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Abstract

We have formulated a Riemannian framework for describing the geometry of collective vari-

able spaces of biomolecules within the context of molecular dynamics (MD) simulations. The

formalism provides a theoretical framework to develop enhanced sampling techniques, path-finding

algorithms, and transition rate estimators consistent with a Riemannian treatment of the collec-

tive variable space, where the quantities of interest such as the potential of mean force (PMF)

and minimum free energy path (MFEP) remain invariant under coordinate transformation. Spe-

cific algorithms within this framework are discussed such as the Riemannian umbrella sampling,

the Riemannian string method, and a Riemannian-Bayesian estimator of free energy and diffusion

constant, which can be used to estimate the transition rate along an MFEP.
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I. INTRODUCTION

Biomolecular simulations have made enormous progress in recent years. The advent of

MD in order to study biomolecular phenomena [1–3] has given researchers new insights into

previously unviewable phenomena. MD has overcome [4, 5] the common limitation of ex-

perimental techniques which forces the researchers to choose between high-resolution static

(such as X-ray crystallography) or low-resolution dynamic (such as single-molecule fluores-

cence resonance energy transfer spectroscopy) pictures of biomolecular systems. MD does

however have a few drawbacks. A key issue is the “timescale gap” in that MD simulations

typically have a shorter timescale than many relevant biological phenomena. A related issue

is the metastability; the system gets trapped in local free energy minima, preventing the

system from evenly visiting the entire free energy landscape. Various enhanced sampling

techniques and path-finding algorithms have been developed over the last few decades in

order to overcome these limitations [6–22]. These techniques are often successful for simple

toy models (e.g., dialanine peptide [13, 23–27]); however, practical applications remain quite

challenging.

Perhaps the most obvious line of attack for solving the sampling problems is simply to

have stronger computing power and more efficient or specialized computer hardware. In

the past 40 years, extraordinary advances have been made in this regard. Current state of

the art architectures such as very large [28–30] or MD specialized [31, 32] supercomputers

and GPU-enabled computing [33–36] have capabilities that allow for simulations with large

number of particles to run over long periods of time. The size of supercomputers have also

given rise to algorithms developed for speeding up the calculations within brute force MD

such as particle mesh Ewald [37] and dynamic load balancing [38]. The focus of this article,

however, is the enhanced sampling techniques that are specifically based on enhancing the

sampling within a statistical mechanical framework, in particular those methods that, in

some form or another, use “collective variables” within their formalism.

In order to obtain relevant thermodynamic and kinetic [39] properties of a statistical

mechanical system, one must integrate over high dimensional spaces, which requires large

sets of independent and identically distributed samples. In order to manage the dimen-

sionality of biomolecular systems, the assumption is often made that the vast majority of

the high-dimensional space is practically “empty” (or occupied by microstates of negligible
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probability) and the occupied space can be approximated by a lower-dimensional manifold

which contains all relevant conformations from stable states to important transition states.

Ideally, any elementary reaction, can be thought of as a transition between two stable states,

characterized by a transition pathway [40, 41] (or committor function [42]).

The dimensionality reduction may be employed explicitly or implicitly in a sampling

scheme. For instance, a path-optimization technique [14, 26, 43–46] can be thought of as a

dimensionality reduction technique, if the optimized transition path can be approximated as

a thin transition tube, where the areas outside the tube are associated with low probabilities.

In this case, one may parametrize this path and potentially deviation from this path [44,

45, 47] and use them as collective variables. Other methods attempt to identify the intrinsic

manifold by using statistical learning methods such as principal component analysis [48],

isomap [40], and diffusion map [41, 49]. Often these techniques are used to analyze MD

trajectories [40, 41, 48, 50] or are combined with enhanced sampling as in metadynamics [51,

52] or adaptive biasing force [53].

Whether a set of collective variables is defined in a systematic manner as described above

or it is defined intuitively, it is a convenient way of reducing the dimensionality of the

configuration space in both free energy calculation methods and path-finding algorithms.

Various algorithms have been developed to estimate free energies [6, 8, 9, 13, 27, 54–59] or

find transition pathways [14, 26, 43–46, 60] in collective variable spaces. What is mostly

missing is a robust theoretical framework that allows for a rigorous treatment of the issues

one needs to deal with when working with collective variables. For instance, the collective

variables used in collective-variable based enhanced sampling methods are often nonlinear

transformations of atomic coordinates. This complicates their application as noted previ-

ously by Johnson and Hummer [61], who show the conventional minimum free energy path

(MFEP) obtained from various path-finding algorithms are collective-variable specific and

are not invariant under nonlinear coordinate transformations. Such difficulties have often

been ignored in the past in the majority of the applications of the collective-variable based

simulations; however, there has been attempts in addressing them as in the aforementioned

work [61] or within the framework of Transition Path Theory [43, 62]. We recently intro-

duced a Riemannian framework for the rigorous treatment of the collective-variable based

spaces within the context of enhanced sampling and path-finding algorithms [63], where the

distance, free energy, and MFEP are redefined in a way that are all invariant quantities and
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do not change under coordinate transformations. Our previous work focused on the ther-

modynamic characterization of protein dynamics within a Riemannian diffusion model [63].

Here we extend the formalism in two different directions. First, in Section II, we show that

the Riemannian formulation is more general than its diffusion model manifestation and ap-

plies to any method and formalism that uses collective variables. In Section III, we extend

the Riemannian diffusion model by focusing on the kinetics and rate calculation techniques,

which we previously did not elaborate on [63].

II. FROM EUCLIDEAN TO RIEMANNIAN COLLECTIVE VARIABLE SPACE

Euclidean geometry was developed by the Greek Euclid circa 300 BC. Early in the 19th

century, mathematicians such as Gauss [64], Schweikart[65], Bolyai [66] and Lobachevsky[67,

68] began to formulate non-Euclidean geometries. With the work of Bernhard Riemann,

specifically his lecture “On the Hypotheses which lie at the Bases of Geometry”’[69], pub-

lished first in 1873, geometry started exploring new and more diverse applications. Rie-

mann’s work on generalizing the differential surfaces of IR3 led to progress in many fields of

science. Further progress upon his ideas allowed for the formulation of Einstein’s General

Theory of Relativity [70] and progress in group theory [71].

Riemannian geometry provides a robust mathematical framework to develop a formalism

for the geometry of collective variable spaces, that are often defined to reduce the dimension-

ality of the atomic models of macromolecular systems. For instance, consider a transmem-

brane protein whose transmembrane helices rotate under certain conditions to allow opening

or closing of a gate and transporting materials across the membrane. An intuitive collective

variable for such a system would be the orientation of the transmembrane helices that can

be determined using principal axes of the helices or their orientation quaternions [72, 73].

In order to work in these spaces, we must first have a formalism that allows us to answer

common questions which are posed in a typical collective-variable based simulation. Ex-

amples of such questions include: what is the distance between two points in the collective

variable space? How is the potential of the mean force (PMF) defined at a given point in the

collective variable space? How does a biasing potential affect the distribution? How can one

find the MFEP? How can we estimate the PMF from biased simulations along the MFEP?

How does the system diffuses along a transition pathway? How can we estimate the rate
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of a transition along a transition pathway? The questions have previously been answered

within a Euclidean framework but with our Riemannian treatment of the collective variable

space, some of these concepts and quantities need to be revisited. We will begin to answer

these questions one at a time.

Imagine a system containing N atomic coordinates described by position vector x under

a potential energy surface V (x). In order to reduce the dimensionality of the system and

quantify important functional states, a coarser space is desirable to be defined such that

xi : IRN → n, where ξ is a multi-dimensional collective variable. The PMF is typically

defined as:

Ã(ζ) = −β−1 log

∫
δ(ζ − ξ(x)) exp(−βV (x)) dNx, (2.1)

where Ã(ζ) is the PMF at any given point ζ in the collective variable space and δ(.) is the

conventional Dirac delta function.

The PMF as defined above is sometimes considered as the effective potential energy of

the reduced system (i.e, a system which is described by the collective variable and not the

atomic coordinates). For multi-dimensional collective variable spaces, the MFEP or other

related 1D pathways are often used for extensive sampling and characterization in place of

the entire multidimensional space. In other words, the multi-dimensional collective variable

space can be reduced itself to a one-dimensional curve defined in the collective variable

space.

The above approach is quite common and provides a powerful tool for characterizing the

energetics of large biomolecular systems. However, we argue here that the above definitions

of PMF and MFEP are not well-suited for the purposes that they are defined for. The main

problem with these quantities is that they are not invariant under coordinate transformation.

Unlike our previous worl [63], the discussions in this Section do not make any assumption

regarding the diffusivity of the effective dynamics in the collective variable space and are

more general. In the next Section, we will discuss the implications of the diffusivity and the

Riemannian diffusion model.

Let us consider a simple toy model to clearly illustrate the non-invariance of conventional

PMF. Our toy model is a 1D system in thermal equilibrium with a heat reservoir of tem-

perature T , where β = (kBT )−1 = 1. The system is governed by the potential energy V (x).
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The PMF along any collective variable ξ(x) is defined as:

Ã(ζ) = − log

∫ ∞
−∞

exp (−V (x))δ(ζ − ξ(x)) dx. (2.2)

Defining η(ξ) as the inverse function of ξ(x) such that x = η(ξ), we can show:

Ã(ζ) = − log

∫ ∞
−∞

exp (−V (η(ξ)))δ(ζ − ξ(η(ξ)))
dη

dξ
dξ

= − log

∫ ∞
−∞

exp (−V (η(ξ)))δ(ζ − ξ) dη
dξ
dξ

= − log
(

exp (−V (η(ζ)))
dη

dξ
|ξ=ζ
)

= V (η(ζ))− log(
dη

dξ
|ξ=ζ).

(2.3)

In other words, if η′(ζ) = dη
dξ
|ξ=ζ , we have:

Ã(ζ) = V (η(ζ))− log(η′(ζ)), (2.4)

Projecting the collective variable back to the x space, we have:

Ã(ξ(x)) = V (x) + log(ξ′(x)), (2.5)

where we have used ξ′(x) = 1/η′(ζ) since η is the inverse function of ξ.

Relations (2.4) and (2.5) clearly show that the shape of PMF is not determined by the

potential energy of the system only but it also depends on the derivative of the collective

variable. One may use any free energy calculation method (such as umbrella sampling,

metadynamics, or ABF) to calculate the PMF; however, without taking into account the

second term in Relation (2.4) or (2.5), the PMF’s shape or the shape of its projection onto

the x space, does not represent the underlying potential energy for such a 1D system.

As an example, let us assume V (x) = x2. The shape of PMF may or may not be similar

to this potential energy, depending on the definition of collective variable. Figure 1 shows

V (x) along with the PMF as a function of several collective variables (up to an additive

constant) that were specifically designed to result in various PMFs. If ξ(x) = x, the PMF

would be the same as V (x). However, if ξ(x) = erf (x), the PMF becomes flat since:

Ã(ζ) = Ã(η(x)) = V (x) + log(ξ′(x)) = x2 + log(
2√
π

exp(−x2)) = log(
2√
π

). (2.6)

Using Relation (2.4), one may solve the following nonlinear differential equation to gen-

erate any arbitrary PMF function Ã(ζ):

Ã(ζ) = η2(ζ)− log(η′(ζ)), (2.7)
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FIG. 1. Toy Model: (A) A one-dimensional toy model described by potential energy

V (x) = x2. (B) Several collective variables (ξ(x)) are used as examples of smooth coor-

dinate transformations (x
ξ−→ ζ). (C) The conventional PMF along the collective variables

defined in (B). (D) The projection of conventional PMF (shown in C) onto the x space.

(E) The Riemannian PMF along the collective variables defined in (B). (F) The projection

of Riemannian PMF (shown in E) onto the x space (all PMFs are exactly the same when

projected onto the x space, irrespective of the collective variable used).

or by some rearrangement:
dη

dζ
= exp(−Ã(ζ) + η2(ζ)). (2.8)

Once the above differential equation is solved for η(ζ), one can easily find its inverse function

ξ(x). We used this procedure using numerical methods to find functions α(x) and β(x)
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that result in Ã(ζ) = −ζ2 and Ã(ζ) = sin(10ζ), respectively. Figure 1 illustrates how

the PMF, as defined conventionally based on these collective variables, could qualitatively

behave differently from what we expect intuitively from the underlying energetics (here, the

potential energy) of this simple system. This is true when PMF is plotted against ζ (which

is generally expected as ζ and x are not the same) and more importantly when it is projected

back onto the x space.

The above example clearly shows that the PMF could be quite misleading if interpreted

as a typical potential energy surface, where the minima are considered as locally stable states

and the maxima are interpreted as transition states. However, since the collective variable

function ξ(x) is known, log(ξ′(x)) can also be calculated and subtracted from the PMF to

result in V (x). To do this, first one needs to project Ã(ζ) onto the x space by using ζ = ξ(x)

before subtracting log(ξ′(x)) (Relation (2.5)). Alternatively, one may add log(η′(ζ)) to Ã(ζ)

to get V (η(ζ)) (Relation (2.4)) and then project that onto x to get V (x). We define an

invariant PMF as:

A(ζ) = V (η(ζ)) = Ã(ζ) + log(η′(ζ)). (2.9)

Note that A(ζ) is a function of ζ similar to conventional PMF but A(ξ(x)) = V (x) for any

ξ(x). We argue A(ζ) is conceptually more useful than Ã(ζ) since its connection to V (x)

is more straightforward and its minima and maxima correctly represent the minima and

maxima of V (x). Figure 1 illustrates how the same collective variables used for conventional

PMF calculations can also be used to calculate the invariant PMF A(ζ). The resulting

PMFs all qualitatively look similar but once projected back onto the x space, they all result

in an identical function, i.e., V (x).

The above definition of invariant PMF can be reformulated as below:

A(ζ) = − log

∫ ∞
−∞

exp (−V (η(ξ)))δ(ζ − ξ) dξ

= − log

∫ ∞
−∞

exp (−V (x))δ(ζ − ξ(x)) ξ′(x) dx.

(2.10)

Assuming x = η(ζ) is the only solution to ζ = ξ(x) (i.e., assuming ξ is an invertible

function of x), we can show δ(ζ − ξ(x)) = δ(x− η(ζ))/ξ′(x) (which is the result of identity

δ(y) =
∑

i δ(x − xi)/y
′(xi), where xi’s are the roots of y(x)). Therefore, using Relation

(2.10), we have:

A(ζ) = − log〈δ(ζ − ξ(x))ξ′(x)〉 = − log〈δ(x− η(ζ))〉. (2.11)
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After illustrating the noninvariance nature of conventional PMF and showing that the

problem can be resolved by modifying the definition of PMF, we can now generalize the

definition of PMF to multidimensional spaces. Relation (2.11) is very easily generalizable

for a full transformation from N-dimensional x to n-dimensional Ξ(x), where we also no

longer assume β = 1:

A(Z) = −β−1 log〈δ(Z −Ξ(x))JΞ〉 = −β−1 log〈δ(x− η(Z))〉, (2.12)

in which JΞ is the determinant of Jacobian JΞ of transformation Ξ. Unfortunately, the full

transformation is generally not desirable and η(Z) is not available.

If a collective variable ξ(x) is lower-dimensional than x, one can assume ξ(x) is part of

a full transformation. First, we assume ξ(x) is one-dimensional to simplify the discussion.

We can keep the definition of ξ(x) general, yet choose Ξ(x) to be the full transformation,

such that it contains ξ(x) and a N − 1-dimensional vector orthogonal to ξ(x), denoted by

φ(x), where orthogonality implies ∇ξ ·∇φi = 0 for all i. Here ∇ is the gradient in x. Now

we can write:

AΞ(Z) = −β−1 log〈δ(Z −Ξ(x))JΞ〉, (2.13)

Since the determinant of the product of matrices is equal to the product of their determi-

nants, we can also write:

AΞ(Z) = −β−1 log〈δ(Z −Ξ(x))
√
J2

Ξ〉, (2.14)

where J2
Ξ is the determinant of matrix J2

Ξ. Subsequently, one can write:

exp(−βAΞ(Z)) = 〈δ(Z −Ξ(x))
√
J2

Ξ〉. (2.15)

Since ξ(x) is orthogonal to all φi(x), one can easily show that
√
J2

Ξ =
√
J2
ξ

√
J2
φ, where

J2
ξ = ∇ξ ·∇ξ and J2

φ is the determinant of a (N − 1)× (N − 1) matrix containing elements

∇φi ·∇φj. We can write:

exp(−βAΞ(Z)) = 〈δ(ζ − ξ(x))
√
J2
ξ δ(θ − φ(x))

√
J2
φ〉, (2.16)

where Z = (ζ,θ). The N -dimensional invariant PMF can be used to define the 1D invariant

PMF A(ζ) as:

exp(−βA(ζ)) =

∫
exp(−βAΞ(Z))

√
J−2
φ dN−1φ = 〈δ(ζ − ξ(x))

√
J2
ξ 〉. (2.17)
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A(ζ) is invariant since (1) AΞ(ζ) is invariant and (2) A(ζ) does not depend on the choice of

φ as long as φ is orthogonal to ξ. Now we define what we refer to as the metric g, using

the conditional ensemble average of
√
J2
ξ :

g−1/2(ζ) = 〈
√
J2
ξ 〉ξ(x)=ζ =

〈δ(ζ − ξ(x))
√
J2
ξ 〉

〈δ(ζ − ξ(x))〉
. (2.18)

With the above definition of metric, one can now write:

exp(−βA(ζ)) = 〈δ(ζ − ξ(x))〉g−1/2. (2.19)

This can be rewritten as:

A(ζ) = −β−1 log〈δ(ζ − ξ(x))〉 − 1

2
β−1 log(g(ζ)) = Ã(ζ)− 1

2
β−1 log(g(ζ)). (2.20)

The above definition of 1D invariant PMF A(ζ) can be generalized to any arbitrary

number of dimensions:

A(ζ) = −β−1 log〈δ(ζ − ξ(x))
√
J2
ξ 〉

= −β−1 log
(
〈δ(ζ − ξ(x))〉g−1/2(ζ)

)
= Ã(ζ)− 1

2
β−1 log(g(ζ)),

(2.21)

where matrix J2
ξ is composed of components ∇ξi ·∇ξj. The metric inverse g is defined to

satisfy the relationship g−1/2 = 〈
√
J2
ξ 〉ζ=ξ(x). This can be achieved by constructing elements

of metric inverse g−1 as g−1
ij = 〈(J2

ξ )ij〉ζ=ξ(x).

The above definition of invariant PMF differs from the conventional definition of PMF

as it involves the metric tensor g. The metric tensor is a well-known quantity in differential

geometry and is needed to do invariant measurements in non-Euclidean spaces. The PMF

is only an example of a quantity that can be redefined to be invariant with the help of

the metric tensor. The noninvariance of the conventional PMF and any other geometric

quantity in the collective variable space is known, although it is often overlooked. The

PMF can be made invariant by adding an additional term, which depends on the derivatives

of collective variables, as derived above. The difference between the invariant PMF and

conventional PMF is related to the Fixman potential as also discussed elsewhere [74, 75].

Note that the Fixman potential was originally developed to relate the PMF associated with

a constrained dynamics to that of an unconstrained one [76, 77]. A conceptually more
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straightforward approach to ensure the invariance of not only the PMF but also any other

quantity of interest is to treat the collective variable space as a Riemannian space. In this

approach, the metric tensor is used to calculate quantities such as distances, gradients, and

integrals in an invariant manner. For instance, for integration, the regular volume element

dnξ is replaced by the Riemannian volume element dΩξ =
√
gdnξ, which is invariant under

coordinate transformation. Also ∇ξA(ζ) =
∑

j g
ij ∂
∂ξj
A(ζ)êi is the invariant gradient, where

êi’s are unit vectors along ξi’s.

Riemannian geometry provides the conceptual framework and mathematical tools to

treat the nonlinear behavior of curved spaces that are smooth but have potentially different

curvatures at different points of space. The rigorous treatment of the collective variable space

fits well within the Riemannian geometry framework. In this framework, the Riemannian

PMF is defined exactly the same way as the conventional PMF is defined but the Riemannian

Dirac delta function replaces the conventional Dirac delta function:

A(ζ) = −β−1 log〈δζ(ξ)〉. (2.22)

in which δζ(ξ) is the Riemannian Dirac delta function. Comparing Relation (2.22) to Re-

lation (2.21), one can make a connection between the Riemannian and conventional Dirac

delta functions: δ(ζ − ξ(x))
√
J2
ξ (x) = δζ(ξ(x)).

With the same argument made above, one can show the conventional MFEP is not

invariant under coordinate transformation as shown by Johnson and Hummer [61]. Our

Riemannian treatment of the collective variable space, however, provides a robust framework

for defining the MFEP in an invariant way [63]. The MFEP in a Euclidean space is defined as

a path parallel to the gradient of free energy (
∑

i
∂
∂ξi
Ã(ξ)êi). Unfortunately, the conventional

MFEP is not invariant under coordinate transformation, which questions its importance as a

meaningful quantity. The Riemannian framework allows us to define the MFEP simply based

on the Riemannian/invariant gradient of Riemannian/invariant PMF. In other words, not

only both PMF and its gradient are well-defined, invariant quantities within the Riemannian

framework, the Riemannian MFEP that is simply a path parallel to the gradient of PMF is

also well-defined and invariant under coordinate transformation.
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III. RIEMANNIAN DIFFUSION AND TRANSITION RATE ESTIMATION

In the previous Section, we did not make any assumptions regarding the dynamics. How-

ever, quantities such as PMF and particularly MFEP are difficult to interpret if the reduced

system follows a non-diffusive dynamics in the collective variable space. The intuitive inter-

pretation of minima and saddle points of PMF representing the stable and transition states

and the MFEP representing the most probable pathway relies on the diffusive nature of

the effective dynamics. Such a condition is only satisfied if at all with specific choices of

collective variables. Here, the focus of our discussion is not on how to find such collective

variables. However, if we can successfully identify a set of collective variables such that the

projected motion of the system on this reduced collective variable space is diffusive, we can

write:

dζ = −(βD∇A(ζ) + b) dt+
√

2DdW , (3.1)

where D is the diffusion constant and bi = DgjkΓijk, in which Γijk’s are Christoffel symbols

and Einstein summation convention is used. Note that D is not assumed to be position-

dependent here. Instead the position dependence is absorbed in metric tensor g. dW is a

Riemannian Wiener process, where 〈W i(t)〉 = 0 and 〈Ẇ i(t1)Ẇ j(t2)〉 = gijδ(t1 − t2), where

Ẇ i is the time derivative of W i.

Rewriting this equation as Fokker-Planck or Smoluchowski equations [78], we have:

∂

∂t
u(ζ, t) = βD∇ · (u(ζ, t)∇A(ζ)) +D∆u(ζ, t), (3.2)

which contains the Laplace-Beltrami operator, ∆ = ∇ ·∇ = 1√
g
∂
∂i

√
ggij ∂

∂j
, and u(ζ, t) is the

probability of finding the system at ζ at time t with a boundary condition of u(ζ, 0) = u0(ζ).

This summarizes our Riemannian diffusion model, which was previously introduced in

Ref. [63]. In the following we derive a new relation that allows the estimation of the PMF,

metric, diffusion constant, and transition rate from unbiased simulations performed along

an approximate MFEP.

We have previously discussed how one can find a Riemannian MFEP using the Rieman-

nian implementation of string method with swarms of trajectories [63]. Let us assume we

have found such a pathway, ξ(s), parametrized by its arclength s. At any given point along

this path, ês is the unit vector parallel to ξ(s). An n− 1 dimensional submanifold (Σs) can

be defined perpendicular to ês. Let us assume local coordinates ζ = (s,κ) describes any
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point on Σs. One can write:

∂

∂t
u(ζ, t) = βD

∂

∂s
(u(ζ, t)

∂

∂s
A(ζ(s))) +D

∂2

∂s2
u(ζ(s), t)

+ βD∇Σs · (u(ζ(s), t)∇ΣsA(ζ(s))) +D∆Σsu(ζ(s), t), (3.3)

where ∇Σs denotes the ∇ operator in the submanifold Σs.

Let us now define U(s, t) ≡
∫

Σs
u(κ, t)dΩκ, where Σs is an arbotrary portion of the

subspace of κ around its origin. On the MFEP, let us also define a univariate PMF G(s) =

A(ξ(s)).

Continuing, we can integrate over individual terms in Relation (3.3), where the LHS of the

equation becomes ∂
∂t
U(s, t) and the RHS terms can be approximated as follows. Assuming

u(ξ, t) is much larger within a relatively narrow “tube” around the MFEP, we can integrate

over the cross section of this tube and the areas around the tube. In other words, we choose

Σs to be a portion of the κ space that covers the cross section of transition tube that falls

within this space as well as some low-probability areas around it. The first term of the RHS

of Relation (3.3) will thus be:

βD
∂

∂s

∫
Σs

(u(ξ, t)
∂

∂s
A(ξ(s)))dΩκ = βD

∂

∂s
(U(s, t)

∂

∂s
G(s)), (3.4)

where we define a univariate PMF G(s) = A(ξ(s)) and assume A(ξ(s)) is more or less

constant on any cross section of transition tube perpendicular to the MFEP. The next term

becomes D ∂2

∂s2
U(s, t) after integration and the third term will vanish assuming ∇ΣsA(ξ(s))

stays close to zero within the tube. To be more precise, we assume the following integral is

negligible as ∇ΣsA(ξ)) is negligible close the MFEP:

βD

∫
Σs

∇Σs · (u(ξ, t)∇ΣsA(ξ))dΩκ = βD

∮
∂Σs

u(s)∇ΣsG(s) · ndσκ, (3.5)

where the divergence theorem is used. Similarly, we can use the divergence theorem to

reduce the last term to:

D

∫
∆Σsu(ξ, t)dΩΣs = D

∮
∂Σs

∇Σsu(s) · ndσκ. (3.6)

We assume this term is also negligible since the ∇Σsu(ξ) · n term is only evaluated outside

the transition tube and is expected to be close to zero on average. These approximations
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reduce Relation (3.3) to a one-dimensional diffusion equation in terms of probability density

U(s, t) and the univariate PMF (or potential energy) G(s):

∂

∂t
U(s, t) = βD

∂

∂s
(U(s, t)

∂

∂s
G(s)) +D

∂2

∂s2
U(s, t). (3.7)

The thin transition tube, used to simplify Relation (3.3) is a common assumption made

for path-finding algorithms such as string method [79]. At this point, we have reduced

our atomic model, first to a coarse variable space, and then we have focused upon a single

dimension, namely the transition pathway of interest.

Relation (3.7) is quite similar to the conventional Smoluchovsky equation in a one-

dimensional Euclidean space. However, this is due to the fact that we assumed s to represent

the geodesic distance along the MFEP path. A slightly more general relation can be derived

based on (3.7) for an arbitrary parameter r, parametrizing the MFEP path. The r space

will then be associated with a 1D metric h(r). We have ds2 = h(r)dr2 or
√
h(r) = ds

dr
. The

Riemannian Smoluchowsky equation in then locally written in terms of r as:

∂

∂t
U(r, t) = βD

1√
h(r)

∂

∂r
(U(r, t)

1√
h(r)

∂

∂r
G(r) +D

1√
h(r)

∂

∂r

1√
h(r)

∂

∂r
U(r, t), (3.8)

which is slighhtly different from a conventional 1D position-dependent diffusion equation.

Here D/h(r) is equivalent to the conventional 1D position-dependent diffusion constant and

G(r) is the same as the conventional 1D PMF in terms of r with an extra term 1
2
kBT log h(r),

which makes the Riemannian PMF independent of the choice of r.

Finally, we can rewrite Relation (3.8) as:

∂

∂t
U(r, t) = D

1√
h(r)

∂

∂r
(e−βG(r) 1√

h(r)

∂

∂r
eβG(r)U(r, t)) (3.9)

Now suppose that one has been able to identify the MFEP without necessarily quantifying

the metric. Relation (3.9) provides a framework to determine the dynamics of the system as

long as it stays close to the MFEP transion tube. The PMF and metric along r (G(r) and

h(r)) fully describe the diffusive dynamics and the arbitrary diffusion constant D simply

determines the unit of h(r). In Section V, we will discuss in more detail how the estimation

of G(r) and/or h(r) is possible using unbiased or biased simulations; however, none of these

discussions would be relevant without identifying the MFEP.
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Determining the Rate of Transition

Our final formulation mathematically follows closely the work of Hummer [80], except we

are working within a Riemannian geometry. We define h(r) =
√
Dm−

1
2 (r) and H(r, t) =

eβG(r)U(r, t) such that (14) can be rewritten in an easily discretized form:

H(t+ δt) = (1 +Rδt)H(t) (3.10)

H(∆t) = eR∆tH(0) (3.11)

H is here a discretized representation of the transition probabilities which can be de-

termined empirically and R is a tridiagonal matrix for which more can be seen in section

4.

We can self consistently [81] solve by maximizing the likelihood between states at t and

t±1 defined by:

L =
∏
α

eR∆tξt±1,ξt (3.12)

using the tridiagonal R from (16):

Ri,i = −Ri,i+1 −Ri,i−1 (3.13)

Ri,i±1 = δr−2h(ri)h(ri± 1
2
)e
−β(G(r

i± 1
2

)−G(ri))
(3.14)

Ri,i±1 = Dδs−1
i δs−1

i± 1
2

e
−β(G(r

i± 1
2

)−G(ri))
(3.15)

using the relation that m(ri) = δsi
δri

and r values chosen such that δri = δri+1. Now it

can be seen that working in a Riemannian collective variable space is valid for the determi-

nation of quantities of interest such as rate, free energy calculations, diffusion, and reaction

pathways.
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