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Abstract  1 

Context.  2 

Land-use change threatens pollinators globally. However, pollinator-landscape studies tend to 3 

focus on certain focal taxa and landscapes with intensive human activities. This limits the 4 

implementation of targeted management policies for landscapes with different modifications 5 

and pollinator groups. 6 

Objectives.  7 

This study aims to determine which habitat characteristics can predict abundance and 8 

richness of multiple pollinator groups.  9 

Methods.  10 

We collected field data on the relative abundance and observed richness of nectivorous birds, 11 

bees, beetles, butterflies across a mixed-use landscape in the Tasman Peninsula, Tasmania, 12 

Australia; and determined if they could be predicted using land use, land cover at different 13 

radii (100 m to 5000 m), plant genera and floral morphologies. 14 

Results.  15 

Using feature selection, we found land use was an overall poor predictor, with land cover, 16 

plant genera and floral morphologies being superior. Random forest was used for predictive 17 

modelling and goodness of fit R2 calculated was highest and lowest for butterfly abundance 18 

(0.65) and butterfly richness (0.08) respectively. Variable importance was calculated, and 19 

forest cover achieved the highest importance value for nectivorous birds and butterflies, 20 

whereas open cover was most important for bees and the presence of the plant genus 21 

Leptospermum for beetles.  22 

Conclusions.  23 
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Our results emphasise the importance of considering multiple habitat factors to manage and 24 

support a dynamic pollinator community. We demonstrate how predictive modelling can be 25 

used to make informed decisions on how to have a dynamic pollinator community in a way 26 

that can be applied to real-world scenarios to validate the models and further improve 27 

decision making.  28 

 29 

Keywords 30 

Honey bees, native bees, honeyeaters, Exoneura, Lasioglossum   31 
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Introduction 32 

Pollinators (animal vectors of pollen) are important ecosystem components, assisting in the 33 

sexual reproduction of plants (Kevan and Viana 2003). They are estimated to pollinate 70% 34 

of global crops (Klein et al. 2007) and 87% of wild plants (Ollerton et al. 2011). Flying 35 

insects, such as bees, beetles, and butterflies, play a particularly important role in pollinating 36 

crops (Rader et al. 2016) and wild plants (Winfree et al. 2011). Birds such as honeyeaters 37 

also act as pollinators, particularly in the Austral and Oceanic regions, where they pollinate 38 

more than 10% of the flora (Sekercioglu 2006).  39 

Pollinators are declining globally (Maes and Van Dyck 2001; Ollerton et al. 2014; Regan et 40 

al. 2015). The causes are many and include land-use change (LUC: habitat loss and 41 

fragmentation), introduced and invasive species, agrochemicals, climate change, and the 42 

interactions and synergies between these threats (Potts et al. 2010; Regan et al. 2015; 43 

Vanbergen et al. 2013). Of these, LUC is considered the most important threat to pollinators 44 

as it reduces plant abundance and diversity, which in turn reduces the availability of floral 45 

resources (Baude et al. 2016; Nicolson and Wright 2017; Paton 2000).  46 

Land-use change can have mixed effects on pollinators (Winfree et al. 2011), with its relative 47 

impact depending on pollinator taxa (Montero-Castaño and Vilà 2012), geographic location 48 

(Archer et al. 2014; De Palma et al. 2016), the amount of native vegetation present (Winfree 49 

et al. 2009) and the intensity of disturbance (Herrera 2018; Senapathi et al. 2015). The 50 

impacts of LUC  on pollinators is also influenced by the availability of floral resources 51 

(Winfree et al. 2011) which are known to be a limiting factor for pollinators such as bees 52 

(Roulston and Goodell 2011), butterflies (Öckinger and Smith 2006), and birds (Paton 2000). 53 

Pollinator-landscape studies have typically focused on landscapes with extreme LUC 54 

(Winfree et al. 2011) or on impacts of LUC on focal taxa, like bees (Senapathi et al. 2017). 55 
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This is a limitation because landscapes with varying degrees of modification and different 56 

suites of pollinator groups might require distinct management policies.   57 

The Tasman Peninsula (Tasmania, southern-temperate Australia) provides an excellent case 58 

study as it consists of a mixed-used landscape (see Methods) with multiple pollinator taxa, 59 

including bees, beetles, butterflies, and birds (Hingston and Mc Quillan 2000). The large 60 

island of Tasmania is also rich in plant diversity, with 2,726 vascular plant species, of which 61 

70% are native and the remaining 30% have naturalised from elsewhere (Baker and Duretto 62 

2019). This allows the additional assessment of the impacts of plant genera and floral 63 

morphologies (shape and colour) on different pollinator communities.  64 

In this study, we aim to assess the influence of land use (LU), land cover (LC), plant genera, 65 

and floral morphologies on the relative abundance and observed richness of nectivorous 66 

birds, bees, beetles, and butterflies. To do this, we collected field data on the relative 67 

abundance and observed richness of these main pollinator groups across different LU classes, 68 

and analysed them using feature selection (Guyon and Elisseeff 2003) for predictor selection, 69 

and random forests (RF) (Breiman 2001) for predictive modelling. The advantage of using 70 

machine learning and predictive modelling is its ability to handle data with non-normal 71 

distribution and noise, and use robust training-and-testing analysis to make predictions for 72 

informed decision making (Thessen 2016; Willcock et al. 2018). We discuss the associations 73 

between predictors and pollinators and which predictors are best suited to management for 74 

improving the diversity and resilience of pollinator communities.   75 

Methods 76 

Study area 77 

The Tasman Peninsula, located on the south-eastern portion of Tasmania, Australia (Fig. 1), 78 

covers an area of 660.4 km2 with elevation from 0 to 582 m a.s.l. (meters above sea level). It 79 
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is characterised by a mix of dry and wet sclerophyll eucalypt forest and dry coastal vegetation 80 

and supports a third of the vascular plants found in Tasmania (Brown and Duncan 1986). In 81 

terms of human activity, it is a mixed-use landscape, dominated by grazing pasture, forest 82 

plantations and protected areas (Department of Primary Industries Parks Water and 83 

Environment 2015), with protected areas covering 26.7% of its surface (Australian Bureau of 84 

Statistics 2020). The three LU (Table 1) were used as predictor variables for all pollinator 85 

groups.  86 

Table 1. Characteristics of the different sites within each LU  87 

Land-use Sites Characteristics 

Protected 
areas 

Lime Bay State 
reserve (LBR) 

Coastal woodland, with pockets of dense tree 
but overall open canopy cover and dense ground 
vegetation. 

Tasman National park 
(TNP) (a)  

Sclerophyll forest with dense canopy cover and 
dense ground vegetation. 

Tasman National park 
(TNP) (b) 

Sclerophyll forest, with moderate canopy and 
open ground vegetation. 

Plantations Plantation (a)  Contains patches of eucalypt and pine forest 
plantations and non-plantation eucalypt forest 
where fieldwork was carried out. Sclerophyll 
forest with dense canopy and ground cover.   

Plantation (b) Contains patches of eucalypt forest and pine 
plantations and non-plantation eucalypt forest 
where fieldwork was carried out. Sclerophyll 
forest with dense canopy and ground cover. We 
noticed more harvested coups in this site than in 
plantation (a) 

Pasture Pasture Pasture areas with cattle, with few isolated trees 
within the pasture.   

 88 

Study design 89 
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We established one observation site in a pasture, two in plantations and three in protected 90 

areas (Fig. 1). The unequal number of sites per land use was due to lack of accessibility. Each 91 

site consisted of two subsites 1-3 km apart and each subsite included three plots, with birds, 92 

bees, and beetles sampled in each plot, and one transect for butterfly sampling. The plots 93 

were at least 400 m apart and randomly distributed 80-100 m from a chosen walking track, 94 

while the transects were placed along the walking track between the three plots. In total there 95 

were 18 plots and six transects in protected areas, 12 plots and four transects in plantations 96 

and six plots and two transects in pasture.  97 

Observations took place between 07.00 – 11.00 h and 16.00 – 19.00 h for birds and 10.00 – 98 

15.00 h for insects, under non-windy and non-rainy conditions. Sampling of all the 99 

investigated pollinator groups was then repeated monthly from September to December 2018 100 

to account for temporal changes in flowering vegetation.  101 

Using the same methodology described above, a proof-of-concept pilot study was previously 102 

carried out in protected areas consisting of three sites with 12 plots and 6 transects (Fig. 1) 103 

from January to February 2018.  104 

 105 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427393doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427393
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

Fig. 1 Location of the sampling sites in the Tasman Peninsula, Tasmania, Australia.  106 

Pollinator sampling and plant identification 107 

Birds were visually observed using a standardised point-count method within a 2-ha plot for 108 

20 minutes (BirdLife 2020). Honeyeaters (family Meliphagidae), were the only birds 109 

considered for this study as they are dominant group of nectivorous birds in Australia (Ford 110 

and Paton 1977). Honeyeater count and species were recorded with species grouped into 111 

endemic (native to Australia but present only in Tasmania) and non-endemic (native to 112 

Australia and present throughout Australia) honeyeaters.  113 

Eucalyptus tree species within the 2-ha plots were recorded (presence/absence) and identified 114 

using a field guide by Wiltshire and Potts (2007). They were grouped into Symphyomyrtus 115 

and Eucalyptus (formerly Monocalyptus) sub-genera (Nicolle 2015) and used as predictors 116 

for honeyeaters richness and abundance, as they have been shown to influence honeyeater 117 

presence (Dunkerley et al. 1990; Woinarski and Cullen 1984).   118 

Bees and beetles were recorded within the 2-ha plot by visually observing four ground-level 119 

flowering plants for 10 minutes each, as observational sampling is a commonly used 120 

technique to detect bee abundance (Prendergast et al. 2020). Both insects and plants were 121 

photographed to allow for off-site identification (where required). Bees were grouped into 122 

introduced bees and native bees; introduced bees included Apis mellifera (western honey bee) 123 

and Bombus terrestris (buff-tailed bumble bee), the only introduced species found in 124 

Tasmania (https://www.environment.gov.au/biodiversity/invasive-species/insects-and-other-125 

invertebrates/invasive-bees), while native bees included all other bee species. Beetles were 126 

identified to family level using iNaturalist website (https://inaturalist.org/).  127 

Where possible, four different species of flowering plant, separated by at least 5 m, were 128 

chosen, with new species selected during the repeated visits. If no flowering plants were 129 
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present, that resulted in zero observations. Plants were identified to species or genus level 130 

using the University of Tasmania key to Tasmanian vascular plants  131 

(www.utas.edu.au/dicotkey/dicotkey/key.htm). The plants identified were grouped based on 132 

their colour and shape using a classification adopted from Hingston and Mc Quillan (2000). 133 

Colours were pale, yellow, and pink, while shapes were brush, tubular, actinomorphic, and 134 

zygomorphic.  135 

Butterflies were sampled along a 1000-m long and 5-m wide transect (Pollard 1977). An 136 

insect net was used to catch butterflies and record the count and species. Species were 137 

photographed and identified using the reference Common and Waterhouse (1972).   138 

Land-cover analysis 139 

Land Cover refers to the natural and artificial structures covering the land (Anderson et al. 140 

1976); the LC classes considered in this study are ‘forest’ (areas dominated by trees, 141 

including plantations), ‘open’ (areas with low-lying vegetation, including shrubs and 142 

grasses), ‘barren’ (areas lacking vegetation) and ‘water’ (quantified as the percentage of total 143 

cover at different spatial scales). The allocation of LC classes was inferred from Sentinel 2 144 

imagery as it has a high spatial resolution of 10 × 10 m (Sentinel Online 2020).  145 

The LC classification was done using machine learning algorithms – support vector machine 146 

(Cortes and Vapnik 1995), random forest (Breiman 2001), k-nearest neighbour (Cover and 147 

Hart 1967), and naïve Bayesian (Mitchell 1997) and averaging their results using an 148 

unweighted ensemble (Diengdoh et al. 2020) in R v1.3 (RStudio Team 2020) and QGIS 149 

v3.12 (QGIS Development Team 2020). Classification was implemented using the caret R 150 

package (Kuhn 2020).  151 

Accuracy was assessed by comparing it to external/independent/unseen data. The external 152 

data consisted of 100 points/pixels per LC class, randomly selected from the classified image 153 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427393doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427393
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

and visually compared to imagery from Google Earth and from field data for accuracy 154 

assessment. Output metrics we report include the overall accuracy (OA), the true-skill 155 

statistic (TSS) for the classified image, and the sensitivity and specificity of each LC class, 156 

where: OA is the number of correctly classified pixels divided by the total number of pixels 157 

examined (Foody 2002); TSS is equal to the median of sensitivity plus specificity minus 1; 158 

sensitivity is observed presences that are predicted as such; while specificity observed 159 

absences that are predicted as such (Allouche et al. 2006). The method for LC classification 160 

is detailed in the Supplementary Material.  161 

The percentage of each LC class was calculated within buffers of varying size for each 162 

pollinator group. For bees and beetles, we used buffers of 100 m radius from the centre of the 163 

plots, as well as 500 m, 1000 m and 2000 m, corresponding to a range of foraging distances 164 

of different bee species (Greenleaf et al. 2007). For honeyeaters, we used buffers of 100 m, 165 

2000 m, and 5000 m radius, similar to Smith et al. (2011) and Lasky and Keitt (2010). 166 

Buffers of 500 m, 1000 m, and 2000 m were used for butterflies, similar to Bergman et al. 167 

(2004). 168 

Statistical analyses 169 

Feature selection was used to identify the best predictors among those chosen for each 170 

pollinator group. Feature selection is a method used to find a subset of features with the 171 

minimum possible (out-of-sample) generalization error (Granitto et al. 2006). It can 172 

overcome high dimensionality (Guyon and Elisseeff 2003) and is important in datasets where 173 

the number of available training samples is smaller compared to the possible combination of 174 

features (Chen and Jeong 2007). Random-Forest-Recursive Feature Elimination (RF-RFE), a 175 

backward feature selection or recursive feature elimination method, was implemented in this 176 

study using the caret R package (Kuhn 2020). Feature ranking was based on a measure of 177 
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variable importance from the random forests fit. Leave-p-out cross validation was used, 178 

where p was 70/30 % (training/testing) with 500 iterations; p was indexed based on the 179 

number of plots (for honeyeater, bee, and beetle models) and sites (for butterfly models) to 180 

ensure training and testing data had a unique set to account for repeated observations. 181 

Random forest was used for predictive modelling once the best set of predictors was 182 

identified, using the randomForest R package (Liaw and Wiener 2002). The goodness of fit 183 

and cross-validated R2 and root mean square error (RMSE) of each model were calculated. 184 

Cross-validation was carried out by splitting the data into a training/testing set using a 185 

random stratified method rather than a random percentage method. The stratification ensured 186 

that, for each plot/site with repeated observations, there was at least one repeated observation 187 

in the testing data that was not in the training data. Variable importance was calculated for 188 

each predictor in a model using the ggRandomForests R package (Ehrlinger 2016).  189 

Results 190 

Pollinator richness and abundance 191 

We observed a total of 405 honeyeaters belonging to eight different species, of which four are 192 

endemic (186 individuals) and the remaining non-endemic (219 individuals). There was a 193 

total of 509 bees consisting of 230 introduced bees (214 honey bees and 16 bumble bees) and 194 

279 native bees (183 Exoneura genus, 48 Lasioglossum genus and 48 individuals classified as 195 

others). There was also a total of 423 beetles, belonging to nine families and a total of 202 196 

butterflies belonging to nine species. The observations for honeyeaters and butterflies were 197 

from the main and pilot study while for bees and beetles were only from the main study due 198 

to a lack of observations in the pilot. A list of species observed across the different LU and 199 

LU sites is included in the Supplementary (Table S1).    200 
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The median of the log abundance and richness of different pollinator groups differed across 201 

the three LU classes (Fig. 2) and the six LU sites (Fig. 3). Protected areas had an overall 202 

higher abundance and richness of different pollinator groups (Fig. 2) particularly at Lime Bay 203 

State Reserve (Fig. 3). Tasman National Park (b) had lower abundance of native bees, 204 

beetles, and butterflies (Fig. 3f, h-k) and richness of beetles and butterflies (Fig. 3f, h-k). 205 

Overall, plantations had a higher abundance of non-endemic honeyeaters than endemic 206 

honeyeaters (Fig. 2b, c) and lower abundance and richness of beetles (Fig. 2h, i). Plantation 207 

(a) supported both endemic and non-endemic honeyeaters (Fig. 3b, c) but had lower 208 

abundance and richness of beetles (Fig. 3h, i); Plantation (b) supported only non-endemic 209 

honeyeaters (Fig. 3b, c) but had higher abundance and richness of beetles (Fig. 3h, i). Sites in 210 

pastures had the lowest abundance and richness of beetles (Fig. 2h, i; Fig. 3h, i;) and no 211 

observed honeyeaters in either subsites (Fig. 2a-d; Fig. 3a-d) but had a high abundance of 212 

native and introduced bees (Fig. 2f, g; Fig. 3f, g) as well as an abundance and richness of 213 

butterflies (Fig. 2j, k; Fig. 3j, k).  214 

 215 

Fig. 2 Log of total abundance and richness of honeyeaters including endemic and non-216 

endemic honeyeaters (a-d), bees (e-g), beetles (h-i) and butterflies (j-k) in pastures, 217 

plantations, and protected areas.  218 
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 219 

Fig. 3 Log of total abundance and richness of honeyeaters including endemic and non-220 

endemic honeyeaters (a-d), bees (e-g), beetles (h-i) and butterflies (j-k) across pastures, 221 

plantations (plantation a and b) and protected areas (Tasman National Park a and b, Lime Bay 222 

State Reserve) LU sites.   223 

Bees and beetles were observed visiting 24 plant genera, of which only three are 224 

exotic/naturalised, i.e., Arctotheca, Taraxacum and Trifolim, which were only found in 225 

pastures. The genera Daviesia, Pultenaea, and Melaleuca had the highest abundance of 226 

native bees (Fig. 4a), while Anopterus, Pimelea, Pomaderris, and Trifolim had the highest 227 

abundance of introduced bees (Fig. 4b) and Leptospermum the highest abundance of beetles 228 

(Fig. 4a). Symphyomyrtus presence was associated with an overall higher abundance and 229 

richness of honeyeaters (Fig. 5 e, h) compared to Eucalyptus. Symphyomyrtus also supported 230 

a higher abundance of endemic honeyeaters (Fig. 5f) than Eucalyptus.   231 
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 232 

Fig. 4 Log of total abundance of native bees, introduced bees, and beetles per genus.  233 

 234 

Fig. 5 Log of total abundance and richness of honeyeaters across in presence of Eucalyptus 235 

and Symphyomyrtus plant genera.  236 

 Land-cover analysis 237 

The classified image (Supplementary Fig. S1) had an OA of 79.5% with 95% CI [75.21, 238 

83.35] and TSS score of 77.41%. The confusion matrix of the classification results with 239 

sensitivity and specificity of the LC classes and the classified image, as well as the 240 
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percentage of forest and open cover within different buffers across the three LU, are included 241 

in Supplementary (Table S2-S4).   242 

 Predictors of pollinator richness and abundance 243 

Land use (i.e., human activities on the land) was not selected by RF-RFE as a predictor for 244 

any of the models except for butterfly abundance (Fig. 6). Two land cover (i.e., structures 245 

covering the land) classes—forest and open—were identified as important predictors in all 246 

models, with buffering size selection differing between honeyeaters, bees and beetles, and 247 

butterflies. Four plant genera, all native to Australia, were selected as predictors of bee and 248 

beetle abundance and richness (Fig. 6e-i). Floral shape – zygomorphic and actinomorphic, 249 

were selected for the native-bee and beetle models (Fig. 6f, h, i).  250 

Structural goodness of fit (R2) results showed that butterfly abundance and butterfly richness 251 

had the highest and lowest R2 values, respectively (Fig. 6j, k). R2 values were highest in 252 

beetle models (Fig. 6j, i) followed by honeyeater models (Fig. 6a-d) and lowest in bee models 253 

(Fig. 6e-g).   254 

Variable importance results from the random forests models show that, overall, LC had the 255 

highest importance value for most models except for beetle abundance and richness models, 256 

where Leptospermum was the most important (Fig. 6h, i). Buffers of 500 m, 1000 m, 2000 m 257 

and 5000 m were all important for honeyeaters (Fig. 6a-d), while buffers of 100 m and 2000 258 

m were important for bees and beetles (Fig. 6 e-i) and buffers of 500 m, 2000 m and 5000 m 259 

were important for butterflies (Fig 6j, k).   260 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427393doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427393
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

 261 

Fig. 6 Variable importance of the predictors along with goodness of fit R2 and RMSE of the 262 

models. The predictors forest.n or open.n refers to forest or open cover within buffer of size 263 

n. Shape_actin and shape_zygo refers to actinomorphic and zygomorphic floral shapes.       264 

Discussion 265 
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We assessed the richness and abundance of multiple pollinator groups across a mixed-use 266 

landscape, combined with the influence of different floral resources and morphologies, and 267 

found that pollinators were overall not affected by LU, whereas LC, plant genera, and floral 268 

shape were all determinants. Forest cover was relevant to all pollinator groups while open 269 

cover was important for bees, beetles, and butterflies, but not birds. Buffers of 2000 m and 270 

below were important for all pollinators while 5000 m and below were important for 271 

butterflies. The plant genera Acacia, Pultenaea, Pomaderris and Leptospermum were the 272 

most important identified drivers of native bee and beetles, while Eucalyptus was a relevant 273 

predictor for all honeyeater models except for non-endemic honeyeater abundance. In short, 274 

land cover and the distribution of diverse floral resources are crucial determinants of the 275 

health of pollinator communities. 276 

Land use was generally a poor predictor even though pollinator abundance and richness 277 

varied between and within the three LU types (Figs. 2, 3). We suspect the poor prediction is 278 

because our study region does not include extremely modified land use types (e.g., pure 279 

agriculture, or urban). Indeed, a meta-analysis by Winfree et al. (2009) found that habitat loss 280 

and fragmentation severely impacted bees only in landscapes with little-to-no natural habitat 281 

remaining. The variation in pollinator richness and abundance recorded between and within 282 

the three LU types is thus likely to be predominantly driven by differences in forest cover and 283 

availability of resources. For example, pastures with trees and high floral diversity have been 284 

found to have higher abundance of nectivorous birds (Kavanagh et al. 2007) and beetles 285 

(Harris and Burns 2000) than pastures that lack such resources. Human activities could also 286 

influence pollinator presence. For example, the differences in endemic honeyeater abundance 287 

between the two plantation sites could be at least partially associated with forestry activities 288 

(e.g., harvesting) which have been shown to impact the diversity and abundance of endemic 289 

birds including honeyeaters (MacDonald et al. 2005). Although LU was a good predictor of 290 
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butterfly abundance, the large differences between the protected sites points to an explanation 291 

underpinned by habitat type, presence of host and nectar plants and micro-climatic 292 

conditions, all of which are known to influence butterfly assemblages (see Curtis et al. 2015; 293 

Eilers et al. 2013; Öckinger et al. 2012; Stefanescu et al. 2005).  294 

Land Cover—specifically the presence of forest and open cover—were important predictors 295 

for all the pollinator groups. We suspect forest and open cover types could contain a variety 296 

of feeding and nesting resources essential for different pollinators (Kremen et al. 2007; 297 

Öckinger et al. 2012). Moreover, the positive and negative impacts these cover types are 298 

likely depend on the taxon; for example, open areas that lack floral resources—food and 299 

shelter—are likely to have a negative impact on honeyeaters and beetles (Harris and Burns 300 

2000; Kavanagh et al. 2007). Forest cover is known to influence birds presence in general 301 

(Trzcinski et al. 1999) and honeyeaters specifically (Harrisson et al. 2014). Further, high 302 

abundances of bees has been found in both forest (Taki et al. 2007, Ferreira et al. 2015) and 303 

open areas (Winfree et al. 2007, Kaluza et al. 2016), and forest cover has been shown 304 

elsewhere to be a good predictor of beetle assemblage (Sánchez-de-Jesús et al. 2016), with 305 

high amount of forest cover associated with higher abundance and richness of beetles (Watts 306 

and Larivière 2004). Although Posa and Sodhi (2006) found LC to have a weak correlation 307 

with a butterfly assemblage, we hypothesise that this difference might be due to the higher 308 

relative availability of resources in tropical (their study) versus temperate (our study) regions.  309 

The buffers around forest and open land-cover types were important presumably because 310 

these contain within them smaller patches of resources. Butterflies, being mobile organisms, 311 

can use the resources from the surrounding landscape (Liivamägi et al. 2014) and we expect 312 

the same for other flying insects like bees and beetles. The spatial distribution of resources 313 

seems to drive buffer sizes, in general, as buffers for bees are known to vary (see Goulson et 314 

al. 2010; Pisanty and Mandelik 2015; Taki et al. 2007). Forest cover within 2000 m, but not 315 
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5000 m, was most important for honeyeaters. This might be explained by their territorial 316 

behaviour (Phillips et al. 2010), which allows them to monopolise patches of resources.  317 

The presence of Eucalyptus was an important predictor for all honeyeater models except non-318 

endemics, and we suspect it to have a relatively negative effect compared to Symphyomyrtus 319 

trees (Fig. 5). Symphyomyrtus trees are known to higher abundance of arthropods (Dunkerley 320 

et al. 1990; Saunders and Burgin 2001) particularly in summer (when fieldwork was carried 321 

out) which could explain why we observed a higher abundance and richness of honeyeaters 322 

particularly endemics which included the more insectivorous Yellow-throated, Strong-billed, 323 

and Black-headed honeyeaters (Thomas 1980). 324 

Acacia and Pultenaea were relevant predictors for total bee abundance, Pultenaea and 325 

Pomaderris for native and introduced bee abundance richness, respectively, and 326 

Leptospermum for both beetle abundance and richness. All these relationships have plausible 327 

biological underpinnings. Acacia, for example, produces copious pollen (Stone et al. 2003) 328 

which is essential for larval provisions for almost all bees (Brosi et al. 2007), and Pultenaea 329 

and Pomaderris contain nectar and pollen and have been found be pollinated by bees, beetles 330 

and butterflies (Armstrong 1979; De Kok and West 2004; Ogilvie et al. 2009). 331 

Leptospermum, in addition to providing nectar and pollen, is also a rich source of fruits and 332 

grass-root material which beetles and their larvae feed upon (Andersen and New 1987; 333 

Stephens et al. 2005).  334 

Floral shape, but not colour, was also predictive, with zygomorphic and actinomorphic-335 

shaped plants relevant for native bees and beetles, respectively. The zygomorphic shape of 336 

some flowers could be important for native bees as it includes native genera such as 337 

Pultenaea and Goodenia. These taxa have been shown to exhibit bee-pollination syndrome 338 

(i.e. flower features evolved in response to natural selection driven by bees) even though  339 

pollinator syndromes have been found inadequate as an explanation for pollinator visitation 340 
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in Tasmania (Hingston and Mc Quillan 2000). Actinomorphic shape could be important for 341 

beetles as they find it easier to land on simple dish- and bowl-shaped blossoms (Armstrong 342 

1979).  343 

The goodness-of-fit statistics (R2) of the models indicates that several other factors, not 344 

measured in this study, might be required to improve the models. For honeyeater models, this 345 

could include availability of other feeding resources such as mana (a type of resin), 346 

honeydew and lerp (Paton 1980), and presence and abundance of other Eucalyptus species or 347 

other genera, perhaps in distributed in complex communities (Phillips et al. 2010). For bee 348 

models, this includes species-specific responses (Cariveau and Winfree 2015), ecological 349 

traits such as flight seasons (De Palma et al. 2015) and nesting habitat (Kremen et al. 2007). 350 

For beetle models, possible additional contributors are leaf litter, microclimate and soil 351 

variables (Fountain-Jones et al. 2015). For butterfly models, host plants for larvae, nectar 352 

plants for adults (Krämer et al. 2012), and micro-climatic conditions (Liivamägi et al. 2014), 353 

and all plausible additional determinants, perhaps in a large suite of tapering effects.           354 

Like most studies of the determinants of pollinator ecology, this research is limited by 355 

considering LU and LC in their present conditions. Although a past-present comparison 356 

would be more adequate to assess impacts of changes on pollinators this would require 357 

baseline data on pollinators, which is lacking. The alternative—long-term monitoring—is a 358 

resource intensive undertaking, making comparative space-for-time assessments a logical 359 

substitute. One of the real-world constraints on this study was the frequent bad weather (wind 360 

and rain, making sampling impossible on many days within the field season), and the choice 361 

of a repeated sampling strategy (which yields higher precision within sites, at the cost of 362 

spatial bias). Future studies could consider including a mix of human observations and 363 

mechanised/automated methods such as acoustic recorders for birds (Wimmer et al. 2013) 364 

and photographic recording of bees (Steen 2017). The visual sampling of bees and beetles 365 
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allowed us to assess which plants they visited, but limited the taxonomic identification of 366 

insects, and small samples sizes of rarer taxa, made the testing of species-specific responses 367 

to the predictor variables infeasible.  368 

A major advantage of the approach taken in this study, involving machine learning and 369 

predictive modelling, is in its ability to subject available data to robust assessment and use it 370 

to make informed decisions (Thessen 2016, Willcock et al. 2018). For example, what if a 371 

land manager of a plantation or pasture wanted to clear forested areas to improve 372 

production/yield, but still wanted to sustain a community of pollinators? Our results suggest 373 

that the optimal approach would be to create a mosaic of LC in the surrounding landscape, 374 

maintaining forest cover within a large spatial scale of 2000 m. The next best—or 375 

complementary—option to sustain a community of pollinators would be to plant floral 376 

resources with a brushed-shaped genus such as Acacia, the zygomorphic-shaped Pultenaea, 377 

or the actinomorphic-shaped Pomaderris and Leptospermum, so as to sustain a richness and 378 

abundance of bees and beetles which fall within a known a framework of choosing plants that 379 

provide nectar and/or pollen resources for a long temporal span (Menz et al. 2011), with a 380 

focus on native plants (M'Gonigle et al. 2015). Using trees consisting of a mix of the 381 

Symphyomyrtus and Eucalyptus subgenera would promote honeyeaters. Applied 382 

recommendations like this are based on evidence-based predictive results, which is valuable 383 

for pollinator-management decisions. Further, the implementation of our recommendations 384 

could then be used to validate our study’s predictions, to improve future predictions in an 385 

adaptive-management framework.  386 
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