processing system and provide a potential target for depression 

treatment.    
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Introduction 

   Depression, one of the world’s greatest public health problems, is 

heterogeneous in aetiology, pathology and treatment responses (Garriock et al, 

2010; Fabbri et al, 2017). The existing antidepressant medications, acting on 

the brain’s serotonergic or noradrenergic systems, usually need at least 

several weeks to show alleviation effect in depressive symptomatology 

(Ressler & Nemeroff, 2000; Nestler et al, 2002; Morilak & Frazer, 2004), while 

approximately 30% of patients show little improvement, who are therefore 

defined as having treatment-resistant depression (TRD) (Gaynes et al, 2020; 

Sackeim, 2001; Davidson et al, 2020). Anhedonia, the inability to experience 

pleasure and insensitivity to naturally rewarding stimuli, is a prominent clinical 

feature of depression and is considered a potential predictive clinical sign of 

TRD (McMakin et al, 2012; DeWilde et al, 2015). Accumulating evidence 

strongly supports dysfunction of the brain reward processing system in 

depression (Rappaport et al, 2020; Coccurello, 2019). 

The mesolimbic system, originating from the ventral tegmental area (VTA) 

dopaminergic (DA) neurons which project to the nucleus accumbens (NAc), 

has been extensively involved in regulating motivated behaviors related to 

reward stimuli and reward-predictive cues (Halbout et al, 2019; Ostlund et al, 

2014; Wassum et al, 2013; Yuan et al, 2019), and its abnormalities are 

associated with Depressive-like behaviors (Krishnan et al, 2007; Chaudhury et 
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al, 2013; Cao et al, 2010). The VTA-NAc pathway does not regulate 

reward-related behaviors as an independent brain structure, but functions as 

part of an overlapping and interacting neural circuit. The VTA and NAc receive 

glutamatergic inputs from the medial prefrontal cortex (mPFC), hippocampus 

and basolateral amygdala (BLA) (Sesack & Grace, 2010; French & Totterdell, 

2003; MacAskill et al, 2012; Britt et al, 2012; Hyman & Malenka, 2001; Nestler 

& Lüscher, 2019). In return, the VTA neurons also affect the functions of mPFC 

and hippocampus through axonal innervation (Wittmann et al, 2005; 

Duszkiewicz et al, 2019; Liu D et al, 2018; Popescu et al, 2016). A surge of 

research suggests that BLA plays an important role in reward processing，

particularly in reward learning and goal-directed behaviors (Kim et al, 2016; 

Wassum & Izquierdo, 2015). The excitatory transmission from BLA to NAc 

increases cue-triggered motivated behaviors and supports positive 

reinforcement (Gore et al, 2015; Di Ciano & Everitt, 2004; Setlow et al, 2002; 

Stuber et al, 2011). The dopaminergic projections from the VTA to NAc are 

required for appropriate reward-seeking behaviors regulated by the BLA-NAc 

pathway (Ambroggi et al, 2008; Stuber et al, 2011). In addition, some 

neuropharmacological evidence indicates that the VTA may control the activity 

of BLA-NAc pathway through axonal innervation on BLA neurons (Di Ciano & 

Everitt, 2004; Lintas et al, 2011). Neverthelss, further research, especially 

anatomical evidence, is needed to elucidate the neural circuit. 

The VTA, a hub of the mesolimbic system that serves an essential role in 
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both reward and aversion (Koob & Le Moal, 2001; de Jong et al, 2019; Russo 

& Nestler, 2013; Watabe-Uchida et al, 2017), is a heterogeneous brain 

structure containing dopaminergic (65%), GABAergic (30%) and glutamatergic 

(5%) neurons (Margolis et al, 2006; Nair-Roberts et al, 2008). The VTA 

dopaminergic neurons, the primary focus of research on this brain region, have 

been involved in not only processing rewards and reward-predictive cues 

(Schultz, 2006; Bayer & Glimcher, 2005), but also responding to aversive and 

alerting events (de Jong et al, 2019; Bromberg-Martin et al, 2010), and 

abnormalities in the function of VTA dopaminergic neurons are linked to 

several neuropsychiatric disorders, including addiction, schizophrenia and 

depression (Chaudhury et al, 2013; Willuhn et al, 2010; Guillin et al, 2007; 

Dunlop & Nemeroff, 2007; Nestler & Carlezon, 2006). It is well established that 

the VTA dopaminergic neurons exhibit rapid and brief burst firing in response 

to unexpected rewarding stimuli or reward-cues (Watabe-Uchida et al, 2017; 

Pignatelli & Bonci, 2015). Some studies suggest that the VTA dopaminergic 

neurons are inhibited by the aversive events (Ungless et al, 2004; Matsumoto 

& Hikosaka, 2009), while there are paradoxical evidence showing that the VTA 

dopaminergic neurons are also activated by aversive stimuli (Brischoux et al, 

2009; Budygin et al, 2012). Recent research has revealed that the VTA 

GABAergic neurons are also involved in mediating both reward and aversion 

(Tan et al, 2012; van Zessen et al, 2012), and are strongly modulated by stress 

(Tan et al, 2012; Ostroumov et al, 2016), which indicating a potential role in 
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stress-related neuropsychiatric disorders such as depression and 

post-traumatic stress disorder (PTSD). Research data have shown that VTA 

GABAergic neurons synapse onto local VTA dopaminergic neurons and exhibit 

inhibitory effects on addiction and aversion (Matsui et al, 2014; Matsui et al, 

2011; Polter et al, 2018; Tan et al, 2012). Despite these knowledge, the role of 

VTA neurons in normal reward-related behaviors, such as food and sex, 

remains to be determined, which may help us to further understand the 

mechanism by which stress induces anhedonia. 

Results 

Brain areas activated during positive experience 

To identify brain regions that are activated during a sexual rewarding 

experience, we caged male mice with female mice for 2 hours (hereafter 

referred to as a ‘positive experience’) and then performed brain-wide 

immunofluorescent staining of c-Fos. The histological data showed that there 

was c-Fos expression in several brain areas, including the 

basolateral amygdala (BLA), nucleus accumbens (NAc), medial prefrontal 

cortex (mPFC), ventral tegmental area (VTA), substantia nigra (SN), 

interpeduncular nucleus (IPN), and dentate gyrus (DG), which all have been 

implicated in reward processing and motivated behaviors (Zhang et al, 2020; 

LeGates et al, 2018; Ferenczi et al, 2016; Lammel et al, 2012; Ilango et al, 

2014; McLaughlin et al, 2017; Ramirez et al, 2015), in both neutral experience 

and positive experience mice (Fig 1A-1E’). Positive experience mice exhibited 
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more c-Fos-expressing cells in the BLA, NAc and VTA (Fig 1F, 1G and 1I), but 

not in the mPFC, SN, IPN or DG (Fig 1H, 1J, 1K and 1L). These results 

suggest that VTA, BLA and NAc are activated by positive experience and may 

be involved in processing the sexual reward. 

Reactivation of hM3D-labeled VTA neurons during positive experience 

increases c-Fos expression in BLA and NAc 

The VTA plays a central role in reward processing and motivated behaviors 

through diverse projections to target brain regions, including BLA, NAc and 

mPFC (Lintas et al, 2011; Beier et al, 2015; Pignatelli & Bonci, 2018; Heymann 

et al, 2020; Hauser et al, 2017; Kumar et al, 2018; Pessiglione et al, 2006). 

The BLA has a crucial role in cue-triggered motivated behaviors and its 

glutamatergic inputs to the NAc has been implicated in reward-seeking 

behaviors (Ambroggi et al, 2008; Di Ciano & Everitt, 2004; Stuber et al, 2011). 

A previous pharmacology study indicated that the VTA-BLA-NAc circuit was 

involved in opiate-related reward processing, but did not provide direct clear 

anatomical evidence for this circuit (Lintas et al, 2011). We therefore 

investigated whether the VTA–BLA–NAc circuit was indeed activated during 

the positive experience. To address this issue, we injected 

AAV-DIO-hM3D-mCherry into the VTA of Fos-CreERT2 mice. After exposure to 

conspecific females, Fos-CreERT2 male mice were intraperitoneally injected 

with 4-hydroxytamoxifen (4-OHT, 50 mg/kg) to induce the expression of 

hM3D-mCherry to label VTA-activated neurons during that positive experience. 
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Three weeks later, we intraperitoneally injected clozapine-N-oxide 

(CNO,0.3mg/kg) to activate previous hM3D-mCherry-labeled VTA neurons 

(Fig 2A). Consistent with increase of c-Fos expression in VTA (Fig 1D, 1D’ and 

1I), positive experience induced more hM3D-mCherry-labeled VTA neurons 

(Fig 2B, 2B’ and 2I). Consequently, there were more c-Fos-positive VTA 

neurons after intraperitoneal injection of CNO (Fig 2C, 2C’ and 2I’). Previous 

studies showed that VTA neurons could be excited by both rewarding and 

aversive stimuli (Lintas et al, 2011; Beier et al, 2015; Pignatelli & Bonci, 2018; 

Heymann et al, 2020). As there might be some alerting cues and aversive 

stimuli throughout the operation of CNO injection, such as catching mice and 

intraperitoneal injection, we gently handled mice to reduce aversive stimuli. 

Our data showed that the vast majority of the c-Fos-positive VTA neurons were 

hM3D-mCherry-labeled in both groups (Fig 2D, 2D’ and 2I’’, neutral 

81.53±5.510%, positive 86.41±1.888%), suggesting that the VTA c-Fos 

expression was induced predominantly through activating hM3D by CNO. We 

next checked the c-Fos expression in other brain areas that were activated 

during the positive experience (Fig 1). Reactivation of VTA neurons labelled by 

positive experience correlated with increase of c-Fos expression in BLA (Fig 

2E, 2E’ and 2L) and NAc (Fig 2F, 2F’ and 2M), but not in SN (Figu 2C, 2C’ and 

2J), IPN (Fig 2C, 2C’ and 2K), mPFC (Fig 2G, 2G’ and 2N), or DG (Fig 2H, 2H’ 

and 2O). Together, these results suggest that VTA may be upstream of BLA 

and NAc during the positive experience. 
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VTA-BLA-NAc pathway is activated by positive experience 

To verify the hypothetical circuit architecture, i.e. neurons in VTA synapse 

onto BLA neurons projecting to specific neurons in NAc, we injected AAV- 

WGA-Cre-T2A-ZsGreen and AAV-DIO-mCherry into VTA and BLA respectively 

(Fig 2P). The AAV-WGA-Cre-T2A-ZsGreen virus contains transsynaptic tracer 

wheat-germ agglutinin (WGA) fused to Cre-recombinase, a ZsGreen reporter, 

and a linker peptide T2A (2A peptide derived from insect Thosea asigna virus) 

whose “self-cleaving” would generate two proteins, WGA-Cre and ZsGreen 

(Hadpech et al, 2018). ZsGreen would label the virus infected VTA neurons 

(Fig 2Q) and WGA-Cre would be released into synaptic cleft and taken up by 

the adjacent neuron (Libbrecht et al, 2017). As WGA-Cre could undergo both 

anterograde and retrograde transneuronal transfer (Yoshihara et al, 1999; 

Horowitz et al, 1999), WGA-Cre could enter BLA neurons projecting to or 

receiving inputs from VTA, and induce mCherry expression in the 

AAV-DIO-mCherry-infected BLA neurons (Fig 2R). We observed strong 

mCherry positive fibers in NAc (Fig 2S) that should be derived from 

mCherry-labled BLA neurons receiving inputs from VTA. These results 

supported the hypothetical architecture of neural circuit that neurons in BLA 

synapsing onto NAc neurons received inputs from VTA neurons, and indicated 

that reactivation of VTA neurons labelled by positive experience may increase 

c-Fos expression in BLA and VTA through the VTA-BLA-NAc pathway, but did 

not rule out the possibility that increasing c-Fos expression through VTA-BLA 
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or VTA-NAc pathways.  

To address this issue, we performed the pseudotyped rabies virus 

(RABV)-based monosynaptic retrograde tracing (Tervo et al, 2016; 

Wickersham et al, 2007). The AAV-Retro-GFP was injected into NAc (Fig 2U) 

to label projection neurons from BLA and VTA (Fig 2V and 2X). C-Fos staining 

revealed activated neurons in BLA and NAc during positive experience (Fig 2V’ 

and 2X’). The c-Fos positive BLA neurons were mostly GFP-labelled (Fig 2V’’ 

and 2W, 90.97±1.862%, n=4), whereas few c-Fos positive VTA neurons were 

GFP-labelled (Fig 2X’’ and 2Y, 11.03±2.189%, n=4). Collectively, our data 

showed that most BLA neurons projecting to NAc were activated by positive 

experience, whereas only a minority of VTA neurons projecting to NAc were 

activated, suggesting that reactivation of VTA neurons previously activated by 

positive experience may activate NAc through the VTA-BLA-NAc pathway. 

Blocking the VTA-BLA-NAc circuit induces depressive-like behaviors 

It has become clear that dysfunctions of specific brain networks mediating 

mood and reward signals underly a variety of mood disorders, including 

depression and anxiety (Nestler, 2015; Lammel et al, 2014; Kaufling et al, 

2017; Stamatakis et al, 2014; Lebow & Chen, 2016). To determine whether 

blocking the VTA-BLA-NAc circuit responding to positive experience would 

induce depressive-like behaviors, we injected AAV-DIO-hM4D-mCherry 

(AAV-DIO-mCherry as control) into VTA or BLA and simultaneously implanted 

bilateral cannula into BLA or NAc of Fos-CreERT2 mice. After three weeks, the 
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mice were exposed to conspecific females for two hours and then immediately 

received intraperitoneal injection of 4-OHT to induce activity-dependent 

hM4D-mCherry labelling of VTA or BLA neurons activated by the positive 

experience. Three weeks later, the mice were subjected to behavioral tests 

while the synaptic communication from VTA to BLA or from BLA to NAc was 

silenced through bilateral infusion of CNO (900 pmol/0.3μl /side) into BLA or 

NAc (Stachniak et al, 2014; Rinker et al, 2017; Mahler et al, 2014) (Fig 3A and 

3E).  

We preformed female urine sniff test (FUST) and sucrose preference test 

(SPT) to evaluate the depression level. Anhedonia is a prominent symptom of 

depression, which is inability to experience pleasure from previously 

pleasurable activities, such as sex and food (Coccurello, 2019; Rizvi et al, 

2016). FUST and SPT measure anhedonia in mice based on reward-seeking 

behaviors on female pheromonal odors and sucrose respectively (Malkesman 

et al, 2010; Liu MY et al, 2018). Our data showed that blocking the VTA-BLA 

pathway responding to positive experience caused decrease in both sniff time 

(Fig 3B) and sucrose preference (Fig 3C), but did not affect the locomotor 

activity (Fig 3D). Similar results were obtained when blocking the BLA-NAc 

pathway (Fig 3F-H). Collectively, these results showed that blocking the 

VTA-BLA-NAc circuit responding to positive experience induced 

depressive-like behaviors, indicating a possibility that reactivating the VTA 

neurons previously activated by positive experience may ameliorate the 
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depressive symptoms. 

Reactivation of the VTA neurons previously activated by positive 

experience reverses chronic restraint stress-induced depressive-like 

behaviors 

Previous studies suggest that malfunctions of the brain’s reward circuits 

play an important role in mediating stress-elicited depression-like behaviors 

(Lammel et al, 2014; Kaufling et al, 2017). We therefore examined whether 

reactivation of the VTA neurons previously activated during positive experience 

could ameliorate depressive-like behaviors induced by chronic restraint stress 

(Fig 4A). First, Fos-CreERT2 mice were injected with AAV-DIO-hM3D-mCherry 

into the VTA and individually housed until the end of all experiments. Mice 

were assigned into two groups with no statistical difference in SPT or FUST 

(Fig 4B and 4C, Basal). Positive experience mice were housed with oestrous 

female mice for 2 hours, and the neutral experience mice was housed with 

fake toy mice. Then immediately, all mice received intraperitoneal injection of 

4-OHT to allow activity-dependent hM3D-mCherry labelling of VTA neurons 

activated by the positive experience. The following behavioral experiments 

were all carried out 45 min after CNO injection. Two weeks later, the SPT 

showed no difference between the two groups (Fig 4B, Basal-CNO), while the 

FUST showed significant increase in sniffing time in positive experience mice 

(Fig 4C, Basal-CNO). After 15 days of restraint stress treatment, positive 

experience mice exhibited more sucrose preference (Fig 4B, Restraint-CNO) 
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and sniffing time (Fig 4C, Restraint-CNO). Forced swim test (FST) is widely 

used to assess learned helplessness, another feature of depressive-like 

behavior, by measuring the immobility time (Cryan & Holmes, 2005). Positive 

experience mice exhibited reduced immobility time (Fig 4D, left), but no 

change in the latency to immobility from the start of the test (Fig 4D, right). The 

total distance travelled suggested that there was no significant difference in 

locomotor activity between the two groups (Fig 4E). Together, these results 

suggest that reactivation of VTA neurons responding to positive experience 

can ameliorate depressive-like behaviors induced by chronic restraint stress. 

Distinct subpopulations of VTA neurons activated by positive experience 

and restraint stress 

The VTA is a heterogeneous nucleus including dopaminergic (DAergic), 

Gamma-aminobutyric acid-ergic (GABAergic), and glutamatergic (Glutergic) 

neurons, in which DAergic neurons predominate, making up about 55%-65% 

of the total neurons (Margolis et al, 2006; Tan et al, 2012; Morales & Margolis, 

2017). VTA dopaminergic neurons respond not only to rewards and 

reward-predicting stimuli, but also to aversion, alerting events and behavioral 

choices (Bayer & Glimcher, 2005; Brischoux et al, 2009; Dautan et al, 2016; 

Zhou et al, 2019; Howard et al, 2017). This functional heterogeneity is 

reflected in the anatomically heterogeneous dopaminergic subpopulations 

connecting with different brain regions (Bromberg-Martin et al, 2010; 

Engelhard et al, 2019). To clarify the underlying mechanism by which 
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reactivation of VTA neurons activated by positive experience ameliorates the 

chronic restraint stress-induced depression, we first identified the neuron 

subpopulation activated during positive experience. We performed c-Fos 

staining after positive experience in DAT-IRES-Cre;Ai14 mice (Fig 5I), in which 

tdTomato was exclusively colocalized with the dopaminergic neuron marker 

TH (97.67±0.7862%, n=4) (Fig 5A-5H), confirming DAT-IRES-Cre-mediated 

recombination was dopaminergic neuron-specific. Our results showed that the 

VTA c-Fos positive neurons labelled by positive experience mostly colocalized 

with tdTomato in the DAT-IRES-Cre;Ai14 mice (68.92±4.902%, n=5) (Fig 

5J-5M), suggesting that the neuron subpopulation responding to positive 

experience is predominantly dopaminergic. Dopaminergic neurons maintain 

the baseline level of dopamine in downstream neural structures through the 

tonic firing mode and transit to the phasic burst firing mode to induce a sharp 

increase in dopamine release in response to both rewarding and 

aversive/stressful stimuli (Di Ciano & Everitt, 2004; Stuber et al, 2011). We 

therefore next performed in vivo extracellular recording to examine the activity 

of VTA dopaminergic neurons after positive experience (Fig 5N) based on the 

electrophysiological criteria described in previous reports (Tan et al, 2012; 

Grace & Bunney, 1983; Ungless & Grace, 2012). Consistent with the c-Fos 

staining results, positive experience increased the number of spontaneously 

active dopaminergic neurons in the VTA (Fig 5O). The firing rate of 

spontaneously active dopaminergic neurons was unaffected (Fig 5P), but the 
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percentage of burst firing significantly increased (Fig 5Q). Collectively, these 

results suggest that the subpopulation of VTA neurons activated during 

positive experience are dopaminergic. 

We next identified the VTA neuron subpopulation responding to restraint 

stress. As shown in Fig 6A-6J, restraint stress increased c-Fos expression in 

VTA, BLA and NAc. We then performed c-Fos staining in VTA of 

DAT-IRES-Cre;Ai14 mice (Fig 6K) and the result showed that few 

c-Fos-positive neurons were tdTomato-labelled (17.04±3.513%, n=4) (Fig 

6L-6O), suggesting that the activated VTA neurons are mostly 

non-dopaminergic, indicating that the subpopulation of VTA neurons 

responding to restraint stress is distinct from that of positive experience. To 

confirm this observation, we detected both restraint stress- and positive 

experience-activated neurons in similar brain slices of Fos-CreERT2 (Fig 6P) 

and Fos-CreERT2; Ai14 mice (Fig 6U). We injected AAV-DIO-GFP into VTA of 

Fos-CreERT2 mice which were subsequently subjected to 2 hours of restraint 

stress and received 4-OHT injection to allow activity-dependent GFP labelling 

of VTA neurons responding to restraint stress. Three weeks later, we housed 

these mice with conspecific females and performed c-Fos staining. We 

observed that the VTA neurons activated by restraint stress (green, Fig 6Q) 

and positive experience (red, Fig 6R) were anatomically distinct 

subpopulations (Fig 6S). Statistical analysis showed that there were few 

c-Fos-immunopositive VTA neurons labelled by GFP (3.765±1.285%, n=5) (Fig 
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6T). Similar results were observed in Fos-CreERT2; Ai14 mice. The VTA 

neurons responding to restraint stress (tdTomato, red, Fig 6V) were distinct 

from those of positive experience (c-Fos, green, Fig 6W) and few 

c-Fos-immunopositive VTA neurons were labelled by tdTomato (3.098±1.412%, 

n=5) (Fig 6X). These results together suggest that the subpopulation of VTA 

neurons activated by restraint stress is distinct from that activated by positive 

experience, raising the question of how the VTA neuron subpopulation 

responding to restraint stress affects the reward-related behaviors. 

GABAergic neurons activated by restraint stress inhibit the 

dopaminergic neurons responding to positive experience 

The majority non-dopaminergic VTA cells are GABAergic neurons, which 

make up about 30% of the total neurons (Dobi et al, 2010). VTA GABAergic 

neurons have been recognized as potent mediators of reward and aversion, 

regulating behavioral outputs through projecting to distal brain regions or 

inhibiting local VTA dopaminergic neurons (van Zessen et al, 2012; Zhou et al, 

2019; Bocklisch et al, 2013; Simmons et al, 2017). It has been previously 

reported that electric footshock activates VTA GABAergic neurons which inhibit 

local dopaminergic neurons (Dautan et al, 2016). In our study, the VTA 

neurons activated by restraint stress were mostly non-dopaminergic (Fig 6O), 

which suggested a possibility that the VTA non-dopaminergic cells responding 

to restraint stress were GABAergic neurons which inhibited the VTA 

dopaminergic neurons activated by positive experience, subsequently 
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resulting in dysfunctions in reward-seeking behaviors.  

To test this possibility, we first identified whether the VTA neurons 

responding to restraint stress were GABAergic using Vgat-ires-Cre mice. We 

injected AAV-DIO-mCherry into the VTA of Vgat-ires-Cre mice. As the 

Vesicular GABA Amino Acid Transporter (Vgat) is expressed by GABAergic 

neurons (Vong et al, 2011), the expression of mCherry would be induced in 

VTA GABAergic neurons. Then, we subjected these mice to 2 hours of 

restraint stress and performed c-Fos staining (Fig 7A). The result showed that 

most c-Fos-positive neurons were mCherry-labelled (79.49±3.652%, n=5) (Fig 

7L-7H), suggesting that the activated VTA neurons are mostly GABAergic. We 

next performed in vivo extracellular recording to monitor the activity of VTA 

GABAergic neurons after restraint stress (Fig 7I) based on the 

electrophysiological criteria described in previous reports (Tan et al, 2012; 

Steffensen et al, 1998; Ko et al, 2018). Consistent with the histological results, 

restraint stress increased the number of spontaneous firing GABAergic 

neurons (Fig 7J), but did not influence their firing rate (Fig 7K), suggesting that 

the non-dopaminergic cells activated by restraint stress are probably 

GABAergic neurons. Then, we expressed hM3D selectively in VTA neurons 

responding to restraint stress by injecting AAV-DIO-hM3D-mCherry (or 

AAV-DIO-mCherry as control) into VTA of Fos-CreERT2 mice. We subjected 

these mice to 2 hours of restraint stress and immediately intraperitoneally 

injected 4-OHT to induce the expression of hM3D in activated VTA neurons. 
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We performed in vivo extracellular recording to monitor the activity of VTA 

dopaminergic neurons in those mice exposed to conspecific females 45 min 

after CNO injection (Fig 7L). Reactivation of VTA neurons activated by restraint 

stress decreased the number (Fig 7M) and percentage of burst firing (Fig 7O) 

of VTA dopaminergic neurons responding to positive experience, but did not 

affect their firing rate (Fig 7N). Collectively, our data showed that restraint 

stress increased the activity of VTA GABAergic neurons which inhibited the 

activity of VTA dopaminergic neurons responding to positive experience, 

hence resulting in dysfunction of the reward processing circuit and subsequent 

depressive-like behaviors.  

Discussion 

In this study, we used anterograde and retrograde monosynaptic tracing, 

combining c-Fos immunofluorescence, to elucidate the architecture of the 

VTA-BLA-NAc circuit activated by sexual reward experience (positive 

experience). Projection-specific chemogenetic blockade of this circuit induced 

depression-like behaviors under normal conditions, and reactivation of VTA 

neurons activated by positive experience could ameliorate depression-like 

behaviors caused by chronic restraint stress. Furthermore, the subpopulation 

of VTA neurons responding to positive experience was mostly dopaminergic, 

while the VTA neurons activated by restraint stress belonged to anatomically 

distinct cell subpopulation in which non-dopaminergic neurons predominated 

and exerted inhibitory effect on the dopaminergic neurons activated by positive 
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experience. 

The mesocorticolimbic dopaminergic system originating from the VTA 

dopaminergic neurons which chiefly project to NAc, BLA, mPFC, and 

hippocampus, plays an essential role in reward, motivation, cognition, and 

aversion (Morales & Margolis, 2017; Fields et al, 2007). Its dysfunction has 

been implicated in many neuropsychiatric disorders including depression 

(Vrieze et al, 2013), bipolar disorder (Burdick et al, 2014), schizophrenia 

(Davis et al., 1991), and addiction (Koob & Le Moal, 2001; Loureiro M & 

Lüscher C, 2018). The VTA-NAc pathway has been extensively studied, which 

is critical for motivation and reward processing (de Jong et al, 2019; Saddoris 

et al, 2015; Mohebi et al, 2019), as well as addiction (Martínez-Rivera et al, 

2017; Lüscher, 2016). The VTA dopaminergic neurons can facilitate or 

suppress target NAc neural activity not only directly through 

dopaminergic receptors residing on NAc neurons (Soares-Cunha et al, 2016; 

Pascoli et al, 2015), but also by regulating excitatory glutamatergic inputs to 

NAc neurons originating from BLA via presynaptic mechanisms (Stuber et al, 

2011; Charara & Grace, 2003), integrating different inputs and turning them 

into action via outputs to ventral pallidum (Creed et al, 2016) and 

lateral hypothalamus (Luo rt al, 2018; Maldonado-Irizarry et al, 1995). In our 

study, positive experience significantly increased active VTA, BLA and NAc 

neurons (Fig 1), and reactivation of VTA neurons activated by positive 

experience could enhance the neural activity of BLA and NAc (Fig 2A-2O), 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427537doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427537


suggesting that BLA and NAc were target nuclei of VTA during positive 

experience. The results obtained from c-Fos staining experiment combined 

with retrograde tracing showed that almost all of BLA neurons activated by 

positive experience synapsed onto NAc (Fig 2V’’), while only few activated 

VTA neurons projected to NAc (Fig 2X’’), suggesting that reactivation of VTA 

neurons activated by positive experience increased the NAc neural activity 

probably through activating BLA neurons projecting to NAc. There is some 

evidence obtained from neuropharmacological experiments indicating that the 

VTA-BLA-NAc neural circuit is involved in modulating rewarding effects and 

motivated behaviors (Di Ciano & Everitt, 2004; Lintas et al, 2011), but direct 

anatomical evidence still lacks. We determined the putative neuronal circuit 

using the WGA-Cre transsynaptic tracing technology (Libbrecht et al, 2017; 

Hadpech et al, 2018), and the results showed that the mCherry labelled BLA 

neurons received inputs from VTA and sent projections to NAc (Fig 2P-2S), 

providing neuroanatomical evidence for the VTA-BLA-NAc circuit.  

The prominent clinical feature of depression is anhedonia, and 

dysfunction of brain reward processing system has been implicated in 

neuropsychiatric disorders such as bipolar disorder (Caseras et al, 2013), 

schizophrenia (Strauss & Gold, 2012) and depression (Nestler & Carlezon, 

2006; Pizzagalli et al, 2009). To determine whether dysfunction of the 

VTA-BLA-NAc circuit activated by positive experience induces depressive-like 

bahaviors, we labelled VTA or BLA neurons activated by positive experience 
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with hM4D in Fos-CreERT2 mice and selectively inhibited the hM4D-labelled 

axon terminals projecting from VTA to BLA or from BLA to NAc through infusion 

of CNO into BLA or NAc, then performed FUST and SPT to evaluate the 

depression level. Our results showed that blocking the VTA-BLA or BLA-NAc 

pathways responding to positive experience induced depressive-like behaviors 

(Fig 3). The present medication treatments for depression, with the view that 

depression is a general brain dysfunction, take weeks to alleviate depressive 

symptomatology, while approximately 30% of patients get little improvement 

and are defined as having treatment-resistant depression (TRD) (Akil et al, 

2018; Fogelson & Leuchter, 2017). More focused, targeted treatments that 

modulate specific brain networks or areas, such as deep brain stimulation 

(DBS), may prove to be promising approaches to help treatment-resistant 

patients (Kiening K & Sartorius A, 2013; Mayberg et al, 2005; Dandekar et al, 

2018). A recent study by Steve Ramirez and his colleagues demonstrated that 

activating DG cells associated with positive memory could alleviate chronic 

stress-induced behavioral impairments (Ramirez et al, 2015). We therefore 

investigated whether directly activating the neural circuitry responsible for 

reward processing during positive experience could ameliorate depression-like 

behaviors induced by chronic restraint stress. We found that reactivating the 

VTA neurons activated by positive experience through CNO/hM3D system 

could ameliorate the depressive-like behaviors induced by chronic restraint 

stress (Fig 4).  
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The VTA dopaminergic neurons mediate a diverse array of functions 

associated with distinct axonal targets, including reward-related learning, 

goal-directed behavior, working memory, and decision making (Morales & 

Margolis, 2017; Björklund & Dunnett, 2007; Baimel et al, 2017). They exhibit 

rapid burst firing in response to rewarding stimuli or rewarding cues, 

subsequently sharply increasing dopamine release on their target brain 

regions (Watabe-Uchida et al, 2017; Pignatelli & Bonci, 2015; Lohani et al, 

2018; Lavin et al, 2005). In our study, VTA neurons activated by positive 

experience were mostly dopaminergic, and their burst firing increased (Fig 5). 

Some studies have shown that the VTA dopaminergic neurons are also excited 

by aversive stimuli (Bromberg-Martin et al, 2010; Brischoux et al, 2009; 

Budygin et al, 2012), while there are paradoxical reports that they are inhibited 

by aversive events (Ungless et al, 2004; Matsumoto & Hikosaka, 2009). 

Recently, increasing evidence suggests that GABAergic neurons of the VTA, 

the majority of VTA non-dopaminergic neurons, are involved in mediating 

reward and aversion (Tan et al, 2012; van Zessen et al, 2012; Eshel et al, 

2015). In our study, c-Fos staining revealed that restraint stress also induced 

neuron activation in VTA, BLA and NAc (Fig 6A-6J), but the activated VTA 

neurons were mostly non-dopaminergic (Fig 6K-6O). Consistent with a 

previous report that aversive stimulus activated VTA GABAergic neurons (Tan 

et al, 2012), our histological and electrophysiological results showed that 

restraint stress increased the number of spontaneously active GABAergic 
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neurons in VTA (Fig 7A-7K), indicating the activated non-dopaminergic 

neurons were probably GABAergic. Our data suggested that the VTA may 

process reward and aversive stimuli through dopaminergic and GABAergic 

neurons respectively. Given the difference in VTA neuron types responding to 

restraint stress and sexual reward, how does restraint stress influence the 

performance of reward-seeking behaviors (Fig 4). Our results revealed the 

distinct anatomical locations of these two VTA neuron subpopulations (Fig 

6P-6Y), but we noticed that the restraint stress-responding neurons sent fibers 

to the anatomic location of positive experience-responding neurons, indicating 

that there may be synaptic connections between these distinct neuron 

subpopulations. It is generally accepted that the VTA GABAergic neurons 

promote aversive behaviors through inhibiting VTA dopaminergic neurons (Tan 

et al, 2012; Bocklisch et al, 2013), prompting us to determine whether VTA 

neurons activated by restraint stress inhibited the responsiveness of VTA 

dopaminergic neurons to positive experience. Positive experience increased 

the number of active dopaminergic neurons and the percentage of burst firing 

neurons (Fig 5N-5Q), which would be inhibited by reactivation of VTA neurons 

activated by restraint stress (Fig 7L-7O). Our data was similar and consistent 

with a previous study by Ruud van Zessen and his colleagues, which showed 

that nonspecific of activation of the VTA GABA neurons reduced the excitability 

of neighboring VTA dopaminergic neurons in vitro (van Zessen et al, 2012), 

while our work specifically targeted the VTA neuron subpopulation responding 
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to restraint stress and provided electrophysiological evidence in vivo. 

Repeatedly activating the VTA neuron subpopulation responding to restraint 

stress may reduce the excitability and responsiveness of the VTA neuron 

subpopulation processing reward stimuli, which may be the underlying 

mechanism by which chronic stress induces impaired reward-seeking 

behaviors. This needs to be clarified in future studies.    

In conclusion, we show that the VTA-BLA-NAc circuit, whose dysfunction 

would induce depressive-like behaviors, is activated by positive experience, 

and reactivation of the VTA neurons activated by positive experience can 

ameliorate the depressive-like behaviors induced by chronic restraint stress. 

Furthermore, we reveal that reactivation of VTA neuron subpopulation 

responding to restraint stress inhibits the activity of the VTA neurons 

responding to positive experience, and that this may be the mechanism by 

which chronic restraint stress may induce anhedonia, the core feature of 

depression. 

Materials and Methods 

Animals 

C57BL/6 mice were purchased from the Pengyue Laboratory of China, and 

transgenic mice (DAT-IRES-Cre, 006660; Ai14, 007908; Fos-CreERT2, 021882; 

Vgat-IRES-Cre, 016962) were purchased from the Jackson Laboratories. The 

protocols of the animal studies were approved by the Institutional Animal Care 

and Use Committee of Binzhou Medical University Hospital and performed in 
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compliance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals. Efforts were made to minimize animal suffering and the 

number of animals used. 

AAV virus 

AAV2/9-hSyn-DIO-hm3D(Gq)-mCherry (in the main text referred to as 

AAV-DIO-hm3D-mCherry), AAV2/9-hSyn-DIO-hm4D(Gi)-mCherry (in the main 

text referred to as AAV-DIO-hm4D-mCherry), AAV2/9-hsyn-DIO-mCherry (in 

the main text referred to as AAV-DIO-mCherry), AAV2/9-hsyn-WGA-Cre-T2A- 

ZsGreen (in the main text referred to as AAV-hSyn-WGA-Cre-T2A-ZsGreen), 

AAV2-CAG-Retro-GFP (in the main text referred to as AAV-Retro-GFP) were 

purchased from Shanghai Hanheng Biotechnology, China.  

Drugs 

Clozapine-N-oxide (CNO) was purchased from Sigma, dissolved in saline at a 

concentration of 0.5 mg/ml and diluted in saline to a final concentration of 0.03 

mg/ml (hM3D) for intraperitoneal injection. For intra-BLA and NAc 

microinjection (hM4D), CNO was diluted in saline to a final concentration of 

3mM. 4-Hydroxytamoxifen (4-OHT) was purchased from Sigma and dissolved 

in ethanol. Corn oil (Sigma) was added to the 4-OHT solution, which was 

shaken and mixed at 37°C, put in a fume hood for ethanol volatilization to a 

final concentration of 5 mg/ml and stored at -20°C with protection from light. 
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Stereotaxic surgery 

For microinjection of AAV virus, mice were anaesthetized and mounted onto a 

stereotaxic frame (KOPF, USA). AAV virus was injected with a glass pipette 

using an infusion pump (Micro 4, WPI, USA). Viruses were injected bilaterally 

into target brain areas using the following coordinates: VTA, AP=-3.30 mm, 

ML= ± 0.50 mm, DV=-4.20 mm, from bregma; flow rate of 0.10 μl/min and total 

volume of 1.00 μl (0.50 μl/side); NAc, AP=+1.30 mm, ML= ± 0.50 mm, 

DV=-4.80 mm, from bregma; flow rate of 0.10 μl/min and total volume of 0.60 

μl (0.30 μl/side); BLA, AP=-1.80 mm, ML= ± 3.00 mm, DV=-4.80 mm from 

bregma, flow rate of 0.10 μl/min and total volume of 0.60 μl (0.30 μl/side). An 

additional 5 min was allowed for diffusion and prevention of backflow. 

Behavioral tests or in vivo extracellular recordings were conducted 21 days 

after AAV injection. 

For BLA and NAc cannula implantation, adult male C57BL/6 mice were 

anaesthetized and mounted onto a stereotaxic frame (KOPF, US). The skull 

surface was coated with Kerr phosphoric acid gel etchant (Kerr USA). First, a 

bilateral guide cannula was inserted into the BLA (coordinates: 1.7mm 

posterior to bregma, 3.0 mm lateral to midline, and 3.8 mm ventral to dorsal) 

or NAc (coordinates: 1.4 mm anterior to bregma, 0.5 mm lateral to midline, 

and 3.8 mm ventral to dorsal). Then, adhesive (GLUMA, Germany) was 

applied onto the skull and cannula surface, and Resina fluida (Filtek Z350 XT 

3M, USA) was brushed on top with light curing for 45 seconds using a VALO 
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curing light (Ultradent Products). Finally, dental cement was used to seal the 

cannula, and a dummy cannula was inserted into the guide cannula to 

maintain unobstructed cannula. After surgery, animals were individually 

housed and then allowed to recover for 21 days with daily handling. Mice 

were conscious, unrestrained and freely moving in their home cages during 

the microinjections. On the experimental day, a 33-G stainless-steel injector 

connected to a 5-μl syringe was inserted into the guide cannula and extended 

1 mm beyond the tip of the guide cannula. CNO (900pmol/0.3μl/side) or 

vehicle was infused bilaterally over 2.5 min. The injector tips were held in 

place for an additional 5 min after the end of infusion to avoid backflow 

through the needle track. Behavioral tests were performed 45 min after 

microinjections. 

Electrophysiology 

Mice were anaesthetized with 4% chloral hydrate (400 mg/kg, 

intraperitoneally). The core body temperature was sustained at 37°C via a 

thermostatically controlled heating pad during the whole process. Nine 

electrode tracks (100μm interval, grid pattern) were placed in the VTA 

(coordinates: 3.3 to 3.5 mm posterior to the bregma, 0.3 to 0.5 mm lateral to 

the midline, and 3.5 to 5.0 mm below the brain surface). Putative VTA 

dopamine and GABA neurons were identified using established 

electrophysiological criteria (dopamine neurons: unfiltered waveform 

duration >2.2 ms overall, start-to-trough waveform duration ≥1.1 ms with 
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high-pass filter, firing rate range from 0.5 to 10 Hz (Tan et al, 2012; Grace & 

Bunney, 1983; Ungless & Grace, 2012); GABA neurons: waveform duration <1 

ms, firing rate range from 5 to 60 Hz (Tan et al, 2012; Steffensen et al, 1998; 

Ko et al, 2018)). The recording time for each neuron was over 3 min. Three 

parameters of VTA dopamine neuron activity were measured: (1). the number 

of spontaneously active dopamine neurons per track; (2). average firing rate; 

and (3) average percentage of burst firing, which is defined as the occurrence 

of two consecutive spikes with an inter-spike interval <80 ms, and the 

termination of a burst defined as two spikes with an inter-spike interval >160 

ms (Grace & Bunney, 1983; Ungless & Grace, 2012).  

Immunohistochemistry and cell counting 

Mice were anaesthetized and transcardially perfused with cold PBS and 4% 

paraformaldehyde (PFA) sequentially. Mouse brains were maintained in 4% 

PFA at 4°C overnight and then dehydrated in 30% sucrose for 2 days. Coronal 

sections (40μm) containing the target brain region were obtained using a 

freezing microtome (Leica, CM1950). The sections were incubated in blocking 

buffer (10% normal goat serum, 0.3% Triton X-100) for 1 hour at room 

temperature and then incubated with one or two primary antibodies overnight 

at 4°C, followed by rinsing in PBS buffer and secondary antibody incubation for 

4 hours at room temperature. The sections were mounted with Gold antifade 

reagent containing DAPI (Invitrogen, Thermo Fisher Scientific). An Olympus 

FV10 microscope was used to capture images. Primary antibodies: c-Fos 
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(CST, #2250) and tyrosine hydroxylase (TH) (ImmunoStar, #22941). The 

numbers of c-Fos, TH, GFP, mCherry and tdTomato positive cells were 

counted bilaterally by experimenters who were blind to the treatments. For 

each brain, the counting criteria for interested brain regions is described as 

follow: BLA, 3-4 slice, (every ninth section, from 0.94mm to 2.18 posterior to 

bregma); NAc, 3-4 slice, (every fourth section, from 1.78mm to 1.10 anterior to 

bregma); mPFC, 3-4 slice, (every third section, from 1.98mm to 1.54 mm 

anterior to bregma); VTA, IPN, and SN, 3-4 slice, (every third section, from 

3.16mm to 3.64 posterior to bregma); DG, 3-4 slice, (every sixth section, from 

1.46mm to 2.54 posterior to bregma). For each brain, the number of 

immunopositive cells of interested brain regions of per section was calculated 

by dividing the total number of immunopositive cells in all selected sections by 

the number of selected sections. For co-immuno experiments, using the 

percentage of TH positive of tdTomato labelled cells in VTA (Fig 5H) as an 

example, we divided the total number of co-immuno cells (TH+/tdTomato+) in 

VTA of all selected slices by the total number of tdTomato positive cells in VTA 

of all selected slices.  

Behavioral procedures 

Positive experience (sex reward) and neutral experience 

On the experimental day, both groups mice were moved to a behavior room 

with dim lighting conditions and housed individually. After 4 hours of 
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habituation, positive experience group male mice were exposed to oestrous 

female mice for 2 hours. For neutral experience, male mice were housed with 

fake toy mice. 

Acute and chronic restraint stress 

Mice were moved to a behavior room on the experimental day and housed 

individually. After 4 hours of habituation, mice were exposed to two hours of 

restraint stress. Control mice were housed individually in the behavior room for 

6 hours without any treatment. For chronic restraint stress treatment, stress 

group mice were subjected to 2 hours of restraint for 15 consecutive days.  

Female urine sniffing test (FUST) 

The female urine sniffing test was performed as previously described 

(Malkesman et al, 2010). On the experimental day, mice were transferred to a 

dimly lit behavior room at least 4 hours before beginning the experiment. The 

test procedure was as follows: 1. 3-min exposure to the cotton tip dipped in 

water; 2. 45-min interval; 3. 3-min exposure to the cotton tip infused with fresh 

urine from female mice in the oestrus phase. The duration of female urine 

sniffing time was scored. 

Sucrose preference test (SPT) 

Mice were habituated to drinking water from two bottles for one week before 

beginning testing. On the experimental day, water was deprived for three 
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hours, and then two bottles were introduced (1% sucrose and water). Mice 

had free choice of either drinking 1% sucrose solution or water for 2 hours 

after lights off during the dark cycle. Sucrose and water consumption were 

determined by measuring the weight changes. Sucrose preference was 

calculated as the ratio of the mass of sucrose consumed versus the total 

mass of sucrose and water consumed during the test. 

Forced swim test (FST) 

The Plexiglas cylinder used for this test was 25 cm high and 10 cm in diameter. 

Each mouse was placed in a Plexiglas cylinder with water at a 15 cm depth 

(24°C) for 6 min, which was recorded by a camera directly above. The latency 

to immobility at the first 2 min and the duration of immobility during the last 4 

min were measured. Immobility was defined as no movements except those 

that maintain their head above water for respiration. 

Locomotor 

This test was performed in SuperFlex open field cages (40 × 40 × 30 cm, 

Omnitech Electronics Inc., Columbus, OH), and mice were allowed 30 min 

free exploration under illuminated conditions. The total distance travelled was 

quantified using Fusion software (Omnitech Electronics Inc., Columbus, OH).  

Statistical analyses 

Statistical analysis was performed with graphpad prism software. Results are 
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presented as mean ±standard error of mean (S.E.M.). Shapiro–Wilk test was 

used to test the normality and equal variance assumptions. For normally 

distributed data, two-tailed t tests were used to assess differences between 

two experimental groups with equal variance. For a two-sample comparison of 

means with unequal variances, two-tailed t tests with Welch’s correction were 

used. For non-normally distributed data, Mann–Whitney U tests were 

performed to compare two groups. For multiple groups, two-way ANOVAs 

followed by Tukey's multiple comparisons test were used. P< 0.05 was 

considered statistically significant. 

Data availability 

 This study includes no data deposited in external repositories. 
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Figure legends 

Figure 1- Positive experience increases c-Fos expression in 

basolateral amygdala，nucleus accumbens and ventral tegmental area.  

Whole brain c-Fos staining shows that positive experience (A’-E’), but not 

neutral experience (A-E), elicits increase of c-Fos expression in 

basolateral amygdala (BLA) (A, A’), nucleus accumbens (NAc) (B, B’), ventral 

tegmental area (VTA) (D, D’), but not in the medial prefrontal cortex (mPFC, 

including prelimbic (PrL) and infralimbic (IL)) (C, C’), substantia nigra (SN) (D, 

D’), interpeduncular nucleus (IPN) (D, D’) or dentate gyrus (DG) (E, E’). 

Statistical analysis of the histological data revealed a significant increase of 

c-Fos expression in basolateral amygdala (F, two-tailed unpaired t test, t(12) = 

2.993, P = 0.0112), nucleus accumbens (G, two-tailed unpaired t test with 

Welch's correction , t(7.109) = 2.747, P = 0.0282) and ventral tegmental area (I, 
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two-tailed unpaired t test with Welch's correction , t(6.687) = 3.788, P = 0.0074). 

Neutral experience group n=7; positive experience group n=7. *P<0.05, 

**P<0.01. Data are presented as means +/− SEM. Annotation (AP): distance 

from the bregma (mm). Scale bars correspond to 100μm.  

Figure 2- Positive experience activates the VTA-BLA-NAc circuit. 

(A) The experimental timeline. Intraperitoneal injection of 4-OHT induced 

hM3D-mCherry labeling in activated cells during neutral experience (B) or 

positive experience (B’) in the VTA, SN and IPN of Fos-CreERT2 mice. 

Intraperitoneal injection of clozapine-N-oxide (CNO) activated c-Fos 

expression in hM3D-mCherry-labeled neurons (neutral experience group, C 

and D; positive experience group, C’ and D’). C-Fos expression in BLA (E, E’), 

NAc (F, F’), mPFC (G, G’) and DG (H, H’) after reactivating 

hM3D-mCherry-labeled VTA neurons. Statistical analysis of the histological 

data revealed that positive experience induced more hM3D-mCherry-labeled 

VTA neurons compared with neutral experience (I, two-tailed unpaired t test 

with Welch's correction, t(4.607) = 5.852, P = 0.0027), and that the c-Fos positive 

VTA cells of positive experience group after CNO injection were more than 

those of neutral experience group (I’, Mann-Whitney U test, P=0.0079) 

although most VTA cells were hM3D-mCherry-labeled in both groups (I’’, 

neutral 81.53±5.510%, positive 86.41±1.888%). Few cells were labelled with 

hM3D-mCherry (B, B’) and only a small number of cells were c-Fos-positive 

after CNO injection (C, C’) in SN and IPN in both groups. Statistical analysis 
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revealed no significant difference in the number of c-Fos-positive cells in SN (J) 

and IPN (K) between neutral and positive experience groups. The number of 

c-Fos-positive cells after clozapine-N-oxide injection was significantly different 

in BLA (L, two-tailed unpaired t test with Welch's correction, t(4.159) = 5.265, P = 

0.0056) and NAc (M, two-tailed unpaired t test with Welch's correction, t(4.461) = 

2.870, P = 0.04) between neutral and positive experience groups , but not in 

mPFC (N, Mann-Whitney U test, P=0.5476) and DG (O, two-tailed unpaired t 

test, t(8) = 0.8750, P = 0.4071). Neutral experience group: n=5; positive 

experience group: n=5. (P) Diagram illustrating virus injection in target areas. 

(Q) Representative coronal slice showing the expression of 

AAV-hSyn-WGA-Cre-T2A-ZsGreen (green) 3 weeks after virus injection into 

the VTA. (R) Representative coronal slice showing the expression of 

AAV-CAG-DIO-mCherry (red) 3 weeks after virus injection into the BLA. (S) 

Representative coronal slice showing the strong mCherry–positive (red) fibers 

in NAc 3 weeks after virus injection into the BLA. (T) Diagram illustrating virus 

injection in target areas and subsequent positive experience. (U) 

Representative image showing the injection sites in the NAc. Representative 

images showing the expression of GFP (V) and c-Fos (V') in BLA. (V’’) 

Representative image showing c-Fos expression in BLA merged with GFP. (W) 

Statistical analysis showing the percentage of c-Fos positive BLA neurons that 

were also GFP labeled (69.81±1.731%, n=4). Representative images showing 

the expression of GFP (X) and c-Fos staining (X’) in NAc. (X’’) Representative 
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merged images. (N) Statistical analysis showing the percentage of c-Fos 

positive VTA neurons that were also GFP labeled (14.25±3.080%, n=4). 

*P<0.05, **P<0.01. Data are presented as means +/− SEM. Annotation (AP): 

distance from the bregma (mm). Scale bars correspond to 100μm.  

Figure 3- Blockade of VTA-BLA-NAc circuit responding to positive 

experience induces depressive-like behaviors.  

(A) Diagram illustrating virus injection in target areas and subsequent 

experiments. Blocking the projections from VTA to BLA induced 

depressive-like behaviors, as evaluated by female urine sniffing test (B, 

Mann-Whitney U test, P=0.0030) and sucrose preference test (C, two-tailed 

unpaired t test with Welch's correction, t(11.73)=3.584, P = 0.0039), but did not 

influence the locomotor activity (D, two-tailed unpaired t test, t(16) = 1.088, P = 

0.2927). mCherry group: n=8, hM4D group: n=10 in FUST(B), SPT(C) and 

Locomotor (D). (E) Diagram illustrating virus injection in target areas and 

subsequent experiments. Blocking the projections from BLA to NAc decreased 

the sniff time (F, two-tailed unpaired t test, t(17) = 2.627, P = 0.0176) and 

sucrose preference (G, two-tailed unpaired t test with Welch's correction, 

t(11.41)=3.024, P = 0.0111), but did not influence the locomotor activity (H, 

two-tailed unpaired t test, t(17) = 1.088, P = 0.2164). mCherry: group n=9, hM4D 

group: n=10 in FUST(F), SPT(G) and Locomotor (H). *P<0.05, **P<0.01. Data 

are presented as means +/− SEM.  

Figure 4- Reactivation of VTA neurons labelled by hm3D during previous 
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positive experience can ameliorate depressive-like behaviors induced 

by chronic restraint stress.  

(A) The experimental timeline. (B) Sucrose preference test showing 

reactivation of hm3D-labeled VTA neurons during previous positive 

experience by CNO increased sucrose preference under chronic stress 

condition (subgroups, F(1, 19)=9.634, P=0.0058; treatment, F(2, 38)=53.53, 

P < 0.001; subgroups X treatment, F(2, 38)=17.30, P<0.001; Neutral VS. 

Positive, Basal P>0.999, Basal-CNO P=0.9997, Restraint-CNO P<0.0001). 

(C) FUST showing reactivation of hm3D-labeled VTA neurons during previous 

positive experience by CNO increased sniff time under chronic stress 

condition (subgroups, F(1, 21)=37.54, P < 0.001; treatment, F(2,42)=32.22, 

P<0.001; subgroups X treatment, F(2, 42)=7.818, P=0.0013; Neutral VS. 

Positive, Basal P=0.9989, Basal-CNO P<0.0001, Restraint-CNO P=0.0002). 

(D) Forced swim test (FST) showing reactivation of hm3D-labeled VTA 

neurons during previous positive experience by CNO decreased the 

immobility time (left, two-tailed unpaired t test, t(21) = 2.911, P = 0.0083), but 

did not influence the latency time (right, Mann-Whitney U test, P=0.9878), 

under chronic stress condition. (E) Sucrose preference test showing 

reactivation of hm3D-labeled VTA neurons during previous positive 

experience by CNO increased sucrose preference (two-tailed unpaired t test, 

t(21) = 0.6287, P = 0.5364) under chronic stress condition. Neutral experience 

group n=10, positive experience group n=11 in SPT (B); Neutral experience 
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group n=11, positive experience group n=12 in FUST (C), FST (D) and 

locomotor (E). **P<0.01, ***P<0.001. Data are presented as means +/− SEM. 

Figure 5- The activated VTA neurons during positive experience are 

mostly dopaminergic.  

(A) Schematic of the breeding strategy used to generate mice expressing 

tdTomato specifically in dopaminergic neurons (DAT-IRES-Cre; Ai14). 

Representative images showing the expression of tdTomato (B, E) and TH 

staining (C, F) in VTA. (D, G) Images are merged. (H) Statistical analysis 

showing the percentage of tdTomato-labeled VTA neurons positive also for TH 

(97.64±0.7862%, n=4). (I) Schematic showing the experimental procedure for 

DAT-IRES-Cre;Ai14 mice subject to positive experience and subsequent c-Fos 

staining. (J) Representative image showing the expression of tdTomato in VTA. 

(K) Representative image showing the expression of c-Fos in VTA. (L) Images 

of J and K are merged. (M) Statistical analysis showing the percentage of 

tdTomato-labeled c-Fos-positive VTA neurons (68.92±4.902%, n=5). (N) 

Diagram showing the experimental procedure and representative image 

demonstrating the electrode track through the VTA. (O) Positive experience 

increased the number of spontaneously active dopaminergic neurons per track 

in the VTA (Mann-Whitney U test, P=0.0061; Neutral n=9 mice, Positive n=8 

mice). (P) Left, representative extracellular voltage traces from VTA 

dopaminergic neurons; Right, statistical result showing the average firing rate 

of the spontaneously active dopaminergic neurons (two-tailed unpaired t test, 
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t(100) = 1.710, P=0.0904; Neutral n=9 mice (42 neurons), Positive n=8 mice (60 

neurons)). (Q) Left, representative extracellular voltage traces showing the 

burst firing of VTA dopaminergic neurons; Right, statistical result showing the 

average percentage of burst firing of the active dopaminergic neurons 

(Mann-Whitney U test, P=0.0447; Neutral n=9 mice (42 neurons); Positive n=8 

mice (60 neurons)). *P<0.05, **P<0.01. Data are presented as means +/− 

SEM. Annotation (AP): distance from the bregma (mm). Scale bars correspond 

to 100μm. 

Figure 6- Positive and negative experiences activate distinct VTA neuron 

subpopulations.  

(A) Schematic showing the experimental procedure for C57BL/6J mice subject 

to restraint stress and subsequent c-Fos staining. Representative images 

showing c-Fos expression in BLA (B and C), NAc (E and F) and VTA (H and I). 

Statistical analysis showing restraint stress increased c-Fos expression in BLA 

(D, two-tailed unpaired t test, t(10) =3.989, P = 0.0026), NAc (G, two-tailed 

unpaired t test, t(10) = 12.23, P < 0.001) and VTA (J, two-tailed unpaired t test 

with Welch's correction , t(5.610) = 13.69, P < 0.001). (K) Schematic showing the 

experimental procedure for DAT-IRES-Cre;Ai14 mice subject to restraint stress 

and subsequent c-Fos staining. Representative images showing the tdTomato 

(L) and c-Fos (M) expression in VTA. (N) Images of L and M are merged. (O) 

Statistical analysis showing the percentage of c-Fos-positive VTA neurons that 

were labeled by tdTomato (17.04±3.513%, n=4). (P) Diagram illustrating virus 
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injection in target areas and subsequent experiments. Representative images 

showing the GFP (Q) and c-Fos (R) expression in VTA. (S) Images of Q and R 

are merged. (T) Statistical analysis showing the percentage of c-Fos-positive 

VTA neurons that were labeled by GFP (3.765±1.285%, n=5). (U) Schematic 

showing the experimental procedure for Fos-CreERT2; Ai14 mice.   

Representative images showing the tdTomato (V) and c-Fos (W) expression in 

VTA. (X) Images of V and W are merged. (Y) Statistical analysis showing the 

percentage of c-Fos-positive VTA neurons that were labeled by tdTomato 

(3.098±1.412%, n=5). ***P<0.001. Data are presented as means +/− SEM. 

Annotation (AP): distance from the bregma (mm). Scale bars correspond to 

100μm.  

Figure 7- The VTA GABAergic neurons activated by restraint stress 

inhibit local VTA DA neurons responding to positive experience.  

(A) Diagram illustrating virus injection in target areas and subsequent 

experiments. Representative images showing the expression of mCherry (B, 

E) and c-Fos staining (C, F) in VTA. (D, G) Images are merged. (H) 

Statistical analysis showing the percentage of mCherry -labeled VTA neurons 

positive also for c-Fos (79.49±3.652%, n=5). (I) Schematic showing the 

experimental procedure for C57BL/6J mice subject to restraint stress and 

subsequent in vivo extracellular recording. (J) Restraint stress increased the 

number of spontaneously active GABA neurons per track in the VTA 

(two-tailed unpaired t test, t(13) = 4.461, P=0.0006; Control n=7 mice, Restraint 
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n=8 mice). (K) Left, representative extracellular voltage traces from VTA 

GABAergic neurons; Right, statistical result showing the average firing rate of 

the active GABAergic neurons (Mann-Whitney U test, P=0.8192; Control n=7 

mice (13 neurons), Restraint n=8 mice (31 neurons)). (L) Diagram illustrating 

virus injection in target areas and subsequent experiments. Reactivation of 

VTA neurons previously activated by restraint stress inhibited  the 

responsiveness of VTA dopaminergic neurons to sexual reward, decreasing 

the number of spontaneously active dopaminergic neurons per track in the 

VTA (M, two-tailed unpaired t test, t(11) = 5.299, P=0.0003; mCherry n=6 mice, 

hM3D n=7 mice) and the percentage of burst firing (O, Mann-Whitney U test, 

P=0.0350; mCherry n=6 (40 neurons), hM3D n=7 mice (22 neurons)), but no 

change in the firing rate(N, Mann-Whitney U test, P=0.2281; mCherry n=6 (40 

neurons), hM3D n=7 mice (22 neurons)). *P<0.05, ***P<0.001. Data are 

presented as means +/− SEM. Annotation (AP): distance from the bregma 

(mm). Scale bars correspond to 100μm.  
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