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Abstract

Single molecule Förster resonance energy transfer experiments have added a great deal to the under-

standing of conformational states of biologically important molecules. While great progress has been made,

much is still unknown in systems that are highly flexible such as intrinsically disordered proteins because

of the high degeneracy of distance states, particularly when freely diffusing smFRET experiments are used.

Simulated smFRET data allows for the control of underlying process that generates the data to examine if

analytic techniques can detect these underlying differences. We have extended the PyBroMo software that

simulates the freely diffusing smFRET data to include a distribution of inter-dye distances generated using

Langevin dynamics in order to model proteins with greater flexibility or disorder in structure. Standard anal-

ysis techniques for smFRET data compared highlighted the differences observed between data generated

with the base software and data that included the distribution of inter-dye distance.
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INTRODUCTION

Förster resonance energy transfer (FRET) is the non-radiative transfer of energy between two

chromophore dyes [1, 2]. The energy transferred between donor and acceptor dyes is dependent

on the distance between the dyes, making this technique a "spectroscopic ruler" [3] for intra-

and inter-molecular distances. Ensemble FRET experiments can suffer from bulk averaging of

the conformation changes on the individual changes that occur during photon emission, though

experimental design can overcome some of these challenges [4–6] . The advent of single molecule

spectroscopic techniques transformed biophysics as a source of statistical and dynamic data on

molecular structure as well as function [7]. Single molecule FRET (smFRET) experiments have

become a popular source of spatiotemporal information on the conformational landscape of a

molecule without ensemble averaging by taking advantage of FRET and the ability to label specific

regions of a molecule with fluorescent dyes [8, 9]. These techniques have been applied in studies

of systems like DNA [10], RNA [11–13], protein folding [14, 15].

Two broad divisions of smFRET experiments are surface immobilized and freely diffusing

molecules. Surface immobilized experiments fix a molecule of interest that has been labeled with

fluorescent dyes to a substrate, expose it to laser light to excite the donor, and collect the photon

timestamp data. This experimental procedure uses long exposure times to collect data on slower

dynamics, greater than 1 ms [16]. Despite experimental difficulties arising from surface impacts

on dynamics and signal issues from photo-bleaching or other noise sources, surface immobilized

experiments have been a fruitful area of study.

Freely diffusing smFRET methods record photon emissions from labeled molecules as they

diffuse through a solution with a confocal laser focused inside the solution. Photon detectors tuned

for the wavelengths of the donor and acceptor dyes record time series data with a timestamp and

channel label for each photon detected. The diffusion rates and concentrations of the molecules are

determined so that simultaneous excitation of multiple molecules was very rare in a particular time

bin. Freely diffusing experiments capture dynamics occurring on faster scales [3] and avoid the

difficulties of immobilization [17–19]. The photon signal occurs in bursts as molecules diffuse into

and out of the focal beam of the excitation laser. Analysis techniques of freely diffusing smFRET

experiments are in active development, making the need for realistic simulated data important.

This generation of simulated data for freely diffusing smFRET experiments

While sophisticated statistical methodology is essential to the analysis of smFRET experiments,
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the literature on this topic has focused on surface-immobilized smFRET [20], compared to the

freely diffusing smFRET technique, a much easier experimental technique with no need for sur-

face immobilization [21]. These techniques include simpler thresholds and histograms, as well as

more complex Gaussian fitting of sub-populations [22], hidden Markov models (HMM) [10, 23–

25], and non-Bayesian approaches [26] have been developed. To further advance freely diffusing

smFRET analysis, we require the ability to accurately model and simulate the underlying molec-

ular processes in a systematic, controlled, and repeatable manner.

PyBroMo[27], an open source smFRET timestamp simulation software suite, uses a Brownian

motion simulation, a numerical point spread function (PSF) to model the laser, and Poisson back-

ground noise to model smFRET timestamps for multiple populations of freely diffusing molecules.

These features provided a framework to generate timestamps with static or more complex state

switching. As an open source project, researchers can also extend the code to include other fea-

tures not currently included in the project. For instance, PyBroMo uses a fixed efficiency for each

population throughout the duration of the simulation. A fixed efficiency assumes that the distribu-

tion of dye-dye distances in a freely diffusing molecule are negligible compared to the other parts

of the simulation. This would not be the case for molecules with less rigid structures and greater

fluctuations, like disordered proteins [28, 29]. To more accurately model the conformational state

changes of a less structured molecule, an overdamped Langevin dynamics simulation was added

to PyBroMo’s existing software to model the internal conformational dynamics and heterogeneity

of different states of the modeled protein. This addition provides a more realistic smFRET data

simulation model, particularly for flexible proteins or those associated with intrinsic disorder.

The remaining sections of this paper will provide a more detailed description of PyBroMo, and

the overdamped Langevin dynamics that generated the dye-dye distance distribution, as well as

the parameters used in generating simulated data for the analysis section Next, a standard analyses

for smFRET data using thresholds and Gaussian fitting was done on the timestamp data using

fixed efficiency and Langevin efficiency. Conclusions are drawn based on the comparison of the

analysis for the two simulated data sets. Real experimental smFRET data are also used for a closer

comparison between the simulation and experimental data.
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METHODS

PyBroMo

PyBroMo [27] was developed by Ingargiol et al. to simulate photon emission from fluorescent

dye pairs attached to molecules freely diffusing in three dimensions and generate timestamps from

those emissions, similar to experimental FRET data. This software was designed to handle multi-

ple populations of particles with their own diffusion coefficients and FRET efficiencies, as well as

generate background photons with separate rates for the donor and acceptor channels.

The first part of the simulation was defining the basic elements of the simulation. The particles

are defined by a population number and diffusion coefficient, DB. Next, the simulation box was

defined by providing box length dimensions, Lx,Ly, and Lz as well as how to handle particle

interactions with the boundary. Reflection and periodic boundary conditions are available.

A point spread function (PSF) was chosen to model the laser focal beam inside the simulation

box. The PSF defines the emission probability of a particle at any position within the simulation

box. A Gaussian PSF is available where the emission probability in all dimension is defined by

the Gaussian/normal distribution

f (x) =
1

σx
√

2π
e−

1
2(

x−µx
σx )

2

(1)

were µx are the coordinates for the center of the function and σx was the standard deviation,

σx. This function can be extended to other the cartesian coordinates y and z. PyBroMo is also

capable of importing custom PSF functions from tools like PSFLab [30] that can generate a custom

numerical PSF that includes factors like light polarization. PyBroMo includes a default numeric

PSF for use without the user having to create their own.

The simulation inputs were then passed to the Brownian motion simulation module along with

a timestep (δ t) and a maximum time to advance the particles through the simulation box. The

Brownian motion was a stochastic process where the position in each dimension was based on the

current position plus a random number drawn from a normal distribution.

x(t +δ t) =x(t)+N(0,2DBδ t) (2)

where N is a random number drawn from a normal distribution centered at 0 with a variance of

σ2 = 2DBδ t. The Brownian motion simulation then repeatedly advanced each particle’s position

in three dimension by the δ t until the maximum time was reached. At each time step, the PSF
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calculated the the normalized emission probability for every particles position in a vector, P .

Particles in regions of high emission probability, often near the center of the PSF, emit more

photons.

The timestamp generation module generated photon emissions through a discrete random Pois-

son process where the number of emission events, κ , followed the distribution

f (κ,λ ) =
λ κe−λ

κ!
(3)

where λ was the expectation interval for emissions. The values needed to calculate the λ values

for every time step were a maximum total emission rate, εT , and efficiency, E, for each population,

and the emission probabilities, P from the Brownian motion simulation. Emission rates for the

acceptor, εAcc, and donor , εDon, channels were calculated

εAcc =εT E (4)

εDon =εT (1−E) (5)

where εA and εD are the emission rates for the acceptor and donor, respectively. The efficiency,

E, was constant for all timesteps. Separate expectation intervals for the acceptor, λAcc and donor,

λDon were then calculated

λAcc = PεAccδ t (6)

λDon = PεDonδ t (7)

and used to randomly draw emission events at every time step. Similarly, background emissions

rates were also determined for the acceptor and donor detector channels by randomly drawn num-

bers from a Poisson distribution with expectation interval, λBGAcc,λBGDon, supplied as a simulation

parameter.

Finally, the timestamps were merged and sorted into a single vector for output. A vector of

labels was also generated to identify if the timestamp was from the acceptor or donor channel.

Other values of interest that may be included are the particle ID that generated the photon emission

or the position of the particle in the PSF.

Overdamped Langevin Dynamics

To extend the PyBroMo software, an overdamped Langevin dynamics module was added to

simulate the dye-dye distance as diffusion in one dimension in a harmonic potential. The Langevin
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FIG. 1. (A) A portion of a trajectory of Langevin dynamics for the dye-dye distance of 4 particles in a high

state (colored green) with a harmonic potential centered at 40 Å and 4 particles in a medium state (colored

gray) with a harmonic potential centered at 65 Å. (B) A histogram of the dye-dye distances for the combined

populations along with the analytic solution for the distribution in red.

trajectories were calculated according to the Euler-Muryama method [31]. At each time step, the

dye-dye distance was updated by calculating the contributions from the potential energy function

and the stochastic random contribution:

r(t + δ t) =r(t)−βDL
dV (r)

dt
δ t + N(0,2DLδ t) (8)

V (r) =
1
2

k (r− r0)
2 (9)

where DL was the diffusion coefficient, and β = 1
kBT and kB is the Boltzmann constant. The

diffusion coefficient for the dye-dye distance, DL, is unique from the Brownian motion diffusion

coefficient. A short trajectory of Langevin dye-dye distance is shown in figure 1.

With the Langevin distance trajectories, a dynamic efficiency for each timestep was calculated
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using an efficiency model as a function of dye-dye distance.loped for less structured proteins [29],

E =
1

1+0.975
( r

R0

)2.65 (10)

where R0 is the distance that results in a 50% FRET efficiency.

Equations 4 and 5 then generate vectors for the acceptor and donor emission rate εA and εD and

equations 6 and 7 calculate the expectation intervals λAcc and λDon. As with the base PyBroMo,

random numbers were drawn from a Poisson distribution defined in equation 3 for each timestep.

The background timestamp generation was unimpacted by the langevin dynamics, contributing

Poisson distributed background timesteps as before. Finally, the timestamps from acceptor, donor,

and background were merged.

Simulation Details

To compare the differences of timestamps with a static efficiency with timestamps from an

efficiency distribution, 3 10s simulations were run with all other parameters held constant. 100

particles were contained in a simulation box with lengths Lx = 8µm,Ly = 8µm,Lz = 12 The Brow-

nian diffusion coefficient DB, was set to 30 µm2/s for all particles. A Gaussian PSF was used that

was centered in the simulation box with a σx = σy = 0.3µm, and σz = 0.5µm. Three independent

simulations were run for 10s each with a time step 50 ns. For timestamp generation, the maxi-

mum emission rate of 200,000 counts per second (CPS) was used in both simulations, as well as a

background rate of 1200 CPS for the acceptor channel and 1800 CPS for the donor channel.

For the Langevin dynamics,the thermodynamic coefficient β was 1.33873220189633 (kcal/mol)−1

and the Langevin diffusion coefficient, DL, was 12937.9931633482 Å2/s. The harmonic coeffi-

cient, k, was 0.025 with the center of the harmonic potential was at 40 Å for 50 of the particles, and

at 65 Å for the remaining 50 particles. Rel. 10 was used to convert the distances to efficiencies. In

the static efficiency simulations, 50 particles had an efficiency of 0.76 while the other 50 had an

efficiency of 0.41. These efficiency values corresponded to equation 10 applied to the harmonic

centers from the Langevin dynamics, 40 Å and 65 Å respectively. An R0 of 56 Å was used in this

efficiency conversion.

The analytic distribution for the Langevin simulation distances was defined by

P(r) =
1

2
√

2π
βk

(
e−βV1(r)+ e−βV2(r)

)
(11)
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where N is a normalization factor and V1 and V2 were the harmonic potentials used in the Langevin

simulation. Converting the distance probability distribution to an efficiency probability distribu-

tion was done through the following transformation

P(E) = P(r(E))
dr
dE

(12)

r(E) = R0

(
1
E −1
0.975

)1/2.65

(13)

dr
dE

=
R0

2.65(E −1)E

(
1
E −1
0.975

)1/2.65

(14)

where equation 13 was found by rearranging equation 10 to isolate r in terms of E and dr
dE is the

derivative of equation 13 with respect to E.

Data analysis methods

Techniques for simulating freely diffusing smFRET experiments are valuable, in large part, be-

cause they allow researchers to evaluate statistical methods using realistic data with known ground

truth. With this in mind, we present a simple analysis of two simulated freely diffusing smFRET

experiments. The first experiment was simulated with the base PyBroMo software described in

Section , while the second experiment was simulated with the Langevin dynamics module dis-

cussed in Section . We give the details of our analysis here, and present the results in the Results

section. We are most interested in ways in which the addition of Langevin dynamics changes our

results.

Data analyses of freely diffusing smFRET experiments typically begin by binning and thresh-

olding the raw photon time stamp data [20]. In our analyses, we use a bin width of one millisecond.

For a given experiment, let ID
t and IA

t denote the photon counts in the donor and acceptor channels

during time bin t, and define the combined count IC
t = ID

t + IA
t . We restrict our analyses to those

time bins with combined count exceeding 40. The hope is that a combined photon count of this

magnitude indicates that a molecule is indeed diffusing across the focal beam and thus the propor-

tion of photons in the acceptor channel reflects the molecule’s conformational state. Thesholding

also ensures that our estimates of the efficiencies within each time bin are not excessively variable

due to low counts. In the literature, there are a number of heuristics for choosing the threshold and

many alternative approaches to identifying the diffusion of a molecule across the focal beam.
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Central to our analysis are the estimates of efficiencies within each bin, which we refer to as

apparent efficiencies. The apparent efficiency within bin t is defined as the proportion of the total

photon count from that bin which was detected in the acceptor channel:

Êt =
IA
t

IA
t + ID

t
.

When analyzing real smFRET experiments, estimation of efficiencies should also take into ac-

count the so-called γ factor, which accounts for the difference in quantum yields of the donor and

acceptor dyes as well as the difference in photon detection efficiencies of the donor and acceptor

channels. This adjustment is not necessary for our analysis because the smFRET simulations in

this article were run with equivalent quantum yields and equivalent detection efficiencies.

We analyze the simulated smFRET experiments using a simple histogram of the apparent ef-

ficiencies as well as a Gaussian mixture model fit to the apparent efficiencies. The histogram

approximates the marginal distribution of efficiencies. It provides an idea of the relative amount

time a molecule spends at each efficiency and whether there exist easily-distinguished confor-

mational states. In comparison to a histogram-based analysis, the analysis based on a Gaussian

mixture model provides more quantitative information related to hypothesized latent conforma-

tional states. We suppose that there is a latent conformational state st ∈ {1, ...,K} associated with

each time bin t and that these latent conformational states are independent and identically dis-

tributed with probabilities π1, ...,πK. Given that st = k, we suppose that the apparent efficiency

Êt follows a Gaussian distribution with mean µk and variance σ2
k . The smFRET simulations in

this article were run with K = 2, and we take this as given. We compute the maximum likelihood

estimates of the unknown parameters via an expectation-maximization algorithm as implemented

in the mixtools package [32].

RESULTS AND DISCUSSION

We now summarize and discuss the results of simulations and the data analysis described in

Section . We will make frequent references to Figures 2 - 4.

Figure 2 includes trace plots of the combined acceptor and donor counts for both the non-

Langevin and Langevin simulations. The counts were computed using one millisecond bins. The

simulated smFRET experiments were both 10 seconds long, but we plot just one second of each

for visual clarity. Qualitatively, the plots look similar to each other and also to the corresponding
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trace plot from a real smFRET experiment in Figure 4.

Figure 3 compares the non-Langevin and Langevin simulations in terms of apparent efficiencies

and the corresponding dye-dye distances. Plot A, based on the non-Langevin simulation, shows

the estimated two-component Gaussian mixture density (in solid black) on top of a histogram of

the apparent efficiencies. The dashed lines represent the (weighted) densities of the estimated

component distributions. The low efficiency component has a mean of .42, a standard deviation of

.07, and a mixture weight of .62. The high efficiency component has a mean of .70, a standard de-

viation of .05, and a mixture weight of .38. The vertical red arrows are placed at the true efficiency

values used in the simulation. Plot B shows the corresponding histogram, densities, and arrows

after a transformation to the distance space using Equation 10. Plots C and D in the right half of

Figure 3 are analogues of Plots A and B based on the Langevin simulation. The most substantial

difference is that, instead of vertical red arrows at two true efficiencies (or distances), we have den-

sities representing the true, non-degenerate theoretical distribution of efficiencies (or distances).

In the distance space, the theoretical distribution is the two component Gaussian mixture specified

by Equation 11. The theoretical distribution in the efficiency space is obtained through the change

of variables described in Equation 12. In Plot C, the low efficiency component has a mean of .41,

a standard deviation of .07, and a mixture weight of .48, while the high efficiency component has

a mean of .68, a standard deviation of .09, and a mixture weight of .52.

For reference, we also include a simple analysis of real freely diffusion smFRET data for an

intrinsically disordered protein. The results appear in Figure 4. Plot A shows a trace of the

combined acceptor and donor counts from a one second segment of the 10 second experiment.

Plot B shows the estimated two-component Gaussian mixture density on top of a histogram of

the apparent efficiencies. The low efficiency component has a mean of 0.14, a standard deviation

of .05, and a mixture weight of .48, while the high efficiency component has a mean of .41, a

standard deviation of .18, and a mixture weight of .52. Plot C shows the corresponding histogram

and density after a transformation to the distance space.

CONCLUSION

In this work, we have added a module to PyBroMo software to provide a more accurate simu-

lation tool to generate simulated freely diffusing smFRET data for flexible or disordered proteins

with a high degree of flexibility. We showed that the simulated data with consideration of internal
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FIG. 2. Trace plots of the combined acceptor and donor counts from one second segments of the (A)

non-Langevin and (B) Langevin simulations.
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FIG. 3. (A) The estimated Gaussian mixture density (solid black line) from the non-Langevin simulation on

top of a histogram of the apparent efficiencies along with the two true efficiencies (red vertical arrows). (B)

The corresponding plot in the distance space. (C) The analogous efficiency plot for the Langevin simulation.

(D) The analogous distance plot for the Langevin simulation.
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FIG. 4. (A) Trace plot of the combined acceptor and donor counts from a one second segment of the cAlb

experiment. (B) The estimated Gaussian mixture density (solid black line) on top of a histogram of the

apparent efficiencies. (C) The corresponding plot in the distance space.

protein dynamics more closely resembles experimental data and the Gaussian mixture model fits

better with the Langevin-enabled simulation data than the conventional one. The relative value

of state probabilities can be determined using standard Gaussian mixture models. The original

single-point efficiencies provided within PyBroMo cannot be recovered since broad distributions

are observed instead both in the efficiency and in the distance spaces. On the other hand, when the

simulated data takes use of an overdamped Langevin dynamics, the estimated distributions and the

theoretical distributions are quite close. In brief, the Langevin-based simulated data resembles the

real experimental data better than the single-point efficiency model.
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