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Article Type: Original Research

Abbreviations (no more than 10):

MRI = magnetic resonance imaging, 2D/3D = two-dimensional/three-dimensional, CNN =
convolutional neural network, TPM = tissue probability map, CSF = cerebrospinal fluid, NPH =
normal pressure hydrocephalus, ROC = receiver operating characteristic, AUC = area under the
curve, SPM = statistical parametric mapping, FSL = FMRIB software library

Summary statement: A two-stage automated pipeline was developed to segment head MRI
and extract volumetric features to accurately and efficiently detect hydrocephalus that required
shunting and achieved performance comparable to that of trained neuroradiologists.

Key Points:

● We developed a state-of-the-art 3D deep convolutional network to perform fully
automated segmentation of the ventricles, extraventricular cerebrospinal fluid, and brain
tissues in anisotropic MRI brain scans in a heterogeneous patient population.

● Volumetric features extracted from anatomical segmentations can be used to classify
hydrocephalus (which may require neurosurgical intervention) vs. non-hydrocephalus.

● When tested in an independent dataset, the network achieved performance comparable
to that of expert neuroradiologists.
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Abstract

Purpose: We aim to develop automated detection of hydrocephalus requiring treatment in a
heterogeneous patient population referred for MRI brain scans, and compare performance to
that of neuroradiologists.

Materials and Methods: We leveraged 496 clinical MRI brain scans (259 hydrocephalus)
collected retrospectively at a single clinical site from patients aged 2–90 years (mean 54)
referred for any reason. Sixteen MRI scans (ten hydrocephalus) were segmented
semi-automatically in 3D to delineate ventricles, extraventricular CSF, and brain tissues. A 3D
CNN was trained on these segmentations and subsequently used to automatically segment the
remaining 480 scans. To detect hydrocephalus, volumetric features such as volumes of
ventricles and temporal horns were computed from the segmentation and were used to train a
linear classifier. Machine performance was evaluated in a diagnosis dataset where
hydrocephalus was confirmed as requiring surgical intervention, and compared to four
neuroradiologists on a random subset of 240 scans. The pipeline was tested on a separate
screening dataset of 205 scans collected from a routine clinical population aged 1–95 years
(mean 56) to predict the majority reading from four neuroradiologists using images alone.

Results: When compared to the neuroradiologists at a matched sensitivity, the machine did not
show a significant difference in specificity (proportions test, p > 0.05). The machine
demonstrated comparable performance in independent diagnosis and screening datasets.
Overall ROC performance compared favorably with the state-of-the-art (AUC 0.82–0.93).

Conclusion: Hydrocephalus can be detected automatically from MRI in a heterogeneous
patient population with performance equivalent to that of neuroradiologists.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.427328doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427328
http://creativecommons.org/licenses/by-nc/4.0/


Introduction

Hydrocephalus is a common neurological disorder resulting from the abnormal accumulation of
CSF that affects about one million people in the United States (1). Hydrocephalus commonly
manifests with abnormal ventricular enlargement on brain imaging, either resulting from an
obstructing mass lesion in the ventricles blocking CSF outflow (obstructive hydrocephalus) or
from impaired CSF resorption (communicating hydrocephalus). This paper focuses on the
diagnostically more difficult communicating hydrocephalus, including NPH in which ventricles
slowly enlarge but intraventricular pressure does not increase. Clinical diagnosis of
hydrocephalus remains difficult due to the wide spectrum of imaging results, overlap between
normal and pathologically dilated ventricles, and highly variable signs and symptoms. The
diagnosis often requires a combination of imaging and clinical abnormalities along with a high
degree of suspicion by a well-trained radiologist.

While there have been attempts to standardize the assessment of ventricular size with
measurements such as the callosal angle and Evans’ index (2–5), these 2D measurements are
obtained manually and thus can be time-consuming and less accurate than volumetric features
(3,6,7). To improve the imaging diagnosis of hydrocephalus, rapid and reliable automated 3D
segmentation and measurement of ventricle size are necessary. Modern neuroimaging software
such as SPM (8) and FSL (9) are not specifically designed to generate accurate segmentation
in patients with substantial intracranial pathology such as brain tumors. FreeSurfer (10,11)
provides adequate segmentations in the presence of abnormal ventricles, but typically takes
hours to generate one segmentation (3). Recently, deep learning methods have achieved great
success in medical image segmentation, especially in applications where conventional
neuroimaging packages fail due to atypical anatomy (12–14).

Previous machine learning efforts to diagnose hydrocephalus using MRIs have compared NPH
with healthy volunteers or specific patient populations (e.g., Alzheimer's Disease) with over 90%
accuracy but on small sample sizes (typically less than 40 patients) (3,6,7,15). However, these
methods have not been tested in a broader, unselected clinical population with the goal of
detecting hydrocephalus among the heterogeneous conditions observed in neuroradiology
practice. We hypothesize that a properly trained 3D deep CNN will generate accurate
segmentation of the ventricles and other brain tissues, generating volumetric features that will
enable accurate detection of hydrocephalus across a patient population referred for MRI brain
scans. The purpose of this research is to design a machine to detect hydrocephalus requiring
treatment with performance equivalent to trained neuroradiologists in this heterogeneous
population.

Materials and Methods
Study Design

This retrospective study leverages two datasets (the Diagnosis Dataset and the Screening
Dataset). The Diagnosis Dataset consists of 496 clinical MRI head scans performed between
2004 and 2019 (Fig. 1, see Human Subjects). Sixteen of these scans (10 hydrocephalus) were
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used to train a 3D deep CNN for segmentation based on the MultiPrior (Fig. 2 and Fig. S1) (14).
The trained network was applied to the remaining 480 scans. Hand-selected volumetric features
were then extracted from the segmentation to train a logistic regression classifier to detect
hydrocephalus (Fig. 2, see Volumetric Features). For a random subset of 240 scans in the
Diagnosis Dataset (120 hydrocephalus, Fig. 1), we obtained independent readings based on
multiple views from four neuroradiologists blinded to clinical information (see Reader Study).
The goal of this dataset was to determine if the machine could diagnose clinically significant
hydrocephalus requiring shunting using surgical intervention as the truth data.

We next tested the trained segmentation network on the independent Screening Dataset of 205
scans randomly selected from brain MRI performed between 2011 and 2017 (Fig. 1, see Human
Subjects). Since none of these patients underwent shunting, the surgical diagnosis of
hydrocephalus used for the Diagnosis Dataset was not available and hydrocephalus was
instead diagnosed by majority consensus of three neuroradiologists (see Reader Study). The
hydrocephalus classifier was tested on this dataset and predictions were compared to the
majority of readings. The purpose of this dataset was to determine if the machine could replicate
the readings of neuroradiologists in a cohort with similar incidence of hydrocephalus as the
general clinical population (1–6%) (16,17).

Human Subjects

This study was approved by the local Institutional Review Board and Privacy Board and written
informed consent was waived. All data handling complied with HIPAA regulations. The
Diagnosis Dataset consists of scans of 496 patients including an enriched group with 259
hydrocephalus and 237 non-hydrocephalus subjects. The age range of this group was 2–90
(mean 54) for 225 males and 2–89 (mean 55) for 271 females. The Screening Dataset consists
of scans of 205 patients who did not have prior clinical or imaging diagnosis of hydrocephalus or
prior surgical shunting. The age range was 1–95 years (mean 54) for 85 males and 4–88 years
(mean 58) for 120 females. See Human Subjects in the Supplement for details.
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Figure 1: Number of scans used in training and testing. Note that there is overlap between the
training set and testing set, as the training was performed using leave-one-out cross-validation,
i.e., for each test scan a different classifier was trained on the training data leaving out the one
test scan.
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Figure 2: Flowchart of the automated pipeline for machine detection of hydrocephalus.

Automated Pipeline for Machine Detection of Hydrocephalus

The major steps in the pipeline are: 1) tissue segmentation by a deep CNN, 2) extraction of
volumetric features, and 3) logistic regression to detect hydrocephalus (Fig. 2). Preprocessing to
harmonize input MRIs and align TPM to individual MRIs is shown in Fig. S1. The deep CNN was
trained with 3D segmentation labels for the ventricles, extraventricular CSF, gray and white
matter, air cavities, skull, and other soft tissue (see Training of Segmentation Network in
Supplement). For the Diagnosis Dataset, logistic regression was trained with clinical labels as
the ground truth. For the Screening Dataset, logistic regression was trained with majority
readings from three neuroradiologists.

Volumetric Features

To train the hydrocephalus classifier using logistic regression, nine features were computed
from the 3D segmentation masks, including previously proposed measures such as the Evans’
index (3) and various volumetric features. Feature selection was performed to identify the
subset of the ten features (nine from segmentation plus age) providing the best training-set
performance on a subset of the Diagnosis Dataset (see Feature Extraction from Segmentation
Data in Supplement). This feature selection was performed on a subset of the data that did not
include the test set used in Fig. 4A. Three representative features are shown in Fig. 3: ratio of
total ventricle volume to extraventricular CSF volume (RVC), volume of the temporal horns (VH),
and average 2D extent of the lateral ventricles in the coronal slices (E2c). A complete plot of all
features is shown in Fig. S2.
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Figure 3: Example head segmentation for non-hydrocephalus patients (NH) and hydrocephalus
patients (H) from the Diagnosis Dataset. Scatter plots of three representative features extracted
from these segmentations are shown in panel (D), with red and blue dots representing
hydrocephalus and non-hydrocephalus, respectively. RVC: Ratio between ventricle volume and
CSF volume; VH: Volume of the temporal horns; E2c: Average 2D extent of the lateral ventricles
in the coronal slices. Extent is defined as the ratio of areas between the ventricles and the
bounding box (white rectangles in panels C1 and C2), and is averaged across 20 coronal slices
around the posterior commissure. Correlation coefficients (r) of each pair of features are noted
in panel D (*: p < 0.05). Histograms of each feature are shown on the diagonal, with red and
blue indicating hydrocephalus and non-hydrocephalus, respectively (**: p < 0.001).

Reader Study

To evaluate the performance of the automated hydrocephalus classification, four
neuroradiologists (R1–R4; years of experience: 7, 7, 20, and 6, respectively) reviewed the
scans in the Diagnosis Dataset and Screening Dataset. See Reader Study in Supplement for
details.

Primary Outcome Measure and Statistical Methods

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.427328doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427328
http://creativecommons.org/licenses/by-nc/4.0/


Segmentation performance was measured in Dice score (18). Significant differences of
individual volumetric features were tested using the Wilcoxon rank sum test (Fig. 3D, diagonal
panels). Detection accuracy was measured using ROC curves (Fig. 4). Comparison between
ROC curves and neuroradiologist readings was performed by selecting a point on the ROC
curve that matched neuroradiologist sensitivity. At that point, differences in specificity between
the machine and neuroradiologists were tested for proportions (19). To establish the strength of
the bully hypothesis, Bayes Factor was computed for this test of proportions using
proportionBF() in the BayesFactor package in R (20). Inter-rater agreements between
neuroradiologists and the clinical ground truth were quantified by Cohen’s Kappa (21) (Fig. 5).

Results

We used 16 MRI scans (10 hydrocephalus) to train a segmentation network, separately labeling
ventricles from extraventricular CSF and tissues usually included in head segmentation, e.g.,
gray and white matter, bone, and other soft tissue (see Training of Segmentation Network in
Supplement). This automated segmentation achieved a Dice score of 0.93 on a validation set of
four scans. The trained network was applied to the other 480 scans in the Diagnosis Dataset
and to the 205 scans in the Screening Dataset. Results of segmentation (Fig. 3) and
hydrocephalus classification (Fig. 4) are described in the following.

Representative head segmentations on two subjects from the Diagnosis Dataset are shown in
Fig. 3. In hydrocephalus patients, the deep network correctly identified the enlarged ventricles
(Figs. 3A2 and C2, yellow) and temporal horns (Fig. 3B2, light orange). The segmentations
obtained with the CNN better captured atypical anatomy as compared to conventional head
segmentation methods (see Fig. S4; training set average Dice score: CNN = 0.92, SPM = 0.64,
N=16). Three representative features extracted from volumetric segmentations of the Diagnostic
Dataset are shown in Fig. 3D (volume ratio of ventricle vs. CSF, temporal horn volume, and
ventricle extent). These features are significantly correlated with one another (p < 0.05, N =
240), and all differ significantly between hydrocephalus and non-hydrocephalus (p < 0.001,
Wilcoxon rank sum test, N = 240). Statistics for the complete set of features are shown in Fig.
S2.

On a subset of the Diagnosis Dataset that did not include any testing data, we performed
feature selection and found that the best training-set performance was achieved when all of the
nine features from segmentation were used (see Fig. S3, Feature Extraction from Segmentation
Data in Supplement). These features do not include age, which did not provide additional
discriminant information despite known age effects (17). Logistic regression was used to detect
hydrocephalus. The ROC curves of the machine were computed for the Diagnosis Dataset
using surgical intervention as ground truth (Fig. 4A) and for the Screening Dataset using a
majority vote based on independent readings (Fig. 4B). The specificity and sensitivity of the four
neuroradiologists are also indicated. For the Diagnosis Dataset, the machine was trained on
479 cases and test set performance was evaluated with a leave-one-out procedure. Evaluation
was limited to a subset of 240 scans, which were reviewed by the four neuroradiologists
(randomly chosen from the 480 scans, half with and half without hydrocephalus; this test set
was also excluded in the feature selection procedure). The leave-one-out test-set ROC had an
AUC of 0.93. The four neuroradiologists achieved accuracies of 85.4%, 86.3%, 82.9%, and
85.8% (sensitivity of 0.83, 0.79, 0.78, and 0.78, and specificity of 0.88, 0.93, 0.88, and 0.94,
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respectively). When selecting a classification threshold with the same sensitivity as each of the
neuroradiologists, the machine achieved a specificity of 0.89, 0.91, 0.91, and 0.91, respectively
(Fig. 4A). These values are not significantly different from those of the neuroradiologists
(proportion test, p = 0.84, 0.47, 0.53, and 0.33, respectively; N = 240), although Bayes Factors
in favor of the null hypothesis were weak (BF = 2.83, 1.72, 1.99, and 1.13, respectively).

For the Screening Dataset, the machine was trained on 205 scans and test-set performance
was computed using leave-one-out cross-validation. As truth labels were obtained from a
majority expert opinion, the training and testing were performed separately for each
neuroradiologist while excluding that neuroradiologist from the majority to avoid bias (Fig. 4B).
The machine achieved an AUC of 0.83, 0.85, and 0.82 for the three majority expert opinions
(Fig. 4B). When comparing the neuroradiologists to the machine trained on the Screening
Dataset (Fig. 4B), R1 fell exactly on the ROC curve, and there was no significant difference in
specificity between the machine and the neuroradiologists at the same sensitivity for the other
two neuroradiologists (proportion test, p = 0.08, BF = 0 for R2; p = 0.31, BF = 0.76 for R3; N =
205). The discrete steps of the ROC curves in Fig. 4B reflect the small number of hydrocephalus
cases in the Screening Dataset, with 7, 14, and 13 cases for R1, R2, and R3, respectively,
yielding 3.4–6.8% prevalence, which is typical for an unfiltered population in which most patients
do not have hydrocephalus.

Figure 4: Performances of the machine and neuroradiologists in detecting hydrocephalus. (A)
Machine vs. four neuroradiologists in predicting the clinical diagnosis of hydrocephalus in 240
scans (120 positive) in the Diagnosis Dataset; (B) Performance in predicting the majority
readings of three neuroradiologists using images only in the 205 scans in the Screening
Dataset. For each radiologist (R1–R3), a slightly different majority diagnosis serves as “ground
truth,” hence different ROC curves.

To test the neuroradiologist majority readings vs. the clinical truth labels, we computed the
inter-rater agreement on the 240 scans in the Diagnosis Dataset reviewed by the
neuroradiologists. The four neuroradiologists agreed with one another more than they agreed
with the clinical truth labels (Fig. 5; we used Cohen’s Kappa in all cases to allow direct
comparison between pairs).
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Figure 5: Inter-rater agreement on 240 scans in the Diagnosis Dataset between the four
neuroradiologists (R1–R4) and the surgical intervention truth labels (Clinical).

Discussion
Hydrocephalus is a common neurological disorder that can mimic common dementias.
Diagnosis is often difficult due to inconsistent imaging abnormalities and gradual onset of clinical
symptoms. Current methods to quantify hydrocephalus on MRI scans are not standard of care
because they are tedious and difficult to perform accurately and reproducibly (2,3). We trained a
network to automatically provide volumetric segmentations of the brain and ventricles even in
the presence of atypical brain anatomy. We automatically extracted various volumetric features
and achieved detection performance comparable to that of neuroradiologists.

Several automated (6,15) and semi-automated methods (3,4,7) have been proposed for
detection of hydrocephalus. These studies focused on distinguishing between NPH and healthy
controls, or distinguishing hydrocephalus from specific disorders such as Alzheimer's disease.
Our clinical dataset includes a much broader, unselected population of patients referred for MRI
brain scans, with variable pathologies including brain tumors, surgical cavities, and infarcts. We
found that discrimination was more challenging in this heterogeneous dataset compared to
earlier studies with relatively small datasets of <30 cases in each group (3,6,7,15). Here we
have leveraged a significantly larger dataset with a total >700 patients, including >200 cases of
hydrocephalus requiring shunting and >400 cases with imaging evaluation.

The four neuroradiologists achieved mean performance accuracy of 85.2%, which is in line with
previous studies reporting 75–95% (3,6,15). The wide range suggests that it is difficult to
compare performance across studies differing in discrimination tasks, patient populations, and
data quality. Here we compared the performance of the machine and neuroradiologist using
identical tasks and datasets. The machine achieved comparable performance to the four
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neuroradiologists when using surgical intervention as truth data. Notably, the neuroradiologists
agreed with each other more frequently than they agreed with the surgical intervention label,
justifying predicting surgical intervention labels (Diagnosis Dataset) as a different task than
predicting majority readings (Screening Dataset). Although neuroradiologists routinely scrutinize
the ventricles as part of their clinical interpretation process, explicit measurements of size are
not performed and cases of clinically important hydrocephalus requiring treatment may be
missed. Completely automated segmentation and quantification of ventricle size and prediction
of hydrocephalus may provide a useful screening tool to prioritize cases that require emergent
reads, and also provide a useful adjunct to reading radiologists by increasing confidence in
diagnosing unsuspected hydrocephalus.

Clinical brain MRIs usually have anisotropic resolution with higher in-plane resolution. To
increase robustness, we resampled all images to isotropic 1 mm resolution, which allowed us to
analyze the anatomy regardless of the original scan orientation. We leveraged previous work on
segmentation of atypical head anatomy (14) and trained a deep CNN to segment enlarged
ventricles that are often misclassified by conventional neuroimaging software (6,22). Compared
to other recent studies using deep learning for segmenting ventricles from hydrocephalus
(22–25), our 3D deep network achieved higher Dice scores. Nevertheless, we concur with the
recommendation to use higher-resolution isotropic MRIs whenever possible (3).

In contrast to previous studies that use semi-automated methods (3,4,7), our goal was
fully-automated processing to yield a reproducible and scalable approach. Our deep CNN
provided volumetric segmentations within two minutes (14). This is significantly faster than
alternatives such as FreeSurfer, which can take up to eight hours to segment the ventricles in
MRI for detecting hydrocephalus (3,7). The speedup potentially provides an efficient,
fully-automated tool for hydrocephalus detection in future clinical “big data” studies and
population-level studies (26).

We encountered potential limitations. First, the Diagnosis Dataset defined hydrocephalus as
clinical and imaging evidence of hydrocephalus requiring surgical intervention. The decision for
surgical intervention, however, is complex and multifactorial including data such as patient
symptoms, comorbidities, performance status, predicted improvement after shunting, and life
expectancy. While shunt risks (e.g., catheter malfunction, hemorrhage, infection) are beyond the
scope of this project, we believe that these clinical, imaging, and surgical truth labels provide
maximal confidence of hydrocephalus. To better simulate real-life conditions, we also tested
these truth labels against majority readings of neuroradiologists for patients in both datasets.
Second, we did not explicitly segment the temporal horns, as their posterior margins are
arbitrarily defined, instead adopting a pragmatic estimation of their volumes (details in
Supplement). We found that this estimate correlated with the presence of hydrocephalus. Future
work could train the network to explicitly segment the temporal horns to calculate their volumes
more accurately.
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In conclusion, we trained a deep CNN to rapidly diagnose hydrocephalus with performance
comparable to that of expert neuroradiologists. This network has the potential to assist the
diagnosis of unsuspected hydrocephalus, enable automated quantification of hydrocephalus,
expedite and augment neuroradiology reads, and ultimately improve patient care. To facilitate
future studies of hydrocephalus and ventricle segmentation, we have made the pre-trained
network and hydrocephalus classifier publicly available at
https://github.com/andypotatohy/hydroDetector.
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Table 1: Symptomatology of the patients in both datasets. Note that each patient may have
demonstrated more than one symptom. *Hydrocephalus was defined as clinical and imaging
evidence of hydrocephalus that required ventricular shunting. **Hydrocephalus was defined as
already ventricular shunted.
Diagnostic Dataset Hydrocephalus* (N=259) Non-hydrocephalus (N=237)

“Classic Triad” 52 0
Gait disturbance 163 N/A

Urinary urgency / incontinence 62 N/A
Cognitive impairment 150 N/A

Headaches 128 N/A
Nausea / vomiting 72 N/A

Screening Dataset Hydrocephalus** (N=5) Non-hydrocephalus (N=200)
Aseptic meningitis 0 1
Brain metastases 0 66

CNS infection 0 1
CNS lymphoma 0 7

Cognitive impairment 1 4
CNS vascular abnormality 0 9

Encephalopathy 0 1
Epilepsy 0 45

CNS tumors 2 73
Headaches 2 16

CNS hemorrhage 0 5
Leptomeningeal disease 0 10

Multiple sclerosis 0 1
Radiation necrosis 0 8

Screening 0 25
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Supplementary Material
Human Subjects

All scans for the two datasets were extracted from 25,595 consecutive MRI brain scans
performed over a five-year period in patients referred to a National Cancer Institute
Comprehensive Cancer Center. The patient characteristics are summarized in Table 1.

The Diagnosis Dataset consists of scans of 496 patients including an enriched group with
hydrocephalus, using surgical intervention as the truth data. We first identified all patients who
underwent ventricular draining or shunting < 100 days after the MRI. We then excluded patients
who did not have a clinical diagnosis of hydrocephalus based on chart review by a
neuro-oncologist (R5, 8 years of experience) and imaging diagnosis of hydrocephalus based on
imaging review by a neuroradiologist (R1, 7 years of experience) using established criteria (27).
Given these expanded criteria, we expected a systematic difference between imaging findings
and final clinical diagnosis. We found 259 patients who had clinical and imaging diagnoses of
hydrocephalus and required surgical intervention. The age range of this group was 4–90 (mean
54) for 120 males and 2–89 (mean 56) for 139 females. To achieve an approximate 1:1 class
balance, we next randomly selected 237 age- and sex-matched non-hydrocephalus patients
who had no hydrocephalus or focal abnormalities on their MRI scans, had no clinical signs or
symptoms consistent with hydrocephalus, and did not require surgical intervention. The age
range of this group was 2–85 (mean 54) for 105 males and 2–87 (mean 54) for 132 females.

The Screening Dataset consists of 205 randomly selected scans from the remaining 25,099
scans (Fig. 1). After chart review, this included N=5 patients who had prior surgical shunting for
hydrocephalus and N=200 patients who had no prior clinical or imaging diagnosis of
hydrocephalus. The age range was 1–95 years (mean 54) for 85 males and 4–88 years (mean
58) for 120 females. The purpose of the Screening Dataset was to evaluate the performance of
the hydrocephalus classification pipeline in a more generalizable patient cohort in which a
minority of patients would be expected to have hydrocephalus.

Data Description and Harmonization

All brain MRI examinations were acquired on either a 1.5 or 3.0 Tesla GE scanner (GE Medical
Systems, Waukesha, WI). MRI scans that met one of the following two conditions were treated
as complete scans: (1) inclusion of a T1 post-contrast scan with isotropic resolution of 1 mm; (2)
inclusion of T1 post-contrast scans with anisotropic resolutions that were acquired in three
orthogonal planes: sagittal, coronal, axial. Scans that did not meet either of these conditions
were declared incomplete and discarded. If both conditions were met, only the isotropic scans
were used. Anisotropic scans (sagittal, coronal, and axial) have higher in-plane resolutions
(0.39–1.02 mm) and lower out-of-plane (lateral) resolutions (3.00–7.50 mm). To harmonize
images, all scans were resampled into 1 mm isotropic resolution and normalized in intensity by
dividing with the 95-percentile of pixel intensity before entering the deep CNN for segmentation
(Fig. S1A). Despite originating from different orientations (sagittal, axial, or isotropic), the final
images entering the network all have the same orientation.
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Figure S1: Flowcharts of preprocessing MRI scans (A) and generating segmentation labels for
training the deep CNN (B) used in the hydrocephalus detection pipeline depicted in Fig. 2.

Training of Segmentation Network

Previously developed deep CNN (MultiPrior) (14) was used for segmentation of the head
tissues. The MultiPrior architecture requires a spatial prior known as the TPM. The TPM we
used covers the entire head down to the neck (28) and was aligned with individual MRIs by the
non-linear registration algorithm implemented in SPM8 (8) before entering the CNN (Fig. S1).

We used sagittal scans from 16 scans in the Diagnosis Dataset to train the CNN (Fig. 1). To
better extract the features from the temporal horns, which are easier seen in the axial slices
(Fig. 3), in six of these 16 scans we also used the axial scans for training. To further boost the
robustness of the network we used another four scans with 1 mm isotropic resolution from our
previous study (28). In total, we used 26 scans (16 sagittal, six axial, four isotropic) to train this
3D CNN. In order to maintain input uniformity, all input scans were first resampled to 1 mm
isotropic resolution before entering the CNN for training (Fig. S1A). Segmentation labels for
training were first generated by pretrained MultiPrior (14), and then ventricles were manually
separated out (see Generating 3D Segmentation Labels for Training).

During training, performance was monitored in a validation set of four scans and training was
terminated when the loss function on the validation set did not change by more than 0.01 during
four consecutive epochs, or when 100 epochs were reached, whichever occurred first. No
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strong overfitting was observed, so regularization was kept low, with no dropout and L2 penalty
on model weights of 10-5. Learning rate was set to 5×10-5 and adapted automatically with the
Adam optimizer (29). For details on the training, see Hirsch et al. (14). The network that
performed best on the validation set was applied on the remaining 480 scans in the Diagnosis
Dataset and on the separate 205 scans in the Screening Dataset. While the network was
trained on resampled images originating from axial, sagittal, or isotropic scans, when applied to
the full dataset, we were able to use either axial, coronal, or isotropic scans, all resampled to 1
mm (Fig. S1A, Fig. 2).

Generating 3D Segmentation Labels for Training

The pretrained MultiPrior CNN from Hirsch et al. (14) was first applied to the 26 scans for
training (Fig. S1B), which gives segmentation of seven classes (background, air cavities, gray
matter, white matter, CSF, skull, and scalp). In this work, we defined features that were
automatically extracted from the ventricle segmentation as the inputs for the hydrocephalus
classifier. To train the network to segment ventricles, we manually separated out ventricles from
the extraventricular CSF. To this end, ventricles were first drawn in the TPM (by the first author)
and saved as a mask (Fig. S1B). This mask was warped to each head by SPM8 (8), giving an
initial ventricle segmentation which was then manually improved based on the MRI intensity
(Fig. S1B). Manual segmentation was performed by the first author using ScanIP (Synopsys,
Mountain View, CA) and confirmed by neuroradiologists (R2 and R3). Finally the manual
segmentation, along with the 26 MRIs and the aligned TPM, was used to train the CNN.

Feature Extraction from Segmentation Data

The network produced segmentation masks for gray matter, white matter, extraventricular CSF,
ventricles, skull, scalp, and air cavities (Fig. 3). From these masks, we calculated the following
features:

(i) Total volume of the ventricles (VV), normalized by the intracranial volume (volumes of brain
and CSF). (ii) Ratio of total ventricle volume to extraventricular CSF volume (RVC). (iii) Ratio of
total ventricle volume to brain volume (RVB). (iv) Volume of the temporal horns (VH), normalized
by the intracranial volume. As there is no mask for temporal horns, we took an approximate
approach: we identified the two horns in the TPM and the coordinates were mapped to each
individual head using the mapping produced when the TPM is first coregistered to the individual
MRI during preprocessing (Fig. S1A). A sphere of 1 cm radius was generated at each mapped
location and intersected with the ventricle segmentation, giving us an estimate of the volume of
the horns (Fig. 3B). (v) Evans’ index as defined in Miskin et al. (3). To calculate the Evans’
index, frontal horns were also identified in the TPM and mapped to individual axial MRIs as
before. The largest left-to-right width of the frontal horns was determined by searching through
20 axial slices in the ventricle segmentation around the registered axial location. (vi) Magnetic
Resonance Hydrocephalic Index (MRHI) as defined in Quattrone et al. (7). Likewise, collateral
trigones of the lateral ventricles were mapped from the TPM to axial MRIs and the largest
left-to-right width was found by reviewing 20 axial slices around the registered axial location.
(vii) 3D extent of lateral ventricles in the axial scans. Similarly, posterior commissure was
mapped to individual axial MRIs. Lateral ventricles above the posterior commissure were fed
into function regionprops3() in Matlab (R2017b, MathWorks, Natick, MA) to calculate its extent
(defined as the ratio of volumes between the ventricles and the bounding box). (viii) 3D extent of
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lateral ventricles in the coronal scans. This is similar to (vii) but was performed in the coronal
scans. (ix) Averaged 2D extent of lateral ventricles in the coronal scans. This is similar to (vii)
but the extent was calculated in 2D slice by slice across 20 coronal slices around the posterior
commissure and averaged (Fig. 3C). We calculated the extent of the lateral ventricles to
approximate the callosal angle (3), as it is not straightforward to directly calculate this angle from
the ventricle segmentation.

Feature selection was performed using a subset of the Diagnosis Dataset (the 240 scans that
were not in the test set), with the clinical labels as the ground truth. Features considered are the
nine features mentioned above and the age of the subjects. These ten features are plotted in
Fig. S2. All features are significantly correlated with one another (p < 0.05, N = 240) except age.
The AUC as a function of different feature combinations is shown in Fig. S3. We found that the
best AUC of 0.91 was achieved when all the nine features from segmentation were used, while
age did not improve the classification. We also used these nine features for the Screening
Dataset.
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Figure S2: Scatter plots of all pairs of the ten features considered. Features are from a subset
of the Diagnosis Dataset that were not included in the test set, with red and blue dots
representing hydrocephalus and non-hydrocephalus subjects, respectively. The correlation
coefficients (r) of each pair of features are noted in each panel (*: p < 0.05). Histograms of each
feature are shown on the diagonal, with red and blue indicating hydrocephalus and
non-hydrocephalus, respectively.

Figure S3: Selection of ten features for hydrocephalus classification. The best AUC of 0.91 was
achieved when all nine features from segmentation were used.

Comparing Segmentation between Deep CNN and SPM

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.427328doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427328
http://creativecommons.org/licenses/by-nc/4.0/


Figure S4: Head segmentation on a hydrocephalus patient (panel A) and a non-hydrocephalus
patient (panel B) using SPM (A2 and B2) and deep CNN (A3 and B3). Dice scores for the
segmentation of each tissue are shown across the 16 scans in the training set (panel C). *:
p<0.01.

Representative head segmentations on two subjects from the Diagnosis Dataset using SPM
and deep CNN are shown in Fig. S4. For the non-hydrocephalus subject (Fig. S4 panel B), SPM
classified ventricles as part of the CSF (light green). However, SPM incorrectly labelled
ventricles as white matter (dark green) for the hydrocephalus patient (Fig. S4 panel A2). The
trained deep CNN correctly identified ventricles for both non-hydrocephalus and hydrocephalus
patients (light orange, panels A3 and B3). The Dice scores for each tissue segmentation are
shown in panel C for the 16 scans used to train the deep CNN. A formal analysis between SPM
and deep CNNs used here is presented in Hirsch et al. (14).

Reader Study
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For the Diagnosis Dataset, R1–R4 independently reviewed a subset of 240 randomly selected
scans (half with hydrocephalus, Fig. 1) while blinded to the ground truth surgical intervention
and clinical and demographic information. The neuroradiologists reviewed six different slices in
the brain (Fig. S5): one sagittal midline slice; two coronal slices at the level of the third ventricle
and of the posterior commissure; and three axial slices at the level of the body, left, and right
temporal horns of the lateral ventricles. The reader diagnoses were based on established
criteria examining the size and shape of the lateral ventricles, including temporal horns, third
ventricle, Evans' index, and the callosal angle (27).

For the Screening Dataset, majority readings were used to train the machine and test
performance of both machine and neuroradiologists. R1–R3 read all 205 scans in the Screening
Dataset independently. R4 provided an independent rating only when the R1–R3 ratings were
not unanimous. To prevent bias, these majority readings excluded the neuroradiologist being
evaluated (e.g., to evaluate R1, the diagnosis is the majority vote from R2–R4). With this
construct, we were able to evaluate performance by majority for each of R1–R3 while avoiding
some of the biases of consensus reads (30).

Figure S5: Representative images provided to neuroradiologists to make an imaging diagnosis
of hydrocephalus. This is an example for a single scan.
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