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21 Abstract

22 It is challenging to associate features such as human health outcomes, diet, environmental 

23 conditions, or other metadata to microbial community measurements, due in part to their 

24 quantitative properties. Microbiome multi-omics are typically noisy, sparse (zero-inflated), high-

25 dimensional, extremely non-normal, and often in the form of count or compositional 

26 measurements. Here we introduce an optimized combination of novel and established 
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27 methodology to assess multivariable association of microbial community features with complex 

28 metadata in population-scale observational studies. Our approach, MaAsLin 2 (Microbiome 

29 Multivariable Associations with Linear Models), uses general linear models to accommodate a 

30 wide variety of modern epidemiological studies, including cross-sectional and longitudinal 

31 designs, as well as a variety of data types (e.g. counts and relative abundances) with or without 

32 covariates and repeated measurements. To construct this method, we conducted a large-scale 

33 evaluation of a broad range of scenarios under which straightforward identification of meta-omics 

34 associations can be challenging. These simulation studies reveal that MaAsLin 2’s linear model 

35 preserves statistical power in the presence of repeated measures and multiple covariates, while 

36 accounting for the nuances of meta-omics features and controlling false discovery. We also 

37 applied MaAsLin 2 to a microbial multi-omics dataset from the Integrative Human Microbiome 

38 (HMP2) project which, in addition to reproducing established results, revealed a unique, 

39 integrated landscape of inflammatory bowel disease (IBD) across multiple time points and omics 

40 profiles.

41 Keywords: Human Microbiome, Metagenomics, Differential Abundance Analysis, Multivariable 

42 Association, Microbiome Epidemiology, Longitudinal Analysis

43 Introduction

44 Human-associated microbiota has been convincingly linked to the development and progression 

45 of a wide range of complex, chronic conditions including inflammatory bowel diseases (IBD), 

46 obesity, diabetes, cancer, and cardiovascular disorders1,2. Due to recent advances in multiple 

47 high-throughput functional profiling technologies, research has expanded well beyond bacteria-

48 specific 16S rRNA gene amplicon profiles to multi-omics surveys, i.e. non-bacterial, 

49 metagenomic, metatranscriptomic, metabolomic, and metaproteomic measurements assessed 

50 simultaneously in the same biological specimens3,4. Additionally, due to diminishing sequencing 
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51 costs, longitudinal, within-subject study designs are becoming increasingly common, especially 

52 when assessing the microbiome in population health5,6. These large, complex data contain 

53 abundant information to enable microbe-, gene-, and compound-specific hypothesis generation 

54 at scale. However, robust quantitative methods to do so at scale can still be challenging to 

55 implement without excessive false positives - one of the main hurdles in accurate translational 

56 applications of the microbiome to human health.

57 One of the primary limitations of leveraging such population-wide multi-omics surveys is thus 

58 computational, in part due to the complexity and heterogeneity of microbial community data that 

59 have made reliable application of statistical methods difficult. In particular, best practices to guard 

60 against spurious discoveries in meta-omics datasets remain scarce7-14. High-throughput meta-

61 omics datasets have specific characteristics that complicate their analyses: high-dimensionality, 

62 count and compositional data structure, sparsity (zero-inflation), over-dispersion, and hierarchical, 

63 spatial, and temporal dependence, among others. To combat these challenges, specialized 

64 methods implemented in usable, reproducible software are needed to accurately characterize 

65 microbial communities within large human population studies, while maintaining both sensitivity 

66 and specificity. 

67 Early advances in microbiome epidemiology focused on omnibus testing for identifying overall 

68 associations between aggregate microbiome structure and host or environmental phenotypes and 

69 covariates (e.g. disease status, diet, antibiotics or medication usage, age, etc.). Many of these 

70 rely on permutation-based procedures for moderated significance testing11. These methods 

71 assess whether overall community patterns of variation are associated with the covariates of 

72 interest, but fail to provide feature-level inference to enable follow-up characterization (where a 

73 feature can be any profiled omics abundance, e.g. taxa, genes, pathways, chemicals, etc.) To 

74 facilitate actionable outcomes, it is important to discern feature-specific associations at the highest 

75 possible resolution. This has led to the development of a variety of per-feature (or feature-wise) 
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76 association testing methods, most of which are based on similar statistical frameworks, differing 

77 primarily in (i) the choice of normalization or transformation, (ii) observation model or likelihood, 

78 and (iii) the associated statistical inference11. As compared to omnibus testing approaches, per-

79 feature methods (i) identify associations for each individual feature-metadata pair, (ii) facilitate 

80 feature-wise covariate adjustment, and (iii) call out specific features (as opposed to complex 

81 combinations of features implicated in associations in omnibus testing), leading to increased 

82 interpretability for translational and basic biological applications.

83 Despite a rich literature on feature-wise association testing for microbial communities, methods 

84 that can accommodate a wide variety of modern epidemiological study designs remain scarce. 

85 For instance, many early methods do not explicitly account for the sparsity observed in microbial 

86 meta-omics observations, and only a few scale beyond routine univariate (differential abundance) 

87 analyses without becoming overly susceptible to false positive or false negative results7,11. 

88 Furthermore, most methods for microbiome data do not explicitly adjust for repeated measures 

89 and multiple covariates in a unified statistical framework, a lack of which can have a profound 

90 (and typically anti-conservative) impact on subsequent epidemiological inference.

91 Here, we address these issues by providing a flexible approach to identify multivariable 

92 associations in large, heterogeneous meta-omics datasets. We have implemented this method 

93 as MaAsLin 2 (Microbiome Multivariable Associations with Linear Models, with software version 

94 2.0 released with this study), a successor to MaAsLin 115,16. Unlike MaAsLin 1’s single-model 

95 framework based on applications of arcsine square root-transformed linear model following Total 

96 Sum Scaling (TSS) normalization15,16, MaAsLin 2 has evaluated and combined the best set of 

97 analysis steps to facilitate high-precision association discovery in microbiome epidemiology 

98 studies. It provides a coherent paradigm through a multi-model framework with arbitrary 

99 coefficients (phenotypes and covariates) and contrasts of interest, along with support for data 

100 exploration, normalization, and transformation options to aid in the selection of appropriate data- 
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101 and design-driven statistical techniques for analyzing microbial multi-omics data. In this study, we 

102 also conducted a large-scale synthetic evaluation of a broad range of circumstances under which 

103 straightforward identification of meta-omics features can be challenging. These simulation studies 

104 revealed that MaAsLin 2 preserves statistical power in the presence of repeated measurements 

105 and multiple covariates while accounting for the nuances of meta-omics features and, critically, 

106 controlling false discovery rates. We concluded with an application to novel biomarker discovery 

107 in multiple omics datasets from the Integrative Human Microbiome Project (iHMP or HMP26). The 

108 implementation of MaAsLin 2, associated documentation and tutorial, and example data sets are 

109 freely available in the MaAsLin 2 R/Bioconductor software package at 

110 https://huttenhower.sph.harvard.edu/maaslin2.

111 Results

112 MaAsLin 2 methodology and validation

113 MaAsLin 2 provides a comprehensive multi-model system for performing multivariable 

114 association testing in microbiome profiles - taxonomic, functional, or metabolomic - with analysis 

115 modules for preprocessing, normalization, transformation, and data-driven statistical modeling to 

116 tackle the challenges of microbial multi-omics (compositionality, overdispersion, zero-inflation, 

117 variable library size, high-dimensionality, etc.; Fig. 1A). The MaAsLin 2 implementation requires 

118 two inputs: (i) microbial feature abundances (e.g. taxa, genes, transcripts, or metabolites) across 

119 samples, in either counts or relative counts; and (ii) environmental, clinical, or epidemiological 

120 phenotypes or covariates of interest (together “metadata”). Both metadata and microbial features 

121 are first processed for missing values, unknown data values, and outliers. If indicated, microbial 

122 measurements are then normalized and transformed to address variable depth of coverage 

123 across samples. Feature standardization is optionally performed, and a subset or the full 

124 complement of metadata are used to model the resulting quality-controlled microbial features and 
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125 define p-values for each metadata association per feature using one of a wide range of possible 

126 multivariable models. After all features are evaluated, p-values are adjusted for multiple 

127 hypothesis testing and a table summarizing statistically significant associations is reported. While 

128 the default MaAsLin 2 implementation uses a log-transformed linear model on TSS-normalized 

129 quality-controlled data, the software supports several other statistical models including GLM (e.g. 

130 Negative Binomial17), zero-adjusted models (e.g. Compound Poisson18,19, ZINB20), and multiple 

131 normalization/transformation schemes under one estimation umbrella. In the presence of 

132 repeated measures, MaAsLin 2 additionally identifies covariate-associated microbial features by 

133 appropriately modeling the within-subject (or environment) correlations in a mixed model 

134 paradigm, while also accounting for inter-individual variability by specifying between-subject 

135 random effects in the model. A variety of summary and diagnostic plots are also provided to 

136 visualize the top results.

137

138 Figure 1: MaAsLin 2 for feature-wise association of microbial communities with phenotypes. A) MaAsLin 2 is a statistical 
139 method for association analysis of microbial community meta-omics profiles. It comprises several steps, including data transformation, 
140 multivariable inference, multiple hypothesis test correction, and visualization. These are based on a set of flexible and computationally 
141 efficient linear models, while accounting for the nuances of microbiome data, repeated measures, and multiple covariates. B) 
142 Comprehensive benchmarking of multivariable methods for microbiome epidemiology. To identify appropriate methods for associating 
143 microbiome features with health outcomes and other covariates, we assessed up to 84 combinations of normalization/transformation, 
144 zero-inflation, and regression models (Supplementary Fig. S1A). These were applied to synthetic data using a hierarchical model 
145 (SparseDOSSA, http://huttenhower.sph.harvard.edu/sparsedossa) to generate realistic, model-agnostic datasets with varying scopes 
146 and effect sizes of microbiome associations. Individual per-feature association methods were performed repeatedly to evaluate 
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147 method-specific recall and precision measures. C) Association method performance summary across major evaluation criteria. Three 
148 aspects of performance were considered: (i) false discovery, (ii) sensitivity, and (iii) computational efficiency. Evaluation metrics are 
149 shown (in rows) for the resulting microbial multivariable association methods (both state-of-the-art and novel), averaged over all 
150 simulation parameters (Supplementary Fig. S1B). The top-performing methods (as measured by average F1 score) from each class 
151 of models (Supplementary Fig. S1C) are shown (in columns). With the exception of Spearman and Wilcoxon that maintained best 
152 performance on TSS-normalized data, all methods exhibited superior performance with no/default normalization (ANCOM, 
153 metagenomeSeq, metagenomeSeq2, DESeq2, edgeR, MaAsLin 1, MaAsLin 2, limma VOOM, ZIB) or library size normalization in 
154 which log-transformed library size is included as an offset in the associated GLM likelihood (Compound Poisson, Negative Binomial, 
155 ZINB). Top colored boxes represent method characteristics including the capability to handle zero-inflation and random effects. Based 
156 on synthetic evaluations, MaAsLin 2 includes optimized default models for epidemiological testing in microbial multi-omics data.

157 To identify model components appropriate for MaAsLin 2’s microbiome feature association testing 

158 and to objectively benchmark current association methods, we assessed realistic synthetic 

159 datasets generated by SparseDOSSA (full details of individual association methods, as well as 

160 simulation parameters, are described in Methods and are available online at 

161 https://github.com/biobakery/maaslin2_benchmark). Briefly, SparseDOSSA is a synthetic data 

162 generation routine that models biologically plausible synthetic data from diverse template 

163 microbiome profiles by taking into account (i) feature-feature, (ii) feature-metadata, and (iii) 

164 metadata-metadata correlations, superseding previous efforts by including multiple covariates 

165 and longitudinal designs (Methods). As compared to previous simulation schemes, 

166 SparseDOSSA allows multivariable spike-in both in the presence and absence of repeated 

167 measures, as well as arbitrary covariance structure in the metadata design matrix.

168 For this study, we carried out several spike-in experiments to induce and test controlled 

169 associations, as governed by configurable simulation parameters (Supplementary Fig. S1). 

170 When used for this purpose, SparseDOSSA first generates null microbial community features 

171 containing no significant association patterns using a Bayesian hierarchical model independently 

172 of metadata features (Fig. 1B, Methods). In addition to varying sample size and feature 

173 dimension, a broad range of metadata and experimental designs are then considered, including 

174 repeated measures and univariate and multivariate covariates (both continuous and binary) of 

175 varying dimension and effect size (Supplementary Fig. S1A). Specifically, in each instance, we 

176 varied sample sizes from small (10) to large (200) for a fixed feature size (up to 500), and within 

177 each sample size, the effect size parameter was again varied from modest (e.g. <2-fold 
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178 differences) to strong (10-fold). In each simulation, 10% of features (and 20% of metadata for 

179 multivariable scenarios) were modified as an in-silico spike-in. Precision and recall measures 

180 were averaged over 100 simulation runs (Supplementary Fig. S1B, Methods). All methods were 

181 corrected for multiple hypothesis testing using standard approaches for FDR control, declaring 

182 significant associations at a target of FDR 0.05. For a fair comparison, a basic, model-free filtering 

183 step to remove low-abundance features was performed before statistical modeling for all 

184 methods. Methods unable to process specific simulation configurations due to high computational 

185 overhead or slow convergence were omitted for those cases. 

186 To compare the detection power of various methods in identifying true positive feature 

187 associations, we first comprehensively evaluated published metagenomic tools and 

188 representative methods for bulk RNA-seq analysis within each simulation scenario. These 

189 methods were combined with several microbiome-appropriate normalization, transformation, and 

190 linkage models (Supplementary Fig. S1C, Methods). In particular, we considered six distinct 

191 categories of methods in our evaluations: (i) published methods specifically designed for microbial 

192 community, such as metagenomeSeq21, ANCOM14,22, and ZIB23,24, (ii) published bulk RNA-seq 

193 differential expression methods, such as DESeq225, edgeR26, and limma VOOM27,28; (iii) existing 

194 generalized linear model (GLM) count models, such as the negative binomial17, (iv) methods 

195 based on linear models, such as limma29 and “pure” linear models (LMs); (v) representative zero-

196 adjusted methods from the microbiome and scRNA-seq literature such as the compound 

197 Poisson18,19 and the zero-inflated negative binomial (ZINB20,30); and finally (vi) traditional, 

198 simplistic non-parametric methods, such as Spearman correlation and Wilcoxon tests. Of note, 

199 many of these methods can only compare two groups (i.e. a single binary metadatum), and not 

200 all are compatible with continuous and multivariate metadata, resulting in a distinct set of 

201 comparable methods for each experimental design.
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202 Our first consideration in designing MaAsLin 2 for microbiome epidemiology was to ensure that 

203 both current statistical theory and practical issues were considered during the analysis of 

204 microbiome multi-omics data. To this end, we rigorously characterized various finite-sample 

205 properties of different association methods focusing on three broadly defined aspects: (i) false 

206 discovery, (ii) detection power, and (iii) software implementation, with multiple performance 

207 indicators for each category (Fig. 1C). Rather than focusing on a single evaluation metric like the 

208 Area Under the Curve (AUC) or the False Positive Rate (FPR), we ranked methods based on a 

209 combination of metrics (Methods), many not considered in previous benchmarking. To 

210 summarize each evaluation criteria, a normalized continuous score ranging between 0 and 1 was 

211 assigned (Methods). Methods were then eliminated based on the presence of 'red flags' with 

212 respect to at least one evaluation criteria, i.e. extreme departures from the best possible value. 

213 Finally, metrics that are mainly descriptive rather than quantitative were also evaluated (e.g. the 

214 ability to handle complex metadata designs, zero-inflation, or repeated measures) to achieve a 

215 final consensus. This tiered strategy not only allowed us to select a set of "best" methods based 

216 on the fewest 'red flags' across all scenarios, but also to identify a method that is (i) sufficiently 

217 robust to false discovery control and detection power, (ii) scalable to large multi-omics datasets, 

218 and (iii) accommodating of most modern epidemiological designs and microbial data types. 

219 Notably, previous benchmarking in this area has only focused on differential abundance testing 

220 without the simultaneous consideration of multiple covariates and repeated measures7-9. 

221 Additionally, with the exception of Hawinkel et al.7, these benchmarking efforts lacked important 

222 considerations to the extent that they either (i) did not consider FDR as a metric of evaluation9,31,32 

223 or (ii) misreported false positive rate as FDR8 (Methods). While a majority of these studies made 

224 a final recommendation based on the traditional AUC metric or a combination of sensitivity and 

225 specificity, we argue that without considering the FDR-controlling behavior of a method, the AUC 

226 values alone are too optimistic to draw any meaningful conclusions about its practical utility. In 
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227 other words, particularly for biological follow-up, high precision among the most confident (lowest 

228 recall) predictions is essential. To this end, our large-scale benchmarking enables a progressive 

229 unification of traditional and practically important evaluation metrics by providing a comprehensive 

230 connected view of microbiome multivariable association methods, especially in the context of 

231 modern study designs, multiple covariates, and repeated measures. 

232 Overall, our simulation study revealed that virtually all high-sensitivity methods with an 

233 overoptimistic median AUC, especially those targeted to microbial communities, exhibited a highly 

234 inflated average FDR (Fig. 1C). A similar pattern was observed for other AUC-like measures such 

235 as F1 score and Matthew’s correlation coefficient (MCC). On the other end of the spectrum, 

236 compositionality-corrected methods such as ANCOM exhibited an extreme departure from ‘good’ 

237 performance with respect to several criteria including sensitivity and p-value calibration, as 

238 measured by both Conservative and Total Area7 (Methods). Overall, these simulations reveal 

239 that while there is no single method that outperforms others in all scenarios, MaAsLin 2 was the 

240 only multivariable method tested that controlled FDR with the fewest ‘red flags’ across scenarios 

241 (Fig. 1C).

242 This initial phase of our study thus expands the understanding of statistical association methods 

243 appropriate for microbial community data under varying study designs, and it especially highlights 

244 the inability of many common methods to control false discoveries. This is of critical importance 

245 to past and present microbiome association methods, as failure to control the FDR causes 

246 uncertainty in both scientific reproducibility and interpretability. Based on these evaluations, a 

247 linear model with TSS normalization and log transformation was adopted as the default model in 

248 MaAsLin 2, and the software provides several flexible options to apply a combination of other 

249 normalization, transformation, and statistical methods to customize specific analysis tasks. The 

250 implementation of MaAsLin 2, associated documentation, and example data sets are freely 

251 available in R/Bioconductor and at https://huttenhower.sph.harvard.edu/maaslin2.
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252 MaAsLin 2 controls false discovery rate while maintaining power in differential 

253 abundance analysis

254 Differential abundance testing for microbial community features (taxa, pathways, etc.) is one of 

255 the most commonly used strategies to identify features that differ between sample categories 

256 such as cases and controls. Despite a large number of developments in the area, a lack of 

257 consensus on the most appropriate statistical method has been a major concern11. To model 

258 experimental designs of this type, we used synthetic count data with spiked-in features 

259 differentially abundant between two defined groups of samples. In particular, we multiplied the 

260 mean relative abundance of a randomly sampled fraction of 10% of the features with a given 

261 effect size (fold change) in one of the groups and renormalized the ensemble of relative 

262 abundances to a unit sum to create features differentially abundant between groups. We repeated 

263 this procedure for each unique combination of sample size (10, 20, 50, 100, 200), feature 

264 dimension (100, 200, 500), and fold change (1, 2, 5, and 10), each time summarizing performance 

265 over 100 simulation runs (Methods). Before model fitting, features with a low prevalence (<10%) 

266 were trimmed from the generated data sets.

267 As in our overall evaluation (Fig. 1C), we observed marked differences between the FDR-

268 controlling behavior of different methods in the simple case of single binary metadata and non-

269 longitudinal design, in some cases exceeding 75% (Fig. 2). Among the methods with good, robust 

270 FDR control, only those based on linear models achieved moderate power, whereas, for methods 

271 such as DESeq2 and edgeR, the FDR control came at the cost of reduced power. Among other 

272 methods, practically all count and zero-inflated models, as well as newer methods based on log-

273 ratios such as ANCOM, struggled to correctly control the FDR at the intended (nominal) level, and 

274 the best performance in this class of methods was obtained by metagenomeSeq2, Compound 

275 Poisson, and ZINB (as measured by the F1 score). Many of the remaining methods were too 

276 liberal, with metagenomeSeq and Negative Binomial standing out with a large number of false 
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277 positive findings. Overall, linear models (LMs) remained critically the only class of methods tested 

278 that has good control of FDR across study designs, and they all exhibited a boost in statistical 

279 power with increased sample size and association strength (Supplementary Fig. S2).

280 We also evaluated the average FPR of these methods by recording the fraction of tested 

281 unassociated (negative) features that were deemed significant following FDR correction. Nearly 

282 all methods controlled the FPR well below the imposed level (Supplementary Fig. S3). Relatedly, 

283 we employed a previously proposed metric called “departure from uniformity” (i.e. departure from 

284 uniformity of p-value under the null), which, complementary to FPR, quantifies the liberal or 

285 conservative area between observed and theoretical quantiles of a uniform distribution7 

286 (Methods). As expected, methods with high average false discovery rates, including zero-inflated 

287 and count models, showed extreme departures from uniformity in the liberal direction, whereas 

288 conservative methods such as DESeq2 and edgeR showed the same in the opposite direction, 

289 suggesting extreme violation of uniformly distributed p-values under the null hypothesis 

290 (Supplementary Fig. S4). While these results raise potential concerns about the FDR-controlling 

291 behaviors of most existing methods, LM-based approaches did not exhibit this trend. In general, 

292 tools based on linear models (such as limma) performed very similarly when calibrated with 

293 MaAsLin 2's default model parameters, as expected, but not with their recommended default 

294 parameters (Supplementary Fig. S3). Additionally, their options for handling sparsity and 

295 compositionality were generally not appropriate for microbiome data. Amplicon, metagenomic 

296 taxonomic, and functional profiles each show distinct count and zero-inflation properties, for 

297 example, that are best handled by a multi-model system. As such, in addition to the binary 

298 metadata design, we repeated the above simulation experiments for univariate continuous 

299 metadata as well, which led to similar conclusions (Supplementary Fig. S5), further supporting 

300 MaAsLin 2’s default model’s performance across metadata types and experimental designs. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.20.427420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427420


13

301

302 Figure 2: MaAsLin 2 controls false discovery rate while maintaining power in differential abundance analysis of microbial 
303 communities. To assess models’ behaviors during differential abundance analysis, we simulated 100 independent datasets per 
304 parameter combination, each containing a single binary metadatum and a fixed number of true positive features (10% of features 
305 differentially abundant) for varying association strengths and sample sizes (Supplementary Fig. S1C). We then evaluated the ability 
306 of different microbiome association methods to recover these associations using a variety of performance metrics and summarized 
307 the results across runs (Methods). Both sensitivity and false discovery rates (FDR) are shown for the best-performing method from 
308 each class of models (as measured by average F1 score; Methods; full results in Supplementary Figs. S2-S5). Compared to zero-
309 inflated and count-based approaches, MaAsLin 2’s linear model formulation consistently controlled false discovery rate at the intended 
310 nominal level while maintaining moderate sensitivity. Red line parallel to the x-axis is the target threshold for FDR in multiple testing. 
311 Methods are sorted by increasing order of average F1 score across all simulation parameters in this setting. 

312 As a final evaluation, we assessed the impact of various normalization schemes on the associated 

313 statistical modeling, evaluating all combinations of normalizations appropriate for each applicable 

314 method (Supplementary Fig. S1C, Methods). Focusing on the best-performing linear models, 

315 we found that model-based normalization schemes such as relative log expression (RLE33) as 

316 well as data-driven normalization methods such as the trimmed mean of M-values (TMM34) and 

317 cumulative sum scaling (CSS21) led to good control of FDR, but they also led to a dramatic 

318 reduction in statistical power (Supplementary Figs. S3, S5). In contrast, TSS showed the best 

319 balance of performance among all tested normalization procedures, leading to more powerful 
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320 detection of differentially abundant features. These results have potential implications for other 

321 analyses in addition to differential abundance testing, as normalization is usually the first critical 

322 step before any analysis of microbiome data, and an inappropriate normalization method may 

323 severely impact post-analysis inference. In summary, our synthetic evaluation indicates that TSS 

324 normalization, although simplistic in nature, may be superior to other normalization schemes 

325 especially in the context of feature-wise differential abundance testing (and more generally for 

326 multivariable association testing, as described later), in addition to community‐level comparisons 

327 as previously described35. 

328 MaAsLin 2 facilitates multivariable association discovery in population-scale 

329 epidemiological studies

330 Moving beyond univariate comparisons, we next assessed MaAsLin 2’s performance in 

331 multivariable association testing in comparison to other methods. Although widespread in 

332 microarray and gene expression literature, multivariable analysis methods have remained 

333 underdeveloped in microbial community studies. From an epidemiological point of view, 

334 coefficients from a covariate-adjusted regression model are arguably more interpretable than its 

335 individual, unadjusted counterparts. As a result, major conclusions from existing benchmarking 

336 studies geared towards univariate associations are not generalizable to this broader setting, 

337 where challenges such as zero-inflation and multiple testing are likely to be exacerbated, 

338 especially in relation to multiple rounds of independently conducted univariate analyses as 

339 commonly practiced. 

340 To introduce multivariable associations into synthetically generated microbial feature profiles, we 

341 supplemented each “sample” with multiple covariates consisting of both binary and continuous 

342 metadata, either independent or correlated (Supplementary Fig. S1A, Methods). In each of 

343 these datasets, 10% randomly selected features were modified (“spiked”) to be associated with 
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344 randomly chosen 20% metadata features with a given magnitude (effect size). After spiking in, 

345 samples were rescaled to their original (simulated) sequencing depth. As before, we repeated this 

346 procedure for each unique combination of sample size (10, 20, 50, 100, 200), feature dimension 

347 (100, 200, 500), and effect size (1, 2, 5, and 10), each time summarizing performance over 100 

348 simulation runs.

349 The results from this set of simulations revealed that MaAsLin 2’s default linear model had the 

350 highest sensitivity among the methods that controlled the FDR at the target level, which also 

351 remained consistent at larger sample sizes and stronger effect sizes (Fig. 3). We also observed 

352 an improvement in performance when TSS normalization was employed (as compared to no 

353 normalization) but did not observe similar improvement for other normalization methods 

354 (Supplementary Fig. S6). As before, zero-inflated and count models failed to control the FDR at 

355 the nominal level, in the sense that the actual FDR was always above the nominal threshold used 

356 for identifying significant features - a phenomenon that was surprisingly consistent regardless of 

357 the metadata covariance structure (Supplementary Fig. S7). Taken together, these findings 

358 further confirm that MaAsLin 2’s default linear model is able to detect relevant associations across 

359 a broad range of metadata designs, facilitating population-level analyses of microbial 

360 communities.
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361
362 Figure 3: MaAsLin 2 facilitates multivariable association discovery in large-scale human epidemiological and other microbial 
363 community studies. Synthetic datasets containing five “metadata” with varying types of induced feature associations were analyzed 
364 using a variety of multivariable approaches (Supplementary Fig. S1C). As measured by power (recall) and false discovery rate (FDR), 
365 MaAsLin 2's default linear model outperformed other methods in controlling FDR while maintaining power across true-positive fold-
366 change values, regardless of the total number of features. As expected, MaAsLin 2 has better power for stronger effect sizes, 
367 eventually attaining the highest power among all FDR-controlling methods. Red line parallel to the x-axis is the nominal FDR. Values 
368 are averages over 100 iterations for each parameter combination. The x-axis (effect size) within each panel represents the linear 
369 effect size parameter; a higher effect size represents a stronger association. For visualization purposes, the best-performing methods 
370 from each class of models (as measured by average F1 score; Methods; full results in Supplementary Figs. S6-S7) are shown. 
371 Methods are sorted by increasing order of average F1 score across all simulation parameters in this setting. 

372 MaAsLin 2 enables targeted microbiome hypothesis testing in the presence of 

373 repeated measures

374 To further validate MaAsLin 2 for longitudinal (or other repeated measures) microbiome data, we 

375 modified our simulation scheme to introduce subject-specific random effects - a key feature of 

376 modern microbiome population studies36. To this end, we tested MaAsLin 2 and related methods 

377 on two types of study designs. The first comprised univariate binary metadata designed to be 

378 challenging by the inclusion of non-independence of the data across time points. Second, we also 

379 simulated more realistic datasets using multiple independent covariates specific to longitudinal 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.20.427420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427420


17

380 microbiome studies. In both these regimes, realistic data were generated using SparseDOSSA 

381 each with five time points24, as in previous studies, but after introducing within-subject correlations 

382 and between-subject random effects drawn from a multivariate normal distribution (Methods). It 

383 is to be noted that the set of evaluable models is greatly reduced from the previous set of cross-

384 sectional association tests, as methods not capable of assessing repeated measures were 

385 discarded.

386 Using these longitudinal synthetic “microbial communities,” we compared the estimation and 

387 inference from MaAsLin 2 with those of the existing methods, which revealed that MaAsLin 2 had 

388 much lower false discovery rates than alternatives including ZIB (Fig. 4, Supplementary Figs. 

389 S8-S11), a method specifically designed for microbiome longitudinal data. Both ZIB and MaAsLin 

390 2’s linear mixed-effects models are capable of identifying covariate-associated features by jointly 

391 modeling all time points. However, the computational overhead of ZIB is significantly higher than 

392 that of MaAsLin 2, which is prominent even for small datasets (Supplementary Fig. S12). 

393 Notably, although not nearly as severe as count-based and zero-inflated models, MaAsLin 2 had 

394 a slightly inflated FDR in the univariate repeated measures scenario (Fig. 4A) but not in the 

395 multivariable scenario (Fig. 4B). Among other methods, GLM-based methods such as Negative 

396 Binomial and Compound Poisson performed similarly to their non-longitudinal counterparts for 

397 both normalized and non-normalized counts (Supplementary Figs. S8-S9). This remained 

398 consistent for both univariate continuous metadata (Supplementary Fig. S10) as well as multiple, 

399 correlated covariates (Supplementary Fig. S11). Overall, these results suggest that MaAsLin 2’s 

400 linear mixed effect model consistently provides lower false discovery rates across metadata 

401 designs and can effectively aid in testing differential abundance and multivariable association of 

402 longitudinal microbial communities.
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403

404 Figure 4: MaAsLin 2 enables targeted microbial feature testing in the presence of repeated measures. Results on simulated 
405 data comprising SparseDOSSA-derived compositions with five repeated measures per sample. The FDR is close to the target 0.05 
406 level for MaAsLin 2’s default linear model but not for zero-inflated and count models. As before, MaAsLin 2’s linear model is 
407 consistently better powered than both negative binomial and limma VOOM at comparable FDR values, which remains consistent for 
408 both univariate continuous metadata (A) and multivariable mixed metadata designs (B) (a combination of continuous and binary 
409 covariates with five metadata features; Methods, full results in Supplementary Figs. S8-S11). The red line parallel to the x-axis is 
410 the given threshold for FDR in multiple testing. Within each panel, methods are sorted by increasing order of average F1 score across 
411 all associated simulation parameters in each setting. 

412 Multi-omics associations from the Integrative Human Microbiome Project

413 We applied MaAsLin 2 to identify relevant microbial features associated with the inflammatory 

414 bowel diseases (IBD) using longitudinal multi-omics data from the Integrative Human Microbiome 

415 Project (iHMP or HMP236). The HMP2 Inflammatory Bowel Disease Multi-omics (IBDMDB) 

416 dataset included 132 individuals recruited in five US medical centers with Crohn’s disease (CD), 

417 ulcerative colitis (UC), and non-IBD controls, followed longitudinally for one year with up to 24 

418 time points each (Methods).
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419 Integrated multi-omics profiling of the resulting 1,785 stool samples generated a variety of data 

420 types including metagenome-based taxonomic profiles as well as metagenomic and 

421 metatranscriptomic functional profiles, producing one of the largest publicly available microbial 

422 multi-omics datasets. Metagenomes and metatranscriptomes were functionally profiled using 

423 HUMAnN 237 to quantify MetaCyc pathways38, and taxonomic profiles from metagenomes were 

424 determined using MetaPhlAn 239 (Methods). For each of these data modalities (i.e. taxonomic 

425 profiles and DNA/RNA pathways), independent filtering was performed before downstream 

426 testing to reduce the effect of zero-inflation on the subsequent inference. In particular, features 

427 for which the variance across all samples was very low (below half the median of all feature-wise 

428 variances) or with >90% zeros were removed36. To further remove the effect of redundancy in 

429 pathway abundances (explainable by at most a single taxon), only features (both DNA and RNA) 

430 with low correlation with individual microbial abundances (Spearman correlation coefficient <0.5) 

431 were retained.

432 We first used the IBDMDB to perform an additional semi-synthetic evaluation of association 

433 methods’ performance in “real” data, specifically when attempting to associate randomized, null 

434 microbial taxonomic profiles to covariates. To this end, we permuted all samples 1,000 times to 

435 construct shuffled “negative control” datasets, each time assessing the number of significant 

436 associations (unadjusted p <0.05) for each applicable method. These were averaged across 

437 iterations to derive the expected number of null associations per method (which should remain 

438 near-zero under usual circumstances). In particular, we fit (i) a baseline model as a function of 

439 IBD diagnosis (a categorical variable with non-IBD as the reference group) while adjusting for 

440 enrollment age (as a continuous covariate) and antibiotic use (as a binary covariate), and (ii) a 

441 mixed effects model (with subject as random effects) with IBD dysbiosis state as an additional 

442 time-varying covariate in addition to the time-invariant covariates considered in the baseline 

443 model. Consistent with prior simulations, we found that several methods produced inflated 
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444 empirical type I error rates (Supplementary Fig. S13). This conclusion remained unchanged 

445 across varying significance thresholds, and as a result, we did not further apply these methods to 

446 the non-permuted data. Relevantly and importantly, linear models did not suffer from this problem, 

447 providing additional support for MaAsLin 2’s robustness to false positive findings.

448 To dissect dysbiotic changes in IBD at greater resolution, we applied MaAsLin 2 to each individual 

449 microbial feature type (i.e. species and DNA/RNA pathways) to test association with IBD 

450 phenotype while controlling for IBD dysbiosis state, diagnosis, age, and antibiotic use (Fig. 5; 

451 Methods). Nominal p-values for UC- and CD-specific effects were subjected to multiple 

452 hypothesis testing correction using the Benjamini-Hochberg method40 with an FDR threshold of 

453 0.25. MaAsLin 2 identified a comparable number of significant associations with those initially 

454 reported by the IBDMDB36. Among microbial species, MaAsLin 2's default linear model identified 

455 206 significant associations, among which 150 (72.8%) overlapped with the original study 

456 (Supplementary Fig. S14). MaAsLin 2 also reported many significant associations that were not 

457 discovered in the original study (Supplementary Dataset S1). For instance, we observed a 

458 significant increase in Bacteroides ovatus in both UC and CD dysbiotic patients that was not 

459 previously captured, as well as detecting (with MaAsLin 2’s increased power) specific depleted 

460 Roseburia species (R. inulinivorans and R. hominis) not captured by the previous analysis. 

461 Notably, top hits from both MaAsLin 2 and the original study yielded nearly identical rankings 

462 across data types, which broadly manifested as a characteristic increase in facultative anaerobes 

463 at the expense of obligate anaerobes, in agreement with the previously observed depletion of 

464 butyrate producers such as Faecalibacterium prausnitzii in IBD (Fig. 5A).

465 As an additional validation, we next re-analyzed the HMP2 taxonomic and functional profiles using 

466 a zero-adjusted model (implemented in MaAsLin 2 as the compound Poisson). While this 

467 maintained type-I error control in our shuffled data validation (as did the default linear model, 

468 Supplementary Fig. S13), it was generally less desirable due to FDR inflation in simulations 
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469 (Figs. 2-4). In terms of the number of differentially abundant features detected, both the default 

470 linear model and the compound Poisson model performed similarly, with a significant overlap 

471 between the top hits identified by each method (Supplementary Fig. S15). Among other 

472 methods, ZIB and limma VOOM also maintained good Type I error control in these experiments, 

473 although again both underperformed along other axes in our simulation studies. These results 

474 further strengthen the finding that a combination of controlled parametric simulations and 

475 ‘negative control’ experiments based on data shuffling are useful together in identifying methods 

476 for real-world applications, as the lack of either can lead to misleading (and irreproducible) 

477 conclusions across independent evaluations7. This also highlights the flexibility of MaAsLin 2’s 

478 multi-analysis framework, wherein researchers are well-served with multiple (i) normalization 

479 schemes, (ii) statistical models, (iii) multiplicity adjustments, (iv) multiple fixed and random effects 

480 specifications, and (v) in-built visualization and pre-processing options, facilitating seamless 

481 application of methods across diverse experimental designs under a single estimation umbrella.

482 Finally, in addition to taxonomic associations, MaAsLin 2 also detected 492 and 58 significant 

483 functional associations for metagenomic (DNA) and metatranscriptomic (RNA) pathways, 

484 respectively (Supplementary Datasets S2-S3), among which 358 (72.7%) and 39 (67.2%) 

485 overlapped with the original study (Supplementary Fig. S14). While the original analysis of these 

486 data included only community-wide functional profiles, we extended this by considering 

487 metagenomic and metatranscriptomic functional profiles at both whole-community and species-

488 stratified levels in order to quantify overall dysbiotic functions while simultaneously assigning them 

489 to specific taxonomic contributors. In particular, this considers a per-feature DNA covariate model, 

490 in which per-feature normalized transcript abundance is treated as a dependent variable, 

491 regressed on per-feature normalized DNA abundances along with other regressors in the model 

492 (Methods). Surprisingly, bioinformatics and statistics for metatranscriptomics are not yet 

493 standardized, and our results indicate that subtle model variations can produce substantially 
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494 different results, due to the interactions between two compositions (DNA and RNA relative 

495 abundances, Supplementary Dataset S4). This novel modeling strategy thus led to the discovery 

496 of several novel transcript associations relative to the original study.

497 In a majority of these pathways, functional perturbations were driven by shifts in their 

498 characteristic contributing taxa (Fig. 5B). For example, the most significant DNA pathways 

499 enriched in CD patients were characteristic of facultative anaerobes such as Escherichia coli, 

500 which are broadly more abundant during inflammation. These included pathways such as 

501 synthesis of the enterobactin siderophore, lipid A, and sulfate reduction. A second set of enriched 

502 pathways was depleted due to the loss of microbes such as F. prausnitzii, a particularly prevalent 

503 organism that, when abundant, tended to contribute the majority of all enriched pathways it 

504 encodes in this cohort (e.g. synthesis of short-chain fatty acids and various amino acids).

505 With the increased sensitivity of this analysis for species-stratified pathways, the overwhelming 

506 majority of significant metagenomic differences were attributable solely to the most differential 

507 individual organisms, as expected (Supplementary Datasets 5-6). Essentially every pathway 

508 reliably detectable in E. coli was enriched during CD, UC, or both, and most F. prausnitzii 

509 pathways depleted, along with many pathways from other gut microbes common in “health” 

510 (Bacteroides vulgatus, B. ovatus, B. xylanisolvens, B. caccae, Parabacteroides spp., Eubacterium 

511 rectale, several Roseburia spp., and others). Interestingly, since both more potentially causal 

512 “driver” pathways, along with all other “passenger” pathways encoded by an affected microbe, 

513 are detected by this more sensitive stratified analysis, it can be in many ways more difficult to 

514 interpret than the non-stratified, community-wide, cross-taxon metagenomic responses to broad 

515 ecological conditions such as immune activity, gastrointestinal bleeding, or oxygen availability.
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516

517 Figure 5: Multi-omics associations from the Integrative Human Microbiome Project. A) Top 10 significant associations 
518 (FDR < 0.25) detected by MaAsLin 2’s default linear model (significance and coefficients in Supplementary Datasets S1-S3.). All 
519 detected associations are adjusted for subjects and sites as random effects and for other fixed-effects metadata including the subject’s 
520 age, diagnosis status (CD, UC, or non-IBD), disease activity (defined as median Bray-Curtis dissimilarity from a reference set of non-
521 IBD samples), and antibiotic usage. Representative significant associations with dysbiosis state from each ‘omics profile are shown:  
522 species (B), metagenomic (DNA) pathways (C), and metatranscriptomic (RNA) pathways (D). Values are log-transformed relative 
523 abundances with half the minimum relative abundance as pseudo count; full results in Supplementary Datasets S1-S3.

524 Conversely, differentially abundant microbe- and pathway-specific transcript levels highlighted a 

525 much more specific and dramatic shift toward oxidative metabolism, away from anaerobic 

526 fermentation, and towards Gram-negative (often E. coli) growth during inflammation (Fig. 5C)41. 

527 Many of these processes were either more extreme during (e.g. gluconeogenesis) or unique to 
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528 (e.g. glutathione utilization) active CD, as compared to UC. CD and UC responses were opposed 

529 in a small minority of cases (e.g. glutaryl-CoA degradation). When stratified among contributing 

530 taxa, these differences were almost universally attributable to a few key species, particularly an 

531 increase in E. coli activity during inflammation and decreases of F. prausnitzii transcript 

532 representation. Condition-specific transcriptional changes were occasionally contributed (or not) 

533 by “passenger” Bacteroides spp. (B. fragilis, B. xylanisolvens, B. dorei) instead. Note that these 

534 differences include pathways more likely to be “causal” in some sense, as significant 

535 transcriptional changes were generally a subset of those detected due to whole-taxon shifts in 

536 DNA content (including housekeeping pathways such as general amino acid or nucleotide 

537 biosynthesis). These findings further support the importance of disease-specific transcriptional 

538 microbial signatures in the inflamed gut relative to metagenomic profiles of functional potential, 

539 suggesting that a potential loss of species exhibiting altered expression profiles in disease may 

540 have more far-reaching consequences than suggested by their genomic abundances alone.

541 Discussion

542 A longstanding goal of microbial community studies, be they for human epidemiology or 

543 environmental microbiomes, is to identify microbial features associated with phenotypes, 

544 exposures, health outcomes, and other important covariates in large, complex experimental 

545 designs. This parallels other methods for high-throughput molecular biology, but microbial 

546 community multi-omics must account for properties such as variable sequencing depth, zero-

547 inflation, overdispersion, mean-variance dependency, measurement error, and the importance of 

548 repeated measures and multiple covariates. To this end, we have developed and validated a 

549 highly flexible, integrated framework utilizing an optimized combination of novel and well-

550 established methodology, MaAsLin 2. This accommodates a wide variety of modern study 

551 designs ranging from within-subject, longitudinal to between-subject, cross-sectional, diverse 
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552 covariates, and a range of quality control and statistical analysis modules to identify statistically 

553 significant as well as biologically relevant associations in a reproducible framework. The 

554 embedding of these strategies in the paradigm of generalized linear and mixed models enables 

555 the treatment of both simple and quite complex designs in a unified setting, improving the power 

556 of microbial association testing while controlling false discoveries. To validate this framework, we 

557 have extensively evaluated its performance alongside a set of plausible methods for differential 

558 abundance analysis in a wide range of scenarios spanning simple univariate to complex 

559 multivariable with varying scopes and effect sizes of microbiome associations. Finally, we applied 

560 MaAsLin 2 to identify disease-associated features by leveraging the HMP2’s multi-omics profile 

561 of the IBD microbiome, confirming known associations and suggesting novel ones for future 

562 validation.

563 A unique aspect of our synthetic evaluation of microbial community feature-wise association 

564 methods while developing MaAsLin 2 is their comprehensive assessment in the presence of 

565 multiple covariates and repeated measures, an increasingly common characteristic of modern 

566 study designs. To identify covariate-associated microbial features from longitudinal, non-

567 independent measurements, it is necessary to jointly model data from all time points and 

568 appropriately account for the within-subject correlations while allowing for multiple covariates. 

569 This is particularly critical in the human microbiome, where baseline between-subject differences 

570 can be far greater than those within-subjects over time, or of the effects of phenotypes of interest. 

571 To the best of our knowledge, the synthetic evaluation presented here is the first to consider such 

572 aspects of large-scale microbiome epidemiology in statistical benchmarking. This enabled us to 

573 investigate key aspects of published methods that would be difficult to generalize from univariate 

574 comparisons alone7-9. Note that the resulting conclusion is largely independent of the association 

575 models being evaluated, as the synthetic data were generated from an additional, completely 

576 external model (i.e. the zero-inflated log-normal, Methods), which is fundamentally different from 
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577 any of the evaluated parametric methods. Our simulation results thus complement the findings of 

578 previous studies in several important aspects. Consistent with previous reports, nearly all zero-

579 inflated models suffer from poor performance (i.e. inflated false positives and higher computation 

580 costs), here in both univariate and multivariable scenarios with or without repeated measures. 

581 This calls for methodological advancements in statistical modeling of zero-inflated data, as 

582 existing theory seems to differ very surprisingly from practice when implemented by established 

583 optimization algorithms and applied to noisy data.

584 One noteworthy finding of our evaluation is that a random effect implementation of the same 

585 underlying statistical model can lead to different substantive conclusions than its fixed-effects 

586 counterpart. This was particularly evident for the negative binomial case, where a substantially 

587 better control of FDR (albeit inflated) was observed for the random effect analog. Interestingly, 

588 the negative binomial model (with or without zero inflation) is in many ways considered the most 

589 “appropriate” model for count-based microbial community profiles, but we observed extremely 

590 inconsistent behavior for negative binomial and ZINB implementations during our evaluation, as 

591 also observed in previous findings42. In particular, our negative binomial evaluation used the 

592 glm.nb() function from the MASS R package43 for fixed-effects and the glmer() function from the 

593 R package lme444 for random effects, whereas the ZINB evaluation used the zeroinfl() function 

594 from the R package pscl45. This additionally highlights the potential reproducibility concerns 

595 induced by differences in algorithms, implementations, and computational environments even for 

596 the same underlying model, suggesting that great caution should be taken when interpreting 

597 multiple implementations of the same statistical model for challenging microbial community 

598 settings in the absence of an experimentally validated gold standard.

599 In agreement with previous studies, we confirmed that most RNA-seq differential expression 

600 analysis tools tend to provide suboptimal performance when applied unmodified to zero-inflated 

601 microbial community profiles. In particular, count-based models, due to their strong parametric 
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602 assumptions on the distributions or parametric specifications of the mean-variance dependency, 

603 tend to have inflated FDR when the assumptions are violated. In sharp contrast to previous claims, 

604 however, compositionality-corrected methods such as ANCOM14,22 as well as specialized 

605 normalization and transformation methods such as CLR46 did not improve performance over non-

606 compositional approaches8,47, consistent with recent findings that compositional methods may not 

607 always outperform non-compositional methods32. Importantly, these conclusions hold regardless 

608 of the nature of the modeling paradigm (i.e. univariate vs. multivariable), thus providing a 

609 generalizable benchmark for future evaluation studies of applied microbiome association 

610 methods. Though we primarily focused on data generated in microbial community surveys, many 

611 of our conclusions are extendible to similar zero-inflated count data arising in other applications 

612 such as single-cell RNA-seq. Taken together, these simulation results revealed that further 

613 investigation into the causes of the failure of FDR correction and development of specialized false 

614 positive-controlling methods are important upcoming challenges in microbiome statistical 

615 research. 

616 Limitations of the current MaAsLin 2 method include, first, its restriction to associating one feature 

617 at a time. While this strategy has the advantage of being straightforward to interpret, implement, 

618 and parallelize, it sacrifices inferential accuracy by ignoring any correlation structure among 

619 features. This can certainly exist due both to compositionality and to biology and will differ e.g. 

620 between taxonomic features (related by phylogeny) vs. functional ones (such as pathways). A 

621 potential extension would be to adopt an additional multivariate framework that allows modeling 

622 simultaneously rather than sequentially, thus improving power by borrowing strength across non-

623 independent features. Second, as revealed by our synthetic evaluation, not surprisingly, linear 

624 models remain underpowered in detecting weak effects among microbial communities, especially 

625 when accompanied by a small sample size. This is in some ways a necessary consequence of 

626 the restrictions of current microbiome measurement technologies, and it emphasizes the 
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627 importance of an informed power analysis before study planning to ensure an optimal sample size 

628 with adequate detection power. Finally, and relatedly, it is not straightforward to incorporate any 

629 type of graph structure knowledge such as phylogeny or pathway-based functional roles into the 

630 per-feature linear model framework. Bayesian linear models can potentially improve on this by 

631 including such information through a suitable prior distribution.

632 Several aspects of microbiome epidemiology remain to be investigated both biologically and 

633 computationally, in addition to the challenges addressed here. For example, while it is possible to 

634 obtain strain-level resolution from metagenomic sequencing data, strain variants are generally 

635 unique to particular individuals rather than broadly carried by many people, presenting unique 

636 challenges for strain-level multi-omics. From a computational point of view, this calls for further 

637 refinements to MaAsLin 2’s methodology when applied to strain-resolved community profiles. In 

638 addition, the modeling framework adopted here can only inform undirected associations, and 

639 hence cannot be used to infer causation. Advanced methods from other molecular epidemiology 

640 fields such as causal modeling and mediation analysis methods can help overcome these 

641 issues48. Another opportunity for future extension of our method is the integration of established 

642 missing data imputation methods across features and metadata, a common pitfall in many 

643 molecular epidemiology studies36. Combined, such extensions will lead to further improvement in 

644 downstream inference, allowing researchers to investigate a range of hypotheses related to 

645 differential abundance and multivariable association.

646 As currently implemented, MaAsLin 2 is designed to be applicable to most human and 

647 environmental microbiome study designs, including cross-sectional and longitudinal. Clearly, 

648 these can also be extended to additional designs, such as nested case-control and case-cohorts. 

649 It is to be noted that MaAsLin 2’s capability extends well beyond association analysis. For 

650 instance, MaAsLin 2’s multi-analysis framework has been used in the context of meta-analysis49, 

651 and the extracted residuals and random effects from a MaAsLin 2 fit can be used for further 
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652 downstream analysis (e.g. as has been done in the original HMP2 study for cross-measurement 

653 correlation analysis36). By adhering to a flexible mixed effects framework, MaAsLin 2 is able to 

654 analyze multiple groups and time points jointly with other associated covariates, which allows 

655 formulation of both fixed effects (for cross-sectional associations) and random effects (for within-

656 subject correlations) in a single unified framework. This is particularly appropriate for non-

657 longitudinal studies (those with a small number of repeated measures e.g. multiple tissues or 

658 families), or from sparse and irregular longitudinal data from many subjects (e.g. with unequal 

659 number of repeated measurements per subject, as commonly encountered in population-scale 

660 epidemiology). This aspect could also be extended in the future, based on the increasing 

661 availability of dense time-series profiles appropriate for non-linear trajectory-based methods from 

662 Bayesian nonparametrics, such as Gaussian processes, particularly in the presence of multiple 

663 covariates5,50. Finally, methods need to be developed to accommodate the increasing availability 

664 of microbiome-host interactomics and electronic health records in population-scale microbiome-

665 wide epidemiology6, moving beyond observational discovery toward translational applications of 

666 the human microbiome. In summary, the methodology presented here provides a starting point 

667 for more efficient identification of microbial associations from large microbial community studies, 

668 offering practitioners a wide set of analysis strategies with state-of-the-art inferential power for the 

669 human microbiome and other complex microbial environments.

670 Methods

671 Data for differential feature model evaluations

672 Synthetic null community abundances

673 Realistic null community data were generated using the SparseDOSSA51 (Sparse Data 

674 Observations for the Simulation of Synthetic Abundances) hierarchical model 
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675 (http://huttenhower.sph.harvard.edu/sparsedossa). SparseDOSSA is a newly developed 

676 simulator designed to model the fundamental characteristics of real microbial communities (e.g. 

677 zero-inflation, compositionality, etc.) and to simulate new, realistic metagenomic count data with 

678 known feature-feature and feature-metadata correlations and provide a gold standard to enable 

679 benchmarking of statistical metagenomics methods, superseding previous efforts by including 

680 multiple covariates and longitudinal designs.

681 Briefly, SparseDOSSA’s Bayesian model captures microbial features (taxon, gene, or pathway 

682 abundances) as truncated, zero-inflated log-normal distributions, the parameters of which are 

683 hierarchically derived from a parent log-normal distribution. SparseDOSSA estimates feature-

684 specific parameters by fitting to a real-world template dataset, and generates synthetic features 

685 from zero-inflated, truncated log-normal distributions based on both fitted and user-defined 

686 parameters on a per feature basis (Supplementary Fig. S1A). All feature-specific parameters, 

687 namely the log-mean, zero-inflation proportion, truncation point, and log-variance are empirically 

688 determined to resemble the template dataset’s properties. After sampling, the samples are 

689 rounded to the nearest integer to mimic count data. A combined dataset of the RISK52, PRISM15, 

690 pouchitis16, and NLIBD53 gut microbiomes, totaling several thousand samples, was used as 

691 empirical microbiome template data for the simulations reported in this study. To mimic realistic 

692 variation in library size, sequencing depth was generated from a lognormal distribution with 

693 average sequencing depth 50,000, resulting in approximately 30-fold to 100-fold variation in 

694 sequencing depth. 

695 Synthetic metadata generation

696 Simulated metadata matrices in simple univariate cases (UVA, UVB) were generated with 

697 continuous values from a standard normal distribution. For the univariate binary case (UVB), we 

698 additionally dichotomized the continuous variable by coding samples in the bottom and top half 

699 of the distribution as 0 and 1, respectively. For multivariate cases (MVA, MVB), we repeated the 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.20.427420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427420


31

700 above discretization for multiple metadata by first generating from a multivariate normal 

701 distribution, and concurrently binarizing half of the metadata features at random. We considered 

702 two frequently encountered correlation structures for the multivariate cases: independent and AR 

703 (1) with coefficient 0.5, which correspond to MVA and MVB, respectively. Additionally, we 

704 considered repeated measures by incorporating random effects in these cross-sectional design 

705 matrices. To that end, we generated a simple blocking variable that is normally distributed (with 

706 mean 0 and variance 1) across subjects but invariant within subjects, representing a single 

707 random effect factor such as subject or time point (block size determined by the simulation 

708 parameters as reported in Supplementary Fig. S1A). Subsequently, we added this as an 

709 additional covariate to the fixed-effects metadata to impose correlations within the blocks, 

710 mimicking longitudinal studies. For multivariable cases (MVA, MVB), the number of covariates is 

711 fixed to 5. Similarly, for the repeated measures settings, T = 5 time points per subject is 

712 considered.

713 Multivariable spike-ins of synthetic feature-metadata associations

714 To introduce associations between features and metadata, we used SparseDOSSA’s default 

715 additive spike-in procedure. Following Weiss et al.8, we implement the spike-ins in a balanced 

716 way across all metadata to avoid compositional bias. Briefly, SparseDOSSA standardizes both 

717 (microbial) features and metadata and randomly chooses (microbial) null features and metadata 

718 without replacement. The standardization procedure ensures that the spiked-in features are not 

719 dominated by the values of the target metadata but rather distributed similarly to the real data. 

720 Next, the standardized non-zero abundances of the selected features are modified by adding a 

721 linear combination of all spiked-in standardized metadata, in which a real-valued effect size 

722 parameter (Supplementary Fig. S1A) governs the strength of association for each associated 

723 feature-metadata pair. To create differentially abundant features, a randomly sampled fraction of 

724 10% of the features are spiked-in to be associated with the metadata. In the multivariable case, 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.20.427420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427420


32

725 20% of the metadata are randomly selected to be associated with the 10% ‘differentially abundant’ 

726 features.

727 Multivariable association test evaluation

728 Preprocessing, normalizations, and transformations

729 We considered several commonly used normalization procedures including Total Sum Scaling 

730 (TSS), Trimmed Mean of M-values (TMM34), Relative Log Expression (RLE33), and Cumulative 

731 Sum Scaling (CSS21) (Supplementary Fig. S1C). For TSS normalization, raw counts were 

732 converted into relative abundances by scaling each sample by the total sum (across features). 

733 For the remainder, we used the default settings of the edgeR26, DESeq225, and metagenomeSeq21 

734 R packages, respectively. 

735 In addition to the above normalization procedures, several parametric transformations were also 

736 considered. When appropriate, these variance-stabilizing transformations aim at improving 

737 parametric estimation models in the presence of violated data assumptions (such as normality 

738 and homoscedasticity). These include logit and arcsine square root (AST) for TSS-normalized or 

739 proportional relative abundance data, and log transformation (Supplementary Fig. S1C). For 

740 both log and logit transformations, undefined values were replaced with zeroes (equivalent to 

741 adding a small pseudo count of 1 to the zero observations before applying the log transformation). 

742 Among other normalization/transformation methods, a ‘Default/None’ category was also 

743 considered which represents either (i) default normalization/transformation employed by the 

744 associated software or (ii) no normalization/transformation, or (iii) library size normalization in the 

745 form of a GLM offset modeling. Prior to applying any normalization and transformation, a basic 

746 filtering was performed to prune features absent in >90% of samples. As in previous 

747 benchmarking7,8,10, correction for multiple testing was performed using the Benjamini-Hochberg40 

748 FDR threshold of 0.05. 
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749 Statistical methods

750 We selected several commonly used methods for differential abundance and multivariable 

751 association testing along with a set of experimental methods to apply on the synthetic datasets, 

752 using a combination of statistical model and normalization/transformation schemes for each 

753 method as appropriate (Supplementary Fig. S1C). All tests were conducted using the statistical 

754 software R and parallelized using custom bash scripts in a high-performance computing 

755 environment (full source code available at: https://github.com/biobakery/maaslin2_benchmark). 

756 The selected statistical models (abbreviations in parentheses) are as follows:

757  ANCOM: following Weiss et al.8, we used the default implementation of ANCOM14 using 

758 the ANCOM() function call with default settings. Unlike other methods, ANCOM does not 

759 report p-values but instead returns logical indicators of whether a feature is differentially 

760 abundant based on a test statistic W. It is to be noted that in the presence of multiple 

761 covariates, ANCOM does not return statistically significant feature-metadata pairs with 

762 respect to every covariate in the model, making it infeasible for our multivariable setting. 

763 Also, we did not test the ANCOM method in repeated measures settings as it was too slow 

764 and unstable for assessment, as noted elsewhere32.

765  metagenomeSeq: for the fixed effects, counts were first CSS-normalized with the default 

766 quantile supplied by the cumNormStat() function and the (log-transformed) CSS-

767 normalized counts were subjected to final testing using fitZig()21. For random effects, 

768 useMixedModel was set to TRUE in the fitZig() function call.

769  metagenomeSeq2: same as metagenomeSeq21, except that the final testing was done 

770 using the fitFeatureModel() function.

771  DESeq2: for fixed effects, following Thorsen et al.9, geometric means were first calculated 

772 manually from the raw counts and supplied to the estimateSizeFactors() function before 
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773 calling the DESeq() function for final testing25. Random effects modeling compatible with 

774 our setting is currently not supported by the DESeq2 software54.

775  edgeR: for fixed effects, following Thorsen et al.9, normalization factors were calculated 

776 with TMM, which was followed by common and tagwise dispersion estimation steps, 

777 before invoking the standard test with the exactTest() function26. Random effects modeling 

778 compatible with our setting is currently not supported by the edgeR software54.

779  limma: the default functionality of lmFit() was applied to the feature counts29. Repeated 

780 measures were handled using the duplicateCorrelation() function before calling lmFit(), in 

781 combination with appropriate normalization/transformation (Supplementary Fig. S1C).

782  limma VOOM: same as limma, except that features were subjected to a voom 

783 transformation before applying limma27,28.

784  limma2: same as limma, except that library size or scale factor is included as an additional 

785 covariate, in combination with appropriate normalization/transformation (Supplementary 

786 Fig. S1C).

787  Wilcoxon: the built-in R function wilcox.test() using default parameters was applied to the 

788 features in combination with appropriate normalization/transformation (Supplementary 

789 Fig. S1C).

790  Spearman: the built-in R function cor.test() was applied to the features in combination with 

791 appropriate normalization/transformation (Supplementary Fig. S1C).

792  Linear model (LM): the built-in R function lm() with default settings was used in 

793 combination with appropriate normalization/transformation (Supplementary Fig. S1C).

794  Linear model (LM2): same as LM, except that library size or scale factor is included as an 

795 additional covariate in the model, in combination with appropriate 

796 normalization/transformation (Supplementary Fig. S1C).
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797  Negative binomial (negbin): we used the glm.nb() function from the MASS package43 and 

798 the glmer.nb() function from the lme4 package44 for fixed and random effects respectively. 

799 In both cases, we used the logarithm of library size (for no normalization) or scaling factor 

800 (for other normalization schemes such as CSS, RLE, and TMM) as offset.

801  Zero-inflated Negative Binomial (ZINB): for fixed effects, we used the zeroinfl() function 

802 from the  pscl package45 with the logarithm of library size (for no normalization) or scaling 

803 factor (for other normalization schemes such as CSS, RLE, and TMM) as offset. In the 

804 absence of a robust random effect implementation of the same, the ZINB method was not 

805 considered in the repeated measures settings.

806  Zero-inflated Beta (ZIB): following Peng et al.23, we used the gamlss() function from the  R 

807 package gamlss55 for fixed effects and the ZIBR() function from the ZIBR R package for 

808 random effects24. In both cases, the features are TSS-normalized before statistical testing. 

809  Compound Poisson (CPLM): we used the cpglm() function from the cplm package56 and 

810 the glmmPQL() function from the MASS package56 for fixed and random effects 

811 respectively. In both cases, we used the logarithm of library size (for no normalization) or 

812 scaling factor (for other normalization schemes such as CSS, RLE, and TMM) as offset. 

813 No offset was used when combined with the TSS-normalized relative counts.

814  MaAsLin 1: we used the default TSS-normalized, arcsine square root-transformed linear 

815 model without gradient boosting15,16.

816  MaAsLin 2: we used the default TSS-normalized, log-transformed linear model with half 

817 the minimum relative abundance as pseudo count.

818 Naming convention 

819 The nomenclature for the model/normalization/transformation combinations for each method is 

820 described in the following set of rules:
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821 1. For published methods with default parameters, there is no additional identifier following 

822 the name of the method, indicating default or no normalization/transformation. These 

823 include ANCOM, metagenomeSeq, metagenomeSeq2, limma, limma2, limma VOOM, 

824 DESeq2, edgeR, and ZIB.

825 2. Similarly, for experimental methods with custom normalization/transformation schemes, 

826 no additional identifier simply indicates either no normalization (for non-GLM methods 

827 such as LM) or library size normalization (for specific GLMs such as Negative Binomial, 

828 Compound Poisson, and ZINB). 

829 3. Finally, for methods with additional identifiers, method name is always accompanied by a 

830 normalization scheme (after the first dot) which is followed by a transformation (after the 

831 second dot) except in cases where either no normalization or no transformation is applied. 

832 As an example, limma.CSS.LOG denotes a default limma model followed by CSS 

833 normalization and log transformation. Similarly, LM.CLR denotes a vanilla linear model 

834 followed by a CLR transformation and no normalization, whereas, ZINB.TMM denotes a 

835 zero-inflated negative binomial model with TMM normalization and no transformation, and 

836 so on and so forth.

837 Performance evaluation

838 Several performance metrics were considered for evaluation, all derived from some combination 

839 of the elements from the confusion matrix: false positives (FPs), true positives (TPs), true 

840 negatives (TNs), and false negatives (FNs). These include measures related to (i) statistical 

841 power, (ii) false discovery, and (iii) software implementation and scope, all as averages over 100 

842 simulation runs (Supplementary Fig. S1B). Several measures were considered for statistical 

843 power - Sensitivity, Area Under the Curve (AUC), and scaled partial AUC (spAUC). The AUC was 

844 calculated as the area under the ROC curve, obtained by plotting the sensitivity versus 1-

845 specificity for the varying p-value threshold. spAUC was calculated as the partial area over the 
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846 high specificity range (0, 0.20), rescaled to mimic the interpretation of AUC (i.e. 0.5 for a random 

847 guess and 1 for a perfect classifier using p-values to discriminate between spiked and non-spiked 

848 features). The R package ROCR57 was used to calculate both these AUC measures. We also 

849 considered Matthew’s correlation coefficient as well as F1 scores as alternate accuracy measures 

850 of performance. 

851 Among false discovery metrics, maximum and average of several commonly used metrics 

852 including False Discovery Rate (FDR) and False Positive Rate (FPR) were considered. When no 

853 features were declared significant (i.e. TP = FP = 0), the false discovery rate (FDR) was set to 0. 

854 Notably, Weiss et al.8 misreported false positive rate as FDR, as evident from the supplemental 

855 R code of that paper (Additional files 9 and 10 of Weiss et al8). In order to avoid any ambiguity, 

856 we provide the analytical expressions of the above-mentioned measures (except AUC and 

857 spAUC) as follows:

858 FDR (1 ―  Precision) =
FP

FP + TP

859 FPR (1 ―  Specificity) =
FP

FP + TN

860 Sensitivity (Power or Recall) =
TP

TP + FN

861 F1 score =
2TP

2TP + FP + FN

862 Matthew′s correlation coefficient (MCC) =
TP ∗ TN ― FP ∗ FN

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

863 Following Hawinkel et al.7, an alternative measure based on the p-value distribution under the 

864 null, ‘Departure from Uniformity’, was also considered. Briefly, to quantify the departures from 

865 uniformity into liberal (or conservative) direction, twice the mean distance between the diagonal 

866 line and the points in the QQ plot below (or above) the diagonal was computed. We called these 
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867 measures ‘Liberal Area’ and ‘Conservative Area’, respectively. Both calculated areas are 

868 averages over all features, and they both range from 0 to 1. A combined metric called ‘Total Area’ 

869 that defines departure in either direction (defined as Total Area = Liberal Area + Conservative 

870 Area) was also computed.

871 Finally, we calculated computational time and convergence aspects of different methods based 

872 on their available implementation. Following Soneson and Robinson58, we record the actual time 

873 required to run each method using a single core and normalize all times for a given data set 

874 instance so that the maximal value across all methods is 1 (as reported in Fig. 1C). Thus, a 

875 'relative' computational time of 1 for a given method and a given data set instance means that this 

876 method was the slowest one for that particular instance, and a value of, for example, 0.1 means 

877 that the time requirement was 10% of that for the slowest method. Similarly, we estimated the 

878 ‘relative’ convergence failure rates for each method, as before, with the worst method as a 

879 reference.

880 Analysis of the iHMP (HMP2) IBDMDB multi-omics dataset

881 Study design, data, and quality control

882 Data were obtained from the Integrative Human Microbiome Project (HMP2 or iHMP), which is 

883 described in detail in Lloyd-Price et al.36 and available through the Inflammatory Bowel Disease 

884 Multi-omics Database (IBDMDB, http://ibdmdb.org). Briefly, subjects included in this cohort were 

885 recruited from five academic medical centers across the US: three pediatric sub-cohorts including 

886 Cincinnati Children’s Hospital, Massachusetts General Hospital (MGH) Pediatrics, and Emory 

887 University Hospital, and two adult sub-cohorts including MGH and Cedars-Sinai Medical Center. 

888 132 subjects were followed for one year each to generate integrated longitudinal molecular 

889 profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 
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890 stool, biopsy, and blood specimens). Self-collected stool samples were transported in ethanol 

891 fixative before storage at -80 C until DNA extraction.

892 Multiple measurement types were generated from many individual stool specimens, including 305 

893 samples that contain all stool-derived measurements and 791 metagenome-metatranscriptome 

894 pairs. Metagenomic data generation and processing were performed at the Broad Institute. After 

895 standard sequence- and sample-level quality control as described in Lloyd-Price et al.36, species-

896 level taxonomic abundances were inferred for all samples using MetaPhlAn 239 and functional 

897 profiling was performed by using HUMAnN 237. The resulting data types including metagenome-

898 based taxonomic abundances and pathway abundance profiles for both metagenomics and 

899 metatranscriptomics (summarized as structured pathways from MetaCyc59) were used as inputs 

900 for MaAsLin 2 analysis.

901 Significance testing with shuffled data

902 In order to quantify whether MaAsLin 2 and other multivariable association methods identified 

903 more significant associations than expected by chance (i.e. when all the shared signal between 

904 features and metadata are broken), we repeatedly shuffled the metadata sample labels, applied 

905 multivariable association methods on the randomized data to link features to metadata, and 

906 compared the number of statistically significant associations obtained with these randomized data 

907 to the number of statistically significant associations obtained with the original data based on the 

908 unadjusted p-values. For a comprehensive comparison of both count and noncount models in this 

909 experiment, prior to data shuffling, we multiplied the species-level taxonomic abundances by 5% 

910 of the filtered read counts as a “proxy” for the underlying raw sequencing count data. The 

911 procedure was repeated 1,000 times to estimate the null distribution of the detection performance 

912 in both baseline and longitudinal models (with the exception of Compound Poisson mixed effects 

913 model which was repeated 100 times to save computation time). While the baseline model 

914 included all time-invariant covariates (age, antibiotic use, IBD diagnosis), the longitudinal model 
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915 also included subjects as random effects with an additional time-variant fixed effect i.e. IBD 

916 dysbiosis state, as stated below.

917 Statistical analysis of species, DNA pathways, and RNA pathways

918 For both species and DNA pathways (whole-community and species-stratified), we regressed the 

919 log-transformed relative abundances (with half the minimum relative abundance as pseudo count, 

920 the default in MaAsLin 2) using the following per-feature linear mixed-effects model:

921 feature ~ (intercept) + diagnosis + diagnosis/dysbiosis + antibiotic use + consent age + (1 | 

922 recruitment site) + (1 | subject).

923 Additionally, we modeled the log-transformed relative abundances of the whole-community and 

924 species-stratified RNA pathways (with half the minimum relative abundance per feature as 

925 pseudo count) using the similar linear mixed-effects model as before, while additionally adjusting 

926 the corresponding DNA pathways abundance as a continuous covariate to filter out the influence 

927 from gene copies:  

928 RNA feature ~ (intercept) + diagnosis + diagnosis/dysbiosis + antibiotic use + consent age + 

929 DNA feature + (1 | recruitment site) + (1 | subject)

930 That is, in each per-feature multivariable model, recruitment sites and subjects were included as 

931 random effects to account for the correlations in the repeated measures (denoted by (1 | 

932 recruitment site) and (1 | subject) respectively) and the transformed abundances of each feature 

933 was modeled as a function of diagnosis (a categorical variable with non-IBD as the reference 

934 group) and dysbiosis state as a nested binary variable (with non-dysbiotic as reference) within 

935 each IBD phenotype (UC, CD, and non-IBD), while adjusting for consent age as a continuous 

936 covariate, and antibiotics as a binary covariate. Nominal p-values were adjusted for multiple 

937 hypothesis testing with a target false discovery rate of 0.25 with this FDR chosen to match the 

938 original study. 
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939 Data Availability

940 The iHMP dataset is publicly available at the IBDMDB website (https://ibdmdb.org) and the HMP 

941 DACC web portal (https://www.hmpdacc.org/ihmp/). The processed HMP2 datasets analyzed in 

942 this manuscript are also available as Supplementary Datasets S1-S6.

943 Implementation and Software Availability 
944
945
946 The implementation of MaAsLin 2 is publicly available with source code, documentation, tutorial 

947 data, and as an R/Bioconductor package at http://huttenhower.sph.harvard.edu/maaslin2. The 

948 software packages used in this work are free and open source, including bioBakery60 methods 

949 available via http://huttenhower.sph.harvard.edu/biobakery as source code, cloud-compatible 

950 images, and installable packages. Analysis scripts using these packages to generate figures and 

951 results from this manuscript (and associated usage notes) are available from 

952 https://github.com/biobakery/maaslin2_benchmark. The following R packages were used to 

953 generate the manuscript figures: ComplexHeatmap61, ggalluvial62, ggplot263, UpSetR64, and 

954 cowplot65.
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961 Supplementary Materials

962 Supplementary Figure S1: Details of simulation parameters, evaluation metrics, and 

963 benchmarking methods. A. Four broad metadata designs commonly encountered in 

964 microbiome epidemiology for varying sample size, effect size, and feature dimensions are 

965 considered: UVA (Single continuous metadata), UVB (Single binary metadata), MVA (Multiple 
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966 independent metadata), and MVB (Multiple correlated metadata). For each of this broad metadata 

967 design, both cross-sectional and longitudinal cases are evaluated (Methods). B. Three aspects 

968 of performance are considered: (i) false discovery, (ii) sensitivity, and (iii) scope and 

969 computational efficiency of the associated software, each comprising multiple evaluation metrics 

970 (Methods). C. A combination of statistical models, normalization, and transformation schemes 

971 are employed to the synthetic datasets for a variety of association methods, leading up to 84 

972 combinations of normalization/transformation, zero-inflation, and regression models.

973

974 Supplementary Figure S2: Full summary of detection performance for varying effect size, 

975 sample size, and feature dimensions in the simple case of univariate binary metadata 

976 without repeated measures. Both sensitivity and false discovery rates (FDR) are shown for the 

977 best-performing methods from each class of methods (as measured by average F1 score). Values 

978 are averages over 100 iterations for each parameter combination. The x-axis (effect size) within 

979 each panel represents the linear effect size parameter; a higher effect size represents a stronger 

980 association. For visualization purposes, the best-performing methods from each class of models 

981 (as measured by average F1 score) are shown. Red line parallel to the x-axis is the target 

982 threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1 score 

983 across all simulation parameters in this setting. All methods were parallelized using custom bash 

984 scripts in a high-performance computing environment and methods unable to process specific 

985 simulation configurations due to high computational overhead or slow convergence were omitted 

986 for those cases.

987

988 Supplementary Figures S3: Meta-summary of detection performance in the simple case of 

989 univariate binary metadata without repeated measures. Detection performance measures 

990 (Sensitivity, FPR, FDR) for all methods are provided. Values are averages over all parameter 

991 combinations each summarized over 100 iterations. Red line parallel to the x-axis is the target 
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992 threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1 score 

993 across all simulation parameters in this setting. 

994

995 Supplementary Figures S4: Meta-summary of p-value calibration performance in the 

996 simple case of univariate binary metadata without repeated measures.  P-value calibration 

997 measures as measured by ‘departure from uniformity’ (Liberal Area, Conservative Area, Total 

998 Area) for all methods are provided. Values are averages over all parameter combinations. Values 

999 are averages over all parameter combinations each summarized over 100 iterations. Redd line 

1000 parallel to the x-axis is the target threshold for FDR in multiple testing. Methods are sorted by 

1001 increasing order of average F1 score across all simulation parameters in this setting. 

1002

1003 Supplementary Figure S5: Full summary of detection performance for varying effect size, 

1004 sample size, and feature dimensions in the simple case of univariate continuous metadata 

1005 without repeated measures. Both sensitivity and false discovery rates (FDR) are shown for the 

1006 best-performing methods from each class of methods (as measured by average F1 score). Values 

1007 are averages over 100 iterations for each parameter combination. The x-axis (effect size) within 

1008 each panel represents the linear effect size parameter; a higher effect size represents a stronger 

1009 association. For visualization purposes, the best-performing methods from each class of models 

1010 (as measured by average F1 score) are shown. Red line parallel to the x-axis is the target 

1011 threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1 score 

1012 across all simulation parameters in this setting. All methods were parallelized using custom bash 

1013 scripts in a high-performance computing environment and methods unable to process specific 

1014 simulation configurations due to high computational overhead or slow convergence were omitted 

1015 for those cases.

1016
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1017 Supplementary Figures S6: Meta-summary of detection performance in the presence of 

1018 multiple independent covariates without repeated measures. Detection performance 

1019 measures (F1 score, Matthew’s correlation coefficient, FDR) for all methods are provided. Values 

1020 are averages over all parameter combinations each summarized over 100 iterations. Red line 

1021 parallel to the x-axis is the target threshold for FDR in multiple testing. Methods are sorted by 

1022 increasing order of average F1 score across all simulation parameters in this setting. 

1023

1024 Supplementary Figure S7: Full summary of detection performance for varying effect size, 

1025 sample size, and feature dimensions in the presence of multiple independent covariates 

1026 without repeated measures. Both sensitivity and false discovery rates (FDR) are shown for the 

1027 best-performing methods from each class of methods (as measured by average F1 score). Values 

1028 are averages over 100 iterations for each parameter combination. The x-axis (effect size) within 

1029 each panel represents the linear effect size parameter; a higher effect size represents a stronger 

1030 association. For visualization purposes, the best-performing methods from each class of models 

1031 (as measured by average F1 score) are shown. Red line parallel to the x-axis is the target 

1032 threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1 score 

1033 across all simulation parameters in this setting. All methods were parallelized using custom bash 

1034 scripts in a high-performance computing environment and methods unable to process specific 

1035 simulation configurations due to high computational overhead or slow convergence were omitted 

1036 for those cases.

1037

1038 Supplementary Figures S8: Meta-summary of detection performance in the presence of 

1039 repeated measures and univariate binary metadata. Detection performance measures 

1040 (Sensitivity, FPR, FDR) for all methods are provided. Values are averages over all parameter 

1041 combinations each summarized over 100 iterations. Red line parallel to the x-axis is the target 
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1042 threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1 score 

1043 across all simulation parameters in this setting. 

1044

1045 Supplementary Figures S9: Meta-summary of detection performance in the presence of 

1046 repeated measures and multiple independent covariates. Detection performance measures 

1047 (Sensitivity, FPR, FDR) for all methods are provided. Values are averages over all parameter 

1048 combinations each summarized over 100 iterations. Red line parallel to the x-axis is the target 

1049 threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1 score 

1050 across all simulation parameters in this setting. 

1051

1052 Supplementary Figures S10: Meta-summary of detection performance in the presence of 

1053 repeated measures and univariate continuous metadata. Detection performance measures 

1054 (Sensitivity, FPR, FDR) for all methods are provided. Values are averages over all parameter 

1055 combinations each summarized over 100 iterations. Red line parallel to the x-axis is the target 

1056 threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1 score 

1057 across all simulation parameters in this setting. 

1058

1059 Supplementary Figures S11: Meta-summary of detection performance in the presence of 

1060 repeated measures and multiple correlated covariates. Detection performance measures 

1061 (Sensitivity, FPR, FDR) for all methods are provided. Values are averages over all parameter 

1062 combinations each summarized over 100 iterations. Red line parallel to the x-axis is the target 

1063 threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1 score 

1064 across all simulation parameters in this setting. 

1065

1066 Supplementary Figure S12. Runtime of association methods. CPU time (in minutes) is shown 

1067 for all models faceted by feature dimension (100, 200, 500) and colored by metadata design (i.e. 
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1068 univariate and multivariable) in both cross-sectional (top) and longitudinal (bottom) settings. 

1069 Values are averages over 100 iterations for each parameter combination. All methods were 

1070 parallelized using custom bash scripts in a high-performance computing environment and 

1071 methods unable to process specific simulation configurations due to high computational overhead 

1072 or slow convergence were omitted for those cases.

1073

1074 Supplementary Figure S13. Performance of multivariable association methods on negative 

1075 training data across a range of significance levels. MaAsLin 2’s default linear model produced 

1076 a consistently lower proportion of significant associations in negative training data (or repeatedly 

1077 shuffled training set) (averaged over 1,000 permutations) than the positive training (unshuffled) 

1078 counterpart in both baseline and longitudinal models (Methods).

1079

1080 Supplementary Figure S14: Statistically significant overlap of detected features by 

1081 MaAsLin 2 and those found in the original study. Contingency tables describing the 

1082 intersection of detected features between MaAsLin 2 and Lloyd-Price et al.36 for various data 

1083 modalities in the IBDMDB dataset are shown.

1084

1085 Supplementary Figure S15: Overlap of detected taxonomic features by various MaAsLin 

1086 models. Upset plot describing the intersection of detected taxonomic features between various 

1087 MaAsLin 2 models in the IBDMDB dataset reveal significant overlap across methods. A similar 

1088 pattern was observed for functional profiles.

1089

1090 Supplementary Datasets S1-S6: MaAsLin 2 associations between HMP2 multi-omics 

1091 features and covariates. List of statistically significant associations (FDR<0.25) between IBD 

1092 disease phenotype (with non-IBD as reference), IBD dysbiosis state (with non-dysbiotic as 

1093 reference), age, and antibiotic use with multiple data modalities (S1: species, S2: unstratified DNA 
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1094 pathways, S3: unstratified RNA pathways, S4: pathway RNA/DNA ratios, S5: stratified DNA 

1095 pathways, S6: stratified RNA pathways) using a multivariable linear mixed effects model 

1096 (Methods). Features are sorted by minimum FDR-adjusted p-values. For each feature, coefficient 

1097 estimates and test statistics and the associated two-tailed p-values are also reported. For each 

1098 data modality, input features and metadata are also provided.

1099
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