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Abstract

Biophysical  models  of  large-scale  brain  activity  are  a  fundamental  tool  for  understanding  the

mechanisms  underlying  the  patterns  observed  with  neuroimaging.  These  models  combine  a

macroscopic description of the within- and between-ensemble dynamics of neurons within a single

architecture.  A challenge  for  these  models  is  accounting  for  modulations  of  within-ensemble

synchrony  over  time.  Such  modulations  in  local  synchrony  are  fundamental  for  modeling

behavioral  tasks  and  resting-state  activity.  Another  challenge  comes  from  the  difficulty  in

parametrizing large scale brain models which hinders researching principles related with between-

ensembles differences. Here we derive a parsimonious large scale brain model that  can describe

fluctuations  of  local  synchrony.  Crucially,  we  do  not  reduce  within-ensemble  dynamics  to

macroscopic variables first, instead we consider within and between-ensemble interactions similarly

while preserving their physiological differences. The dynamics of within-ensemble synchrony can

be tuned with a parameter which manipulates local connectivity strength. We simulated resting-state

static and time-resolved functional connectivity of alpha band envelopes in models with identical

and dissimilar local connectivities. We show that functional connectivity emerges when there are

high fluctuations of local and global synchrony simultaneously (i.e. metastable dynamics). We also

show that for most ensembles, leaning towards local asynchrony or synchrony correlates with the

functional connectivity with other ensembles, with the exception of some regions belonging to the

default-mode network.
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Author summary

Here  we  present  and  evaluate  a  parsimonious  model  of  large-scale  brain  activity.  The  model

represents  the  brain  as  a  network-of-networks  structure.  The  sub-networks  describe  the  neural

activity within a brain region, and the global network encodes interactions between brain regions.

Unlike other models, it capture progressive changes of local synchrony and local dynamics can be

tuned with one parameter. Therefore the model could be used not only to model resting-state, but

also behavioural tasks. Furthermore, we describe a simple framework that can deal with the arduous

task of identifying global and local parameters. 

Introduction

The human brain is one of the most complex systems found in nature, consisting of billions of

neurons. Human behavior cannot be understood from only the computing properties of individual

neurons.  Instead,  human  behavior  requires  the  coordination  of  many  ensembles  of  neurons  at

multiple spatial scales. Neuroimaging studies reveal that patterns of large-scale local and distributed

coordination appear and dissolve during behavioral tasks [1–5] , as well as resting-state [6–10]. 

Biophysical  models  of  large-scale  brain  networks  provide  a  unified  analysis  framework  for

understanding the mechanistic principles that generate large-scale patterns of neural activity. 

In a large-scale biophysical model (LSBM) the nodes represent the electrophysiological dynamics

of ensembles of neurons. These ensembles of neurons interact via neural white matter fibers (edges)

that can be derived from diffusion tractography images  [11–13]. Currently it is computationally
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prohibitive to simulate all neurons and synapses in the brain. Moreover, even if it were possible,

modeling  such  a  large  number  of  elements  would  yield  results  that  would  be  challenging  to

interpret.  Therefore,  the  neural  activity  in  an  ensemble  of  adjacent  neurons  is  reduced

mathematically  to  a  few macroscopic  variables.  These  macroscopic  variables  are  subsequently

coupled through the network of white matter fibers and used to simulate neuroimaging data such as

magnetoencephalography (MEG) or functional magnetic resonance imaging.

LSBMs  have  been  used  among  others  to  determine  the  relationship  between  the  anatomical

structure of neural fibers, the connectome, and the functional connectivity (FC) observed during the

resting state [11,14,15]; to assess the influence of source reconstruction or tractography seeding

methods on neuroimaging analysis  [16,17];  to create  personalized models of seizure activity  in

epileptic patients or models aiding surgical interventions [18–20]; to analyze the sources and sinks

of  brain  waves  [21];  to  model  flows  of  information  through the  brain  [22];  and to  derive  the

conditions necessary for selective synchronization between ensembles of neurons [23].

However,  the assumptions  that  are  made to  be able  to  derive the macroscopic variables  which

describe the neural activity in an ensemble of neurons impose limitations. A fundamental limitation

is that the macroscopic variables cannot describe within-ensemble modulations of synchronization

[5,12,24]. Yet, it is exactly these fluctuations of local  synchrony (often referred to as event-related

synchronization/desynchronization) that characterize behavioral tasks [25], and are associated with

changes in functional connectivity between brain regions during tasks and on-going activity [3,4].

In  addition,  there  is  increasing  evidence  that  these  local  fluctuations  can  be  short-lived  (i.e.,

transient and bursting) in tasks and resting-state [9,10]. Another limitation is more practical as the

number of parameters often scales with the level of biological detail which makes it difficult to fit
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such models. As a result, most studies assume identical parameters for all ensembles, and thereby

neglect between-ensemble differences. 

While biologically realistic LSBMs are impractical to model between-ensemble differences, such

differences  have  been  modeled  with  non-biological  models.  The  latter  LSBMs  model  each

ensemble as a Stuart-Landau oscillator [26,27]. Although one Stuart-Landau oscillator can describe

the  mean  firing  rate  in  an  ensemble  of  neurons  for  particular  parameterizations  [28,29],  this

oscillator model is obtained from models of macroscopic activity that cannot capture modulations

of local synchrony [12,24]. Moreover, when a set of Stuart-Landau oscillators with additive noise

and various bifurcation parameters are coupled in a heterogeneous network with time-delays – as

they  are  in  LSBMs  [27,30],  it  is  very  difficult  to  estimate  the  range  of  amplitudes  of  these

oscillators. Therefore, it is hard to interpret their amplitudes as the local degree of synchrony and to

compare amplitude differences across oscillators. 

To obtain a LSBM that explicitly accounts for modulations of local synchrony and still has a low

number of parameters, we introduce here a low-dimensional LSBM derived from a network-of-

networks  of  Kuramoto  oscillators.  The  Kuramoto  oscillators  are  a  canonical  model  of

synchronization in biological systems, and they accounts for many of the dynamics of synchrony

found in neural populations such as traveling waves and metastability [15,31,32]. Each sub-network

of Kuramoto oscillators in this LSBM represents an ensemble of neurons within a particular cortical

region, and its synchrony is given by the Kuramoto order parameter (KOP) [33,34]. The KOP has

been found to be a good measure of synchrony in an ensemble of neurons whose dynamics are

reduced  with  a  mean-field  approach  [24,35,36].  In  turn  this  mean-field  reduction  captures

modulations of synchrony and explains event-related de/synchronization [5]. 
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There are previous LSBMs that have used a network-of-networks of Kuramoto oscillators structure

[20,23,37,38].  Yet,  these  LSBMs  did  not  model  resting-state  FC,  and  their  formulation  is

computationally expensive for LSBMs. Moreover their dynamics are influenced by the number of

oscillators in the sub-networks and their natural frequencies [39,40]. Such finite-size effects are

relevant for modeling resting-state because resting-state FC emerges at the point with the largest

finite-size effects – the edge between asynchrony and partial synchrony [11,27,41]. To solve these

problems we applied a mean-field reduction over a model with infinite oscillators on each sub-

network. This reduction gave one equation per sub-network that describes the evolution of the local

synchrony with the KOP. Moreover, the dynamics of the KOP can be manipulated with the local

coupling parameter that represents the local connectivity strength.

Our LSBM simulated resting-state  alpha band static  FC (sFC) and time-resolved FC (trFC) of

amplitude envelopes in two scenarios of increasing complexity. The first scenario assumes identical

ensembles (homogeneous ensembles), whereas the second scenario generalized this to the case with

different  local  connectivity  strengths for each ensemble (heterogeneous ensembles).  Our results

show that FC emerges in both scenarios when high metastable dynamics (i.e., temporal fluctuations

of synchrony) coexist within-ensembles and between-ensembles. At this working point, repulsion

from local synchrony along with time-delayed attraction to global synchrony leads to coordinated

fluctuations of local synchrony that are responsible for creating changing patterns of FC. At the

same time, there are ensembles that are attracted to local synchrony which do not have FC, but

influence other ensembles. An exception to this behavior are ensembles that represent parts of the

default-mode network as they are attracted to local synchrony and also are functionally connected to

each other.
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Results

Dynamics of the large-scale brain model

The  LSBM that  we  propose  is  defined  by  equations  1a and  1b,  which  describe  the  temporal

evolution of the KOP in one ensemble (i.e. the local synchrony within the ensemble). The dynamics

of  this  LSBM  are  governed  by  the  global  coupling  parameter  G,  the  local  coupling  of  each

ensemble Ln, the spike-propagation velocity (proportional to the time-delays τnp), and the probability

distribution of natural frequencies in each ensemble (Ωn central  natural frequency;  Δn spread of

natural frequencies). We focus on the impact of global and local couplings as well as time delays,

and assume an identical frequency distributions for all ensembles (Ω = 10.5 Hz, Δ=1). The section

model and methods explains this LSBM in detail.   

ṙn=− Δnrn+
Ln

2
(1−rn

2) rn+
G
2E

(1−rn
2) ∑

p=1,p ≠n

E

Anpr p ( t− τ np)cos (ψ p ( t− τnp )−ψn) (1a)

ψ̇n=Ωn+
G

2E (rn+
1
rn

) ∑
p=1, p≠ e

E

A npr p (t −τ np) sin (ψ p ( t− τnp )−ψn) (1b)

In these equations, the over dot represents the time derivative. Notice that we have removed the

time dependency of r and ψ when they do not have time delays. Equation 1a represents the temporal

evolution  of  the  level  of  synchronization  within  ensemble  n (brain  region).  The  variable  r is

bounded  between  zero  and  one,  where  zero  means  full  desynchronization  and  one  means  full

synchronization. Equation 1a can be divided into three parts by the plus signs. The first and second

parts  represent  local  dynamics,  while  the  third  part  encapsulates  the  interaction  with  other

ensembles.

 The  first  part  opposes  within-ensemble  synchrony  due  to  the  heterogeneity  of  natural

frequencies Δn. 
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 The second part  contains the local coupling parameter  Ln  ,  which tunes the connectivity

strength within the ensemble.

 The  last  part  scales  between-ensemble  coupling  strength,  G,  as  well  as  the  interaction

delays,  τnp. The interaction between ensembles depends on their phase differences and the

local synchronies. 

The contribution of Ln over rn can be assessed by assuming that the global coupling is equal to zero.

With this  assumption,  equation 1a  becomes the mean-field reduction of a canonical Kuramoto

model [42]. For this equation, there is a critical coupling value (Lc) at  Ln  = 2Δn .  Thus, ensembles

with Ln  > 2Δn tend to synchronize, while ensembles with Ln<2Δn   tend to become desynchronized.

The lower  Ln  (including negative values),  the more asynchronous the ensemble,  rn  → 0 [43]. In

addition, the further away Ln is from Lc, the stronger the influence of Ln on rn. Equation 1b describes

the dynamics of the mean phase of the oscillations within the ensemble n. The mean phase evolves

at the pace of its natural frequency, Ωn, plus the interaction with other ensembles scaled by G/E and

approximately  the  inverse  of  its  own local  synchrony  level.  Therefore,  locally  desynchronized

ensembles  (small  rn)  are  strongly  influenced  by  other  ensembles,  while  locally  synchronized

ensembles (rn ~ 1) are almost not influenced by others. 

In  what  follows,  we  refer  to  rn as  the  local  synchrony. The  phase  synchronization  among  all

ensembles, R, is referred as global synchrony. Global synchrony was measured as the KOP of the

local phases as follows,

R =| 1
N ∑

n=1

E

eiψn| (2)

The standard deviation of the modulus of the KOP over time ( i.e. SD( abs(KOP))t ) is a measure of

the  metastability  [44]  .  Therefore  we  describe  the  dynamics  of  the  LSBM in  terms  of  global

metastability, SD(R)t , and local metastabilities, SD(rn )t. 
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Scenario 1: Ensembles with  homogeneous local couplings

In the first simulation scenario, we searched for optimal global parameters (global coupling, and

spike-propagation velocity), while we held the local coupling identical for all ensembles (the local

coupling will be optimized in the second scenario, during which the global parameters are kept at

the levels determined by this first scenario). We assumed a constant spike-propagation velocity and

time delays proportional to the Euclidean distance between nodes. The optimal parameters were

found by two independent stochastic optimizers (particle swarm optimization, PSO; and adaptive

differential  evolution,  aDE).  The  fitness  function  of  the  optimizers  maximized  the  correlation

between  simulated  and  MEG sFC in  the  alpha  band,  while  it  was  constrained  to  biologically

plausible solutions (see sections Fitness function, and Optimization constraints). sFC was measured

as the correlations of the low-pass filtered ampliude envelops of the analytic alpha band signals.

The optimal solutions had a correlation of ~0.55 between simulated and MEG sFC (Figure 1). The

optimal global parameters of the two optimizers were identical up to the second decimal point.
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Figure 1. Connectome and FC from real MEG data and from simulations. First column shows

resting-state  MEG  static  FC  (orthogonalized  alpha  band  envelope  correlations,  top),  and  the

anatomical network or connectome (bottom). The second and third columns show the FCs obtained

from simulations with homogeneous and heterogeneous ensembles, respectively. The top row shows

the static FCs. The bottom row shows the histograms of  time-resolved FC  recurrence (trFC:

correlation of static FCs for 15 sec. moving window with 12 sec. overlap) for simulation (blue) and

MEG data (pink). Brain lobes are color-coded around the connectivity matrices – blue, temporal;

orange, occipital; red, parietal; and green, frontal.

Figure 2 shows that FC emerges when the local coupling is below the critical coupling, Lc. Being

below Lc would lead to asynchronous ensembles if they were decoupled from the rest of the brain.

However, when there are between-ensemble interactions, the local synchrony can increase. Suitable

local and global couplings have a negative correlation. The global coupling increases as the local

coupling decreases. Moreover, Figure 2 shows that time-delays are needed to reproduce sFC.
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A LSBM parametrized within the same range but without time delays leads to full global synchrony

(R ~ 1) and steady partial local synchrony  (0 <  rn =  constant < 1) proportional to the coupling

strength with other ensembles. On the contrary, a LSBM with long time delays becomes globally

asynchronous with steady partial local synchrony. This is consistent with previous results obtained

analytically in a model with homogeneous couplings [45]. 

Figure  2.  Similarity  between  simulated  and  MEG  sFC  during  the  optimization  with

homogeneous ensembles.  Each dot represents the correlation between simulated and empirical

MEG sFC during one  evaluation  of  the  fitness  function.  A three-dimensional  parameter  space

consisting of global coupling, local coupling, and mean delay (proportional to spike-conductance

velocity)  is  optimized  for  reproduction  of  the  empirical  sFC.  Each  panel  has  one  dimension

collapsed over the two axes. Simulations outside of the optimization constraints are not shown. The

black area indicates the area of the parameter space that is further analyzed for trFC. Only the

parameter combinations which produced dynamics within the biological constrains are shown. 

Global and local metastability are relatively high, but not maximal, in the area that better predicts

FC  (see  Sup.  Fig.  2).  The  highest  global  metastability  appears  to  be  above  Lc,  although  the

simulated sFC has low similarity with MEG sFC. The highest local metastability appears below Lc.

In other regions of the parameter space both metastabilities tend to be lower than in the area that
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reproduces FC better. The averaged global and local synchronies are moderately high and almost

constant in the area that best predicts FC. Outside of this area, global and local synchrony either

increases or drops abruptly (see Sup. Fig. 2). 

Next, we evaluated the trFC within the area of the parameter space that reproduces sFC (black

polyhedrons in Fig. 2). trFC was measured as the recurrence (Pearson correlation) of sFCs over a

15-second sliding window with 13 seconds overlap. Histograms of recurrence values were built for

both simulated and MEG data. The similarity between these two histograms was measured with the

Kolmogorov-Smirnov distance (KS-distance). The parameters that best predicted 300-second sFC

and  trFC  simultaneously  were  associated  with  the  highest  concurrent  local  and  global

metastabilities  (Figure  3).  The best  trFC had a  KS-distance  of  ~0.13,  and the  best  sFC had a

correlation  of  ~0.52.  The  Supplementary  Figure  3  shows  the  trFC  KS-distances  and  sFC

correlations over the polyhedron in Figure 3. The global parameters that provided the best joint fit

of sFC and trFC were used in the second scenario (this corresponded to: spike-conductance velocity

≈ 3.42 m/s, and global coupling ≈ 3.57; magenta arrow in Figure 4). 

Figure 3. Global and local metastability as a function of trFC and sFC similarity between 300-

second simulations and MEG.  Each dot has the same conventions as Figure 4, but the dots are

arranged by similarity to trFC (KS-distance; y-axis), and similarity to sFC (correlation; x-axis).
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(Left panel) Dots are colored by their global metastability. (Right panel) Dots are colored by the

local metastability averaged over ensembles. The black ellipsoid marks the areas that provide a

good compromise between trFC and sFC fit. Magenta arrows indicate the simulation from which

we took the global parameters for the second scenario.

A simulation with a good fit to MEG (Figure 3; magenta arrow) is shown in Figures 1 (sFC and

trFC ) and 4 (time-courses of synchrony and power spectra). The power spectra shows the central

frequency of each ensemble. However, the power density at the microscopic level would be broader

than in Figure 4 (except if rn = 1 ) because the LSBM reduces a probability density of frequencies to

its mean-field frequency. It is a non-trivial task to obtain the individual frequencies given the mean-

field frequency. Local synchrony fluctuates at different rates at each ensemble. These fluctuations

are  not  strictly  periodic  because  they  do  not  have  a  constant  frequency.  Nevertheless  some

regularities are visible at different time scales within and between ensembles. The global synchrony

has large fluctuations as well. These aperiodic but temporally structured fluctuations at both spatial

scales resemble metastable dynamics. The first 20 seconds of simulation correspond to the initial

transient dynamics that were not included in the FC. 
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Figure  4.  Power  spectral  density  (PSD) and  temporal  evolution  of  local  synchrony in  each

ensemble, overlaid with the level of global synchrony. Top: LSBM with homogeneous ensembles;

Bottom: LSBM with heterogeneous ensembles. Each horizontal line reflects one brain region. The

lobes are color-coded using the same conventions as previous figures. The left panel shows the

power spectrum of the central frequency from the probability density of frequencies. The right panel

shows the temporal evolution of local (within-ensemble) synchrony on yellow-blue color. The global

synchrony (between-ensembles) is represented in red (right, y-axis). 

Scenario 2: Ensembles with heterogeneous local couplings

Having established the global parameters of our LSBM, we then turn to the scenario in which local

couplings can differ between ensembles. Here, the optimizers identified the local couplings that

reproduced sFC, while the global parameters were kept constant (derived from the first scenario).

To  reduce  the  dimensionality  of  the  parameter  space,  we  assumed  equal  local  couplings  in

homotopic ensembles as the sFC and the anatomical networks are almost symmetric respect to the

interhemispheric fissure.

PSO and aDE achieved a maximal correlation between simulated and MEG sFC of 0.80 and 0.78,

respectively. The optimal parameters found by each optimizer were not identical (0.81 correlation &

0.84  cosine  similarity),  and  neither  were  the  sFCs  generated  (0.90  correlation  & 0.94  cosine

similarity). Supplementary Figure 3 shows the local coupling parameters used in each optimization

iteration sorted by  the correlation with MEG sFC. Next, we looked at the 300-second sFC and trFC

produced by the 1000 best solutions from each optimizer. 
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Figure 5 shows that the solutions with high similarity to MEG data tend to have high global and

local  metastabilities,  although  there  are  some  differences  in  metastability  for  solutions  with

comparable fit to sFC and trFC (see later). The best fit to MEG trFC has a KS-distance of ~0.02,

and the best correlation to MEG sFC is ~0.79. 

Figure 5. Global and local metastability of heterogeneous ensembles as a function of trFC and

sFC similarity between 300-second simulations and MEG for the best 2000 simulations. Each dot

represents  one  simulation  similar  to  Figure  3.  (Left  panel)  Dots  are  colored  by  their  global

metastability. (Right panel) Dots are colored by their local metastability.

Figure 6 shows in red the local  couplings for the solutions that  achieved the best  compromise

between sFC and trFC similarity to MEG data (correlation > 0.75 and KS-distance < 0.04), a set of

49 solutions. There is not a unique combination of local couplings which predicts sFC and trFC.

Some ensembles—such as the superior temporal or the inferior temporal regions—can take a wide

range of local couplings, while others—such as the precuneus—work within a narrow range of local

couplings. There are other ensembles like the parahippocampal area, the cuneus, or the posterior

cingulate that can take local couplings from two disjoint sets of values. For example, the local

couplings at the posterior cingulate group either around 6 or -3. Next, the local couplings at the

posterior cingulate region were used to divide these 49 solutions into two groups. The group with
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local couplings above 2 is shown with the orange histogram in Figure 6. The solutions from each

group had the local couplings reconfigured in a way that produced almost the same sFC and trFC. 

The  global  metastability  is  significantly  different  (Mann-Whitney  U  test)  between  the  groups

separated by local  the  coupling  at  the posterior  cingulate  (p-value  < 10-8)  as  well  as  the  local

metastability averaged over ensembles (p-value < 10-6). Such differences in metastability are also

significant for solutions with sFC correlation higher than 0.7 and trFC KS-distance lower than 0.15.

These differences are noticeable in Figure 6 as well.

Next,  simulated  local  metastability  was  compared  with  local  MEG  metastability.  Local  MEG

metastability  for  a  particular  brain  region measured as  the standard  deviation over  time of  the

envelope from the Hilbert transformed alpha band signals. Local metastability was measured in

each  participant  independently,  and  subsequently  averaged  across  participants.  The  group  of

solutions  depicted  in  orange  in  Figure  6  had a  median  correlation  of  0.13  between  MEG and

simulated local metastability, while the other group of solutions had a median correlation of -0.14.

This shows that although FC is very similar for both groups of local couplings, the metastable

dynamics can be quite different. In what follows, we will show only results from the cluster of local

couplings which have a positive correlations with MEG data (orange histogram in Fig. 6). 
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Figure 6, Density estimates of local couplings by brain regions for the best solutions in terms of

sFC and trFC similarity. Each column on the x-axis is a brain region. In each column, there are

vertically  two density  estimates  of  local  couplings  with  the  value  indicated  by  the  y-axis.  The

densities on the left (red) contain the number of solutions that best predict sFC and trFC for a given

local coupling (y-axis). The vertical thin red line connects clusters of solutions in the same brain

region. The densities on the right (orange) are a subset of the local couplings of the densities on the

left. This subset contains solutions from only one cluster of local couplings. The horizontal gray

line indicates the critical local coupling.

The local couplings have a significant negative correlation with the simulated nodal sFC strength

(sFCS; average correlation of -0.46 and -0.40 for the right and left hemispheres respectively, p-

values < 10-5). The nodal sFCS is the sum of sFC in a node, so brain regions with high functional

connectivity to other regions have high sFCS. Figure 7 shows that there is a general tendency of

areas with high sFCS to have a local couplings below the critical local coupling,  Lc. In contrast,

areas  with  lower  sFCS  have  a  heterogeneous  arrangement  of  local  couplings  dominated  by

couplings above Lc. There are a few exceptions to this, such as the precuneus or the parahipocampal

which have relatively high sFCS and high local couplings, or the insula and the parsorbitalis which

both have low local coupling and low sFCS. Simulated and MEG sFCS follows the same pattern
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except for some asymmetries between hemispheres. For example, the simulations show a strong

sFCS asymmetry in the precuneus, and the isthmus cingulate which are not present in the MEG

data. The local couplings were not correlated with the nodal connectivity strength of the anatomical

network (ρ < 0.07 in right and left hemispheres). 

Figure 7,  Density  estimates  of  local  couplings and functional  connectivity  strength by brain

region.  Each column on the x-axis is a brain region. In each column there are: one two-sided

density in orange, two one-sided densities in blue (left/right), and two arrows in black. The orange

density contains the same local couplings that are shown in orange in Figure 6. The magnitude of

local coupling is  indicated on the left  y-axis. Blue densities represent the sFCS for these local

couplings, left and right for each hemisphere. The black triangles indicate the MEG mean sFCS

across subjects for each hemisphere. Both scales of FCS are on the right y-axis with the respective

colors. The scales of sFCS are inverted to aid visual comparison with local couplings as they have

a  negative  correlation  (-0.46  and  -0.40  for  the  right  and  left  hemispheres  respectively). The

horizontal gray line indicates the critical local coupling.

The sFC and trFC of one these solution are shown in Figure 1, and the associated power spectra as

well as the synchrony time courses are shown in Figure 4. Similar to the heterogeneous ensembles,
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there is a variety of short- and long lasting patterns of within- and between-ensembles synchrony

that  resemble metastable  dynamics.  However, in the model  with heterogeneous local  couplings

there is higher variability of local and global synchrony than in the mode with homogeneous local

couplings. The Supplementary Figure 7 shows the spectrogram of the solution shown in Figures 1

and 4.

Discussion

We have  derived  a  parsimonious  large-scale  brain  model  (LSBM) that  is  able  to  successfully

simulate  the  dynamics  of   resting-state  MEG  functional  connectivity.  This  LSBM  reconciles

simplicity with biological interpretability and allows for the manipulation of both local and global

neural  synchrony  within  one  framework.  Such  modulations  of  synchrony  are  observed  in

neuroimaging data  at  multiple  spatial  and temporal  scales,  and are believed to  be fundamental

property of neural activity  [1–3,5–8,18,25,27,46] Our model goes beyond traditional LSBMs that

are not able to capture modulations of local synchrony [5,12,24]. Moreover, the tendency of each

ensemble   to  de/synchronize  can  be  adjusted  with  a  single  parameter  that  represents  within-

ensemble connectivity strength. Because local synchrony can be manipulated with one parameter, it

is feasible to fit LSBMs with heterogeneous local synchronies and to analyse between-ensemble

differences.

The proposed LSBM was able to simulate resting-state sFC and trFC of MEG alpha band envelopes

in two scenarios. In the first scenario all ensembles were identical (homogeneous ensembles). In the
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other  scenario  each  ensemble  could  take  a  different  local  coupling  parameters  (heterogeneous

ensembles).

Scenario 1: Ensembles with homogeneous local couplings

The LSBM with identical ensembles showed that FC emerged when there were interaction delays

between ensembles. This is in agreement with findings of previous LSBMs that relied on different

reductions of neural activity [14,16,30,47] . Such interaction delays between ensembles of neurons

are due to finite spike-conductance velocities along neural fibers [48,49].  

Another consistent finding in LSBMs is that FC emerges when the dynamics of the ensembles are

close to a critical point. Below this critical point, ensembles do not oscillate, but once the critical

point is exceeded, the ensembles start to oscillate [11,26,27,41].  For example, a stability analysis of

LSBMs with several reductions of neural activity showed that additive noise as well as delayed

coupling with other ensembles induced oscillations and plausible patterns of resting-state sFC [41];

LSBMs based on Stuart-Landau oscillators reproduced sFC and trFC only when the ensembles were

near  a  supercritical  Hopf bifurcation [26,27].  Similarly, FC emerged in our  LSBM if  the local

coupling was just below a critical local coupling, Lc. Lc was the minimum coupling required by an

unperturbed ensemble to leave the desynchronized state. Below Lc the ensembles pushed towards

local asynchrony while local couplings above Lc promoted local synchronization. 

Ensembles that had low local coupling, reflecting desynchronization, were more sensitive to the

phase of other ensembles, which facilitated between-ensemble synchrony. This increase of between-

ensembles  synchrony  raised  local  synchrony,  but  local  synchrony  could  not  be  maintained  as
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between-ensemble synchrony was perturbed by interaction delays, and there was not enough local

connectivity to sustain the synchrony from within the ensemble itself.  Therefore, the ensembles

went into a state of fluctuating partial local synchronization that gave rise to FC networks. 

We have shown that FC depends on a balanced interaction between the local coupling and the

global  coupling  among  ensembles.  When  the  global  coupling  increased,  the  local  coupling

decreased proportionally. However, if only the global coupling increased, the LSBM became fully

synchronized globally and locally – a pathological state that occurs during epileptic seizures [50].

When only the local coupling decreased, the ensembles became asynchronous and the fluctuations

of local and global synchrony stopped. In other words, in order to maintain the state of fluctuating

partial synchrony responsible for FC, the ensembles counterbalanced an increase of attraction to

global synchrony by decreasing local synchrony and vice versa. Hence, FC emerged from precise

opposition  between  local  attraction  to  asynchrony  and  between-ensembles  attraction  to

synchronicity, the latter being perturbed by interaction delays. This relationship between local and

global coupling suggest that the critical local coupling was shifted towards lower local couplings if

the  global  coupling  increased.  Other  LSBM have  included  a  local  feedback  inhibitory  control

mechanism to counteract the increase of global coupling [51,52]. Feedback inhibitory control adapts

the strength of recurrent inhibitory synapses to compensate for the increase in excitatory activity

due to  long-range connections  with other  ensembles.  Feedback inhibitory  control  increased the

predictability of FC for spontaneous and evoked activity [51,52]. 

Interestingly, FC was reproduced when high metastability (fluctuations of synchrony) coexisted at

global and local scales.  Metastability is a hallmark of brain dynamics and it occurs at multiple
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spatial scales. Metastability allows to simultaneously integrate and segregate information [21,46].

Metastable dynamics are believed to provide the neural flexibility needed to adapt and respond fast

as well  as to maintain current states like memories [46,53]. Because previous LSBM could not

capture  fluctuations  of  local  synchrony  [5,12,24],  they  reported  only  high  global  metastability

without  corresponding  local  metastability  [15,26,27].  In  contrast,  our  LSBM  showed  maximal

global metastability when local metastability was low and sFC was poorly reproduced. This suggest

that accounting for fluctuations of local synchrony might be necessary for successfully modeling

large-scale brain networks.

Scenario 2: Ensembles with heterogeneous local couplings

The  LSBM  with  heterogeneous  ensembles  allowed  for  ensembles  which  could  promote  local

synchrony or aynchrony at various levels. This model simulated FC with higher accuracy than the

model with homogeneous ensembles. This was not entirely surprising given that the model with

heterogeneous ensembles had 34 parameters to tune local dynamics compared to a single parameter

in the model with homogeneous ensembles.

More interestingly, the plausible local couplings of each ensemble exhibited different distributions,

including bimodal distributions. This suggest that there is not a single way to generate a particular

target FC, but instead it can be generated by multiple different configurations of local dynamics.

Such pattern points at an adaptive property of the brain, which can function in a number of different

states, thereby making it resilient to perturbations. A similar effect is observed at a lower scale as

the same macroscopic activity can be obtained form a network of neurons with different synaptic

strengths [54]. 
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The local coupling had a negative correlation with the sum of nodal sFC strength (sFCS). In other

words, ensembles with lower local couplings (below Lc) had a tendency to higher sFCS, and vice

versa. Similar to the LSBMs with homogeneous ensembles, the balance between the local tendency

towards asynchrony and the time-delayed between-ensemble synchrony gave rise to fluctuations of

local synchrony and FC. In contrast, ensembles with high local couplings (above Lc) had a tendency

to synchronize locally and did not engage into coordinated fluctuations of local synchrony, i.e. FC.

Such ensembles were more attracted to local than between-ensemble synchrony. Nevertheless, they

had  strong  influence  on  other  ensembles  driving  ensembles  with  low  local  coupling.  Some

exceptions to this observation were ensembles that belong to the default-mode network, such as the

precuneus  or  the  parahipocampal  areas  [55],  which  tended  to  have  high  local  couplings  and

relatively high FC as well. Such high local coupling may reflect a state of high local coupling and

low excitability that allows for maintaining the local dynamics in the face of external disturbance.

Future research should investigate these individual differences in dynamics between the different

ensembles.

In the simulations there were ensembles with asymmetric sFCS between hemispheres which were

different from the MEG sFCS  asymmetries (e.g. the precuneus). This discrepancies  might be due

to the assumption of equal local coupling at homotopic brain regions. To our knowledge there is

only one study so far which has attempted to optimize all cortical brain regions in a LSBM [27].

This study showed that some homotopic brain regions had different parameters. However it is not

possible to compare parameters systematically across studies because the topologies of the FC are

considerably different and the neuroimaging technologies are different (FC in [27] included frontal

but not occipital regions and it was measured with fMRI). Although the assumption of homotopy
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reduced our ability to fit the functional data, we decided that this was the best trade-off between

model complexity and model fit.

Optimization framework

While  we  have  argued  that  a  multimodal  distribution  of  plausible  local  couplings  can  have

reasonable biological underpinnings, there exist other plausible explanations. First, it could be that

the optimizers explored two local optima, but they failed to find a global optimum. It is known that

stochastic  optimization  do  not  guarantee  finding  a  global  optimum.  However,  we  think  this

explanation  is  unlikely  because  we  have  obtained  similar  results  in  multiple  runs  of  different

optimizers. It is therefore likely that there were two global optima.

Second, we used sFC and trFC to assess the similarity between simulations and MEG data. The

fitness function of the optimizers only evaluated the similarity of sFC, but this was sufficient to

predict trFC with high precision. However local and global metastability were different among the

two clusters  of  local  couplings.  Adding local  information  to  the  fitness  function  might  help to

constrain the solutions of the optimization. Here we focused on optimizing FC as this is the most

common approach on the  literature.  Moreover, we find relevant  the fact  that  similar  FC could

emerge  from  different  local  dynamics.  This  might  contribute  to  explain  the  variability  in

neuroimaging measurements between and within-subjects during-resting sate as well as behavioral

tasks. 

Third, not all optimizers were able to find suitable solutions. For example a successful optimizer on

similar problems (covariance matrix adaptation evolutionary strategy [56]) was not able to find
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proper solutions in this context, while aDE and PSO worked satisfactorily. aDE and PSO found

similar solutions, although they relied on different heuristics. These heuristics were noticeable in

their  evolution  towards  the  best  solution.  PSO  was  more  exploitative,  while  aDE  was  more

explorative. PSO found a good set of parameters fast, and then restricted exploration near these

parameters. On the contrary, aDE favored diverse combinations of parameters, but took longer to

find  a  good set  of  parameters.  Given  the  dissimilar  behavior  of  the  two optimizers,  a  further

improvement could be to try other algorithms or to migrate solutions between optimizers. Strategic

migrations of parameters tends to improve the optimization[57]. However, this enhancement might

not avoid converging to local optima, nor may it improve the similarity between simulated and

MEG data. Recently an optimization approach based on Bayesian Gaussian-process optimization

gave remarkable results in a LSBM with a 5-dimensional-parameter space with less computing time

[16]. Further research on this framework with higher-dimensional-parameter spaces could fuel the

usability of LSBM. 

Limitations and extensions

In this LSBM we made several assumptions and choices that might influence the results. First, we

imposed  a  network-of-networks  structure  where  the  higher  level  nodes  represent  ensembles  of

neurons in each region of a cortical parcellation. The parcellation scheme determines the number of

brain regions, their size, and the topology of the anatomical network that connects the ensembles.

This should be taken into account when interpreting or comparing the results with other studies.

Moreover sub-cortical structures were not included, although synaptic noise in the thalamus has

been related with multistable changes of alpha band amplitude [58]. The study of such noise-driven

changes of amplitude was limited to a single region, but sub-cortical structures might be relevant for

faster changes on FC and enhanced metastability. 
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To derive the model we assumed that each ensemble is a fully connected network. This assumption

could be relaxed. A similar model to ours that contained random Erdös-Réniy topologies at the

ensembles showed analytically and numerically that the same synchrony states are achieved with a

shift  in  the  coupling  parameters  proportional  to  the  average  degree  of  the  networks  [59].

Manipulating the topology of the connectivity of the ensembles might be useful to understand its

impact  on  FC [60].  Moreover  topological  manipulations  could  contribute  to  understanding  the

effects of neurological disorders and different kinds of brain damage arising from natural causes or

surgical  interventions  [19,60].  For  example,  LSBMs  with  a  network-of-networks  of  Kuramoto

oscillators have previously been used to understand abnormal neural synchrony [20,37,38]. These

studies found, for example, that hyper-synchronous activity was found to emerge more easily from

structurally central regions and when neural fibers had altered properties  [38]. In addition, they

demonstrated that hyper-synchrony can emerge more easily form the resting-state FC of epileptic

patients [20,37], although these studies used the network of FC to couple the ensembles instead of

the network of neural fibers. A network-of-networks of Kuramoto oscillators is an effective method

to derive analytically the features of the brain that allow specific patterns of FC [23].  

Another local heterogeneity that could be introduced is a diversity of density distributions of natural

frequencies.  We assumed that  all  ensembles  have  identical  distributions  of  natural  frequencies.

Nevertheless  heterogeneous  natural  frequencies  might  be  a  relevant  factor  because  it  has  been

observed in EEG data that the alpha peak frequency differs between brain regions during resting-

state  and  behavioral  tasks  [61].   Such  difference  infrequencies  might  perturb  global  phase

synchronization on the same manner as time-delays.
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One may argue that a limitation or virtue of this LSBM is that it models only one frequency band

but not the whole power spectrum of MEG. Yet, MEG is typically analyzed in frequency bands

which each seem to play distinct functional roles [3,5,7,25,62–64]. During behavioral tasks as well

as resting-state each frequency band tends to produce a different FC pattern [3,7,64]. Moreover,

behavioral  studies  analyze  event  related  synchronization  within  one  frequency  band  [5,25,65].

Therefore,  this  LSBM  provides  a  simple  framework  for  modeling  single-frequency-band

electrophysiological  data.  Additionally  the  mathematical  framework  of  the  LSBM  allows  for

multimodal distributions of frequencies [66]. Here we focused on reproducing FC in the alpha band,

but we hypothesize that FC could be reproduced in other frequency bands simply by shifting the

distribution of natural frequencies to the same frequency band, as a Hopf bifurcation model has

already demonstrated successfully [26]. 

We have shown that the LSBM reproduces not only static FC, but also time-resolved FC. However,

time-resolved FC might be influenced by the length of the moving windows used to estimate short-

lived FC states. We chose a conservative length of 15 seconds, which may have missed short-lived

FC patterns [7].

Finally, we assumed that all neural fibers have the same spike-propagation velocity, and that the

length of the neural fibers is the Euclidean distance between ensembles. However there is a broad

range  of  possible  velocities  which  depend  on the  physiological  properties  of  the  neural  fibers

[48,49]. Some of this variability could be incorporated in the LSBM by using a probability density

function of time delays [67]. Furthermore, other simulation studies have shown that the density of

inter-hemispheric neural fibers is underestimated, and better predictions of FC can be achieved by
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scaling  the  inter-hemispheric  connections  [16,17].  Additionally,  we  assumed  that  homotopic

ensembles  have  the  same local  coupling  to  exploit  the  symmetries  on  the  anatomical  and  FC

networks as well as to speed up computations. Even though our results suggest that without this

assumption  the  similarity  between  MEG  and  simulations  could  improve,  we  think  that  this

assumption is a good compromise between model complexity, computational time, and explanatory

power.

Significance

This study shows that resting-state MEG sFC and trFC emerge from the opposition between local

asynchrony and global synchrony perturbed by interaction delays. Local asynchrony is facilitated

by low local  connectivity. Ensembles  with low local  connectivity  adapt  rapidly their  phases to

synchronize  with  other  ensembles  which  suggest  higher  excitability. The  increase  of  between-

ensemble phase synchrony leads to higher local synchrony. However, between-ensemble synchrony

is broken intermittently by the interaction delays, causing local synchrony to drop. These dynamics

create  coordinated  fluctuations  of  local  synchrony.  The  dynamics  of  the  model  are  highly

metastable at global and local scales when FC emerges. We also observed ensembles with high local

connectivity which did not engage in FC, but still influenced the dynamics of ensembles that are

responsible for FC. Parts of the default-mode networks show a differential behavior with high local

coupling and strong FC. 

We have presented a parsimonious large-scale brain model that balances simplicity and biological

interpretability. Such a framework might contribute to determining the conditions and mechanisms

that  lead  to  the  patterns  observed  in  neuroimaging  data.  We have  shown that  this  model  can
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realistically simulate resting-state FC, and we hypothesize that it could be used to simulate changes

in FC over a course of a behavioral task as well [3]. Moreover, our results suggest that modulations

of local synchrony are fundamental for large-scale synchronization and FC. In the future we aim to

use this model to understand which and how brain regions contribute to switch between transient

functional connectivity networks during a behavioral task, which will contribute to elucidate how

cognitive functions can arise from specific patterns of functional connectivity.

Methods and Model

Modeling one ensemble of neurons

The LSBM presented here aims at describing the evolution of the neural synchrony in an ensemble

of neurons (cortical region) with a temporal resolution similar to MEG measurements. Moreover the

LSBM should have the same framework for local and global synchrony. The model should have

only one parameter to tune local synchrony, but it should allow for incorporating other properties of

neural  ensembles.  The  model  is  motivated  by  recent  findings  showing  that  modulations  of

synchrony in an ensemble of neurons can be expressed in terms of the Kuramoto order parameter

(KOP) [5,24,35,36].

In our LSBM the neural activity within an ensemble of neurons is describe by the KOP, and the

KOP is obtained form a network of Kuramoto oscillators [33,34]. Kuramoto oscillators can describe

many synchronization phenomena observed on neural ensembles  [31,32]. The KOP is a complex

number with the modulus bounded between zero and one. When the modulus of the KOP, rn, is zero
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the  neurons  fire  asynchronous,  so  the  total  electric  potential  produced  is  minimal.  When  the

modulus of the KOP is equal to one, the neurons fire in a fully synchronized manner, resulting in a

maximal electric potential. 

Modeling a network of ensembles of neurons

In a LSBM an ensembles of contiguous highly connected neurons is typically represented as a node

in a fixed network whose edges are neural fibers. The set of edges connecting ensembles of neurons

form a heterogeneous weighted multigraph. One weight of the multigraph is proportional to the

density of neural fibers, A. The second weight of the multigraph represents the distance between the

ensembles, D. This distance might impose time delays in the interaction between ensembles due to

finite spike-conductance velocities [48,49]. At the ensemble level it is reasonable to assume that the

interaction delays are negligible and the neurons are fully connected. In this way, the brain model

becomes a network-of-networks. The section Anatomical network of neural fibers has more details

about computing the multigraph of neural fibers. 

The KOP for each ensemble of neurons was derived with a mean-field reduction in a network-of-

networks of Kuramoto oscillators. To enforce such structure, the couplings within-ensemble were

instantaneous, and identical, while the couplings between ensembles were delayed and weighted by

the multigraph of neural fibers. In addition, the couplings within-ensemble were much larger than

the couplings between ensembles.  Kuramoto models with a network-of-networks structure have

been studied previously [20,23,45,59].  We used a Kuramoto model  and a mean-field reduction

similar to the one analyzed by Skardal et al. [45,59]. The mean-field reduction is based on the Ott-

Antonsen ansatz [42]. With this reduction the dynamics of each ensemble are given by the KOP  (

KOP = rn e
iψn ).  The temporal evolution of the KOP is dictated by equations 1a and 1b in the

results section (S15a and S15b in the Supplementary information). In total the LSBM consists of E
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complex delayed differential equations where E represents the number of ensembles (brain regions).

The Supplementary information provides all the mathematical details needed to derive the LSBM.

Model parameters

Some parameters of the LSBM can be given beforehand, while others  should be estimated. The

natural frequencies on the ensembles were set beforehand by a Lorentzian distribution function with

center frequency Ω and spread Δ. We limited our simulations to the alpha frequency band, and we

assumed the same distribution of frequencies for all ensembles (Ω = 10.5 Hz; Δ = 1). We chose this

range for three reasons. First, other MEG resting-state studies have reported significant FC in this

band  [7,64,68,69]. Second, earlier LSBMs have shown high correlation of simulated and empirical

sFC in alpha band [17,26,47]. Third, the MEG used on this study had relatively higher power in the

alpha band compared to other bands (See Supplementary Figure 6)

Other  parameters  were  estimated  with  stochastic  optimizers  –  the   global  coupling  among

ensembles,  G, the local coupling within each ensemble,  Ln, and the spike-propagation velocity, v.

The  spike-propagation  velocity  and  the  distance  between ensembles  determined  the  interaction

delays,  τee’.  A constant spike-propagation velocity was assumed for simplicity. However, neural

fibers have a wide range of spike-propagation velocities [48,49]. Nonetheless most LSBM either

neglect time delays or assume a constant velocity as well. These parameters were estimated because

they have a large impact on the dynamics of LSBMs [15,16,30,47].

Simulation scenarios and parameters estimation

The LSBM was evaluated in two scenarios. The first scenario assumed that all local couplings were

identical  (heterogeneous ensembles),  resulting  in  3  free  parameters  (spike-propagation  velocity,

global  coupling,  and one local  coupling for all  ensembles).  Studies  with LSBMs often assume
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identical ensembles, hence this scenario is similar to previous literature. In the second scenario the

local couplings were free to vary across ensembles (heterogeneous ensembles), while the global

parameters were fixed from the first scenario (spike-propagation velocity, and global coupling). The

second scenario assumed that homotopic ensembles in the left and right hemisphere had identical

local couplings, thus having E/2 free parameters. This assumption reduced the parameter space, as

well as the computing time, and it exploited the symmetries in the model. The multigraph of neural

fibers and the MEG sFC are almost symmetric with respect to the interhemispheric fissure (see

Figure 2). The relatively small number of parameters allowed stochastic optimizers to efficiently

identify the parameters that reproduced MEG sFC. Then, trFC was computed within the restricted

area of the parameter space that reproduced sFC. Supplementary Figure 1 contains an schematic

representation of the parameter identification process. 

Fitness function

The fitness function of the optimizers assessed the similarity between the sFC of MEG data and

simulated neural activity. Each evaluation of the fitness function included 20 runs of the LSBM

with identical parameters but different initial conditions (phases, ψn, but not rn). The initial phases

were drawn from a uniform distribution in the range [-π to π) at the beginning of the optimization

and  kept  across  iterations  of  the  optimizers.  The  initial  rn of  each  ensemble  was  set  to  its

equilibrium point,  rn
eq , if the ensemble was detached from other ensembles  (rn

eq = √1-2Δ/Ln).

Multiple  initial  conditions  were  used  to  avoid  overfitting  of  parameters  to  one  set  of  initial

conditions, which improves the chances of generalizing the results. Moreover, using multiple initial

conditions  allows  for  evaluating  the  effect  of  the  initial  conditions  on  the  simulated  FC

(Supplementary Figure 5). These initial conditions might be interpreted as the previous state of the

system. 
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The sFC from each run of the LSBM was obtained in the same way as the empirical MEG except

for the orthogonalization step. Simulated data were not orthogonalized because there is no source

leakage in the simulation. Another reason for not orthogonalizing was that the simulated data often

were  not  normally  distributed,  which  is  a  necessary  condition  for  successfully  applying

orthogonalization  [70]. Nevertheless we checked that simulated FC was not driven by zero-phase

synchronization. Simulated neural activity was the imaginary part of the KOP. The same projection

to neural activity has been used in prior LSBMs [15,26,27]. The median sFC across the 20 runs of

the LSBM was compared with the MEG sFC by calculating the correlation between the upper

triangular elements of the sFC matrices. The section  MEG and simulated data processing provides

more details on data processing.

Optimization constraints

The optimizers were constrained to biologically plausible solutions. These constraints prevented the

LSBM from being either fully synchronized or incoherent, and enforced a minimal metastability.

Full synchrony and incoherence are biologically implausible because low global synchrony appears

during  unconscious  states  [71],  while  high  global  synchrony  appear  during  epileptic  seizures

[20,50]. In addition, previous studies have shown that during resting-state there is high metastability

[15,21,27].  The constraints were derived from the global synchrony (Eq. 2) averaged over time,

⟨ R ⟩ t , the global metastability, SD(R)t , the average of local synchrony over ensembles and over

time, ⟨ ⟨re ⟩E ⟩t , and the  average local metastability over ensembles ⟨SD (rn)t ⟩E . The median of

these metrics across the 20 runs of the LSBM in one iteration had to comply with: 

 0.25  <  median( ⟨ R ⟩ t )  <  0.8,

 0.05  <  median(  SD(R)t   ),

 0.25  <  median( ⟨ ⟨rn ⟩E ⟩t )  <  0.8,
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  0.05  <  median( ⟨SD (rn)t ⟩E )

Solutions  outside  these  constraints  were  heavily  penalized  to  guarantee  that  the  same  set  of

parameters was not chosen again. These boundary values were selected based on visual inspection

of model behavior.

Stochastic optimization algorithms

The optimization was carried out  by three independent  stochastic  sampling algorithms. Several

algorithms were used to examine the reproducibility and stability of solutions, and to avoid that a

particular  optimizer  could  not  handle  the  optimization.  Stochastic  sampling  algorithms  are

especially useful for complex global optimization problems in which the fitness function cannot be

treated analytically. The fitness function is treated as a black box, although it is not guaranteed to

find a global optimum. Nevertheless, a single best solutions was not taken, but rather a range of

optimal solutions which were used to evaluate trFC later. 

The optimization algorithms used were – self-adaptive Differential Evolution (aDE), Covariance

Matrix Evolutionary Strategy, and Particle Swarm Optimization (PSO) [56,57,72]. These algorithms

are generally successful in solving benchmark problems that include features of our problem like a

high-dimensional parameter space, a non-separable function and a non-linear function  [57,72–75].

Other features like the shape of the cost function could not be obtained before hand, although the

chosen  algorithms  can  cope  well  with  unimodal  and  multimodal  functions  [57,72–75].   More

information about these algorithms can be found in other sources [56,57,72,73]. The algorithms

were implemented with the toolbox pagmo version 2.7 [76] in Python programming language. The

1220DE flavor of the aDE algorithm was used with all mutation variants and the iDE adaptation

scheme. We opted for this algorithm because it has several parameters that are self-adapted to the
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features of the cost function. The parameters of the other algorithms were set to their default values,

which align with the values recommended in the literature [56,57,72,73]. In the first scenario the

optimizers had a population of 20 individuals and 200 generations. Each individual consisted of one

set of candidate parameters for which the fitness functions was evaluated. The generations are the

number of iterations of the algorithm. The optimizers on the second scenario had 110 individuals

and  250  generations.  The  Covariance  Matrix  Evolutionary  Strategy  exhibited  very  poor

performance, and therefore it is not reported further. 

Model simulations

Numerical  simulations  of  the  LSBM were  carried  out  using  the  time-delayed  first-order  Euler

method. The integration step size was set to 0.001 seconds. Because of the time delays, a history of

initial values was simulated independently for each ensemble from the longest time delay to the

initial simulation point. Then, simulations were run for another 66 seconds in the fitness function, or

321 seconds when trFC was computed. In both cases, the first 19 seconds were discarded to remove

the initial transient dynamics. The first and last second of the remaining time were discarded after

filtering and Hilbert transforming the simulated neural data in order to avoid edge artifacts. In total

45 seconds were used to  compute sFC in the fitness function,  and 300 seconds were used for

computing trFC. We kept the simulation time as short as possible to reduce the total optimization

time. The model was implemented in Python. The fitness function was compiled and parallelized

with Numba. One evaluation of the fitness function for one individual (i.e. 20 LSBMs, one for each

of the initial conditions) took approximately 7 seconds. The 20 LSBMs in the fitness function were

parallelized over 20 nodes in a computing cluster. In total one optimizer in the first scenario took

approximately 8 hours. One optimizer in the second scenario took approximately 70 hours. 
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Search of time-resolved functional connectivity 

trFC was searched within the range of  parameters that  adequately reproduced sFC.  In the first

scenario, trFC was evaluated within the polyhedron of parameter space defined by black lines in

figure 3. A total of 1000 models were evaluated with parameters randomly taken from the optimal

polyhedrons. To obtain the random parameters, first, the velocity-local-coupling polyhedron was

subdivided into  triangles  which  were  uniformly sampled relative  to  their  areas.  Next,  a  global

coupling  parameter  was  uniformly  sampled  from the  range  of  possible  values  given  the  local

coupling drawn before. The polyhedrons were defined by hand to capture the set of solutions with

higher sFC similarity to MEG while remaining within the biological constraints. The polyhedron

approach  reduced  the  number  of  trFC  simulations  need  to  cover  the  parameter  space.  Each

combination of parameters was simulated 30 times with different initial phases. The initial phases

were different to the ones used during the optimization. trFC as well as sFC were computed over

300 seconds of simulated data in the same way as MEG trFC and sFC. A similar approach was

followed in the second scenario, apart from the polyhedron approach. In the second scenario trFC

and sFC were simulated with the best 1000 parameter combinations found by each of the optimizers

(2000 combinations of parameters in total). The similarity between simulated and MEG trFC was

measured by the Kolmogorov-Smirnov distance between the recurrence histograms of simulated

and MEG data.  Similar  approaches  have been used before to  assess  the similarity  of  trFCs in

LSBMs [26,27]. 

Analysis of MEG and simulated data

The MEG resting-state datasets (300 seconds, eyes open) of 55 healthy participants, previously

acquired as part of the UK MEG partnership [7,77], were used in this work. For each participant,

the data were downsampled to 250Hz using an anti-aliasing filter; high-pass filtered to remove low-
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frequency variations below 1Hz; source-reconstructed in MNI 8mm standard space using LCMV

beamforming [78] (see [77] for further details about the pre-processing). Summary time-courses

were  subsequently  computed  within  each  of  the  68  regions  of  the  Desikan-Killiany  cortical

parcellation [79] using PCA, while preserving the relative variances between regions, and signal

leakage was mitigated using symmetric multivariate leakage correction [80]. To compute FC in

alpha-band, the orthogonalized time-courses were band-pass filtered between 8-13Hz, their Hilbert

envelope was then low-pass filtered above 0.5 Hz and downsampled to 5 Hz.  Pairwise Pearson

correlations between regions were computed between downsampled envelopes to obtain sFC. trFC

was computed over sliding widows of 15 seconds with an overlap of 12 seconds.  Within each

window sFC was  computed.  Recurrence  of  sFC within-subjects  was  measured  by  the  Pearson

correlation between the upper diagonal elements of the sFCs for each pairs of windows. Finally, a

histogram of  sFC reoccurrences  was  built.  Supplementary  Figure  6  shows  the  time-frequency

spectra of broad-band and alpha-band MEG activity.

Computation of the anatomical network

The  anatomical  network  was  computed  by  averaging  the  results  of  probabilistic  tractography

[81,82] on 10 diffusion datasets from the Human Connectome Project [83,84] parcellated into 68

cortical regions (34 per hemisphere) using the Desikan-Killiany cortical parcellation [79]. The FSL

tool ProbTrackX [85,86] was used to compute 1000 probabilistic streamlines starting from each

brain  voxel,  and  ending  at  the  boundary  between  white-matter  and  grey-matter  (WM/GM) as

defined by the CIFTI format [87]. For connectivity strength between any two regions A and B was

computed  by dividing  the  number  of  streamlines  connecting  A and B,  by the  total  number  of

streamlines reaching A or B (so-called fractional-scaling [88]). The resulting connectivity matrix

was made symmetric by averaging with its transpose, and rescaled to have an average degree of 1.

Then the connectivity matrix was normalized to have average edge weight equal to one. Finally,

37

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427443
http://creativecommons.org/licenses/by-nc-nd/4.0/


Euclidean distances were computed between the barycentre of each region in order to estimate the

delays between them. 
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