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Abstract: 
Combining cyclin-dependent kinase (CDK) inhibitors with endocrine therapy improves 
outcomes for metastatic estrogen receptor positive (ER+), HER2 negative, breast cancer patients. 
However, the value of this combination in potentially curable earlier stage patients is not clear. 
Using single cell transcriptomic profiling, we examined the evolutionary trajectories of early 
stage breast cancer tumors using serial tumor biopsies from a clinical trial of preoperative 
endocrine therapy (letrozole) alone or in combination with the cell cycle inhibitor ribociclib. 
Applying hierarchical regression and Gaussian process mathematical modelling, we classified 
each tumor by whether it shrinks or persists with therapy and determined cancer phenotypes 
related to evolution of resistance and cell cycle transcriptional rewiring. We found that all 
patients’ tumors undergo subclonal evolution during therapy, irrespective of the clinical 
response. However, tumors subjected to endocrine therapy alone showed reduced diversity over 
time, while those facing combination therapy exhibited increased diversity. Despite different 
subclonal diversity, single nuclei RNA sequencing uncovered common phenotypic changes in 
tumor cells that persist following treatment. In these tumors, cancer cells with accelerated loss of 
estrogen signaling have convergent up-regulation of the JNK pathway, while cells that maintain 
estrogen signaling during therapy show potentiation of CDK4/6 activation consistent with 
ERBB4 and ERK signaling up-regulation. These convergent phenotypes were associated with 
growing tumors resistant to combination therapy. Cell cycle reconstruction identified that these 
tumors can rebound during combination therapy treatment, indicating stronger selection and 
promotion of a proliferative state. These results indicate that combination therapy in early stage 
ER+ breast cancers with ER and CDK inhibition drives rapid evolution of resistance via a shift 
from estrogen signaling to alternative growth factor receptor mediated proliferation and JNK 
signaling activation, concordant with a bypass in the G1 checkpoint. 
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Introduction 
Hormone receptor positive (estrogen receptor positive (ER+) and/or progesterone receptor 
positive (PR+)) breast cancer comprises 70-80% of all breast cancers (1). In ER+ breast cancer, 
estrogen receptors are activated by estrogen and transduction of this signal to the nucleus 
promotes cell proliferation and tumor growth. The primary treatment for ER+ breast cancer is 
endocrine therapy, which either depletes endogenous estrogen along with estrogen made by 
breast cancer cells using aromatase-inhibition (AI) or blocks ER activity through direct 
modulation or degradation (2-4). Approximately 90% of  all patients with metastatic breast 
cancer eventually develop resistance to endocrine therapy and at least 33% of patients with early-
stage disease will develop endocrine  resistance (5, 6). Combination of endocrine therapy with 
cyclin-dependent kinase (CDK) 4/6 inhibitors has improved disease control in metastatic ER+ 
breast cancer and adjuvant trials to study the efficacy of this combination in early stage, non-
metastatic breast cancer are ongoing (NATALEE) or have completed accrual and are in the 
follow-up phase (monarchE, PENELOPE-B and PALLAS) (7-10). CDK4/6 inhibitors combined 
with endocrine therapy are associated with a significant decrease in expression of the 
proliferation marker Ki-67 compared to endocrine therapy alone (11), resulting in a higher rate 
of complete cell cycle arrest in the neoadjuvant treatment of ER+ breast cancer, but the clinical 
significance of the reduction in proliferation from these combinations is not known (7-9). 
Preliminary results after short term follow-up from adjuvant trials have shown contradictory 
results, with the MonachE trial showing an improvement in invasive disease free survival with 
two years of adjuvant abemaciclib added to endocrine therapy, particularly in people whose 
tumors have high Ki-67 (12), while the PALLAS trial failed to show an improvement in the 
same endpoint with two years of adjuvant palbocilib (13).  It is not known to what extent such 
differences are due to biologic effects of the drugs versus biologic differences in different 
populations of early breast cancer patients; therefore, additional research is needed to 
characterize the effects of CDK4/6 inhibitor and mechanisms of resistance in surviving cells. 
 
CDK4/6 proteins form a complex with cyclin D that phosphorylates and deactivates the key cell 
cycle checkpoint regulator retinoblastoma protein (RB1), leading to E2F transcription factor 
activation and production of cell cycle promoting genes and progression from G1 to S phase of 
the cell cycle (14). In the context of breast cancer, binding of estrogen to ER and of growth 
factors binding to growth factor receptors (GFR) drive proliferation through cyclin D/CDK4/6 
activation (15, 16). ER can also activate extracellular signal-regulated kinase (ERK) mitogen-
activated protein kinase (MAPK) signaling and drive transcription of cyclin D genes and cell 
cycle progression (17). Some known mechanisms of endocrine resistance include loss or 
modification of the key estrogen receptor ESR1 and activation of the phosphoinositide 3-kinases 
(PI3K) or epidermal growth factor receptor (EGFR) pathways (18). Prior studies have also 
revealed mechanisms underlying resistance to CDK4/6 inhibitor treatment in the metastatic 
setting (19). These include disruption or loss of CDK6 and cyclin E2 (CCNE2), as well as 
activation of AKT1, RAS, ERBB2, and FGFR genes. The impact of treatment with these agents 
on the phenotypes and emergence of resistance in early, non-metastatic breast tumors remains 
unknown.  
 
The phosphorylation of the human ER serine residue at position 118 is required for its full 
activity. Ser118 is phosphorylated by MAPK, specifically MAPK1/3 (ERK1/2), initiated by  
GFR activation (20). Likewise, estrogens  also activate ERK1/2 through multiple signaling 
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pathways, further highlighting the crosstalk among these pathways (21, 22). Additional MAPK 
pathways, including MAPK8-10 (Jun amino-terminal kinases; JNK1-3) and MAPK11-14 
(p38α−γ), have also been shown to interact with ER signaling, but their role in response to 
therapy is unknown. Further, the role for all MAPK pathways in evolution of tumor cells to a 
resistant state has not been defined in tumors during therapy with endocrine and/or cell cycle 
inhibition.   
 
To address the questions detailed above including the impact of therapy on signaling and 
response in early stage ER+ breast cancer, we addressed how resistance evolves in response to 
endocrine and cell cycle inhibitor therapies in early stage ER+ breast cancers. These analyses 
demonstrate multiple convergent phenotypes conveying resistance to combination endocrine and 
cell cycle inhibition therapy in early stage ER+ breast cancer. 
 
 
Results 
Clinical trial: Patient treatment and sample collection 
We studied the evolution of endocrine and CDK inhibitor resistant cancer cell genotypes and 
phenotypes in post-menopausal women with node positive or >2 cm ER and or PR+, HER2 
negative breast cancer enrolled in the FELINE trial (clinicaltrials.gov # NCT02712723)  (23). 
This trial evaluated whether the addition of CDK inhibition to endocrine therapy in the neo-
adjuvant setting improved the preoperative endocrine prognostic index (PEPI) as well as 
promotes sustained cell cycle arrest. Patients (n=120) were randomized equally into three arms: 
A) endocrine therapy alone (letrozole plus placebo), B) intermittent high dose combination 
therapy (letrozole plus ribociclib (600 mg/d, three on/one week off)) or C) continuous lower dose 
combination therapy (letrozole plus ribociclib (400 mg/d)) (Figure 1a). Patients were treated for 
six cycles (180 days) and biopsies were collected at baseline (day 0), following treatment 
initiation (day 14), and end of treatment (surgery around day 180).  

We used tumor growth measurements over time to define resistance and sensitivity during the six 
months of therapy. Specifically, we mathematically reconstructed tumor size continuously over 
time during treatment using data from magnetic resonance imaging (MRI), ultrasound (US), 
mammogram (MG), clinical physical assessment (CA) taken throughout therapy, and the 
surgical pathology (SP) (24) observation. This estimation of tumor size over time was determine 
using a Gaussian Process Latent Variable Model to account for known biases and differences in 
accuracy between measurement modalities (25, 26). Groups of similar tumor trajectories were 
then identified using a Gaussian mixture model. Patients exhibiting either a sustained shrinkage 
in tumor size during treatment or an initial shrinkage followed by a plateau during treatment 
were classified as sensitive to therapy. Alternatively, tumors classified as resistant show either 1) 
no change in size during treatment, 2) a rebound indicated by an initial tumor shrinkage followed 
by growth during treatment, or 3) continual increased growth (Supplementary Figure 1a-b). 
Tumors defined as resistant had a significantly higher proportion of tumor remaining after 
therapy (>2/3 initial size) compared to sensitive tumors (t=4.45, p<0.001), and have a significant 
correlation between clinical and modeling classifications (Supplementary Figures 1a-c). All 
patient modeling classifications match RECIST 1.1 classification except for two patients. One 
tumor classified as resistant by the model but PR by RECIST 1.1 shrunk on imaging and clinical 
exam at day 90 but then both pathology and ultrasound show a rebound by day 180 following the 
emergence of resistance. The second tumor classified as sensitive by the model but marginally 
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SD by RECIST 1.1 exhibited a steady decrease in tumor size when looking across all imaging 
data from day 0-180, resulting in 30% decrease in size at surgery.   

Biopsies from the first 60 patients were processed and analyzed (20 patients from each treatment 
arm). The second set of 60 patients’ tumors is to be used as a validation cohort and was withheld. 
From 60 total patients, 45 had sufficient high-quality tissue in optimal cutting temperature 
compound (OCT) at day 0 and a follow-up time point. Serial single-cell RNA-sequencing 
profiles (scRNAseq) and whole exome sequencing (WES) pre- and post-treatment was 
performed as detailed in the methods (Figure 1a), with scRNAseq prioritized. From the 45 
patients sampled, 34 had a sufficient number of cancer cells and high-quality sequencing data for 
scRNAseq analysis of the progression of tumor RNA phenotypes and 24 patients yielded WES 
data (Figure 1e shows patient samples processed on the 10x and Supplementary Table 1 shows 
patient samples processed using the ICELL8). For samples with sufficient DNA, WES (mean 
depth 234x) was performed on pre- and day 180 post-treatment tumor biopsies for 24 patients. 
Matched blood samples were sequenced in parallel (mean depth 230x) to identify somatic 
mutations (Supplementary Table 2).  

Genomic analysis of patient tumor samples 
We obtained scRNAseq transcriptional profiles for 176,644 cells after filtering out low-quality 
cells and doublets (Supplementary Table 3). To correct single cell gene expression for 
differences in read depth between cells, counts were normalized using a zero-inflated negative 
binomial model (zinbwave) (27). Cells across patients were integrated using the Seurat 
normalization package and following the reciprocal PCA method (28). Cancer cells were first 
distinguished from normal cells by performing gene copy number analysis of the scRNAseq data 
using inferCNV for each single cell (29) (Supplementary Dataset 2). The inferCNV algorithm 
predicts the copy number profiles of each cell from its transcriptional profile. As shown in Figure 
1c and Supplemental Figure 2b, some cells have frequent and pronounced changes in copy 
numbers, reflective of copy number alterations, and were therefore classified as cancer cells, 
while others show no copy number changes and are classified as normal cells. We confirmed this 
classification by projecting the transcriptomic profiles of cells into low dimensional space using 
t-SNE and found that cells with copy number alterations clustered together; and those that show 
no copy number alterations also cluster with themselves (30). Finally, marker gene expression 
shown in Figure 1d was then used to verify the cell type annotations. In sum, the cells were 
distinguished based on frequency of predicted copy number alterations, similarity in overall gene 
expression profiles, and expression of known cancer or normal cell markers. A total of 32,781 
(18.56%) stromal cells and 16,672 (9.44%) immune cells were identified, using singleR cell type 
annotation and verified by cell type specific marker gene expression (Figures 1b and 1c, 
Supplementary Figure 2, and Supplementary Table 3) (31). Immune and stromal cells were 
clearly identifiable by expression of PTPRC and FAP/HTRA1, while cancer and normal 
epithelial cells expressed KRT19 and/or E-cadherin (CDH1) (Figure 1d).  

Tumors undergo subclonal evolution during treatment 
To understand how selective pressures of endocrine and CDK4/6 inhibitors drove evolution of 
cancer cells, WES data was analyzed as detailed in the methods. On average, 99 non-
synonymous mutations (range 7-916) and 89 indels (range 24-380) were detected in each sample 
(Supplementary Table 4). Two patients had substantially higher mutation burden compared to 
average (P21: 224-471 non-synonymous mutations vs. mean: 99 and P45: 912-916 vs. mean: 99, 
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Supplementary Table 4) and shared a distinct mutational signature enriched in APOBEC 
signatures 2 and 13 (Supplementary Figure 3). Gene mutations known to be frequent in ER+ 
breast cancer were seen, including PIK3CA (46%), TP53 (29%), and MAP3K1 (21%) (Figure 
2a). Gene copy number alterations (CNA) were also frequently identified in the WES data, 
including gains in AKT3, CCND1, CCNE2, CDK6, FGFR1 and losses in ESR1, RB1 and TP53 
(Figure 2b). In general, copy number alterations were more frequent in resistant than sensitive 
tumors, with most present prior to therapy (Figure 2b, Supplementary Table 5). When 
summarized at the pathway level, cell cycle, TGF-beta, and TP53 pathway related genes were 
frequently mutated in this cohort, with no difference in occurrence rate between patients given 
endocrine alone versus combination therapy (Supplementary Figure 4 and Supplementary Table 
6). Over time, allele frequency of variants in 19 genes (PTEN, GATA3, and others) increase in 
10 patients, suggesting enrichment of clones carrying those mutations (Supplementary Table 7). 

Subclonal cancer cell populations were identified using PyClone (32), after normalizing for 
cancer cell purity and copy-number changes. All patients’ tumors show polyclonal populations, 
with a range of 2-7 subclones present over the course of therapy (Figure 2c). Unlike later stage 
ER+ breast cancer (3) or triple negative breast cancer (TNBC) (33), few patients show bottleneck 
events, in which a single dominant subclone emerges during treatment, during the six month 
course of therapy, with the majority of patient tumors maintaining persistent polyclonal 
populations (Figure 2c) (27).  
 
The evolution of subclonal tumor heterogeneity between treatment arms was further examined 
by assessing the frequency of mono- or poly-clonal populations over time (Figure 2d). For each 
biopsy sample, overall tumor diversity was measured using Shannon’s index (34). Diversity 
includes two components: richness and dominance. Richness was measured by the number of 
subclones in a tumor, whilst dominance reflects the abundance of each subclone and the uneven 
fraction of cells in each tumor subclone (Figure 2d). Changes in dominance were measured by 
the differences in Simpson’s dominance index over time (34). Tumor heterogeneity was found to 
decrease during endocrine treatment, due to an increase in the dominance of a resistant subclonal 
population (t=2.33, p<005). In contrast, overall tumor heterogeneity increased during 
combination treatment, as a result of a decreasing dominance of any one subclonal population 
(t=-5.06, p<0.001) (Supplementary Table 8). The increase in tumor genetic diversity under 
combined therapy suggests that multiple genetic mechanisms of resistance to ribociclib can lead 
to a resistance phenotype with similar fitness.  
 

Identifying resistant phenotypes during treatment 
To determine how cancer cell phenotypes evolved during endocrine and combination treatment, 
we analyzed single cell pathway activity across all three time points (day 0, 14 and 180), using 
single sample Gene Set Enrichment Analysis (ssGSEA) scores (35). We identified pathways 
from the Molecular Signatures Database (MSigDB; c2 and hallmark pathways) that were 
significantly activated or deactivated during each treatment (Supplementary Table 9) (36). A 
hierarchical regression model determined overall and patient specific trajectories of pathway 
expression within an arm. The statistical significance (p-values) of pathway activation were 
corrected for by applying Holm’s conservative correction procedure (37). The most significantly 
altered ssGSEA pathways (n=87) were categorized into groups reflecting major biological 
processes, including estrogen receptor activity, signal transduction and proliferation (cell cycle 
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activity) (Supplementary Table 10). The phenotypic heterogeneity in these three most 
prevalently dysregulated biological processes were assessed in detail through the extraction, 
dimension reduction, and model-based analysis of the individual genes constituting the detected 
pathways. Of note, at the end of 6 months of treatment, remaining tumor cells may include those 
with a resistance phenotype following an initial clinical response to therapy, as tumors are 
heterogeneous and often include resistant cancer cells (3, 33).  
 

Accelerated evolution of diminished estrogen signaling with combination treatment 
Analysis of the pathway trajectories over time shows that persistent tumors treated with 
endocrine therapy alone maintained estrogen signaling following treatment (measured by 
Hallmark estrogen response early signature), indicating little or no sensitivity to therapy (t=0.77, 
p=0.45), while shrinking tumors showed a significant but modest decrease in estrogen signaling 
during endocrine therapy (Figure 3a, top left panel) (t=-2.138, p<0.05). This is in line with the 
expectation that effective response occurs when the aromatase inhibitor blocks estrogen 
production and reduces receptor activity. In contrast, combination therapy caused a stark 
decrease in estrogen signaling during treatment in persistent tumors (t=-2.721, p=0.05), 
indicating acquisition of a low estrogen dependent state in which estrogen receptor has 
diminished signaling activity (Figure 3a, top middle and right panels). Even though resistance 
patterns differ across treatment arms for tumors that grow on therapy, patients with tumors 
shrinking after combination therapy show similar diminished levels of endocrine signaling in 
cancer cells across all treatment arms.  
 
During combination therapy, diminished ER expression and pathway activity was accompanied 
by a transition from a luminal-like to basal-like characteristics (Figure 3a, middle and bottom 
panels) (transition under high dose combination therapy: t=2.85, p<0.05; low dose: t=2.97, 
p<0.05). The transition occurred repeatedly in different subclones from patient’s tumors 
(Supplementary Figure 5 and Supplementary Table 11). Cells with increased basal-like 
phenotype score had lower estrogen receptor (ESR1) expression (t=-5.77, p<0.001), and this 
negative association was strengthened under both ribociclib treatment arms (t=-3.15, p<0.005) 
(Supplementary Figure 6 and Supplementary Table 12). Estrogen signaling loss was also 
correlated with an increased signature of endocrine therapy resistance (Supplementary Table 12). 
The acute switch to an estrogen independent state of proliferation was only weakly observable 
during endocrine therapy alone, indicating that the selective pressure of combination therapy, 
especially at high doses, promoted accelerated evolution of the phenotypic switch away from 
estrogen signaling activity in resistant tumors.  Of note, in sensitive tumors that shrink during 
treatment, combination therapy did not further decrease estrogen signaling as measured through 
transcriptional changes. Further, copy number increases in AKT3 or losses in ESR1 or TP53 at 
day 0 had only modest effect on ER expression during therapy (Supplementary Figure 7); 
however, larger samples sizes are needed to fully assess these relationships. 
 
In addition to pathway analysis, we analyzed the change in the gene expression of ESR1 during 
treatment. We quantified the trajectories of ESR1 expression using a hierarchical generalized 
additive model to estimate decline of expression during each treatment, while accounting for 
differences in initial tumor expression. In line with other studies, we found from the WES data 
that loss of ESR1 heterozygosity (LOH) in tumor cells also significantly diminished expression 
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of ESR1 mRNA (Figure 3b, W=20, p<0.05). In some patients this was found in the pre-treatment 
sample, indicating innate resistance to endocrine therapy (38, 39). Similar to estrogen pathway 
levels, combination therapy (especially intermittent high dose ribociclib treatment) accelerated 
the reduction of ESR1 mRNA levels over time (ESR1 reduction: t=-31.54, p<0.001) (Figure 3c), 
with persistent tumors in particular showing the most dramatic reductions in expression (t=-
80.28, p<0.001) (Supplementary Figure 8). Shrinking tumors also show reductions in receptor 
mRNA levels, but more comparable to what occurred with letrozole alone (t=-79.50, p<0.001).  
 

Single cell RNA sequencing uncovers common transcriptional changes in the JNK MAPK 
pathway during treatment 
In order to identify the proliferative stimuli in cancer cells with diminished estrogen signaling, 
we analyzed alternative growth pathways that were dysregulated during combination therapy 
(Supplementary Table 10). In addition to a loss of ER signaling, the pathway analysis detected 
several signatures of MAPK signaling network alterations. The JNK and ERK pathways are 
major component of the MAPK network, along with the p38 MAPK pathway; both showed 
divergent patterns of activity following combination therapy but not endocrine therapy alone 
(Figure 4a; Supplementary Figure 9; Supplementary Table 10).  

The JNK MAPK signaling pathway was upregulated during combination therapy in resistant 
tumor cells at day 14, but not in sensitive cells (Figure 4a) (high dose: t=3.10, p<0.01, low dose: 
t=2.40, p<0.05, resistant versus sensitive t=2.79, p<0.05). Tumor cells from all patients 
remaining after six months of combination therapy showed upregulation of JNK expression. This 
result indicates the acquired resistance in persistent cells, even in tumors that are initially 
sensitive and highlights the heterogeneous nature of these breast tumors (as shown in Figure 2c). 
Significant activation of the JNK pathway score was not seen in resistant tumors treated with 
endocrine therapy alone (Figure 4a left panel) (t=0.81, p=0.44), indicating its specific role in 
CDK inhibitor resistance. 

Growth factor signaling can mimic estrogen action and ERK can phosphorylate ESR1, leading to 
estrogen independent activation (20-22). During combination therapy, resistant tumors became 
less dependent on ERK signaling (Supplementary Figure 9) (t=-2.83, p<0.05). In contrast, 
sensitive tumors maintained higher ERK signaling (no significant ERK change: t=0.89, p=0.41) 
perhaps due to the significant crosstalk between ERK and ER, including ER activation of growth 
factor signaling (40-43). Taken together with the activation of JNK signaling under combination 
therapy, the lack of ERK signal utilization further reflects the transition to an endocrine 
independent resistance state, with reduced reliance on the positive estrogen/ERK crosstalk (21, 
44). 

An inverse transcriptional expression pattern was found between JNK and ERK pathway genes 
in the single cell expression data (MAPK gene set in Supplementary Table 13). Within the JNK 
and ERK pathways, gene expression was positively correlated, while being inversely related to 
the other gene set (Figure 4b). This dichotomy was consistent in cells across treatments and 
timepoints (Supplementary Figure 10). An overall JNK activation phenotype score was then 
constructed which integrates the gene expression across MAPK genes, providing a pseudotime 
metric and placing cells on a continuum from JNK to ERK dominated signal transduction. 
Utilizing the collinearity of MAPK gene expression, we performed Uniform Manifold 
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Approximation and Projection (UMAP) dimension reduction of MAPK genes and used the major 
axis of phenotypic variation to provide the JNK activation phenotype (Supplementary Figure 
11). High JNK activation phenotypes were verified to correlate strongly with single cell 
upregulation of ASK1 and JNK1/3 genes, while low scores reflected ERK activation, including 
MEK4, MEKK1-3, and ERBB4 upregulation (Supplementary Figure 11). 

To understand how JNK signaling relates to resistance, we examined the link between JNK 
activation and the expression of the ribociclib target gene, cyclin dependent kinase 6 (CDK6; 
CDK4 is not expressed in the scRNAseq data). Across each subclone in all tumors, the average 
CDK6 expression was calculated along with JNK activation levels (Figure 4c, red line).  In 
addition to expression levels in copy number neutral cells, we also separately analyzed JNK 
levels in those subclones with amplified CDK6 (Figure 4c, blue line; no patients in arm B had 
CDK6 CNA). Using generalized additive models, we analyzed the nonlinear CDK6:JNK 
relationship in each treatment and CDK6 amplification group (Figure 4c).  

Tumors converge on signaling states providing resistance to endocrine and combination therapy. 
Following combination therapy, JNK activation was concurrent with the upregulation of CDK6 
in patients lacking pre-existing CDK6 copy number alterations (Figure 4c) (F=130.10, p<0.001). 
Subclonal populations with low JNK activation had low CDK6 expression (t=12.39, p<0.001), 
indicating that these cells were not in a proliferative state. In contrast, tumors with CDK6 copy 
number alterations had high CDK6 expression independent of their JNK activation status 
(t=16.03; p< 0.001), indicating that genetic alteration removed the requirement for altered signal 
transduction. Overall, tumors with higher JNK activation decreased in size less during 
combination therapy (t=13.84, p<0.001) (Supplementary Figure 12). 

Estrogen signaling was explored between cancer populations differing in JNK activation and 
CDK6 amplification status. Subclonal populations with low estrogen receptor expression 
exhibited CDK6 upregulation (Figure 4c) (t=-3.89, p<0.001). In patients lacking CDK6 
amplification (Figure 4c, filled circles), estrogen loss was linked to JNK activation (t=-6.13, 
p<0.001). Meanwhile, patients with CDK6 amplified tumors lost estrogen receptor expression 
independent of JNK activity (Figure 4c, open triangles) (t=-0.20, p=0.84). In the absence of 
CDK6 amplification, JNK activation provides an alternative pathway to estrogen independent 
proliferation under combined therapy. Increased expression of the anti-apoptotic MCL1 gene 
was also observed in persistent tumor cells after treatment (t=2.68, p<0.05) (Supplementary 
Figure 13), in line with studies showing JNK stabilization of MCL1 through phosphorylation 
(45, 46). 
 
 
ERBB4 and FGFR2 receptor tyrosine kinase upregulation is common in cancer cells after 
treatment but varies across treatment arms 
Given that both JNK activation and CDK6 amplification allowed estrogen independence and/or 
potentiation, we next examined growth factor receptors that showed compensatory increases in 
expression. Receptor genes comprising ssGSEA signatures detected in the pathway analysis were 
identified along with genes coding for cell surface proteins, including receptors, listed in the cell 
surface protein atlas (n=1406) (47).  For each patient, we compared pre- and post-treatment 
expression using analysis of variance and identified receptors with a) increased expression 
during treatment or b) that had initially higher expression in resistant tumors. Of these genes, we 
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identified receptors with expression inversely correlated to single cell estrogen receptor activity 
(Supplementary Figure 14; Supplementary Table 14).  
 
Following this method, we found that Erb-B4 Receptor Tyrosine Kinase 4 (ERBB4) gene was 
significantly upregulated relative to baseline in 50% of tumors (n=13), including all but one 
patient with CDK6 copy number amplification (n=4/5). ERBB4 is upstream of MAPK signaling 
and an ER coregulator that can drive proliferation via ERK signaling (48). Tumors lacking 
CDK6 amplification showed less ERBB4 upregulation than tumors with CDK6 amplification 
(Figure 5a, top row) (t=-13.06, p<0.001), indicating that it is a mechanism of resistance to 
endocrine but not cell cycle inhibition. Consistent with this hypothesis, higher expression of 
ERBB4 was also seen in tumors after endocrine monotherapy (t=11.88, p<0.001).   
 
Fibroblast Growth Factor Receptor 2 (FGFR2) was also found to be upregulated in JNK 
activated cells following high dose intermittent combination therapy when patients lacked CDK6 
amplification (Figure 5a, bottom row). FGF receptors can also activate MAPK signaling (49, 
50). This relationship was most evident in JNK activated cells following intermittent high dose 
combination therapy (t=18.38, p<0.001), with 64% (7/11) of patients showing high expression of 
FGFR2 (Supplementary Table 14). An additional receptor upregulated over time in resistant cells 
was RAR Related Orphan Receptor A (RORA), a nuclear receptor that potentially modulates 
expression of both aromatase enzyme (51) and the ribociclib target, CDK6, which controls cell 
cycle progression. 
 
Single cell relationships were constructed, through a cluster tree, based on cellular copy number 
alterations and show that as tumor subclones evolve during treatment, the acquisition of 
alternative receptors is accompanied by a loss of ESR1 (Figure 5b; Supplementary Figure 15) 
(Supplementary Dataset 2 shows single-cell copy number alterations of each patients’ tumor). 
Clonal populations show consistent concordant loss of ESR1 as the growth factor/cell surface 
receptors are upregulated. As an example, subclones with reduced ESR1 and upregulated 
ERBB4 emerged 180 days after endocrine therapy only in tumors from P20 or combination 
therapy in tumors from P34 (Figure 5b). In addition, subclones with dysregulated ESR1 and 
upregulated FGFR2 emerged 180 days after endocrine therapy in P15 or disappeared 180 days 
after combination therapy in tumors from P21 (Figure 5b). As summarized in Figure 5c, in tumor 
cells with high estrogen signaling, potentiation of CDK4/6 activation can occur through ERBB4 
and ERK upregulation and activation. Alternatively, cancer cells with diminished endocrine 
signaling can bypass CDK4/6 inhibition through upregulation of the JNK pathway. CDK6 
amplification itself can potentiate its activity and correlates with cell proliferation. In sum, 
resistant cancer cell state reflects a phenotypic shift from ERK to JNK MAPK signaling and 
diminished estrogen signaling in tumors without CDK6 amplification. Tumors with CDK6 copy 
number amplification showed an alternative phenotype, with growth factor receptor 
upregulation. 
 
 
Functional consequences of therapy on the cell cycle: rewiring to bypass CDK inhibition 
Cancer cell proliferation during endocrine and combination therapies was examined by 
measuring changes in cell cycle pathway activity. Cell cycle activity was initially inhibited by 
both endocrine therapy alone and combination therapy (Figure 6a) (Biocarta cell cycle pathway 
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decline: t=-2.728, p<0.05). However, by the end of combination treatment, cell cycle activity had 
rebounded (t=2.678, p<0.05). Tumor cells that persisted following intermittent high dose 
combination therapy showed the largest initial reduction in cell cycle activity (t=-3.290, p<0.05), 
followed by the greatest proliferative rebound, suggesting stronger selection for the evolution of 
a cell cycle rewired to bypass the G1 checkpoint and allowing proliferation independent of 
estrogen deprivation. In contrast, tumors persistent to letrozole treatment alone exhibited the 
weaker initial and subsequent reductions in cell cycle activity compared to shrinking tumors, 
reflective of innate resistance.  

A rewiring of the cell cycle regulatory pathways is required for resistant cells to bypass the G1 
checkpoint (52-54). Cell cycle dysregulation is reflected in the changing distribution of cells 
across cell cycle phases and altered expression of cell cycle regulating genes. To reveal these 
alterations from single cell data, we extended the Markov model-based reCAT algorithm (55) to 
reconstruct the cancer cell cycle transitions (Supplementary Figure 16). Distinct cell cycle states, 
common across patients (Supplementary Figure 17) were identified by applying UMAP 
dimension reduction to the single cell expression of cell cycle related genes followed by 
clustering with a Gaussian mixture model. The states were connected by finding the shortest path 
that visited all states. Extending this algorithm, the dynamics of gene expression around distinct 
cell cycle phases was delineated using cyclical generalized additive models (Figure 6b).  
Through the reconstruction of the cell cycle from scRNAseq data (Figure 6b), we recovered 
expected events in the cell cycle, including a G1 checkpoint transition where cyclin D initially 
rises and is followed by CDK6 expression. Further, we observed that Retinoblastoma (RB1), the 
key G1 checkpoint protein, was downregulated in concert with increased expression of the E2F3 
proliferation gene. This effect leads to a positive feedback in cyclin dependent kinase production 
and the commitment of cells to progress to S-phase.  

The ability of cancer cells to bypass the G1 arrest checkpoint was assessed in detail by 
calculating the fraction of cancer cells in each patient biopsy that were in the division (S/G2) 
phase. During combination therapies, an increasing fraction of each patient’s cancer cells were 
found to be in the division and growth (S/G2) phase of the cell cycle (t=2.94, p<0.001). The 
frequency of proliferating cells increased in persistent tumors, especially those receiving high 
dose combination therapy (t=2.1, p<0.05). In contrast, those receiving endocrine therapy 
exhibited a decrease in the frequency of proliferating cells (t=-2.08, p<0.05), with no detectable 
difference between tumors that shrank or persisted while on therapy. This result indicates 
effective bypass of the ribociclib enhanced G1/S checkpoint in surviving subclonal populations. 

Next, fluctuations in the expression of cell cycle, ER and JNK genes around the cell cycle were 
recovered by applying cyclical generalized additive models to the single cell gene expression of 
cells across cell cycle states. This approach predicted the smooth change in gene expression as 
cells transition around the cell cycle, including for genes not used to reconstruct the cell cycle. 
By applying this approach to cells sampled at different timepoints and from patients given 
different therapies, we distinguished whether treatment altered expression at specific cell cycle 
stages or if genes expression was dysregulated independent of the cell cycle. 

ESR1 was expressed at consistent levels throughout the cell cycle (Figure 6d, top row). 
However, when looking across combination therapy arms, decreasing ESR1 expression was 
observed over time, accompanied by increased levels of JNK1 (Figure 6d, second row) ( t=2.57, 
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p<0.05) and its downstream target transcription factor JUNB (t= 10.10, p<0.001) 
(Supplementary Table 15). Further, during combination treatment, we observed a decrease in 
cyclin dependent kinase inhibitor 2A (CDKN2A (coding for p14 and p16)) (t=-3.07, p<0.005) 
and an increase in CDK6 expression in the G1 to S/G2 phases (t=4.81, p<0.001) (Figure 6d, 
bottom two rows). Taken together, these observations support the role of estrogen independent 
JNK signaling in decreasing cell cycle inhibition prior to the G1 checkpoint, thereby permitting 
cell cycle reactivation. 

Discussion  
With their proven success in treatment of metastatic ER positive breast cancer (56-58), CDK 4/6 
inhibitors are currently being tested in the treatment of early stage breast cancer (7-10). 
Neoadjuvant trials facilitate collection of tissue biopsies at various timepoints before, during and 
after therapy providing an opportunity to define the pathways that drive resistance in early stage 
breast cancer. To address this need, we studied the evolution to resistant states in patient tumor 
cells during treatment with endocrine therapy alone or in combination with the CDK4/6 
inhibitor, ribociclib. Given the patient complexity, when monitoring tumors during neoadjuvant 
treatment, we used hierarchical statistical models to identify response related phenotypes. We 
then analyzed single cell heterogeneity in growth signal transduction and cell cycle pathways by 
integrating dimension reduction and pseudotime reconstruction approaches with generalized 
additive modelling techniques.     

In patients treated with endocrine therapy alone, we see compensatory signaling between ESR1 
and ERBB4 receptor tyrosine kinase, with activation of RTK and downstream ERK MAPK 
upregulation offsetting decreased ESR1 levels in resistant tumors. Compensatory expression of 
ESR1 signaling by EGFR and ERBB2 receptors has been detailed in cell lines, and EGFR, 
ERBB2 and IGF1 receptor (IGF1R) activity has been shown to cause tamoxifen resistance (2, 
59). However, the role of these pathways has not previously been detailed in patient tumors 
during treatment. We uncovered convergence towards distinct pathways of resistance in patients 
treated with combined letrozole and ribociclib, including the evolution of estrogen independent 
proliferation through the upregulation of alternative growth factor receptors (e.g. ERBB4 , 
FGFR2 and RORA) and JNK MAPK signaling including ASK1/MAP3K5 and JNK1-3 
(MAPK8-10) (60, 61). 21% of tumors had genetic amplification of the CDK6 gene through copy 
number gain, directly enhancing transcription, while those lacking CDK6 amplification initially 
upregulated JNK signaling during treatment, providing an alternative route to upregulation of 
CDK6 levels. Lastly, upregulation of additional genes such as MAPKAP1 in JNK activated cells 
may also contribute to the promotion of  survival and proliferation through modulation of MAPK 
signaling (62, 63). The relationship between resistance signaling pathways remains to be 
determined; however, this study shows that multiple bypass mechanisms exist that enable cells to 
survive therapy. Due to gene dropouts in scRNAseq data, transcription of all genes was not 
measured, and additional pathways and genes may also be dysregulated in this setting. 

The JNK MAPK pathway is classically considered to be central to apoptotic signaling (64, 65). 
However, JNK has been found to drive aberrant tumor growth in a drosophila model system 
through modulating survival of nearby cells (66, 67), highlighting a potential role for JNK in 
tumorigenesis and cell-cell interactions within a tissue. Further, JNK has been shown to activate 
cell cycle regulated proteins such as CDK4 (68, 69). Regulation of these pathways can drive 
proliferation of ER+ tumors without a requirement for estrogen, which is essential as cells 
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become ESR1-independent. Interestingly, a recent study showed p38 MAPK can independently 
drive cell cycle activation and proliferation (70, 71). The role of MAPK in proliferation 
independent of canonical cell cycle signaling and their role in drug resistance is an area of further 
investigation. Given the dual role of JNK as a proliferative and an apoptotic signal, it provides a 
promising target for evolution-based therapies. The CDK inhibitor abemaciclib, which recently 
demonstrated clinical benefit in early stage patients, is less specific for CDK4/6 than ribociclib, 
has a different CDK4/CDK6 inhibition ratio, and includes targets such as JNK (72). Despite 
similar clinical efficacy between these two agents in metastatic breast cancer, differences may be 
seen in the early setting based on target specificities of these different CDK inhibitors. Thus, our 
results suggest that JNK inhibition may explain the success of abemaciclib in the MonarchE 
adjuvant clinical trial (12), while the failure of palbociclib in the PALLAS adjuvant clinical trial 
(13) may be due to lack of JNK inhibition.  They also lead to the hypothesis that adding JNK 
inhibitors to either palbocilib or ribociclib may improve their efficacy in early stage breast 
cancers. 

ESR1 signaling loss occurred during treatments targeting this signaling pathway and was 
accelerated in patients receiving higher combination therapy doses. Further studies tracking the 
tumor mass during intermittent combination therapies will clarify the role of drug dose and 
timing on the rate of evolution of resistance phenotypes such as acquisition of endocrine 
independence. As breast cancer cells become independent of endocrine signaling, they require 
alternative pathways to drive proliferation. In contrast to earlier stage tumors, our prior studies 
with metastatic tumors show acquisition of cancer stem cell and EMT signaling during 
progression with chemotherapy and other targeted therapies (3). Therefore, it is possible that 
alternative pathways drive proliferation and response to CDK4/6 inhibitors in early versus late 
stage breast cancer. Studies such as this one highlight that efficacy in late stage cancer may not 
imply the same in early stage cancer, which is what was seen in the PALLAS trial of palbociclib 
(11, 73-75).   

Changes in markers of proliferation after 2 weeks of endocrine therapy have been used as early 
indicators of efficacy (11, 76). Our results demonstrate that information beyond proliferation can 
be learned from early biopsies in neoadjuvant therapy trials. In addition to providing biological 
insight into mechanisms of resistance, scRNAseq data could provide clinically useful data to 
guide personalized next line therapy choices. As a prognostic marker, changes in JNK activation 
or cell cycle state could be tested at 2 weeks as a biomarker of the clinical efficacy of 
combination aromatase inhibitor-CDK4/6 inhibitor therapy in early breast cancer, to determine 
whether to continue therapy.  Similarly, transcriptional changes reflecting shifts from luminal to 
basal-like characteristics or diminished expression of Rb concordant with increases in E2F 
proliferation genes may contribute to early biomarkers of resistance. Tumors that show an 
insufficient decrease in estrogen signaling and proliferation after two weeks of estrogen therapy 
alone may benefit from switching to another endocrine therapy or receiving growth factor 
receptor signaling inhibitors to achieve full inhibition of proliferation. While ERK signaling is 
correlated with estrogen receptor activity in tumors treated with endocrine therapy alone, based 
on our genomic analyses, a prior clinical trial with fulvestrant and selumetinib, a MEK1/2 
inhibitor that blocks signaling directly upstream of ERK in breast cancer progressing after 
aromatase inhibitor therapy, failed to show efficacy (77), although that was in metastatic and not 
early breast cancers.   
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ER+ tumors treated with combination estrogen and CDK4/6 inhibition therapy that develop a 
loss of estrogen signaling and acquisition of ERBB4/FGFR2 and JNK signaling could be treated 
with targeted therapies that block pathways. Several options are approved for use or in clinical 
trials (78-80). Given that JNK activity has a dual role in cell proliferation and apoptosis, 
additional therapies targeting anti-apoptotic signaling should also be studied. The PALLET 
clinical trial showed that clinical response rates over 14 weeks under combination therapy and 
indicated that reduced tumor proliferation was balanced by diminished apoptosis, as measured by 
lower c-PARP expression (11). Anti-apoptotic treatments could be given either at time of 
progression, based on imaging, or following neoadjuvant therapy in patients with viable resistant 
cells at time of surgery.  Given the potential for additional therapy to increase selective pressure, 
it will be imperative to rationally determine optimal dosing and timing of drug treatment 
regimens to reverse or prevent a resistant state while minimizing side effects. 
 
In conclusion, our analysis identifies mechanisms of how tumors circumvent endocrine and 
CDK4/6 inhibition through phenotypic and subclonal evolution. These mechanisms include 
shifts to alternative proliferative signaling pathways, bypassing dependence on ER and CDK6 
activation. This approach provides a method to detect resistance mechanisms early in cancer 
treatment to identify phenotypic targets directed at surviving tumor subclones in tumors.  
Absence 
 
 
 
 
Methods 
Patient cohort and sample collection 
Patient tumor core biopsy samples were collected prospectively under Clinical Trial # 
NCT02712723, as a multicenter study led by Dr. Qamar Khan at the University of Kansas 
Medical Center (IND # 127673) entitled:  Femara (letrozole) plus ribociclib (LEE011) or 
placebo as neo-adjuvant endocrine therapy for women with ER-positive, HER2-negative early 
breast cancer (FELINE Trial). FELINE is a randomized, placebo controlled, multicenter 
investigator-initiated trial. Patients in this trial were enrolled from 10 centers in the United 
States. Postmenopausal women with pathologically confirmed, non-metastatic, operable, 
invasive breast cancer and clinical tumor size of at least 2 cm were included. Invasive breast 

cancer had to be ER positive (≥66% of the cells positive or ER Allred score 6-8) and HER2 
negative by ASCO-CAP guidelines. Patients were randomized 1:1:1 to one of three treatment 
arms. Arm A received letrozole plus placebo, Arm B letrozole plus ribociclib 600 mg daily for 
21 out of 28 days of each cycle and Arm C received letrozole plus ribociclib 400 mg 
continuously. Protocol therapy was continued until the day before surgery. Mammogram, MRI 
and ultrasound of the affected breast were performed at baseline and a mammogram and 
ultrasound was performed at completion of neoadjuvant therapy. MRI of the breast was 
performed after completion of 2 cycles of treatment (Day 1 of cycle 3). Samples collection for 
tissue was mandatory. Three tumor core biopsies were collected temporally over the course of 
treatment: screening (Day 0), Cycle 1 Day 14 (Day 14), and end of trial (Day 180) using a 14-
gauge needle. Immediately after collection research biopsy samples are snap frozen embedded in 
Optimal cutting temperature (OCT). Informed consent was obtained from all patients according 
to protocols approved by the institutional IRBs and in accordance with the Declaration of 
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Helsinki. This study was approved by University of Kansas Institutional Review Board (protocol 
# CLEE011XUS10T). 
 
 
Nuclei isolation 
On a dry-ice platform to keep tissue frozen, OCT embedded tumor core biopsies were placed in a 
60mm petri dish and excess tumor margins were removed from core biopsies using a razor blade. 
Core biopsies were then placed in 1x PBS, pH 7.4 (Gibco, Cat# 10010) + Cytoprotective 
reagents (all components from Millipore Sigma, 0.54µM Necrostatin (Cat# N9037), 1.0µM 
HPN-07 (Cat# SML2163), 0.31µM sodium 3-hydroxybutyric Acid (Cat# 54965-10G-F), 78nM 
Q-VD-OPH (Cat# SML0063)) + 0.04% Bovine Serum Albumin (BSA, EMD Millipore, Cat # 
12661525mL). Tissue was homogenized by mincing with a sterile razor blade in 2 mL of sterile 
4:1 Lysis Buffer (10mM Tris-HCl, pH 7.8 (Teknova, Cat# T1078), 146mM NaCl (Alfa Aesar, 
Cat# J60434AK), 1mM CaCl2 (G-Biosciences, Cat# R040), 21mM MgCl2 (G-Biosciences, Cat# 
R004), 0.05% BSA (EMD Millipore, Cat# 12661525mL), 0.2% Igepal CA-630 (MP 
Biomedicals, Cat# 198596), DNase/RNase free water (Gibco, Cat# 10977)) : DAPI Buffer 
(106mM MgCl2, 50 µg/mL 4’, 6-diamidino-2-phenylindole (DAPI, Invitrogen, Cat# D1306), 
5mM Ethylenediaminetetraacetic acid (EDTA, Quality Biological Inc., Cat# E522100ML), 
DNase/RNase free water) + 0.2 U/µL SUPERase-In RNase Inhibitor (Invitrogen, Cat# 
AM2694). Homogenized tissue was incubated for 15 min at 4°C to release nuclei. Lysate was 
then filtered through a 40 µm mesh filter (Falcon, Cat# 352340) collecting isolated nuclei in flow 
through. All downstream nuclei processing utilized Eppendorf DNA LoBind tubes to minimize 
nuclei loss. Nuclei were centrifuged at 4°C, 500 x g for 5 min and washed two times with 500-
1,000 µL of Nuclei Resuspension Buffer (8mM Tris-HCl, pH7.8, 117mM NaCl, 0.8mM CaCl2, 
38mM MgCl2, 0.04% BSA, 0.2U/µL SUPERase-In RNase Inhibitor, DNase/RNase free water)  
or 1x PBS + 1% BSA + 0.2U/µL SUPERase-In RNase Inhibitor. Nuclei were resuspended in 1x 
PBS + 1% BSA + 0.2U/µL SUPERase-In RNase Inhibitor at a target of 1,000 cell/µL, filtered 
using a 40 µm mesh filter, then counted on a hemocytometer by DAPI florescence on a Laxco 
LMI-6000 Inverted microscope with Florescence contrast or Invitrogen Countess equipped with 
DAPI filter and maintained on ice prior to scRNAseq.  
 
Exome data sequencing, variant calling, and copy number alteration 
Whole-exome sequencing was performed for 24 patients with cancer cells that are present at both 
pre- (Day 0) and post-treatment (Day 14 or Day 180). Genomic DNA of tumor and matched 
germline samples were captured using the SureSelect Human All Exon v7 (Agilent) or xGen 
Exome Research Panel v2 (IDT). Enriched DNA samples were sequenced on an Illumina 
NovaSeq 6000 with 150 bp paired-end reads. Sequence analyses were performed with a 
Bioinformatics ExperT SYstem (BETSY) (81). Briefly, sequences were processed by 
trimmomatic v0.39-1 (82) (MINLEN:15 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15) 
to trim adaptors and low-quality sequences. The trimmed sequences were aligned to the hg19 
human genome with BWA-MEM v0.7.17 (83-85) and bam files were sorted by sambamba 
v0.6.8 (https://lomereiter.github.io/sambamba/). PCR duplicates were marked by the Picard tool 
v2.18.4 (86). Local realignment around the 1000 Genomes Phase I indels were performed with 
the Genome Analysis Toolkit (GATK v3.8) (87). 
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Somatic single-nucleotide variations (SNVs) and small indels (≤ 50 bp) were identified with 
MuTect2 (implemented in GATK v3.8) (87), Strelka v2.9.2 (88), and Varscan2 v2.4.3-2 (89) 
using tumor-normal pairs. Variants with read depth ≥ 25, alternative allele read depth ≥ 5, variant 
allele frequency (VAF) ≥ 0.05 in tumor samples, and VAF ≤ 1% in normal samples were 
characterized as somatic variants for further analysis. Somatic variants were annotated with 
ANNOVAR v2018Apr16 (90). Somatic copy number, tumor purity, and ploidy were estimated 
from WES using FACETS v0.5.14 (91) and Sequenza v2.1.2 (92) (Supplementary Dataset 1). 
Multiple runs with different parameters were performed for each tool. A best model was chosen 
for each patient by manual inspection of log-ratio and copy number profile of each patient. Copy 
number alteration of cancer driver genes were determined based on the median log-ratio of the 
segment (cnlr.median) and copy number estimated by FACETS. A copy number gain was 
defined as genes located on segment with cnlr.median ≥ 0.2 and copy number > ploidy. A copy 
number loss was defined as genes located on segment with cnlr.median ≤ 0.2 and copy number < 
ploidy. A loss of heterozygosity (LOH) was defined as genes located on segment with minor 
allele completely lost (minor_cn = 0). 
 
Clonal structure and evolution 
Somatic mutations obtained from the above analysis were clustered by PyClone v0.13.1 using 
the Beta Binomial model with 10,000 iterations. Tumor purity and copy number inferred by 
FACETS v0.5.14 or Sequenza v2.1.2 were used by PyClone to estimate cellular prevalence of 
somatic mutations and mutation clusters. The clonal evolution models were inferred by ClonEvol 
v0.99.11 (93) based on mutation clusters and cellular prevalence of somatic mutations predicted 
by PyClone. The truncal cluster was assigned to the cluster with cellular prevalence 80% in at 
least one sample. Mutations clusters with five or fewer mutations were discarded unless the 
cluster represented a truncal cluster. Mutation clusters showing similar changes across samples 
were merged when ClonEvol failed to predict clonal evolution models. Phylogenic trees of 
clonal structure were generated by ClonEvol. Fishplots were generated by fishplot v0.5 (94). 
 
Evolution of subclonal diversity 
The evolution of tumor heterogeneity during treatment was assessed by quantifying the changes 
in subclonal diversity across patients in each arm. The relative frequency of cancer subclones 
(����, ��) was calculated for biopsies taken from each patient (i) at the first and last treatment 
timepoints (T). The overall subclonal heterogeneity of each tumor sample was measured using 
the Shannon diversity index. To disentangle the two key components of diversity (richness and 
dominance), we calculated richness by the number of subclones identified per sample and 
measured dominance as 1 - Simpson’s index (∑�����, ��

��). 
Changes in tumor diversity (D) over time (T) and between treatment arms (A), were assessed 
using a random effects model:  
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Pre-treatment differences in tumor diversity between patients in different arms were accounted 
for by the treatment-specific estimates of initial diversity (��vs ��). Subsequent changes in 
diversity were described by treatment-specific temporal trend terms (�� and ���). Individual 
variability in pre-treatment tumor heterogeneity was accounted for by allowing the model 
intercepts to vary among patients (���). Likelihood ratio tests were used to assess whether 
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significant changes in tumor heterogeneity occurred during treatment. The likelihood of the 
above model was compared with that of nested null hypothesis models in which no change in 
tumor heterogeneity occurred (fixing ��& ��� � 0) or equal changes in tumor heterogeneity 
occurred across treatment groups (fixing ��� � 0  but estimating ��). The likelihood function 
for these models was:  
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were ���  is the expected diversity of the linear predictor and $ is the total number of data points. 
 
Single nuclei RNA sequencing and data processing 
Single cell RNA-Sequencing (scRNA-Seq) was performed on single nuclei suspensions using 
either the Takara Bio ICELL8 Single Cell System or the 10X Genomics Chromium to prepare 
cDNA sequencing libraries (Supplementary Table 3). 10x Genomics was used for 35 patients, 
ICELL8 platform was used for 10 patients. Samples processed on the ICELL8 Single Cell 
System (Takara Bio) were prepared using the SMARTer ICELL8 3 ’DE Reagent Kit V2 (Takara 
Bio, Cat # 640167) from isolated nuclei. DAPI stained nuclei were diluted to a concentration of 
60,000 cell/mL in 1x PBS + 1% BSA + 1x Second Diluent + 0.2U SUPERase·In RNase Inhibitor 
and dispensed onto the ICELL8 3 ’DE Chip (Takara Bio, Cat# 640143) using the ICELL8 
MultiSample NanoDispenser. Single nuclei candidates were selected using the ICELL8 imaging 
system with CellSelect Software (Takara Bio) selecting for DAPI positive nuclei and reverse 
transcription and sequencing library preparation was performed according to manufacturer 
instructions. ICELL8 cDNA sequencing libraries were sequenced at a depth of 200K reads/cell 
on Illumina HiSeq 2500 (read #1 = 26nt and read #2 = 100nt). ICELL8 scRNA-Seq was 
performed at the Integrative Genomics Core at City of Hope, Fulgent Genetics, and the High 
Throughput Genomics Core at Huntsman Cancer Institute (HCI) of University of Utah. Sequence 
reads were processed with BETSY, which aligned reads to reference genome (GRChg38) using 
STAR v2.6.0 (95). Counts on gene transcripts were calculated by featureCounts implemented in 
subread v1.5.2 (96). A gene-barcode matrix was generated for each sample containing counts for 
each gene in each barcode (cell). 
 
Samples processed on the 10X Genomics Chromium were processed using the Chromium Single 
Cell 3 ’V3 Kit (10X Genomics, Cat # 1000075) using isolated nuclei. Single nuclei were diluted 
to a target of 1,000 cells/µL in 1x PBS + 1.0% BSA + 0.2U/µL SUPERase·In RNase Inhibitor to 
generate GEM’s prepared at a target of 5,000 cells per sample. Barcoding, reverse transcription, 
and library preparation were performed according to manufacturer instructions. 10X Genomics 
generated cDNA libraries were sequenced on Illumina HiSeq 2500 or NovaSeq 6000 instruments 
using 150 bp paired-end sequencing at a median depth of 34K reads/cell. scRNA-Seq was 
performed at the Integrative Genomics Core at City of Hope, Fulgent Genetics, and the High 
Throughput Genomics Core at Huntsman Cancer Institute (HCI) of University of Utah. Sequence 
reads were processed with CellRanger v3.0.2 using reference genome (GRChg38). A gene-
barcode matrix was generated for each sample containing counts of unique molecular identifiers 
(UMIs) for each gene in each barcode (cell). 
 
Copy number alteration and subclone analysis from scRNA 
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Copy number alterations of each cell were estimated based on the count matrix using R package 
‘infercnv ’v1.0.2 (cutoff=0, min_cells_per_gene = 100 or 500, cluster_by_groups=T, HMM=T, 
analysis_mode="subclusters"), which uses gene expression intensity to predict copy number 
changes in tumor cells compared to normal reference cells. A subset of 500 immune cells or 
stromal cells from this study were used as reference for ‘infercnv ’ analysis. Cancer cells from 
each patient were clustered based on the estimated gene copy numbers in each cell using ‘hclust ’
from R package ‘fastcluster ’v1.1.25 (97) (method=’ward.D2’). Cell clusters were visualized in 
heatmap using R package ‘ComplexHeatmap ’v2.0.0 (98). Clusters with distinct copy number 
profiles were defined as subclones for each patient. Single-cell phylogeny was performed based 
on hierarchical cluster analysis using R package ape v5.4-1 (99). Hierarchical clustering of tumor 
subclones were visualized using GraPhlAn v1.1.4 (100). 
 
 
Cell type classification 
An integrative approach was used to classify cell types in samples from 45 patients. First, cell 
type of each cell was predicted using the R package ‘SingleR ’v1.0.1 to generate preliminary cell 
type classifications for all patients. Second, we applied Seurat v3.1.1.9023 Reciprocal PCA 
integration workflow to 35 patients with 10x scRNA data to integrate cells from different 
samples (28). Patients with ICELL8 scRNA data were analyzed with standard Seurat workflow 
(101). Cell clusters were identified using ‘FindClusters ’method (resolution=0.8) in R package 
Seurat v3.1.1.9023. Third, each cell cluster was then defined as epithelial cells, stromal cells 
(fibroblasts, endothelial cells), immune cells (macrophages, T cells, B cells) based on the 
maximum number of cells annotated as these cell types from ‘SingleR’. Expression profiles of 
marker genes were used to validate the cell type classifications: epithelial cells (KRT19, CDH1), 
immune cells (PTPRC), stromal cells (HTRA1, FAP). Finally, epithelial cells were classified 
into cancer cells and normal epithelial cells based on presence and absence of copy number 
alteration. Cell type annotation was summarized in Supplementary Table 3. 
 
Breast cancer intrinsic subtype prediction 
Primary molecular subtypes of breast cancer (basal-like, HER2-enriched, luminal A, luminal B) 
for each cell was predicted based on the log(CPM+1) count matrix by R package ‘genefu ’

v2.18.0 (102) with default parameters (sbt.model = scmod1). The predicted subtype that has the 
highest prediction probability was assigned as breast cancer intrinsic subtype of each cell. This 
analysis was performed only on patients with 10x scRNA data. Patients with ICELL8 scRNA 
have very few cancer cells, thereby were not included in this analysis. 
 
Gene Set enrichment analysis 
The count matrix of each cell type was filtered to keep genes that expressed 1 or more counts in 
at least 10 cells. The filtered count matrix was normalized by R package ‘zinbwave ’v 1.8.0 (27) 
with total number of counts and gene length and GC-content as covariates (K=2, X="~log (total 
number of counts)", V="~ GC-content + log (gene length)", epsilon=1000, 
normalizedValues=TRUE). Single sample Gene Set Enrichment Analysis (ssGSEA) scores of 50 
hallmark signatures (MSigDB, hallmark) (36) and 4725 curated pathway signatures (MSigDB, 
c2) (36) were calculated for each cell based on the normalized count matrix using R package 
‘GSVA ’v1.30.0 (kcdf="Gaussian", method='ssgsea') (103).  
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Pathway analysis: identifying response related phenotypes 
For each ssGSEA pathway in the C2-level and Hallmark pathway signatures, changes in cancer 
cell pathway activity (x) over time (T) was examined during each treatment arm of the trial (A). 
Phenotypic changes linked to treatment or differing between sensitive and resistant patients (R) 
were identified. A random effects model (104) with the following linear predictor and error 
structure was constructed for each pathway: 

%�&&'(%)*+,��~��� . ���� . ��/ . ��� . ����� . ���/� 
&&'(%)*+,�~$01234�%�&&'(%)*+,��, ��

�� 
���~$01234�0, ��

�� 
���~$01234�0, ��

�� 
Initial differences in pathway activity between cancer cells from sensitive and resistant tumors, at 
the pre-treatment time point were captured by the group-specific intercepts (��vs ��). 
Subsequent changes in pathway activity were described by temporal effect terms of sensitive and 
resistant tumors (��and ���). Preexisting individual variability in gene expression and patient 
specific susceptibility of pathway activation to therapy, were accounted for by allowing the 
model intercept and temporal effect to vary among patients (i) (���and ���). Significant 
differences in pathway activity before or during treatment were identified between treatment 
arms and patient response groups, using likelihood ratio tests with multiple comparison 
corrections following Holm’s p-value correction. Compared to false discovery rate (FDR) 
correction, Holm’s adjustment was more conservative, avoiding the spurious detection of 
response related phenotypes. The likelihood of the full model was compared against that of 
nested null models in which: i) no change in pathway activity occurred in sensitive or resistant 
tumors (fixing ��& ��� � 0) or ii) equal changes in pathway activity occurred in sensitive and 
resistant tumors (fixing ��� � 0  but estimating ��). The likelihood function for each of these 
models was:  
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were &&'(%)*+,�

5  is the expected pathway activity (%�&&'(%)*+,��) and $ is the total number of 
datapoints.  
 
The significance of pathway activation in sensitive and resistant tumors (non-zero ��and ��� 
parameters) was then assessed using a two-tailed t-tests. The Satterthwaite method was applied 
to perform degree of freedom, t-statistic and p-value calculations for the hierarchical regression 
model coefficients, using the ‘lmerTest’ R package (105). The hierarchical regression model 
explicitly described the paired structure in our dataset, with earlier and later samples per patient, 
and this non-independence of cells within a sample determined the effective residual degrees of 
freedom. Consequently, the statistical test of whether pathway activity related to tumor growth 
was controlled for the pairing of earlier and later samples per patient tumor. Detected ssGSEA 
signatures were classified into functional categories (Supplementary Table 10). Genes 
contributing to each pathway category were identified from the MSigDB and used for 
downstream analyzes of each process. 
 
 
Assessing the loss of estrogen receptor expression 
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Changes in single cell ESR1 expression during treatment were assessed using a hierarchical 
generalized additive model (106). The nonlinear trajectory of ESR1 expression during the trial 
was described by a thin plate spline. Baseline differences in patients’ ESR1 expression was 
accounted for by a patient specific random intercept term. Single cell ESR1 expression over time 
was assessed separately for patients in each treatment arm. 
 

MAPK signaling network structure analysis: Determining co-regulation of gene sets in the 
MAPK pathways. 
Signal transduction, via MAPK pathways, forms a complex network with numerous kinases 
which crosstalk and regulate the activity of one another. To investigate the co-regulation of 
signal transduction states of cancer cells, we analyzed the pairwise correlation of MAPK gene 
expression. Hierarchical clustering of the correlation matrices showed the dichotomy between 
the expressions of kinases acting in the JNK versus the ERK pathways of signal transduction. 
 
The primary phenotypic variation in MAPK signaling across cancer cells was determined by 
performing dimension reduction of MAPK gene expression, using UMAP (confirmed by 
Principle component analysis). To assess phenotypic variation across patients, without large 
patient samples biasing results, the dataset was initially down sampled to 100 cells per biopsy. 
The UMAP model was then trained and used to calculate the phenotypic scores of the full 
dataset. This analysis confirmed that JNK activation status was the primary component of 
heterogeneity in MAPK signaling state across cancer cells (Supplementary Figure 11). A single 
cell JNK activation score (high JNK, low ERK) was determined, using the major axis of 
phenotypic variation, due to the collinearity of gene expression between JNK and ERK genes. 
For each patient, average scRNAseq gene expression was calculated for subclonal cancer cell 
populations with different levels of JNK activation (n=40 levels).  
 
Relating CDK6 expression to JNK activation  
We characterized the subclonal relationship between JNK activation and the expression of the 
key ribociclib target gene, CDK6, accounting for genetic differences in CDK6 copy number 
amplification status. Resistance phenotypes were examined specifically, by focusing on the 
transcription profiles of cells at end of treatment. Using generalized additive models, a nonlinear 
smooth function was fitted describing how the average CDK6 expression changed as the JNK 
activation of subclonal populations increased. A separate relationship was identified for each arm 
of therapy and for patients with and without baseline CDK6 genetic copy number amplification 
(as identified by CNA analysis). The significance of CDK6:JNK relationships in each group 
were assessed using likelihood ration tests comparing the full model to a null model without a 
CDK6:JNK association.   
 
Cell surface receptor activity analysis: Compensation for estrogen receptor loss. 
The Cell Surface Protein Atlas (47) provides a database of known cell receptor proteins. Genes 
encoding each protein were identified from the Ensembl database (107) (n=1406). For each 
patient, we identified genes with either: i) significantly higher/lower than average initial 
expression, or b) altered expression during treatment, using an ANOVA test. Receptor genes that 
were consistently identified across patients were determined by identifying those overlapping 
gene detected by our pathway analysis as well as being detectable in several patients using the 
ANOVA approach. To determine genes that were activated to compensate for the loss of 
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estrogen signaling during treatment, we correlated estrogen pathway activity with alternative 
receptor gene expression for cells in each treatment arm and response group. 
 
Cell cycle reconstruction 
We next assessed the cell cycle consequences of endocrine and combination therapy. As 
individual marker genes are insufficient to resolve cell cycle state (108), we reconstructed the 
cell cycle, using a set of cell cycle genes and the reCAT model of the cell cycle pseudo-time 
transitions (55). The cell cycle gene list was obtained from the Biocarta cell cycle pathway (48 
genes). This signature was repeatedly detected in the pathway analysis and its predicted changes 
in cell cycle activity mirrored changes in KI-67 antigen expression and tumor size dynamics. 
 
Discrete cell cycle states were first identified by applying a Gaussian mixture model to the cell 
cycle gene set.  The reconstruction of cell cycle transitions was then formulated as a traveling 
salesman problem and the shortest cycle that passes through each cell cycle stage was identified 
based on subclonal distances on a UMAP, using the arbitrary insertion traveling salesman 
algorithm (109) (Supplementary Figure 16).   
 
Fluctuations in gene expression throughout the cell (including non-cell cycle genes) was 
recovered using cyclical generalized additive models. The expected expression of each gene, as 
cells transition through the cell cycle, was described using a smooth and cyclical cubic spline 
function relating gene expression to cell stage. Three distinct phases of the cell cycle (G0, G1, 
S/G2) were identified by reclassifying cell states, by applying a Gaussian mixture model to the 
reconstructed gene expression of cell cycle genes in each stage. Differences in the frequency of 
cells from a sample found to be in  the proliferative S/G2 phase was assessed using a quasi-
binomial generalized additive model (106). 
 
Treatment induced differences in the frequency of cells at different phases of the cell cycle were 
assessed by calculating the proportion of cells in each cell cycle phase and comparing the 
fraction of cells in a given phase between arms and over time, using logistic regression. 
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