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Abstract

Single-cell RNA-sequencing (scRNA-seq) enables discovery of clinically and biologically interesting

populations, but detecting rare cell types is a persistent challenge. Here we introduce Scalpel, a novel

technique for extracting interpretable and maximally informative features from single-cell data, enabling

population discovery, batch correction, and other downstream analyses at unprecedented resolution. On

a collection of cytotoxic T-cells, Scalpel recovers subtle and biologically important populations, including

gamma-delta T-cells and MAIT cells, which are invisible to standard pipelines. In multi-batched data,

Scalpel effectively removes systemic batch effects, achieving robust and state-of-the-art performance.

Unlike other methods, Scalpel is completely unsupervised, human-interpretable, and applicable to both

continuous trajectories and clustered data, making it suitable in a wide range of analytic settings.
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1 Introduction

Modern single-cell RNA-sequencing technologies measure tens of thousands of genes per cell, yielding high-

dimensional datasets that are noisy and challenging to analyze [1]. As a result, nearly all single-cell analyses

perform dimensionality reduction to identify a smaller set of features that capture the dataset’s structure

and diversity. Techniques like Principal Components Analysis (PCA) and Independent Components Analysis

(ICA) are widespread, and more recently a range of more sophisticated approaches have emerged for reducing,

visualizing, and clustering single-cell datasets [2, 3, 4, 5, 6, 7]. However, existing approaches for learning

reduced feature representations heavily prioritize large cellular populations which contribute significantly

to the dataset’s overall variance, and lose information about smaller sub-populations that are biologically

relevant [7].

Here, we present Scalpel, a novel technique for generating robust featurizations which recover rare cell

populations and fine transcriptional substructures at unprecedented resolution. Scalpel leverages the math-

ematical notion of Shannon Information [8], whereby less probable events are considered more informative,

to assign a significance score to each gene in each cell based on a statistical comparison of local and global

expression. Rarer genes yield higher information scores where they are expressed, boosting the signal of

small populations which may be identified by just a few key markers. These scores are used to generate a

set of maximally-informative metagenes, which are used as features in downstream analyses.

Unlike other recent techniques, Scalpel is completely unsupervised, requiring no input information aside

from the transcript counts. Furthermore, it makes no direct assumptions about the structure of the data,

and is suitable for continuous trajectories as well as discrete clusterings. This contrasts with other recent

approaches which require information about the number of clusters, or access to an existing atlas of known

cell types [9, 10]. Scalpel’s output is biologically interpretable, with a mathematically well-defined linear

relationship to the input transcripts. This contrasts with recently-proposed nonlinear approaches [5, 6,

11], whose outputs are a complex function of the inputs. Such methods may be prone to undetectable

methodological artifacts, and may be difficult to interpret biologically.

On a variety of datasets, both real and simulated, Scalpel recovers small populations of cells which are
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invisible to existing pipelines, including Mucosal-associated Invariant T-Cells and gamma-delta T-cells. At

the same time, Scalpel preserves larger-scale distinctions between experimentally-determined cell types, and

reproduces continuous trajectories with high fidelity. In addition to dimensionality reduction, we use Scalpel’s

scores to remove systemic batch effects in multi-batched data, achieving state-of-the-art performance with a

simple feature reduction.

Scalpel leverages mathematical information theory to create featurizations which accurately reflect the

true diversity of transcriptomic data. More broadly, we hope that Scalpel’s information-theoretic paradigm

forms a foundation for further innovations in feature extraction, both in single-cell analysis and elsewhere.

2 Results

2.1 Overview of Scalpel

Scalpel first converts the raw transcript counts X into a matrix S encoding the significance of each gene

in each cell, which we call the Score Matrix. For each cell ci and gene gj , Scalpel identifies the k nearest

neighbors of ci, and performs a two-tailed binomial test to see whether gj is expressed in more or fewer of

these k neighbors than expected, given gj ’s global probability of expression pj (Figure 1a). The negative log

p-value of this test can be interpreted as the Shannon information of gj ’s local expression, and provides the

magnitude of Sij . The sign of Sij is positive if gj is over-expressed in ci’s neighborhood, and negative if it

is under-expressed.

As shown in Figure 1b, this strategy gives genes high positive scores where they are markers, scores near

zero where they represent noise, and low negative scores where they are conspicuously absent. Rare genes

receive higher scores in regions where they are expressed, representing greater surprisal of encountering that

gene. On the other hand, genes that are near-universally expressed receive strongly negative scores in regions

that do not express them. Thus, small populations marked by the presence of a rare gene or the absence of

a common one have a greater impact on the score matrix S.

Scalpel next identifies the linear combinations of genes, or metagenes, that encode the most information.
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Figure 1: a: Overview of Scalpel. A binomial test for local over-expression yields information scores for

each gene. SVD on the resulting matrix outputs the most informative metagenes, which are then used for

downstream clustering and analysis. b: Example Gene Information Scores on SS3 PBMC data. SAT1 is

noisily expressed throughout the data, but achieves a high information score only where it is constitutively

expressed. ITGAL achieves a strongly negative information score where it is conspicuously absent. c:

Heatmaps of Scalpel metagenes on Scalpel-derived UMAP plots of the cytotoxic T-cell subset.

As shown in the Supplementary Methods, these are simply the right-eigenvectors of S with highest eigenvalue,

i.e. its principal component vectors, which we denote v1, v2, ..., vm. For a given target dimensionality

D, the metagenes encoded by v1, v2, ..., vD act as the new features for the dimensionality-reduced X. In

mathematical terms, we linearly project the original dataset to the span of v1, .., vD. This is like principal

component analysis, but where the PCs are computed on S rather than X. Figure 1c shows an example of

Scalpel metagene expression over a collection of cytotoxic T-cells analyzed below.

Although the process that generates v1, ..., vD is nonlinear, requiring nearest-neighbor graphs and bi-

nomial score computation, Scalpel’s output is a linear projection of its input onto their span. This places

Scalpel firmly in the linear category, together with PCA and ICA; indeed, for fixed D, the coordinate systems

defined by Scalpel and by these methods are related by rotation. Since linear projection does not stretch or

shrink the data, this class of algorithms is particularly robust to distortion.
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2.1.1 Iterative Bootstrapping

The above description leaves open the issue of choosing a metric for determining the k-nearest neighbors of a

given cell ci. By default, Scalpel uses Euclidean distance in PCA space, with user-configurable parameters.

However, since Scalpel’s reductions outperform PCA in many regards, we can instead use a Scalpel reduction

to define nearest neighbors in a second application of Scalpel, generating another dimensionality reduction

on the same dataset. This process can be repeated arbitrarily many times. This iteration further boosts the

signal of rare cell populations, and often improves the discriminative power of the representation (Figure 2b).

Regardless of the number of iterations Scalpel is run for, the final output is still just a linear projection

of the input dataset X – iteration simply refines the subspace onto which Scalpel projects. Thus, Scalpel

retains the robustness inherent to linear methods, as discussed above. In practice, we observe improved

performance with more iterations (Figure 2).

2.2 Scalpel Distinguishes Synthetic Clusters

To test Scalpel’s power to recover rare cell populations in the presence of noise, we generated a synthetic

dataset with 2000 cells and 105 genes. Five genes are expressed only in a subpopulation of 80 cells (4% of

the total), and the remaining 100 genes are expressed uniformly at random. We reduced this dataset using

a standard PCA pipeline, and using Scalpel with 1-3 iterations (Methods). For each reduction, we assessed

separation visually using UMAP coordinates, and quantitatively by assessing the silhouette score [12].

The results are shown in Figure 2. In all metrics, Scalpel drastically outperforms PCA. PCA with 50

components fails to separate the two populations, likely because the noisy genes account for more of the

global variance and receive high loadings. On the other hand, a set of 50 features produced with Scalpel

produces a very good separation after one iteration, and a near-perfect separation after two, with substantial

improvement in the silhouette score. This improvement is due to Scalpel correctly identifying the marker

genes as having high information, and thus giving them higher impact on the final reduction.
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Figure 2: a: Schematic cartoon of synthetic test data, explaining the difference in performance. A small

population of 80 cells is distinguished from a large and dispersed population by the expression of a 5 marker

genes. Principal components align with the higher-variance cluster, whereas Scalpel detects the smaller

cluster due to higher information. b: UMAP plots generated using PCA and using Scalpel with 1-3 iterations.

Iterating Scalpel improves recovery of a rare population of 80 cells (4%) expressing 5 marker genes. c: UMAP

plots of the smart-seq 3 dataset after transformation with PCA, or Scalpel for 1-3 iterations. d: Fidelity of

near-neighbor graphs under different pre-processing steps. Graphs were computed by connecting each cell

to its 15 nearest neighbors in the reduction computed by each method.
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2.3 Scalpel better recovers known cell types

We next tested whether Scalpel’s reductions better separate known populations of cells in real, large-scale

single-cell datasets. We selected 6 scRNA-seq datasets spanning a wide range of technologies [13, 14, 15, 16,

17], with experimentally-determined or expert-curated cell type annotations (see Methods for details). Each

dataset was first subset to at most 5000 cells using Hopper [18]. As above, we computed reductions using

PCA or Scalpel with 50 components. For all samples, we ran Scalpel with a neighborhood size of 15 cells.

For each reduction, we assessed the fidelity, defined as the percentage of edges in the 15-nearest neighbor

graph which connect cells of the same type (Methods).

In all but one of the tested datasets, Scalpel reductions increased the fidelity after a single iteration,

with additional iterations sometimes increasing it further (Figure 2d). This effect is visible in UMAP plots

produced downstream: Scalpel-derived embeddings show better separation between cell types, and generally

improve with more iteration (Figure 2c; Supplementary figure 1). Furthermore, cell types that appear

as globular clusters in PCA space often acquire additional structure in the Scalpel-derived visualization,

especially immune cells (Figure 2c; Supplementary Figure 1). We examine this structure more closely in the

next section.

2.4 Scalpel uncovers rare immune subpopulations

In Scalpel reductions of many tested datasets, we observed fine-grained sub-populations of cells which are

not apparent from PCA-derived reductions. Immune populations were particularly rich in this regard. We

therefore sought to characterize these clusters and assess their biological significance.

We applied Scalpel and PCA to the cytotoxic T-cell subpopulation of the SS3 dataset, comprising 307

cells. Due to the smaller number of cells, we used only 20 dimensions for each method. For Scalpel, we ran

three iterations with a neighborhood size of 15. As above, we computed a Euclidean 15-nearest neighbor

graph in each reduction using scanpy [19], followed by Louvain clustering [20], UMAP visualization [3], and

identification of differentially-expressed genes (Methods).

As shown in Figure 3a, Scalpel’s embedding was far more granular, with 13 well-isolated clusters, com-
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Figure 3: Scalpel recovers small cytotoxic T-cell subpopulations. a: Comparison of UMAP embeddings

computed using PCA reductions (left), or Scalpel reductions (right). Scalpel’s clustering is far more granular.

b: Matrix plot of marker metagene expression in each cluster. Each marker metagene is the sum of 50

binarized DE genes of the corresponding cluster, with positive sign if the gene is up-regulated and negative

sign if the gene is down-regulated. c: Matrix plot showing separation of clusters by cytotoxicity markers.

d: Full matrix plot showing the top 5 DE genes of each cluster, colored by frequency of expression. Within

clusters, genes are ordered from most over-expressed to most under-expressed.
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pared to 5 somewhat overlapping clusters in the PCA representation. As discussed above, Scalpel’s linearity

precludes extreme distortion of the data; nevertheless, we performed several checks to ensure that Scalpel’s

clusters represent biologically relevant variation. We first verified that the clusters separated cells expressing

Granzyme B, a key cytotoxic marker [21], from those that do not (Figure 3c). We then performed dif-

ferential gene expression analysis to identify marker and/or dropout genes in each cluster, formed marker

metagenes in each group incorporating the top 50 DE genes with equal weights (Methods), and verified that

they strongly distinguished the 13 clusters (Figure 3b). This shows that each cluster has a robust biological

signal, motivating further analyses.

Figure 3 shows a differential expression matrix for the top five DE genes identifying each cluster.

Granzyme B and Granzyme K show largely disjoint expression, and coarsely partition the clusters. The

Granzyme B-expressing clusters are elevated in several other markers of cytotoxicity, such as Perforin

(PRF1 ), CD16 (FCGR3A), and Granzyme H (GZMH ), suggesting that these cells are actively lysing other

cells. Within the Granzyme B-expressing compartment, clusters are distinguished by combinatorial expres-

sion of various receptors, transcription factors, and metabolic proteins. For example, Cluster 0 marks a

region of active transcription and translation, evidenced by increased expression of elongation factors (e.g.

EEF1A1P13 ) and nucleoporins (NUP210 ), and by elevated total transcript counts (Supplementary Figure

2). Cluster 10 contains gamma-delta T-cells, evidenced by constitutive expression of both the delta and

gamma chains of T-cell receptors (TRDV2 and TRGV9, respectively) [22].

The Granzyme K-expressing populations are also heterogenous. Clusters 4 and 12 show highly elevated

expression of SLC4A10 and TRAV1-2, and lack CX3CR1 and CD16, suggesting Mucosal Associated In-

variant T (MAIT) populations [23]. Cluster 12 is further distinguished by elevated expression of several

genes, including NCR3, LPXN, and KLRG1. Clusters 5 and 13 are marked by decreased expression of many

genes, possibly indicating poor cell quality or hybridization errors; indeed, both show significantly fewer

total transcripts, and a higher percentage of mitochondrial and ribosomal genes (Supplementary Figure 2).

Cluster 6 likewise shows few transcript counts, but is slightly enriched in the ubiquitin-specific peptidase

USP36 ; ABCA7, which is associated with phagocytosis [24]; and LINC02273, which has been implicated in
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Figure 4: a: UMAP plots of 293T and Jurkat datasets from the Scanorama paper [26], integrated through

various approaches. One batch (green) contains 293T cells; one (orange) contains Jurkat cells, and one (Blue)

contains an equal mixture of both. b: UMAP plots of cytotoxic T-lymphocyte data from Patil et. al. [27]

after integration with various approaches. Each UMAP is colored by donor. c: PCA and Scalpel-derived

UMAPs of developing myeloid progenitors from Paul et. al. [28]. Scalpel accurately captures the continuous

nature of the data. Using PAGA [29], diffusion pseudotime computed on the Scalpel representation closely

matches diffusion pseudotime computed on the PCA representation (bottom right).

breast cancer metastasis [25].

Thus, Scalpel enables the detection of small cellular populations of biological, clinical, and methodological

importance, which are not recovered through standard pipelines.

2.5 Scalpel Corrects Systemic Batch Effects

Integrating data from different technical and biological replicates is a central problem in scRNA-seq, and the

goal of many existing methods [26, 30, 5, 31, 11]. Batch effects arise from a variety of technical factors, such as

capture efficiency, sample quality, and library size. We hypothesize that many batch effects occur uniformly

across each sample, producing a noisy signal independent of cell type. Since Scalpel’s score matrices eliminate

such signals, we hypothesized that Scalpel should be able to remove these systemic batch effects simply by
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filtering genes based on their score.

We implemented Scalpel-based batch correction by keeping only those genes which are highly informative

in at least one batch. We applied Scalpel for three iterations to produce score matrices for each batch, ranked

genes by the highest score attained across all cells in all batches, and kept only the top genes. This protocol

is implemented as a single function with tunable parameters within the Scalpel API.

As with other Scalpel functions, this approach is conceptually very simple (it simply filters genes), and

has limited capacity to distort the data. Other methods vary in the degree of batch correction, and may

over-correct, leading to variable performance (Figure 4).

We ran Scalpel’s integration protocol on two datasets, keeping the top 1000 top-scoring genes after three

iterations of Scalpel on each batch. On 293T/Jurkat cell mixtures from the Scanorama paper [26], Scalpel

successfully merged the two Jurkat cell populations across batches, performing similarly to Scanorama [26]

and Harmony [30] (Figure 4a). Simply taking the top 1000 most variable genes failed to achieve this, showing

that variable genes are not necessarily informative.

On another dataset consisting of cytotoxic T-lymphocytes from 8 donors [27], Scalpel again merges

cells from different batches, whilst preserving major clusters (Figure 4b). Here, Scanorama and Harmony

produce drastically different embeddings: Scanorama merges several small clusters on the periphery, whereas

Harmony keeps them separate. Scalpel’s embedding merges some of these clusters while keeping others

separate in the PCA-derived UMAP; however, the Scalpel-derived UMAP of the integrated data separates

all of the small clusters again. Notably, taking highly variable genes completely loses the finer structural

details, reflecting the discriminative power of rare, low-variance genes.

The variability in the outputs of integration methods are the result of variable assumptions and stylistic

decisions. Scalpel shows that state-of-the-art performance can be achieved via basic feature selection, which

is inherently simpler, more conservative, and easier to interpret than existing nonlinear approaches.
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2.6 Scalpel Preserves Continuous Trajectories

Scalpel excels at identifying small clusters when they are present; however, unlike other approaches, it does

not assume that the data admits a natural partition into clusters. In particular, Scalpel embeds continuous

trajectories smoothly, and preserves pseudotime inference. To demonstrate this, we ran Scalpel on a dataset

of developing myeloid progenitors from Paul et. al [28]. Scalpel’s UMAP embedding is nearly identical to

that of PCA, retaining the continuity of the trajectory (Figure 4c). We then inferred pseudotime using PAGA

[29] on each of the two embeddings, and obtained similar pseudotime values regardless of the embedding

used (R2 = 0.82; Figure 4c).

3 Discussion

Scalpel provides a mathematically principled approach to extracting signal from noise in high-dimensional

datasets that is powerful, interpretable, and broadly applicable. Its power derives from a novel, locality-

sensitive, and statistically sound assessment of the significance of each transcript count, amplifying true

transcriptional differences whilst reducing transcriptional noise. Rare populations and small-scale structures

receive higher scores, enabling their discovery in downstream analyses.

Scalpel’s information scores are similar in principle to Inverse Document Frequency (IDF), a normalization

approach widely used in text processing and in some single-cell applications, whereby each feature (gene)

is weighted by the logarithm of its inverse frequency. GiniClust [7], a more tailored approach, selects genes

with high Gini index, a measure of statistical dispersion which detects unequal expression across the data.

However, these approaches are only gene-specific, assigning genes the same importance wherever they are

expressed. By incorporating counts from local neighborhoods of each cell, Scalpel allows genes to have

variable scores across the dataset, achieving high-magnitude scores where they are discriminative and near-

zero scores where they are noise (Figure 1b). This reflects true biology, where genes may be expressed

sporadically across the entire dataset, but mark informative distinctions only within a small subpopulation.

Scalpel is linear, and therefore related to other linear dimensionality reduction methods (e.g. PCA) by
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change of basis. Intuitively, Scalpel simply changes the “perspective” from which the data is viewed. It is

remarkable, then, that Scalpel’s reductions look so different in downstream analyses from those of PCA (see

e.g. Figure 3a). This is possible because high-dimensional space offers a far wider variety of perspectives than

the three-dimensional space we often think in, giving linear methods more richness than they are usually

credited for.

RNA sequencing arose from the need to understand biological tissues at cellular resolution, and as the

field evolves, it becomes ever more important to recover clinically relevant cellular populations. Scalpel

offers a robust, scalable, and interpretable framework for doing so. Scalpel is implemented in Python, and

offers integration with scanpy, a popular scRNA processing framework. It is freely available at github.com/

bendemeo/scalpel.

4 Methods

4.1 Synthetic Data Experiments

The synthetic dataset analyzed in Section 2.2 was generated using numpy [32] and scanpy [19]. Expression

levels are binarized, spanning 105 genes and 2000 cells. 100 of the genes are expressed uniformly at random

throughout the entire population, with each cell having a 50% chance of expressing each gene. Five “marker

genes” are expressed only in the same subgroup of 80 cells. The marker genes define two populations,

indicated by color in Figure 2b.

For PCA representations, we compute 50 PCs using scanpy’s pca function, which in turn uses the

implementation of scikit-learn [33], with default parameters. We ran Scalpel with a neighborhood size

of 5 for 1-3 iterations, starting with the PCA embedding and keeping 50 metagenes after each iteration.

In each representation, we computed the 15-nearest-neighbor graph using cosine distance, and used the

resulting graphs to generate the UMAP plots shown in Figure 2b. Silhouette scores were computed using

the silhouette score method from scikit-learn [33, 12].
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4.2 Dataset Fidelity Tests

We downloaded high-throughput single-cell datasets using accessions provided by the original study authors,

as follows:

dataset Accession DOI
TMC datasets [13] GSE132042 10.1101/661728

Zheng [14] SRP073767 10.1038/ncomms14049
Jensen SS3 [15] E-MTAB-8735 10.1038/s41587-020-0497-0
Saunders [16] GSE116470 10.1016/j.cell.2018.07.028

Zeisel [17] SRP135960 10.1016/j.cell.2018.06.021

Table 1: Accessions and DOIs for the datasets summarized in Figure 2d.

True cell type labels were determined through a variety of experiments by the original authors, and

obtained from the accessions above. Below, we briefly summarize the techniques used to determine cell type

labels, and refer the reader to the original studies for more details:

• TMC datasets: Cells were processed with droplet-based scRNA-seq and fluorescence-activated cell

sorting (FACS). Initial clusters were determined by Louvain and Leiden-based clustering, mapped to

an existing mouse cell atlas, and reviewed by experts in each of the tissues profiled. More details are

available at the authors’ github: https://github.com/czbiohub/tabula-muris-senis

• Zheng PBMCs: Raw counts were first processed in silico using K-means clustering, and the resulting

clusters were refined through marker gene analysis. The authors then generated reference transcriptome

profiles through scRNA-seq of bead-enriched subpopulations, identifying purified populations to which

the original transcripts were matched, further enhancing the clustering.

• Jensen SS3: Clusters represent several different samples from the Human Cell Atlas benchmarking

dataset, with cells from several tissues combined and cryopreserved before sequencing. Cell types were

deduced from the tissue of origin, together with manual marker gene analysis for more complex tissues

(e.g. PBMCs).

• Saunders: This dataset contains cells from 9 different regions of the mouse brain, which were sep-

arately analyzed using a two-stage procedure. The cells were first clustered in silico via ICA and
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modularity-based clustering, then refined using Independent Components (ICs) selected manually by

experts to be biologically meaningful.

• Zeisel: The authors produced an initial clustering of cytograph, then verified concordance with six

previously published and experimentally validated scRNA-seq datasets. The authors then computed

trinarization and enrichment scores, identifying marker gene sets identifying each cluster with high

probability.

Before applying Scalpel or PCA, we subset each dataset to 5000 cells using Hopper [18], and natural

log-transformed the raw counts with a pseudocount of 1 – that is, for each count c,

log1p(c) = ln(c+ 1)

50 Principal components were computed using the pca function of scanpy [19, 33]. We ran Scalpel on each

dataset with a neighborhood size of 15, using the PCA representation to generate the initial neighborhood

graph, and keeping the top 50 metagenes in the final representation. For both representations, near-neighbor

graphs were generated by connecting each cell to its 15 nearest neighbors. We used the cosine distance to

assess nearness, which resulted in superior fidelity over Euclidean distance for all datasets regardless of

representation.

As described above, the fidelity of a representation R is the fraction of edges in the near-neighbor graph

GR which connect cells of the same type, where GR is computed using cosine distance in the representation

R. That is:

fidelity(R) =
|{(i, j) ∈ E(GR) : label(ci) = label(cj)|}

|E(GR)|
.

Note that fidelity falls between 0 and 1, with 1 indicating that cells are always closer to cells of the same

label.
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4.3 Cytotoxic T-cell Population Discovery

We extracted all cytotoxic T-cells from the Jensen SS3 dataset using the authors’ cell type annotations,

obtaining 307 cells in total. For PCA, we used scanpy’s pca function with 20 components. For Scalpel, we

ran three iterations with 20 components each, starting with the PCA representation. 15-nearest neighbors

graphs were computed in both representations using Euclidean distance, and the results were used to generate

the UMAP plots in Figure 3.

Differentially-expressed genes were computed via one-vs-rest logistic regression on the binarized gene

counts, using scanpy’s rank genes groups function. Underexpressed genes were retained by setting rankby abs=False.

Matrix plots were then generated using scanpy’s rank genes groups matrixplot function on the binarized

counts. To create marker metagenes for each cluster, we added together the overexpressed genes and sub-

tracted the underexpressed genes, among the top 50 significantly DE genes.

4.4 Integration

293T and Jurkat cell mixtures were downloaded from http://scanorama.csail.mit.edu/, provided by the

authors of Scanorama [26], who originally obtained them from Zheng et. al. [14]. CD4+ T-lymphocytes were

downloaded from the European Bioinformatics Institute [34] under accession E-GEOD-106540, accessed via

scanpy’s ebi expression atlas function.

293T/Jurkat data were log-transformed, and T-lymphocyte data binarized, as these transformations

produced the clearest visual separation between known clusters regardless or representation. For both

methods, we applied Scanorama with default parameters, and Harmony on the PCA representation with

50 PCs. To generate Scalpel information scores, we used 3 iterations with 20 components each. The same

parameters were used to generate a Scalpel embedding for the representation pictured in the top right of

Figure 4b. Highly variable genes were identified for comparison using Scanpy’s highly variable genes

function.
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4.5 Trajectory Analysis

Our analysis followed the vignette at https://scanpy-tutorials.readthedocs.io/en/latest/paga-paul15.

html. 20 components were computed in each representation (PCA and Scalpel). 4-nearest-neighbor graphs

were used to generate the UMAPs in Figure 4c, and to compute Leiden clusters in each representation [35].

We then computed diffusion maps with scanpy’s diffmaps function, re-computed clusters in diffusion space

based on a 10-nearest-neighbor graph, and applied PAGA to the result. Following the vignette, we identified

pseudotime roots for each PAGA graph by marker gene expression, and applied scanpy’s dpt function, an

implementation of Diffusion pseudotime [36], to compute pseudotimes for each cell in each representation.

4.6 Scalpel Implementation Details

Scalpel is written in Python. Binomial scores were computed using the binom test function from scipy [37].

Singular value decompositions were computed using the pca function from the Python package fbpca.

Since computing a binomial test for each gene and cell is time-consuming, we amortized this computation

by pre-computing binomial scores for each global gene frequency and neighborhood occurrence rate, for a

fixed neighborhood size. This requires around kM computations for a neighborhood size of k, rather than

MN computations naively, with identical performance.

As a further speedup and memory reduction, we optionally allow dividing of the gene frequencies into

a fixed number B of bins, requiring only kB binomial score computations. Bin divisions can optionally

be chosen so that the resulting frequency approximation is accurate to within a constant factor, with bins

spaced according to a power law. In practice, this means that the binning is denser at lower probabilities,

allowing more accurate binomial scores for rare genes. This improves slightly over equally-spaced bins, and

is Scalpel’s default behavior. All of the above experiments were performed with B = 500 evenly-spaced bins.
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