Association between land cover, plant genera and pollinator dynamics in mixed-use

landscapes

Vishesh L. Diengdoh¹, e: vishesh.diengdoh@utas.edu.au, ORCID: https://orcid.org/0000-

0002-0797-9261

Barry W. Brook^{1, 2} - e: <u>barry.brook@utas.edu.au</u>

Mark Hunt^{1, 3} - e: <u>M.Hunt@utas.edu.au</u>

Stefania Ondei¹ - e: <u>stefania.ondei@utas.edu.au</u>

¹School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart TAS 7005 Australia

²ARC Centre of Excellence for Australian Biodiversity and Heritage, Australia

³ARC Industrial Transformation Training Centre for Forest Value, Australia

Corresponding Author: Vishesh L. Diengdoh

Acknowledgements

This work was supported by the Australian Research Council [grant number FL160100101]. The authors acknowledge the Pydairrerme people, traditional custodians of the land where fieldwork was carried out. We thank the different landowners for permission provided to carry out fieldwork on their properties. We would also like to thank the volunteers who assisted with fieldwork.

1 Abstract

2 Context.

- 3 Land-use change threatens pollinators globally. However, pollinator-landscape studies tend to
- 4 focus on certain focal taxa and landscapes with intensive human activities. This limits the
- 5 implementation of targeted management policies for landscapes with different modifications
- 6 and pollinator groups.

7 Objectives.

- 8 This study aims to determine which habitat characteristics can predict abundance and
- 9 richness of multiple pollinator groups.

10 Methods.

11 We collected field data on the relative abundance and observed richness of nectivorous birds,

12 bees, beetles, butterflies across a mixed-use landscape in the Tasman Peninsula, Tasmania,

- 13 Australia; and determined if they could be predicted using land use, land cover at different
- 14 radii (100 m to 5000 m), plant genera and floral morphologies.

15 Results.

- 16 Using feature selection, we found land use was an overall poor predictor, with land cover,
- 17 plant genera and floral morphologies being superior. Random forest was used for predictive
- 18 modelling and goodness of fit R^2 calculated was highest and lowest for butterfly abundance
- 19 (0.65) and butterfly richness (0.08) respectively. Variable importance was calculated, and
- 20 forest cover achieved the highest importance value for nectivorous birds and butterflies,
- 21 whereas open cover was most important for bees and the presence of the plant genus
- 22 *Leptospermum* for beetles.
- 23 Conclusions.

- 24 Our results emphasise the importance of considering multiple habitat factors to manage and
- 25 support a dynamic pollinator community. We demonstrate how predictive modelling can be
- 26 used to make informed decisions on how to have a dynamic pollinator community in a way
- that can be applied to real-world scenarios to validate the models and further improve
- 28 decision making.
- 29

30 Keywords

31 Honey bees, native bees, honeyeaters, Exoneura, Lasioglossum

32 Introduction

33	Pollinators (animal vectors of pollen) are important ecosystem components, assisting in the
34	sexual reproduction of plants (Kevan and Viana 2003). They are estimated to pollinate 70%
35	of global crops (Klein et al. 2007) and 87% of wild plants (Ollerton et al. 2011). Flying
36	insects, such as bees, beetles, and butterflies, play a particularly important role in pollinating
37	crops (Rader et al. 2016) and wild plants (Winfree et al. 2011). Birds such as honeyeaters
38	also act as pollinators, particularly in the Austral and Oceanic regions, where they pollinate
39	more than 10% of the flora (Sekercioglu 2006).
40	Pollinators are declining globally (Maes and Van Dyck 2001; Ollerton et al. 2014; Regan et
41	al. 2015). The causes are many and include land-use change (LUC: habitat loss and
42	fragmentation), introduced and invasive species, agrochemicals, climate change, and the
43	interactions and synergies between these threats (Potts et al. 2010; Regan et al. 2015;
44	Vanbergen et al. 2013). Of these, LUC is considered the most important threat to pollinators
45	as it reduces plant abundance and diversity, which in turn reduces the availability of floral
46	resources (Baude et al. 2016; Nicolson and Wright 2017; Paton 2000).
47	Land-use change can have mixed effects on pollinators (Winfree et al. 2011), with its relative
48	impact depending on pollinator taxa (Montero-Castaño and Vilà 2012), geographic location
49	(Archer et al. 2014; De Palma et al. 2016), the amount of native vegetation present (Winfree
50	et al. 2009) and the intensity of disturbance (Herrera 2018; Senapathi et al. 2015). The
51	impacts of LUC on pollinators is also influenced by the availability of floral resources
52	(Winfree et al. 2011) which are known to be a limiting factor for pollinators such as bees
53	(Roulston and Goodell 2011), butterflies (Öckinger and Smith 2006), and birds (Paton 2000).
54	Pollinator-landscape studies have typically focused on landscapes with extreme LUC
55	(Winfree et al. 2011) or on impacts of LUC on focal taxa, like bees (Senapathi et al. 2017).

56	This is a limitation because landscapes with varying degrees of modification and different
57	suites of pollinator groups might require distinct management policies.
58	The Tasman Peninsula (Tasmania, southern-temperate Australia) provides an excellent case
59	study as it consists of a mixed-used landscape (see Methods) with multiple pollinator taxa,
60	including bees, beetles, butterflies, and birds (Hingston and Mc Quillan 2000). The large
61	island of Tasmania is also rich in plant diversity, with 2,726 vascular plant species, of which
62	70% are native and the remaining 30% have naturalised from elsewhere (Baker and Duretto
63	2019). This allows the additional assessment of the impacts of plant genera and floral
64	morphologies (shape and colour) on different pollinator communities.
65	In this study, we aim to assess the influence of land use (LU), land cover (LC), plant genera,
66	and floral morphologies on the relative abundance and observed richness of nectivorous
67	birds, bees, beetles, and butterflies. To do this, we collected field data on the relative
68	abundance and observed richness of these main pollinator groups across different LU classes,
69	and analysed them using feature selection (Guyon and Elisseeff 2003) for predictor selection,
70	and random forests (RF) (Breiman 2001) for predictive modelling. The advantage of using
71	machine learning and predictive modelling is its ability to handle data with non-normal
72	distribution and noise, and use robust training-and-testing analysis to make predictions for
73	informed decision making (Thessen 2016; Willcock et al. 2018). We discuss the associations
74	between predictors and pollinators and which predictors are best suited to management for
75	improving the diversity and resilience of pollinator communities.
76	Methods

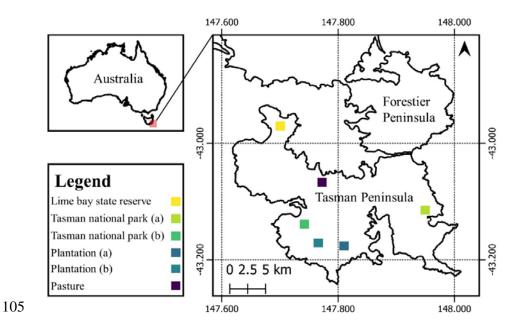
77 Study area

The Tasman Peninsula, located on the south-eastern portion of Tasmania, Australia (Fig. 1),
covers an area of 660.4 km² with elevation from 0 to 582 m a.s.l. (meters above sea level). It

80	is characterised by	a mix of dry and	l wet sclerophyll	eucalypt forest and d	ry coastal vegetation

- 81 and supports a third of the vascular plants found in Tasmania (Brown and Duncan 1986). In
- 82 terms of human activity, it is a mixed-use landscape, dominated by grazing pasture, forest
- 83 plantations and protected areas (Department of Primary Industries Parks Water and
- 84 Environment 2015), with protected areas covering 26.7% of its surface (Australian Bureau of
- 85 Statistics 2020). The three LU (Table 1) were used as predictor variables for all pollinator
- 86 groups.

Land-use	Sites	Characteristics
Protected areas	Lime Bay State reserve (LBR)	Coastal woodland, with pockets of dense tree but overall open canopy cover and dense ground vegetation.
	Tasman National park (TNP) (a)	Sclerophyll forest with dense canopy cover and dense ground vegetation.
	Tasman National park (TNP) (b)	Sclerophyll forest, with moderate canopy and open ground vegetation.
Plantations	Plantation (a)	Contains patches of eucalypt and pine forest plantations and non-plantation eucalypt forest where fieldwork was carried out. Sclerophyll forest with dense canopy and ground cover.
	Plantation (b)	Contains patches of eucalypt forest and pine plantations and non-plantation eucalypt forest where fieldwork was carried out. Sclerophyll forest with dense canopy and ground cover. We noticed more harvested coups in this site than in plantation (a)
Pasture	Pasture	Pasture areas with cattle, with few isolated trees within the pasture.


87 **Table 1.** Characteristics of the different sites within each LU

88

89 Study design

90	We established one observation site in a pasture, two in plantations and three in protected
91	areas (Fig. 1). The unequal number of sites per land use was due to lack of accessibility. Each
92	site consisted of two subsites 1-3 km apart and each subsite included three plots, with birds,
93	bees, and beetles sampled in each plot, and one transect for butterfly sampling. The plots
94	were at least 400 m apart and randomly distributed 80-100 m from a chosen walking track,
95	while the transects were placed along the walking track between the three plots. In total there
96	were 18 plots and six transects in protected areas, 12 plots and four transects in plantations
97	and six plots and two transects in pasture.
98	Observations took place between $07.00 - 11.00$ h and $16.00 - 19.00$ h for birds and $10.00 - 10.00$ h for birds and $10.00 $
99	15.00 h for insects, under non-windy and non-rainy conditions. Sampling of all the
100	investigated pollinator groups was then repeated monthly from September to December 2018
101	to account for temporal changes in flowering vegetation.

- 102 Using the same methodology described above, a proof-of-concept pilot study was previously
- 103 carried out in protected areas consisting of three sites with 12 plots and 6 transects (Fig. 1)
- 104 from January to February 2018.

106 Fig. 1 Location of the sampling sites in the Tasman Peninsula, Tasmania, Australia.

107 Pollinator sampling and plant identification

- 108 Birds were visually observed using a standardised point-count method within a 2-ha plot for
- 109 20 minutes (BirdLife 2020). Honeyeaters (family Meliphagidae), were the only birds
- 110 considered for this study as they are dominant group of nectivorous birds in Australia (Ford
- and Paton 1977). Honeyeater count and species were recorded with species grouped into
- 112 endemic (native to Australia but present only in Tasmania) and non-endemic (native to
- 113 Australia and present throughout Australia) honeyeaters.
- 114 Eucalyptus tree species within the 2-ha plots were recorded (presence/absence) and identified
- using a field guide by Wiltshire and Potts (2007). They were grouped into *Symphyomyrtus*
- and Eucalyptus (formerly Monocalyptus) sub-genera (Nicolle 2015) and used as predictors
- 117 for honeyeaters richness and abundance, as they have been shown to influence honeyeater
- 118 presence (Dunkerley et al. 1990; Woinarski and Cullen 1984).
- 119 Bees and beetles were recorded within the 2-ha plot by visually observing four ground-level
- 120 flowering plants for 10 minutes each, as observational sampling is a commonly used
- 121 technique to detect bee abundance (Prendergast et al. 2020). Both insects and plants were
- 122 photographed to allow for off-site identification (where required). Bees were grouped into
- 123 introduced bees and native bees; introduced bees included Apis mellifera (western honey bee)
- 124 and Bombus terrestris (buff-tailed bumble bee), the only introduced species found in
- 125 Tasmania (https://www.environment.gov.au/biodiversity/invasive-species/insects-and-other-
- 126 <u>invertebrates/invasive-bees</u>), while native bees included all other bee species. Beetles were
- 127 identified to family level using iNaturalist website (<u>https://inaturalist.org/</u>).
- 128 Where possible, four different species of flowering plant, separated by at least 5 m, were
- 129 chosen, with new species selected during the repeated visits. If no flowering plants were

130 present, that resulted in zero observations. Plants were identified to species or genus level

131 using the University of Tasmania key to Tasmanian vascular plants

132 (www.utas.edu.au/dicotkey/dicotkey/key.htm). The plants identified were grouped based on

- their colour and shape using a classification adopted from Hingston and Mc Quillan (2000).
- 134 Colours were pale, yellow, and pink, while shapes were brush, tubular, actinomorphic, and
- 135 zygomorphic.
- 136 Butterflies were sampled along a 1000-m long and 5-m wide transect (Pollard 1977). An

137 insect net was used to catch butterflies and record the count and species. Species were

- 138 photographed and identified using the reference Common and Waterhouse (1972).
- 139 Land-cover analysis
- 140 Land Cover refers to the natural and artificial structures covering the land (Anderson et al.
- 141 1976); the LC classes considered in this study are 'forest' (areas dominated by trees,
- 142 including plantations), 'open' (areas with low-lying vegetation, including shrubs and
- 143 grasses), 'barren' (areas lacking vegetation) and 'water' (quantified as the percentage of total
- 144 cover at different spatial scales). The allocation of LC classes was inferred from Sentinel 2

145 imagery as it has a high spatial resolution of 10×10 m (Sentinel Online 2020).

- 146 The LC classification was done using machine learning algorithms support vector machine
- 147 (Cortes and Vapnik 1995), random forest (Breiman 2001), k-nearest neighbour (Cover and
- 148 Hart 1967), and naïve Bayesian (Mitchell 1997) and averaging their results using an
- 149 unweighted ensemble (Diengdoh et al. 2020) in R v1.3 (RStudio Team 2020) and QGIS
- 150 v3.12 (QGIS Development Team 2020). Classification was implemented using the *caret* R
- 151 package (Kuhn 2020).
- 152 Accuracy was assessed by comparing it to external/independent/unseen data. The external
- 153 data consisted of 100 points/pixels per LC class, randomly selected from the classified image

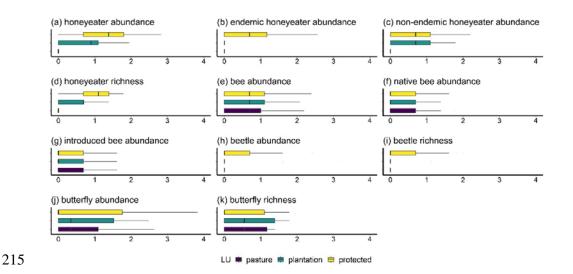
154	and visually compared to imagery from Google Earth and from field data for accuracy
155	assessment. Output metrics we report include the overall accuracy (OA), the true-skill
156	statistic (TSS) for the classified image, and the sensitivity and specificity of each LC class,
157	where: OA is the number of correctly classified pixels divided by the total number of pixels
158	examined (Foody 2002); TSS is equal to the median of sensitivity plus specificity minus 1;
159	sensitivity is observed presences that are predicted as such; while specificity observed
160	absences that are predicted as such (Allouche et al. 2006). The method for LC classification
161	is detailed in the Supplementary Material.
162	The percentage of each LC class was calculated within buffers of varying size for each
163	pollinator group. For bees and beetles, we used buffers of 100 m radius from the centre of the
164	plots, as well as 500 m, 1000 m and 2000 m, corresponding to a range of foraging distances
165	of different bee species (Greenleaf et al. 2007). For honeyeaters, we used buffers of 100 m,
166	2000 m, and 5000 m radius, similar to Smith et al. (2011) and Lasky and Keitt (2010).
167	Buffers of 500 m, 1000 m, and 2000 m were used for butterflies, similar to Bergman et al.
168	(2004).
169	Statistical analyses
170	Feature selection was used to identify the best predictors among those chosen for each
171	pollinator group. Feature selection is a method used to find a subset of features with the

172 minimum possible (out-of-sample) generalization error (Granitto et al. 2006). It can

173 overcome high dimensionality (Guyon and Elisseeff 2003) and is important in datasets where

the number of available training samples is smaller compared to the possible combination of

- 175 features (Chen and Jeong 2007). Random-Forest-Recursive Feature Elimination (RF-RFE), a
- 176 backward feature selection or recursive feature elimination method, was implemented in this
- 177 study using the caret R package (Kuhn 2020). Feature ranking was based on a measure of


178	variable importance from the random forests fit. Leave-p-out cross validation was used,
179	where p was 70/30 % (training/testing) with 500 iterations; p was indexed based on the
180	number of plots (for honeyeater, bee, and beetle models) and sites (for butterfly models) to
181	ensure training and testing data had a unique set to account for repeated observations.
182	Random forest was used for predictive modelling once the best set of predictors was
183	identified, using the randomForest R package (Liaw and Wiener 2002). The goodness of fit
184	and cross-validated R ² and root mean square error (RMSE) of each model were calculated.
185	Cross-validation was carried out by splitting the data into a training/testing set using a
186	random stratified method rather than a random percentage method. The stratification ensured
187	that, for each plot/site with repeated observations, there was at least one repeated observation
188	in the testing data that was not in the training data. Variable importance was calculated for
189	each predictor in a model using the ggRandomForests R package (Ehrlinger 2016).
190	Results

191 Pollinator richness and abundance

192 We observed a total of 405 honeyeaters belonging to eight different species, of which four are 193 endemic (186 individuals) and the remaining non-endemic (219 individuals). There was a 194 total of 509 bees consisting of 230 introduced bees (214 honey bees and 16 bumble bees) and 279 native bees (183 Exoneura genus, 48 Lasioglossum genus and 48 individuals classified as 195 196 others). There was also a total of 423 beetles, belonging to nine families and a total of 202 197 butterflies belonging to nine species. The observations for honeyeaters and butterflies were 198 from the main and pilot study while for bees and beetles were only from the main study due 199 to a lack of observations in the pilot. A list of species observed across the different LU and 200 LU sites is included in the Supplementary (Table S1).

201	The median of the log	g abundance and richness of diffe	erent pollinator groups differed across

- 202 the three LU classes (Fig. 2) and the six LU sites (Fig. 3). Protected areas had an overall
- 203 higher abundance and richness of different pollinator groups (Fig. 2) particularly at Lime Bay
- 204 State Reserve (Fig. 3). Tasman National Park (b) had lower abundance of native bees,
- 205 beetles, and butterflies (Fig. 3f, h-k) and richness of beetles and butterflies (Fig. 3f, h-k).
- 206 Overall, plantations had a higher abundance of non-endemic honeyeaters than endemic
- 207 honeyeaters (Fig. 2b, c) and lower abundance and richness of beetles (Fig. 2h, i). Plantation
- 208 (a) supported both endemic and non-endemic honeyeaters (Fig. 3b, c) but had lower
- abundance and richness of beetles (Fig. 3h, i); Plantation (b) supported only non-endemic
- 210 honeyeaters (Fig. 3b, c) but had higher abundance and richness of beetles (Fig. 3h, i). Sites in
- 211 pastures had the lowest abundance and richness of beetles (Fig. 2h, i; Fig. 3h, i;) and no
- observed honeyeaters in either subsites (Fig. 2a-d; Fig. 3a-d) but had a high abundance of
- 213 native and introduced bees (Fig. 2f, g; Fig. 3f, g) as well as an abundance and richness of
- 214 butterflies (Fig. 2j, k; Fig. 3j, k).

- 216 Fig. 2 Log of total abundance and richness of honeyeaters including endemic and non-
- 217 endemic honeyeaters (a-d), bees (e-g), beetles (h-i) and butterflies (j-k) in pastures,
- 218 plantations, and protected areas.

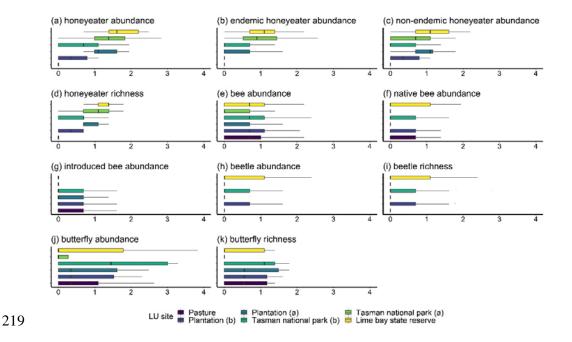


Fig. 3 Log of total abundance and richness of honeyeaters including endemic and non-

221 endemic honeyeaters (a-d), bees (e-g), beetles (h-i) and butterflies (j-k) across pastures,

222 plantations (plantation a and b) and protected areas (Tasman National Park a and b, Lime Bay

223 State Reserve) LU sites.

224 Bees and beetles were observed visiting 24 plant genera, of which only three are

225 exotic/naturalised, i.e., Arctotheca, Taraxacum and Trifolim, which were only found in

226 pastures. The genera *Daviesia*, *Pultenaea*, and *Melaleuca* had the highest abundance of

227 native bees (Fig. 4a), while Anopterus, Pimelea, Pomaderris, and Trifolim had the highest

abundance of introduced bees (Fig. 4b) and *Leptospermum* the highest abundance of beetles

- 229 (Fig. 4a). Symphyomyrtus presence was associated with an overall higher abundance and
- 230 richness of honeyeaters (Fig. 5 e, h) compared to Eucalyptus. Symphyomyrtus also supported
- a higher abundance of endemic honeyeaters (Fig. 5f) than *Eucalyptus*.

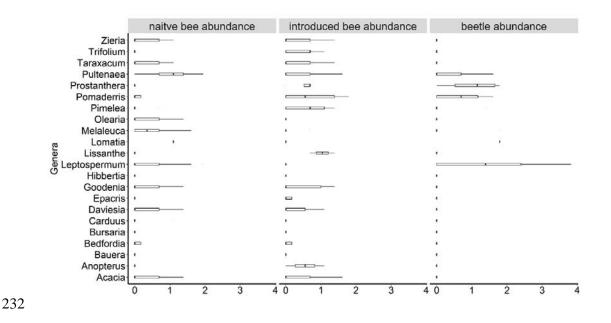
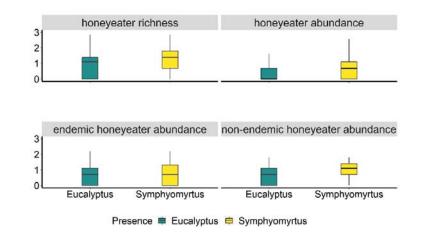



Fig. 4 Log of total abundance of native bees, introduced bees, and beetles per genus.

- 235 Fig. 5 Log of total abundance and richness of honeyeaters across in presence of Eucalyptus
- and *Symphyomyrtus* plant genera.
- 237 Land-cover analysis

- 238 The classified image (Supplementary Fig. S1) had an OA of 79.5% with 95% CI [75.21,
- 83.35] and TSS score of 77.41%. The confusion matrix of the classification results with
- sensitivity and specificity of the LC classes and the classified image, as well as the

241 percentage of forest and open cover within different buffers across the three LU, are included

- 242 in Supplementary (Table S2-S4).
- 243 Predictors of pollinator richness and abundance
- Land use (i.e., human activities on the land) was not selected by RF-RFE as a predictor for

any of the models except for butterfly abundance (Fig. 6). Two land cover (i.e., structures

246 covering the land) classes—forest and open—were identified as important predictors in all

247 models, with buffering size selection differing between honeyeaters, bees and beetles, and

248 butterflies. Four plant genera, all native to Australia, were selected as predictors of bee and

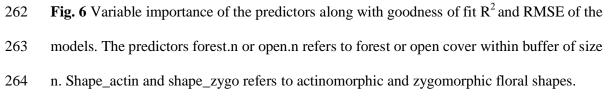
249 beetle abundance and richness (Fig. 6e-i). Floral shape – zygomorphic and actinomorphic,

250 were selected for the native-bee and beetle models (Fig. 6f, h, i).

251 Structural goodness of fit (R^2) results showed that butterfly abundance and butterfly richness

had the highest and lowest R^2 values, respectively (Fig. 6j, k). R^2 values were highest in


beetle models (Fig. 6j, i) followed by honeyeater models (Fig. 6a-d) and lowest in bee models(Fig. 6e-g).


255 Variable importance results from the random forests models show that, overall, LC had the

256 highest importance value for most models except for beetle abundance and richness models,

where Leptospermum was the most important (Fig. 6h, i). Buffers of 500 m, 1000 m, 2000 m

- and 5000 m were all important for honeyeaters (Fig. 6a-d), while buffers of 100 m and 2000
- m were important for bees and beetles (Fig. 6 e-i) and buffers of 500 m, 2000 m and 5000 m
- were important for butterflies (Fig 6j, k).

266 We assessed the richness and abundance of multiple pollinator groups across a mixed-use 267 landscape, combined with the influence of different floral resources and morphologies, and 268 found that pollinators were overall not affected by LU, whereas LC, plant genera, and floral 269 shape were all determinants. Forest cover was relevant to all pollinator groups while open 270 cover was important for bees, beetles, and butterflies, but not birds. Buffers of 2000 m and 271 below were important for all pollinators while 5000 m and below were important for 272 butterflies. The plant genera Acacia, Pultenaea, Pomaderris and Leptospermum were the 273 most important identified drivers of native bee and beetles, while *Eucalyptus* was a relevant 274 predictor for all honeyeater models except for non-endemic honeyeater abundance. In short, 275 land cover and the distribution of diverse floral resources are crucial determinants of the 276 health of pollinator communities. 277 Land use was generally a poor predictor even though pollinator abundance and richness 278 varied between and within the three LU types (Figs. 2, 3). We suspect the poor prediction is 279 because our study region does not include extremely modified land use types (e.g., pure 280 agriculture, or urban). Indeed, a meta-analysis by Winfree et al. (2009) found that habitat loss 281 and fragmentation severely impacted bees only in landscapes with little-to-no natural habitat

the three LU types is thus likely to be predominantly driven by differences in forest cover and

remaining. The variation in pollinator richness and abundance recorded between and within

availability of resources. For example, pastures with trees and high floral diversity have been

found to have higher abundance of nectivorous birds (Kavanagh et al. 2007) and beetles

282

287

286 (Harris and Burns 2000) than pastures that lack such resources. Human activities could also

influence pollinator presence. For example, the differences in endemic honeyeater abundance

288 between the two plantation sites could be at least partially associated with forestry activities

289 (e.g., harvesting) which have been shown to impact the diversity and abundance of endemic

290 birds including honeyeaters (MacDonald et al. 2005). Although LU was a good predictor of

291 butterfly abundance, the large differences between the protected sites points to an explanation 292 underpinned by habitat type, presence of host and nectar plants and micro-climatic 293 conditions, all of which are known to influence butterfly assemblages (see Curtis et al. 2015; 294 Eilers et al. 2013; Öckinger et al. 2012; Stefanescu et al. 2005). 295 Land Cover—specifically the presence of forest and open cover—were important predictors 296 for all the pollinator groups. We suspect forest and open cover types could contain a variety 297 of feeding and nesting resources essential for different pollinators (Kremen et al. 2007; 298 Ockinger et al. 2012). Moreover, the positive and negative impacts these cover types are 299 likely depend on the taxon; for example, open areas that lack floral resources—food and 300 shelter—are likely to have a negative impact on honeyeaters and beetles (Harris and Burns 301 2000; Kavanagh et al. 2007). Forest cover is known to influence birds presence in general 302 (Trzcinski et al. 1999) and honeyeaters specifically (Harrisson et al. 2014). Further, high 303 abundances of bees has been found in both forest (Taki et al. 2007, Ferreira et al. 2015) and 304 open areas (Winfree et al. 2007, Kaluza et al. 2016), and forest cover has been shown 305 elsewhere to be a good predictor of beetle assemblage (Sánchez-de-Jesús et al. 2016), with 306 high amount of forest cover associated with higher abundance and richness of beetles (Watts 307 and Larivière 2004). Although Posa and Sodhi (2006) found LC to have a weak correlation 308 with a butterfly assemblage, we hypothesise that this difference might be due to the higher 309 relative availability of resources in tropical (their study) versus temperate (our study) regions. 310 The buffers around forest and open land-cover types were important presumably because 311 these contain within them smaller patches of resources. Butterflies, being mobile organisms, 312 can use the resources from the surrounding landscape (Liivamägi et al. 2014) and we expect 313 the same for other flying insects like bees and beetles. The spatial distribution of resources 314 seems to drive buffer sizes, in general, as buffers for bees are known to vary (see Goulson et 315 al. 2010; Pisanty and Mandelik 2015; Taki et al. 2007). Forest cover within 2000 m, but not

316	5000 m, was most important for honeyeaters. This might be explained by their territorial
317	behaviour (Phillips et al. 2010), which allows them to monopolise patches of resources.
318	The presence of Eucalyptus was an important predictor for all honeyeater models except non-
319	endemics, and we suspect it to have a relatively negative effect compared to Symphyomyrtus
320	trees (Fig. 5). Symphyomyrtus trees are known to higher abundance of arthropods (Dunkerley
321	et al. 1990; Saunders and Burgin 2001) particularly in summer (when fieldwork was carried
322	out) which could explain why we observed a higher abundance and richness of honeyeaters
323	particularly endemics which included the more insectivorous Yellow-throated, Strong-billed,
324	and Black-headed honeyeaters (Thomas 1980).
325	Acacia and Pultenaea were relevant predictors for total bee abundance, Pultenaea and
326	Pomaderris for native and introduced bee abundance richness, respectively, and
327	Leptospermum for both beetle abundance and richness. All these relationships have plausible
328	biological underpinnings. Acacia, for example, produces copious pollen (Stone et al. 2003)
329	which is essential for larval provisions for almost all bees (Brosi et al. 2007), and Pultenaea
330	and Pomaderris contain nectar and pollen and have been found be pollinated by bees, beetles
331	and butterflies (Armstrong 1979; De Kok and West 2004; Ogilvie et al. 2009).
332	Leptospermum, in addition to providing nectar and pollen, is also a rich source of fruits and
333	grass-root material which beetles and their larvae feed upon (Andersen and New 1987;
334	Stephens et al. 2005).
335	Floral shape, but not colour, was also predictive, with zygomorphic and actinomorphic-
336	shaped plants relevant for native bees and beetles, respectively. The zygomorphic shape of
337	some flowers could be important for native bees as it includes native genera such as
338	Pultenaea and Goodenia. These taxa have been shown to exhibit bee-pollination syndrome
339	(i.e. flower features evolved in response to natural selection driven by bees) even though

340 pollinator syndromes have been found inadequate as an explanation for pollinator visitation

in Tasmania (Hingston and Mc Quillan 2000). Actinomorphic shape could be important for
beetles as they find it easier to land on simple dish- and bowl-shaped blossoms (Armstrong
1979).

344	The goodness-of-fit statistics (R^2) of the models indicates that several other factors, not
345	measured in this study, might be required to improve the models. For honeyeater models, this
346	could include availability of other feeding resources such as mana (a type of resin),
347	honeydew and lerp (Paton 1980), and presence and abundance of other Eucalyptus species or
348	other genera, perhaps in distributed in complex communities (Phillips et al. 2010). For bee
349	models, this includes species-specific responses (Cariveau and Winfree 2015), ecological
350	traits such as flight seasons (De Palma et al. 2015) and nesting habitat (Kremen et al. 2007).
351	For beetle models, possible additional contributors are leaf litter, microclimate and soil
352	variables (Fountain-Jones et al. 2015). For butterfly models, host plants for larvae, nectar
353	plants for adults (Krämer et al. 2012), and micro-climatic conditions (Liivamägi et al. 2014),
354	and all plausible additional determinants, perhaps in a large suite of tapering effects.
355	Like most studies of the determinants of pollinator ecology, this research is limited by
355 356	Like most studies of the determinants of pollinator ecology, this research is limited by considering LU and LC in their present conditions. Although a past-present comparison
356	considering LU and LC in their present conditions. Although a past-present comparison
356 357	considering LU and LC in their present conditions. Although a past-present comparison would be more adequate to assess impacts of changes on pollinators this would require
356 357 358	considering LU and LC in their present conditions. Although a past-present comparison would be more adequate to assess impacts of changes on pollinators this would require baseline data on pollinators, which is lacking. The alternative—long-term monitoring—is a
356 357 358 359	considering LU and LC in their present conditions. Although a past-present comparison would be more adequate to assess impacts of changes on pollinators this would require baseline data on pollinators, which is lacking. The alternative—long-term monitoring—is a resource intensive undertaking, making comparative space-for-time assessments a logical
356 357 358 359 360	considering LU and LC in their present conditions. Although a past-present comparison would be more adequate to assess impacts of changes on pollinators this would require baseline data on pollinators, which is lacking. The alternative—long-term monitoring—is a resource intensive undertaking, making comparative space-for-time assessments a logical substitute. One of the real-world constraints on this study was the frequent bad weather (wind
 356 357 358 359 360 361 	considering LU and LC in their present conditions. Although a past-present comparison would be more adequate to assess impacts of changes on pollinators this would require baseline data on pollinators, which is lacking. The alternative—long-term monitoring—is a resource intensive undertaking, making comparative space-for-time assessments a logical substitute. One of the real-world constraints on this study was the frequent bad weather (wind and rain, making sampling impossible on many days within the field season), and the choice
 356 357 358 359 360 361 362 	considering LU and LC in their present conditions. Although a past-present comparison would be more adequate to assess impacts of changes on pollinators this would require baseline data on pollinators, which is lacking. The alternative—long-term monitoring—is a resource intensive undertaking, making comparative space-for-time assessments a logical substitute. One of the real-world constraints on this study was the frequent bad weather (wind and rain, making sampling impossible on many days within the field season), and the choice of a repeated sampling strategy (which yields higher precision within sites, at the cost of

allowed us to assess which plants they visited, but limited the taxonomic identification of
insects, and small samples sizes of rarer taxa, made the testing of species-specific responses
to the predictor variables infeasible.

369	A major advantage of the approach taken in this study, involving machine learning and
370	predictive modelling, is in its ability to subject available data to robust assessment and use it
371	to make informed decisions (Thessen 2016, Willcock et al. 2018). For example, what if a
372	land manager of a plantation or pasture wanted to clear forested areas to improve
373	production/yield, but still wanted to sustain a community of pollinators? Our results suggest
374	that the optimal approach would be to create a mosaic of LC in the surrounding landscape,
375	maintaining forest cover within a large spatial scale of 2000 m. The next best-or
376	complementary-option to sustain a community of pollinators would be to plant floral
377	resources with a brushed-shaped genus such as Acacia, the zygomorphic-shaped Pultenaea,
378	or the actinomorphic-shaped Pomaderris and Leptospermum, so as to sustain a richness and
379	abundance of bees and beetles which fall within a known a framework of choosing plants that
380	provide nectar and/or pollen resources for a long temporal span (Menz et al. 2011), with a
381	focus on native plants (M'Gonigle et al. 2015). Using trees consisting of a mix of the
382	Symphyomyrtus and Eucalyptus subgenera would promote honeyeaters. Applied
383	recommendations like this are based on evidence-based predictive results, which is valuable
384	for pollinator-management decisions. Further, the implementation of our recommendations
385	could then be used to validate our study's predictions, to improve future predictions in an
386	adaptive-management framework.

387 Declarations

388 Funding

389 This work was supported by the Australian Research Council [grant number FL160100101].

- 390 Conflicts of Interest
- 391 None.
- 392 Ethics approval
- 393 Fieldwork was carried out in accordance with the ethics outlined by the Animal Ethics
- 394 Committee, University of Tasmania under Project No: A0016856 and Department of Primary
- 395 Industries, Parks, Water and Environment (DPIPWE) Tasmania, for fieldwork permits in
- 396 protected areas, under Authority No's. FA17315 and FA18185.
- 397 Consent to participate
- 398 Not applicable.
- 399 Consent for publication
- 400 All the authors have reviewed the manuscript and provided consent for publication.
- 401 Availability of data and material
- 402 Included in the supplementary material.
- 403 *Code availability*
- 404 Not included but available on request.
- 405 Author Contributions
- 406 VLD proposed and designed the study, carried out the fieldwork, analysed the data and wrote
- 407 the manuscript. BWB contributed significantly to the study design and writing of the
- 408 manuscript. MH contributed to the study design and writing of the manuscript. SO
- 409 contributed significantly to study design and writing of the manuscript.

410 **References**

411 412 413	Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232. <u>https://doi.org/10.1111/j.1365-2664.2006.01214.x</u>
414	Andersen AN, New T (1987) Insect inhabitants of fruits of Leptospermum, Eucalyptus and
415	Casuarina in southeastern Australia. Australian Journal of Zoology 35:327-336.
416	<u>https://doi.org/10.1071/ZO9870327</u>
417	Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover
418	classification system for use with remote sensor data. Professional Paper 964. US
419	Government Printing Office, Washington DC <u>https://doi.org/10.3133/pp964</u>
420	Archer CR, Pirk CWW, Carvalheiro LG, Nicolson SW (2014) Economic and ecological
421	implications of geographic bias in pollinator ecology in the light of pollinator
422	declines. Oikos 123:401-407. <u>https://doi.org/10.1111/j.1600-0706.2013.00949.x</u>
423 424 425	Armstrong J (1979) Biotic pollination mechanisms in the Australian flora—a review. New Zealand Journal of Botany 17:467-508. https://doi.org/10.1080/0028825X.1979.10432565
426	Australian Bureau of Statistics (2020) Tasman, Region Data Summary.
427	<u>https://itt.abs.gov.au/itt/r.jsp?RegionSummary&region=65210&dataset=ABS_REGIO</u>
428	<u>NAL_LGA2018&geoconcept=LGA_2018&maplayerid=LGA2018&measure=MEAS</u>
429	<u>URE&datasetASGS=ABS_REGIONAL_ASGS2016&datasetLGA=ABS_REGIONA</u>
430	<u>L_LGA2018&regionLGA=LGA_2018&regionASGS=ASGS_2016</u> . Accessed 24
431	April 2020
432	Baker M, Duretto M (2019) A census of the vascular plants of Tasmania, including
433	Macquarie Island. Tasmanian Herbarium, Tasmanian Museum and Art Gallery,
434	Hobart. <u>www.tmag.tas.gov.au</u>
435	Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MA, Morton RD, Smart
436	SM, Memmott J (2016) Historical nectar assessment reveals the fall and rise of floral
437	resources in Britain. Nature 530:85. <u>https://doi.org/10.1038/nature16532</u>
438 439 440	Bergman KO, Askling J, Ekberg O, Ignell H, Wahlman H, Milberg P (2004) Landscape effects on butterfly assemblages in an agricultural region. Ecography 27:619-628. <u>https://doi.org/10.1111/j.0906-7590.2004.03906.x</u>
441	BirdLife (2020) Survey Techniques. <u>https://birdata.birdlife.org.au/survey-techniques</u> .
442	Accessed 18 May 2020
443	Breiman L (2001) Random forests. Machine Learning 45:5-32.
444	https://doi.org/10.1023/A:1010933404324
445 446 447	Brosi BJ, Daily GC, Ehrlich PR (2007) Bee community shifts with landscape context in a tropical countryside. Ecological Applications 17:418-430. <u>https://doi.org/10.1890/06-0029</u>
448 449	Brown M, Duncan F (1986) The vegetation of Tasman Peninsula. Papers and Proceedings of the Royal Society of Tasmania 33-50.
450 451 452	Cariveau DP, Winfree R (2015) Causes of variation in wild bee responses to anthropogenic drivers. Current Opinion in Insect Science 10:104-109. https://doi.org/10.1016/j.cois.2015.05.004

453	Chen X-w, Jeong JC (2007) Enhanced recursive feature elimination. Sixth International
454	Conference on Machine Learning and Applications, Cincinnati, USA 429-435. IEEE.
455	<u>https://doi.org/10.1109/ICMLA.2007.35</u>
456	Common IFB, Waterhouse DF (1972) Butterflies of Australia. Angus and Robertson, Sydney
457	Cortes C, Vapnik V (1995) Support-Vector Networks. Machine Learning 20:273-297.
458	https://doi.org/10.1023/A:1022627411411
459	Cover TM, Hart PE (1967) Nearest Neighbor Pattern Classification. Ieee Transactions on
460	Information Theory 13:21-27. <u>https://doi.org/10.1109/Tit.1967.1053964</u>
461 462 463	Curtis RJ, Brereton TM, Dennis RL, Carbone C, Isaac NJ (2015) Butterfly abundance is determined by food availability and is mediated by species traits. Journal of Applied Ecology 52:1676-1684. <u>https://doi.org/10.1111/1365-2664.12523</u>
464 465 466	De Kok R, West J (2004) A revision of the genus Pultenaea (Fabaceae). 3. The eastern species with recurved leaves. Australian Systematic Botany 17:273-326. https://doi.org/10.1071/SB02028
467 468 469 470	De Palma A, Abrahamczyk S, Aizen MA, Albrecht M, Basset Y, Bates A, Blake RJ, Boutin C, Bugter R, Connop S (2016) Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific reports 6:31153. https://doi.org/10.1038/srep31153
471	De Palma A, Kuhlmann M, Roberts SP, Potts SG, Börger L, Hudson LN, Lysenko I,
472	Newbold T, Purvis A (2015) Ecological traits affect the sensitivity of bees to
473	land use pressures in European agricultural landscapes. Journal of Applied Ecology
474	52:1567-1577. <u>https://doi.org/10.1111/1365-2664.12524</u>
475 476	Department of Primary Industries Parks Water and Environment (2015) Tasmanian Land Use 2015. <u>http://www.agriculture.gov.au/abares/aclump/land-use/land-use-mapping</u>
477	Diengdoh VL, Ondei S, Hunt M, Brook BW (2020) A validated ensemble method for
478	multinomial land-cover classification. Ecological Informatics 56:101065.
479	<u>https://doi.org/10.1016/j.ecoinf.2020.101065</u>
480	Dunkerley GM, Ford H, Danthanarayana W (1990) The fuscous honeyeater: food resources
481	and the bird community. Dissertation, University of New England
482	Ehrlinger J (2016) ggRandomForests: Visually Exploring Random Forests. version 2.0.1.
483	<u>https://github.com/ehrlinger/ggRandomForests</u>
484 485 486	Eilers S, Pettersson LB, Öckinger E (2013) Micro□ climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin. Ecological Entomology 38:183-192. <u>https://doi.org/10.1111/een.12008</u>
487 488	Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sensing of Environment 80:185-201. <u>https://doi.org/10.1016/S0034-4257(01)00295-4</u>
489	Ford HA, Paton DC (1977) The comparative ecology of ten species of honeyeaters in South
490	Australia. Australian Journal of Ecology 2:399-407. <u>https://doi.org/10.1111/j.1442-</u>
491	<u>9993.1977.tb01155.x</u>
492	Fountain-Jones NM, Jordan GJ, Baker TP, Balmer JM, Wardlaw T, Baker SC (2015) Living
493	near the edge: being close to mature forest increases the rate of succession in beetle
494	communities. Ecological Applications 25:800-811. <u>https://doi.org/10.1890/14-0334.1</u>

495 496 497 498	Goulson D, Lepais O, O'Connor S, Osborne JL, Sanderson RA, Cussans J, Goffe L, Darvill B (2010) Effects of land use at a landscape scale on bumblebee nest density and survival. Journal of Applied Ecology 47:1207-1215. <u>https://doi.org/10.1111/j.1365-2664.2010.01872.x</u>
499 500 501 502	Granitto PM, Furlanello C, Biasioli F, Gasperi F (2006) Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometrics and Intelligent Laboratory Systems 83:83-90. https://doi.org/10.1016/j.chemolab.2006.01.007
503 504 505	Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589-596. <u>https://doi.org/10.1007/s00442-007-0752-9</u>
506 507	Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. Journal of machine learning research 3:1157-1182.
508	Harris RJ, Burns BR (2000) Beetle assemblages of kahikatea forest fragments in a pasture-
509	dominated landscape. New Zealand Journal of Ecology:57-67.
510 511 512 513	Harrisson KA, Pavlova A, Amos JN, Radford JQ, Sunnucks P (2014) Does reduced mobility through fragmented landscapes explain patch extinction patterns for three honeyeaters? Journal of Animal Ecology 83:616-627. <u>https://doi.org/10.1111/1365-2656.12172</u>
514	Herrera CM (2018) Complex long [] term dynamics of pollinator abundance in undisturbed
515	Mediterranean montane habitats over two decades. Ecological Monographs
516	<u>https://doi.org/10.1002/ecm.1338</u>
517	Hingston AB, Mc Quillan PB (2000) Are pollination syndromes useful predictors of floral
518	visitors in Tasmania? Austral Ecology 25:600-609. <u>https://doi.org/10.1111/j.1442-</u>
519	9993.2000.tb00065.x
520 521 522	Kavanagh RP, Stanton MA, Herring MW (2007) Eucalypt plantings on farms benefit woodland birds in south □ eastern Australia. Austral Ecology 32:635-650. <u>https://doi.org/10.1111/j.1442-9993.2007.01746.x</u>
523	Kevan PG, Viana BF (2003) The global decline of pollination services. Biodiversity 4:3-8.
524	https://doi.org/10.1080/14888386.2003.9712703
525	Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C,
526	Tscharntke T (2007) Importance of pollinators in changing landscapes for world
527	crops. Proceedings of the Royal Society B: Biological Sciences 274:303-313.
528	<u>https://doi.org/10.1098/rspb.2006.3721</u>
529	Krämer B, Poniatowski D, Fartmann T (2012) Effects of landscape and habitat quality on
530	butterfly communities in pre-alpine calcareous grasslands. Biological Conservation
531	152:253-261. <u>https://doi.org/10.1016/j.biocon.2012.03.038</u>
532 533 534 535 536	Kremen C, Williams NM, Aizen MA, Gemmill 🛛 Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston Ta, Steffan 🗆 Dewenter I (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land 🗆 use change. Ecology Letters 10:299-314. https://doi.org/10.1111/j.1461-0248.2007.01018.x
537	Kuhn M (2020) caret: Classification and Regression Training. version 6.0-86.
538	https://github.com/topepo/caret/

539 540 541	Lasky JR, Keitt TH (2010) Abundance of Panamanian dry-forest birds along gradients of forest cover at multiple scales. Journal of Tropical Ecology 26:67-78. <u>https://doi.org/10.1()17/S0266467409990368</u>
542	Liaw A, Wiener M (2002) Classification and Regression by randomForest. version 4.6-14.
543	<u>https://CRAN.R-project.org/doc/Rnews/</u>
544	Liivamägi A, Kuusemets V, Kaart T, Luig J, Diaz-Forero I (2014) Influence of habitat and
545	landscape on butterfly diversity of semi-natural meadows within forest-dominated
546	landscapes. Journal of Insect Conservation 18:1137-1145.
547	<u>https://doi.org/10.1007/s10841-014-9724-7</u>
548	M'Gonigle LK, Ponisio LC, Cutler K, Kremen C (2015) Habitat restoration promotes
549	pollinator persistence and colonization in intensively managed agriculture. Ecological
550	Applications 25:1557-1565. <u>https://doi.org/10.1890/14-1863.1</u>
551 552 553	MacDonald MA, Apiolaza LA, Grove S (2005) The birds of retained vegetation corridors: A pre-and post-logging comparison in dry sclerophyll forest in Tasmania. Forest Ecology and Management 218:277-290. <u>https://doi.org/10.1016/j.foreco.2005.08.027</u>
554 555 556	Maes D, Van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe's worst case scenario? Biological Conservation 99:263-276. https://doi.org/10.1016/S0006-3207(00)00182-8
557	Menz MH, Phillips RD, Winfree R, Kremen C, Aizen MA, Johnson SD, Dixon KW (2011)
558	Reconnecting plants and pollinators: challenges in the restoration of pollination
559	mutualisms. Trends in plant science 16:4-12.
560	<u>https://doi.org/10.1016/j.tplants.2010.09.006</u>
561	Mitchell T (1997) Machine Learning. McGraw-Hill Science/Engineering/Math, New York
562 563 564	Montero-Castaño A, Vilà M (2012) Impact of landscape alteration and invasions on pollinators: a meta-analysis. Journal of Ecology 100:884-893. https://doi.org/10.1111/j.1365-2745.2012.01968.x
565	Nicolle D (2015) Classification of the eucalypts (Angophora, Corymbia and Eucalyptus)
566	Version 4. <u>https://dn.com.au/Classification-Of-The-Eucalypts.pdf</u> .
567	Nicolson SW, Wright GA (2017) Plant–pollinator interactions and threats to pollination:
568	perspectives from the flower to the landscape. Functional Ecology 31:22-25.
569	<u>https://doi.org/10.1111/1365-2435.12810</u>
570	Öckinger E, Bergman K-O, Franzén M, Kadlec T, Krauss J, Kuussaari M, Pöyry J, Smith
571	HG, Steffan-Dewenter I, Bommarco R (2012) The landscape matrix modifies the
572	effect of habitat fragmentation in grassland butterflies. Landscape ecology 27:121-
573	131. <u>https://doi.org/10.1007/s10980-011-9686-z</u>
574 575 576	Öckinger E, Smith HG (2006) Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149:526-534. https://doi.org/10.1007/s00442-006-0464-6
577	Ogilvie JE, Zalucki JM, Boulter SL (2009) Pollination biology of the sclerophyllous shrub
578	Pultenaea villosa Willd.(Fabaceae) in southeast Queensland, Australia. Plant Species
579	Biology 24:11-19. <u>https://doi.org/10.1111/j.1442-1984.2009.00235.x</u>
580 581 582	Ollerton J, Erenler H, Edwards M, Crockett R (2014) Pollinator declines. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346:1360-1362. <u>https://doi.org/10.1126/science.1257259</u>

583 584	Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321-326. <u>https://doi.org/10.1111/j.1600-0706.2010.18644.x</u>
585 586	Paton DC (1980) The importance of manna, honeydew and lerp in the diets of honeyeaters. Emu 80:213-226. <u>https://doi.org/10.1071/MU9800213</u>
587 588 589	Paton DC (2000) Disruption of bird plant pollination systems in southern Australia. Conservation Biology 14:1232-1234. <u>https://doi.org/10.1046/j.1523-1739.2000.00015.x</u>
590 591 592 593	Phillips RD, Hopper SD, Dixon KW (2010) Pollination ecology and the possible impacts of environmental change in the Southwest Australian Biodiversity Hotspot. Philosophical Transactions of the Royal Society B: Biological Sciences 365:517-528. <u>https://doi.org/10.1098/rstb.2009.0238</u>
594 595 596	Pisanty G, Mandelik Y (2015) Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees. Ecological Applications 25:742-752. <u>https://doi.org/10.1890/14-0910.1</u>
597 598	Pollard E (1977) A method for assessing changes in the abundance of butterflies. Biological Conservation 12:115-134. <u>https://doi.org/10.1016/0006-3207(77)90065-9</u>
599 600 601	Posa MRC, Sodhi NS (2006) Effects of anthropogenic land use on forest birds and butterflies in Subic Bay, Philippines. Biological Conservation 129:256-270. <u>https://doi.org/10.1016/j.biocon.2005.10.041</u>
602 603 604	Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25:345-353. <u>https://doi.org/10.1016/j.tree.2010.01.007</u>
605 606 607	Prendergast KS, Menz MHM, Dixon KW, Bateman PW (2020) The relative performance of sampling methods for native bees: an empirical test and review of the literature. Ecosphere 11:e03076. <u>https://doi.org/10.1002/ecs2.3076</u>
608 609	QGIS Development Team (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project. version 3.12. <u>https://qgis.osgeo.org</u>
610 611 612 613 614 615 616 617 618 619 620	 Rader R, Bartomeus I, Garibaldi LA, Garratt MP, Howlett BG, Winfree R, Cunningham SA, Mayfield MM, Arthur AD, Andersson GK, Bommarco R, Brittain C, Carvalheiro LG, Chacoff NP, Entling MH, Foully B, Freitas BM, Gemmill-Herren B, Ghazoul J, Griffin SR, Gross CL, Herbertsson L, Herzog F, Hipolito J, Jaggar S, Jauker F, Klein AM, Kleijn D, Krishnan S, Lemos CQ, Lindstrom SA, Mandelik Y, Monteiro VM, Nelson W, Nilsson L, Pattemore DE, Pereira Nde O, Pisanty G, Potts SG, Reemer M, Rundlof M, Sheffield CS, Scheper J, Schuepp C, Smith HG, Stanley DA, Stout JC, Szentgyorgyi H, Taki H, Vergara CH, Viana BF, Woyciechowski M (2016) Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America 113:146-151. https://doi.org/10.1073/pnas.1517092112
621 622 623	Regan EC, Santini L, Ingwall-King L, Hoffmann M, Rondinini C, Symes A, Taylor J, Butchart SHM (2015) Global Trends in the Status of Bird and Mammal Pollinators. Conservation Letters 8:397-403. <u>https://doi.org/10.1111/conl.12162</u>
624 625 626	Roulston TaH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Annual review of entomology 56:293-312. https://doi.org/10.1146/annurev-ento-120709-144802

627 628	RStudio Team (2020) RStudio: Integrated Development Environment for R. version 1.3. <u>http://www.rstudio.com/</u>
629 630 631 632	Sánchez-de-Jesús HA, Arroyo-Rodríguez V, Andresen E, Escobar F (2016) Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape ecology 31:843-854. <u>https://doi.org/10.1007/s10980-015-0293-2</u>
633 634 635	Saunders AS, Burgin S (2001) Selective foliage foraging by Red Wattlebirds, Anthochaera carunculata, and Noisy Friarbirds, Philemon corniculatus. Emu 101:163-166. https://doi.org/10.1071/MU00007
636 637	Sekercioglu CH (2006) Increasing awareness of avian ecological function. Trends in Ecology & Evolution 21:464-471. <u>https://doi.org/10.1016/j.tree.2006.05.007</u>
638 639 640 641 642	Senapathi D, Carvalheiro LG, Biesmeijer JC, Dodson CA, Evans RL, McKerchar M, Morton RD, Moss ED, Roberts SP, Kunin WE, Potts SG (2015) The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proceedings of the Royal Society B: Biological Sciences 282:20150294. <u>https://doi.org/10.1098/rspb.2015.0294</u>
643 644 645	Senapathi D, Goddard MA, Kunin WE, Baldock KCR (2017) Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Functional Ecology 31:26-37. <u>https://doi.org/10.1111/1365-2435.12809</u>
646 647 648	Sentinel Online (2020) Sentinel-2 Spatial Resolutions <u>https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial</u> . Accessed 18 May 2020
649 650 651	Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34:103-113. <u>https://doi.org/10.1111/j.1600-0587.2010.06201.x</u>
652 653 654	Steen R (2017) Diel activity, frequency and visit duration of pollinators in focal plants: in situ automatic camera monitoring and data processing. Methods in Ecology and Evolution 8:203-213. <u>https://doi.org/10.1111/2041-210X.12654</u>
655 656 657	Stefanescu C, Peñuelas J, Filella I (2005) Butterflies highlight the conservation value of hay meadows highly threatened by land-use changes in a protected Mediterranean area. Biological Conservation 126:234-246. <u>https://doi.org/10.1016/j.biocon.2005.05.010</u>
658 659 660	Stephens J, Molan PC, Clarkson BD (2005) A review of Leptospermum scoparium (Myrtaceae) in New Zealand. New Zealand Journal of Botany 43:431-449. <u>https://doi.org/10.1080/0028825X.2005.9512966</u>
661 662 663	Stone GN, Raine NE, Prescott M, Willmer PG (2003) Pollination ecology of acacias (Fabaceae, Mimosoideae). Australian Systematic Botany 16:103-118. https://doi.org/10.1071/SB02024
664 665	Taki H, Kevan PG, Ascher JS (2007) Landscape effects of forest loss in a pollination system. Landscape ecology 22:1575-1587. <u>https://doi.org/10.1007/s10980-007-9153-z</u>
666 667	Thessen A (2016) Adoption of machine learning techniques in ecology and earth science. One Ecosystem 1:e8621. <u>https://doi.org/10.3897/oneeco.1.e8621</u>
668 669	Thomas D (1980) Foraging of honeyeaters in an area of Tasmanian sclerophyll forest. Emu 80:55-58. <u>https://doi.org/10.1071/MU9800055</u>

670 671 672	Trzcinski MK, Fahrig L, Merriam G (1999) Independent effects of forest cover and fragmentation on the distribution of forest breeding birds. Ecological Applications 9:586-593. <u>https://doi.org/10.1890/1051-0761(1999)009[0586:IEOFCA]2.0.CO;2</u>
673	 Vanbergen AJ, Baude M, Biesmeijer JC, Britton NF, Brown MJF, Brown M, Bryden J,
674	Budge GE, Bull JC, Carvell C, Challinor AJ, Connolly CN, Evans DJ, Feil EJ, Garratt
675	MP, Greco MK, Heard MS, Jansen VAA, Keeling MJ, Kunis WE, Marris GC,
676	Memmott J, Murray JT, Nicolson SW, Osborne JL, Paxton RJ, Pirk CWW, Polce C,
677	Potts SG, Priest NK, Raine NE, Roberts S, Ryabov EV, Shafir S, Shirley MDF,
678	Simpson SJ, Stevenson PC, Stone GN, Termansen M, Wright GA, Initiative IP (2013)
679	Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and
680	the Environment 11:251-259. <u>https://doi.org/10.1890/120126</u>
681	Watts CH, Larivière M-C (2004) The importance of urban reserves for conserving beetle
682	communities: a case study from New Zealand. Journal of Insect Conservation 8:47-
683	58. <u>https://doi.org/10.1023/B:JICO.0000027504.92727.ab</u>
684	Willcock S, Martínez-López J, Hooftman DA, Bagstad KJ, Balbi S, Marzo A, Prato C,
685	Sciandrello S, Signorello G, Voigt B (2018) Machine learning for ecosystem services.
686	Ecosystem services 33:165-174. <u>https://doi.org/10.1016/j.ecoser.2018.04.004</u>
687	Wiltshire R, Potts B (2007) EucaFlip-Life-size guide to the eucalypts of Tasmania.
688	University of Tasmania,
689	Wimmer J, Towsey M, Roe P, Williamson I (2013) Sampling environmental acoustic
690	recordings to determine bird species richness. Ecological Applications 23:1419-1428.
691	<u>https://doi.org/10.1890/12-2088.1</u>
692	Winfree R, Aguilar R, Vazquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees'
693	responses to anthropogenic disturbance. Ecology 90:2068-2076.
694	<u>https://doi.org/10.1890/08-1245.1</u>
695	Winfree R, Bartomeus I, Cariveau DP (2011) Native Pollinators in Anthropogenic Habitats.
696	Annual Review of Ecology, Evolution, and Systematics 42:1-22.
697	<u>https://doi.org/10.1146/annurev-ecolsys-102710-145042</u>
698 699 700 701	Woinarski J, Cullen J (1984) Distribution of invertebrates on foliage in forests of south □ eastern Australia. Australian Journal of Ecology 9:207-232. https://doi.org/10.1111/j.1442-9993.1984.tb01359.x
/01	