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Abstract Because no feasible theoretical model can depict the complexity of phenotype 1 

development from a genotype, the joint significance of linkage disequilibrium (LD), epistasis, and 2 

inbreeding on the genetic variances remains unclear. The objective of this investigation was to 3 

assess the impact of LD and epistasis on the genetic variances and covariances between relatives in 4 

non-inbred and inbred populations using simulated data. We provided the theoretical background 5 

and simulated grain yield assuming 400 genes in 10 chromosomes of 200 and 50 cM. We generated 6 

five populations with low to high LD levels, assuming 10 generations of random cross and selfing. 7 

The analysis of the parametric LD in the populations shows that the LD level depends mainly on the 8 

gene density. The significance of the LD level is impressive on the magnitude of the genotypic and 9 

additive variances, which is the most important component of the genotypic variance, regardless of 10 

the LD level and the degree of inbreeding. Regardless of the type of epistasis, the ratio epistatic 11 

variance/genotypic variance is proportional to the percentage of the epistatic genes. For the epistatic 12 

variances, except for duplicate epistasis and dominant and recessive epistasis, with 100% of 13 

epistatic genes, their magnitudes are much lower than the magnitude of the additive variance. The 14 

additive x additive variance is the most important epistatic variance. Our results explain why LD for 15 

genes and relationship information are key factors affecting the genomic prediction accuracy of 16 

complex traits and the efficacy of association studies. 17 

Keywords: linkage disequilibrium, epistasis, inbreeding, genetic variances. 18 

Introduction 19 

Genomic selection or genomic prediction of complex quantitative traits and genome-wide 20 

association studies (GWAS) share a common quantitative genetics background: linkage 21 

disequilibrium (LD) between genes and single nucleotide polymorphisms (SNPs). Among the 22 

thousands of studies that have been published in these areas, only a few have offered a quantitative 23 

genetics background, indicating that the accuracy of the genomic prediction and the power to detect 24 

a candidate gene depends on the LD between genes and SNPs (Gianola et al. 2009; Goddard 2009; 25 

Viana et al. 2016, 2017a). Based on Cockerham (1954), Viana et al. (2016) and Viana et al. (2017a) 26 
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provided explicit functions relating SNP additive, dominance, and epistatic effects and variances to 1 

the quantitative trait locus (QTL) additive, dominance, and epistatic effects and variances. For a 2 

biallelic QTL (alleles A/a) and a SNP (alleles B/b) in LD, the connection between both their effects 3 

and variances is the measure of LD in the gametic pool of the population, which is given by the 4 

difference between the products of the haplotypes ∆ � ������− ������ (Kempthorne, 1973). This 5 

LD measure can be expressed as ∆ � ����	
 and ∆ � ��. max ���, where r is the correlation 6 

between the values of alleles in both loci in the same gamete, p and q are the QTL allelic 7 

frequencies, s and t are the SNP allelic frequencies, D’ is a relative measure of LD (in relation to the 8 

maximum value for given allele frequencies), and max(e) is the maximum deviation of the actual 9 

gamete frequency from linkage equilibrium (Hill and Robertson 1968; Lewontin 1964). 10 

However, the relationship information is the most important factor affecting the genomic 11 

prediction accuracy. For GWAS, the relationship information allows an effective control of the type 12 

I error rate and decreases the number of significant associations outside of the QTL intervals (Liu et 13 

al. 2015; Pereira et al. 2018). Although the observed relationship information, which is computed 14 

from the molecular data, has provided superior prediction accuracies and a more effective control of 15 

the false discovery rate (FDR), relative to the expected relationship information (Liu et al. 2016; 16 

Munoz et al. 2014), the covariance between relatives is another significant quantitative genetics 17 

background in the quantitative genomics era. 18 

Several investigations on genomic selection, genomic prediction of complex traits, and 19 

GWAS have included epistasis (Monir and Zhu 2017; Varona et al. 2018). With few exceptions, a 20 

common feature of these significant studies is the absence of basic genetics background on the 21 

epistasis types (see any standard genetics book). These studies consider the basic quantitative 22 

genetics background for modelling epistasis, but there is generally no reference for the key 23 

knowledge provided by Kempthorne (1954) and Cockerham (1954) on modelling epistatic effects 24 

and defining the epistatic genomic relationship matrices. That is, for Bayesian and random 25 

regression (based on SNP effects) and genomic (based on genetic effects) best linear unbiased 26 
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prediction (BLUP) approaches, the additive x additive, additive x dominance, dominance x additive, 1 

and dominance x dominance SNP/QTL effects are modeled, but in simulation-based studies there is 2 

no specification of any type of epistasis as complementary, duplicate, dominant, recessive, 3 

dominant and recessive, duplicate genes with cumulative effects, and non-epistatic genic 4 

interaction. The significant scientific contributions of these studies rely on the definition of SNP 5 

coding for the epistatic effects and specification of the epistatic genomic relationship matrices, 6 

which are deduced following the key proposition by VanRaden (2008), aiming maximization of the 7 

prediction accuracy and power to detect interacting QTLs (Jiang and Reif 2020; Martini et al. 2017; 8 

Vitezica et al. 2017). 9 

Because of negative consequences (nominated inbreeding depression), human, conservative, 10 

animal, and cross-pollinated species geneticists agree that inbreeding should be efficiently 11 

controlled to maintain adequate genetic diversity in the populations (Hasselgren and Noren 2019; 12 

Howard et al. 2017). However, self-pollination has been deliberately used in maize hybrid breeding 13 

(currently to a lesser extent due to the doubled-haploid technology). For self-pollinated crops, the 14 

development of varieties involves selection over generations of increasing inbreeding. In these 15 

populations the inbreeding has an impact on the genetic variances and covariance between relatives 16 

(Cockerham 1983). 17 

As previously highlighted, the most important quantitative genetics theory for modelling 18 

epistasis was developed by Kempthorne (1954). Cockerham (1954) also provided a significant 19 

contribution. If modelling only inbreeding, LD, or epistasis is a difficult task for the quantitative 20 

geneticists, jointly modelling the three events is a challenge. An impressive approach for two genes 21 

theory in quantitative genetics assuming inbreeding, LD, and epistasis was presented by Weir and 22 

Cockerham (1977). Because of the complexity of the expressions for the genetic variances and 23 

covariance between relatives, they concluded that “the result is of little use”. That is, the functions 24 

do not allow assessing the influence of these factors on the genetic variability and the degree of 25 

relationship in the populations. Because LD, relationship information, epistasis, and inbreeding are 26 
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key factors for genomic prediction and association studies, the objective of this investigation was to 1 

assess the impact of LD and epistasis on the genetic variances and covariance between relatives in 2 

non-inbred and inbred populations, using a simulated data set. 3 

Material and Methods 4 

Additive and dominance genetic values in inbred populations in LD 5 

Assume initially a single biallelic gene (A/a) determining a quantitative trait, where A is the 6 

gene that increases the trait expression. The genotype probabilities in a population derived by n 7 

generations of selfing from a Hardy-Weinberg equilibrium population (generation 0) are �� � ���, 8 

2���1 � ��, and �� � ���, if AA, Aa, and aa, respectively, where p and q are the allelic 9 

frequencies for A and a, respectively, and � � 1 � �1/2�� is the inbreeding coefficient. The inbred 10 

population mean is �� � � � �� � ��� � 2��� �  2���� � � � 2����, where m is the mean of 11 

the genotypic values of the homozygotes, a is the difference between the genotypic value of the 12 

homozygote of greater expression and m, d is the dominance deviation, � 2���� is the change in 13 

the population mean due to inbreeding, and M is the mean of the non-inbred population (Hallauer 14 

and Miranda Filho, 1988). Defining ��
	 and ��

� as the means of the inbred population after an 15 

allelic substitution for the genes A and a, respectively, the average effect of the allelic genes in the 16 

inbred population are ��


�� � ��
	 � �� � �� � 2���� and ��


�� � ��
� � �� � ��� � 2����, 17 

where � � ��

�� � ��


�� � �� � �� � ���� is the average effect of an allelic substitution. Note that 18 

the average effect of an allelic substitution is the same in the non-inbred and in the inbred 19 

populations. Thus, the additive values in the inbred population are  ��

�� � 2�� � 4���� �  ��


�� �20 

4����,  ��


�� � �� � ��� � 4���� �  ��


�� � 4����, and  ��

�� � �2�� � 4���� �  ��


�� �21 

4����, where  
�� is the additive value in the non-inbred population. Note that "# 
��$ � 4����. 22 

Expressing the genotypic values in the inbred population as a function of ��, we have: 23 

%�� � �� �  ��

�� � ��2��� � 2����� � �� �  ��


�� � &���

�� � 2����' � �� �  ��


�� � ���

��  24 

%�� � �� �  ��


�� � �2��� � 2����� � �� �  ��


�� � &���


�� � 2����' � �� �  ��


�� � ���


��  25 
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%�� � �� �  ��

�� � ��2��� � 2����� � �� �  ��


�� � &���

�� � 2����' � �� �  ��


�� � ���

��  1 

Note that in the inbred population, "# 
��$ � "#�
��$ � 0 but "#�
��$ � �2����. Note 2 

also that the additive value in the non-inbred population is the additive value in the inbred 3 

population expressed as deviation from its mean # 
�� �  
�� � 4����$ and the dominance value 4 

in the inbred population is the dominance value in the non-inbred population expressed as deviation 5 

from its mean #�
�� � �
�� � 2����$. This imply that, in the inbred population, "�%� � �� . 6 

Genetic variances in inbred populations in LD 7 

Assume now two linked biallelic genes (A/a and B/b) determining a quantitative trait and a 8 

non-inbred population in LD (generation 0). Assume dominance but initially no epistasis. The 9 

genotype probabilities in generation 0 ()�

��) are presented by Viana (2004), where i and j (i, j = 0, 10 

1, or 2) are the number of copies of the gene that increase the trait expression (A and B). For 11 

example, )��
�� � ������ � 2����∆��

�	� � *∆��


�	�+
�

 , where ∆��

�	� � ���
�	�. ���
�	� � ���
�	�. ���
�	� is the 12 

measure of LD in the gametic pool of generation −1 (Kempthorne, 1973). After n generations of 13 

selfing, the genotype probabilities are: 14 

)��

�� � )��


�� � ��/2�*)�	

�� � )	�


��+ � �	

�� 

)�	

�� � �1 � ��*)�	


�� � �1 � ,��)		

��/2+ 

)��

�� � )��


�� � ��/2�*)�	

�� � )	�


��+ � ��

�� 

)	�

�� � �1 � ��*)	�


�� � �1 � ,��)		

��/2+ 

)		

�� � �1 � ��,�)		


�� 

)	�

�� � �1 � ��*)	�


�� � �1 � ,��)		

��/2+ 

)��

�� � )��


�� � ��/2�*)�	

�� � )	�


��+ � ��

�� 

)�	

�� � �1 � ��*)�	


�� � �1 � ,��)		

��/2+ 
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)��

�� � )��


�� � ��/2�*)�	

�� � )	�


��+ � �	

�� 

where 1 

�	

�� � �1/4�-�� � �1 � ���1 � ,���)		


�� � ,	�1 � 2����∆��


�	�. 

��

�� � �1/4�-�� � �1 � ���1 � ,���)		


�� � ,	�1 � 2����∆��


�	�. 

, � 1 � 2����1 � ���� 

,	 � 2/1 � ��1 � 2����/2��0/�1 � 2���� 

and ��� is the recombination frequency. 2 

The genotypic variance for the two genes in the inbred population is 1��
�� � 1��
�� � 1��
�� �3 

21�,�

��, where: 4 

1�
�
�� � �1 � ���2������

� � 2������
�� � 2�2 � ,	�1 � 2�����∆��


�	����� � �1 � ��1�
�
�� �5 

 2�,	�1 � 2���� � 2��∆��


�	����� is the additive variance, 6 

1�
�
�� � �1 � ����4��������

� � 4��������
�� � ��4������� � ������

� � 4������� � ������
�� �7 

 8 -�1 � ���,� � 1 � ���������� � ��� � ������ � ����,��1 � �� � �1 � 2���/2 �8 

 1−���∆��(−1)2����=1−�2��2(0)+��2+81−���−1+�	�
�	�
�+ 9 

	�−
�	�−
���1−�−1−2�/2+1−���−1−�2∆��(−1)2���� is the dominance variance, and 10 

1�,�

�� � 2��2������� � ������� � 2������� � �������� � �2� � ,	�1 � 2�����∆��


�	����� �12 

 
�����+	�−
�����=2��1+2�+�11−2���∆��−1	�− 
�����+	�−
����� is the 13 

covariance between additive and dominance values, 14 

where 1��
�� and 1��
��are the additive and dominance variances in the non-inbred population in LD 15 

(Viana 2004), and �	 (covariance of a and d) and �� (variance of d) are the components of the 16 

covariance of relatives from self-fertilization, assuming linkage equilibrium (Cockerham 1983). The 17 

other terms are the covariances between the average effects of an allelic substitution, between 18 
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dominance deviations, and between the average effect of an allelic substitution and dominance 1 

deviation, for genes in LD. Because we assumed biallelic genes, 34 � 1��. Thus, �1 � ���1�
�
�� �2 

�1 � ��1��
�� � ��1 � ��34. Note that the genotypic variance derived here is a general formulation 3 

for the Cockerham’s genotypic variance cggg, assuming LD. If p = q, 1�,�

�� � 0. 4 

Assuming LD but no inbreeding, the genotypic variance after n generations of random cross 5 

in the non-inbred population in LD is 1�
�
�� � 1�

�
�� � 1�
�
��, because  6 

1�,�

�� � 0, where: 7 

1�
�
�� � 2������

� � 2������
� � 4�1 � �����∆��


�	����� 

1��
�� � 4��������
� � 4��������

� � 8*�1 � �����∆��

�	�+

�

���� 

Thus, the genotypic variance decreases after n generations of random cross in a non-inbred 8 

population. Assuming LD, no inbreeding, and no epistasis, a general formulation for the covariance 9 

between relatives is 10 

567&%�


��, %�


����' � 2���1�
�
�� � 9��1�

�
�� 

where ��� is the Malecot’s coefficient of relationship between the relatives X in generation n and Y 11 

in generation n + t and 9��  is the probability that the parents of X (f and m, for the female and 12 

male) and Y (f’ and m’, for the female and male) have genotypes identical by descent (9�,� �13 

����. ���� � ��������). The covariance between parent and offspring and between half- and full-sibs 14 

were derived by Viana (2004): 15 

567#�
�� , :
����$ � �1/2��1�
�
�� 

567#3;
��	�$ � �1/4�1��
�� 

567#�;
��	�$ � �1/2�1�
�
�� � �1/4�1�

�
�� 

Assuming LD, inbreeding, and no epistasis, it is not straightforward to develop a general 16 

expression for the covariance between relatives from selfing (ctgg’) derived by Cockerham (1983), 17 

assuming no LD and no epistasis. Note that the covariance between parent (generation 0) and its 18 
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selfed progeny (generation 1) derived by Viana (2004) depends also on the covariance between α 1 

and d for distinct genes in LD, but the coefficients for the additive and dominance variances and for 2 

D1 are those predicted by Cockerham (1983): 3 

,��	 � 1�
�
�� � �1/2�1�

�
�� � �1/2��	 � ∆��


�	����� �  ������� � ��� � �������� 

Epistasis in non-inbred and inbred populations in LD 4 

The quantitative genetics theory for modelling epistasis in a population in LD is a 5 

generalization of the theory proposed by Kempthorne (1954), who assumed a non-inbred population 6 

in linkage equilibrium and any number of alleles. We assumed biallelism. It should be highlighted 7 

that the Kempthorne’s theory allows a generalization from two to three or more interacting genes. 8 

But fitting three or more interacting genes in a population in LD is a challenge because the 9 

genotype probabilities for three or more genes in LD are too complex to derive. Furthermore, only 10 

complementary and duplicate epistasis can be easily defined for three or more epistatic genes. 11 

Assume now that the two previous defined genes are epistatic. The genotypic value is 12 

(Kempthorne 1954): 13 

%��� � � � �
	 � ��	 � ��

� � ��
� � <�	 � <��� � ��	���� � ��	����� � ��	���� � ��	����� �14 

 ��	<���� � ��	<����� � �<	����� � �<	����� � �<	<����� � � �  � � �   �  � �  � �15 

��  16 

where AA, AD, DA, and DD are the additive x additive, additive x dominance, dominance x 17 

additive, and dominance x dominance epistatic genetic values. 18 

The parametric values of the 36 parameters for the nine genotypic values are obtained by 19 

solving the equations = � �>?@>��	>?@A, where > is the incidence matrix, @ � �B�C6D�E-)�

��. is 20 

the diagonal matrix of the genotype probabilities, and A is the vector of the genotypic values #%�$ 21 

(i, j = 0, 1, and 2). Following Kempthorne (1954), we completed the rank of X with 31 of the 22 

following restrictions (not all linearly independent): 23 

i) restrictions for the average effects of genes: 1� ���� � ���� � 0 and 2� ���� � ���� � 0. 24 
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ii) restrictions for the dominance values: 1� ��<�� � ��<�� � 0 ; 2� ��<�� � ��<�� � 0; 1 

3� ��<�� � ��<�� � 0, and 4� ��<�� � ��<�� � 0. 2 

iii) restrictions for the AA values: 1� �������� � �������� � 0; 2� �������� � �������� � 0; 3 

3� �������� � �������� � 0; and 4� �������� � �������� � 0. 4 

iv) restrictions for the AD values: 1� �����<��� � �����<��� � 0; 2� �����<��� � �����<��� �5 

0; 3� �����<��� � �����<��� � 0; 4� �����<��� � �����<��� � 0; 5� �����<��� �6 

�����<��� � 0; 6� �����<��� � �����<��� � 0; and 7� �����<��� � �����<��� � 0 (six out of 7 

the seven; four out of the seven if there is no dominance for the second gene). 8 

v) restrictions for the DA values: 1� ���<����� � ���<����� � 0; 2� ���<����� � ���<����� �9 

0; 3� ���<����� � ���<����� � 0; 4� ���<����� � ���<����� � 0; 5� ���<����� �10 

���<����� � 0; 6� ���<����� � ���<����� � 0; and 7� ���<����� � ���<����� � 0 (six out of 11 

the seven; four out of the seven if there is no dominance for the first gene). 12 

vi) restrictions for the DD values: 1� ���<��<��� � ���<��<��� � 0; 2� ���<��<��� �13 

���<��<��� � 0; 3� ���<��<��� � ���<��<��� � 0; 4� ���<��<��� � ���<��<��� � 0; 14 

5� ���<��<��� � ���<��<��� � 0; 6� ���<��<��� � ���<��<��� � 0; 7� ���<��<��� �15 

���<��<��� � 0; 8� ���<��<��� � ���<��<��� � 0; 9� ���<��<��� � ���<��<��� � 0; 16 

10� ���<��<��� � ���<��<��� � 0; 11� ���<��<��� � ���<��<��� � 0; and 12� ���<��<��� �17 

���<��<��� � 0 (nine out of the 12; eight out of the 12 if there is no dominance for both genes). 18 

Kempthorne (1954) provided explicit functions for all effects because he assumed linkage 19 

equilibrium. Assuming LD makes very difficult to derive such functions but the following results 20 

hold: 21 

1) the expectation of the breeding value is zero regardless of the degree of inbreeding in the 22 

population. 23 

2) the expectation of the dominance value is "���
�� � ������<�� � 2<���<��� � ������<�� �24 

2<���<���; then, defining the dominance value in an inbred population as the dominance value 25 

expressed as deviation from its mean #�
�� � � � "���
��$, "#�
��$ � 0. 26 
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3) the expectation of the additive x additive value is 1 

"�  �
�� � &4)��

�� � 2)�	


�� � 2)	�

�� � )		


��'������ � &4)��

�� � 2)�	


�� � 2)	�

�� � )		


��'������ �2 

 &4)��

�� � 2)	�


�� � 2)�	

�� � )		


��'������ � &4)��

�� � 2)	�


�� � 2)�	

�� � )		


��'������ ; this 3 

expectation is zero only if there is no LD. 4 

4) the expectation of the additive x dominance value is 5 

"� ��
�� � &2)��

�� � )	�


��'���<��� � &2)�	

�� � )		


��'���<��� � &2)��

�� � )	�


��'���<��� �6 

 &2)��

�� � )	�


��'���<��� � &2)�	

�� � )		


��'���<��� � &2)��

�� � )	�


��'���<���; this expectation is 7 

zero only if F = 0 or if there is no LD. 8 

5) the expectation of the dominance x additive value is 9 

"�� �
�� � &2)��
�� � )�	
��'�<����� � &2)	�
�� � )		
��'�<����� � &2)��
�� � )�	
��'�<����� �10 

 &2)��

�� � )�	


��'�<����� � &2)	�

�� � )		


��'�<����� � &2)��

�� � )�	


��'�<�����; this expectation is 11 

zero only if F = 0 or if there is no LD. 12 

6) the expectation of the dominance x dominance value is 13 

"����
�� � )��

���<��<��� � K � )��


���<��<���; this expectation is zero only if there is no LD. 14 

Thus, defining the additive x additive, additive x dominance, dominance x additive, and 15 

dominance x dominance epistatic values as the values expressed as deviation from its mean, 16 

  
�� �   � "�  �
��,  �
�� �  � � "� ��
��, � 
�� � � � "�� �
��, and ��
�� � �� �17 

"����
��, the genotypic value in an inbred population can be expressed as 18 

% � � � "���
�� � "�  �
�� � "� ��
�� � "�� �
�� � "����
�� �  � �
�� �   
�� �19 

  �
�� � � 
�� � ��
�� � �� �  � �
�� �   
�� �  �
�� � � 
�� � ��
��  20 

This implies that "�%� � ��. If F = 0 then 21 

% � � � "�  � � "���� �  � � � �  � "�  �� �  � � � � ��� � "����� � �� �  �22 

� �   � �  � � � � ���  23 

where 24 
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"�  � � &4)��

�� � 2)�	


�� � 2)	�

�� � )		


��'������ � K � &4)��

�� � 2)	�


�� � 2)�	

�� � )		


��'������ 1 

and "���� � )��
���<��<��� � K � )��
���<��<���. 2 

This implies that "�%� � ��. If F = 0 and there is no LD, 3 

% � � �  � � �   �  � � � � ��  4 

where the linear components are those defined by Kempthorne (1954). This implies that "�%� � �. 5 

The assumption of LD makes very difficult to derive the components of the genotypic 6 

variance (additive, dominance, and epistatic variances and the covariances between these effects), 7 

even assuming non-inbred populations, biallelic genes, and only digenic epistasis. In respect to the 8 

types of digenic epistasis, the following can be defined (Viana 2000, 2005): 9 

1. Complementary (%�� � %�	 � %	� � %		 and %�� � %	� � %�� � %�	 � %��; proportion of 9:7 10 

in a F2). 11 

2. Duplicate (%�� � %�	 � %�� � %	� � %		 � %	� � %�� � %�	; proportion of 15:1 in a F2). 12 

3. Dominant (%�� � %�	 � %�� � %	� � %		 � %	� and %�� � %�	; proportion of 12:3:1 in a F2). 13 

4. Recessive (%�� � %�	 � %	� � %		, %�� � %�	, and %�� � %	� � %��; proportion of 9:3:4 in a 14 

F2) 15 

5. Dominant and recessive (%�� � %�	 � %	� � %		 � %�� � %	� � %�� and %�� � %�	; proportion 16 

of 13:3 in a F2). 17 

6. Duplicate genes with cumulative effects (%�� � %�	 � %	� � %		, and %�� � %	� � %�� � %�	; 18 

proportion of 9:6:1 in a F2). 19 

7. Non-epistatic genic interaction (%�� � %�	 � %	� � %		, %�� � %	�, and %�� � %�	; proportion 20 

of 9:3:3:1 in a F2). 21 

Simulated data sets 22 

Because the magnitude of the components of the genotypic variance generally cannot be 23 

inferred from the previous functions, all means and genetic variances and covariances were 24 

computed from the analyses of simulated data sets provided by the software REALbreeding 25 

(available upon request). This software uses the quantitative genetics theory that was described in 26 
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the previous sections and in Viana (2004). REALbreeding has been used to provide simulated data 1 

in investigations in the areas of genomic selection (Viana et al. 2019), GWAS (Pereira et al. 2018), 2 

QTL mapping (Viana et al. 2017b), linkage disequilibrium (Andrade et al. 2019), population 3 

structure (Viana et al. 2013), and heterotic grouping/genetic diversity (Viana et al. 2020). 4 

The software simulates individual genotypes for genes and molecular markers and phenotypes 5 

in three steps using user inputs. The first step (genome simulation) is the specification of the 6 

number of chromosomes, molecular markers, and genes as well as marker type and density. The 7 

second step (population simulation) is the specification of the population(s) and sample size or 8 

progeny number and size. A population is characterized by the average frequency for the genes 9 

(biallelic) and markers (first allele). The final step (trait simulation) is the specification of the 10 

individual phenotypes. In this stage, the user informs the minimum and maximum genotypic values 11 

for homozygotes, the minimum and maximum phenotypic values (to avoid outliers), the direction 12 

and degree of dominance, and the broad sense heritability. The current version allows the inclusion 13 

of digenic epistasis, gene x environment interaction, and multiple traits (up to 10), including 14 

pleiotropy. The population mean (M), additive (A), dominance (D), and epistatic (AA, AD, DA, 15 

and DD) genetic values or general and specific combining ability effects (GCA and SCA) or 16 

genotypic values (G) and epistatic values (I), depending on the population, are calculated from the 17 

parametric gene effects and frequencies and the parametric LD values. The phenotypic values (�) 18 

are computed assuming error effects �"� sampled from a normal distribution (� � � �  � � �19 

  �  � � � � �� �  " � % � " or � � � � %5 1 � %5 2 � ;5 � L � " � % � "). 20 

The quantitative genetics theory for epistasis does not solve the challenge of studying genetic 21 

variability and covariance between relatives in populations, using simulated data sets, even 22 

assuming simplified scenarios such as linkage equilibrium and no inbreeding. This is why there are 23 

few significant publications about the influence of epistasis on the genetic variability in populations 24 

based on the definitive theory proposed by Kempthorne (1954). Because the genotypic values for 25 

any two interacting genes are not known, there are infinite genotypic values that satisfy the 26 
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specifications of each type of digenic epistasis. For example, fixing the gene frequencies (the 1 

population) and the parameters m, a, d, and d/a (degree of dominance) for each gene (the trait), the 2 

solutions %�� � %�	 � %	� � %		 = 5.25 and %�� � %	� � %�� � %�	 � %�� = 5.71 or %�� �3 

%�	 � %	� � %		 = 6.75 and %�� � %	� � %�� � %�	 � %�� = 2.71 define complementary epistasis 4 

but the genotypic values are not the same. 5 

The solution implemented in the software allows the user to control the magnitude of the 6 

epistatic variance (V(I)), relative to the magnitudes of the additive and dominance variances (V(A) 7 

and V(D)). As an input for the user, the software requires the ratio V(I)/(V(A) + V(D)) for each pair 8 

of interacting genes (a single value; for example, 1.0). Then, for each pair of interacting genes the 9 

software samples a random value for the epistatic value L�� (the epistatic value for the genotype 10 

AABB), assuming L��∼M�0, @�L��. For complementary epistasis, for example, the other epistatic 11 

effects and genotypic values are computed as described below, checking if the genotypic values 12 

meet the specifications that were previously defined: 13 

%�� � ��� � �� � �� � ��� � L�� 

L�	 � %�� � ��� � �� � �� � ��� 

%�	 � ��� � �� � �� � ��� � L�	 

L	� � %�� � ��� � �� � �� � ��� 

%	� � ��� � �� � �� � ��� � L	� 

L		 � %�� � ��� � �� � �� � ��� 

%		 � ��� � �� � �� � ��� � L		 

L�� � �L�� � L�	 

%�� � ��� � �� � �� � ��� � L�� 

L	� � %�� � ��� � �� � �� � ��� 

%	� � ��� � �� � �� � ��� � L	� 

L�� � %�� � ��� � �� � �� � ��� 

%�� � ��� � �� � �� � ��� � L�� 
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L�	 � %�� � ��� � �� � �� � ��� 

%�	 � ��� � �� � �� � ��� � L�	 

L�� � %�� � ��� � �� � �� � ��� 

%�� � ��� � �� � �� � ��� � L�� 

We simulated grain yield assuming 400 genes in 10 chromosomes of 200 and 50 cM (40 1 

genes/chromosome). The average density was approximately one gene each five and one cM, 2 

respectively. We generated five populations, two with high LD level and one with low LD level, all 3 

three with an average minor allelic frequency (maf) of 0.5, and two populations with intermediate 4 

LD level and an average maf of 0.3 but with contrasting average frequency for the favorable genes 5 

(0.3/not improved and 0.7/improved). We defined positive dominance (average degree of 6 

dominance of 0.6), maximum and minimum genotypic values for homozygotes of 160 and 30 g.plt-
7 

1, and maximum and minimum phenotypic values of 180 and 10 g.plt-1. The broad sense heritability 8 

was 20%. For each population we assumed additive-dominant model and additive-dominant with 9 

digenic epistasis model, defining 100% and 30% of interacting genes and a ratio V(I)/(V(A) + 10 

V(D)) equal to 1.0. With epistasis, we assumed a single type or an admixture of the seven types. We 11 

ranged the degree of inbreeding from 0.0 to 1.0, assuming 10 generations of selfing. We also 12 

assumed 10 generations of random crosses. The population size was 5,000 per generation. 13 

The characterization of the LD in the populations was based on the parametric D, r2, and D’ 14 

values for the 40 genes in chromosome 1, which were provided by REALbreeding (it should be 15 

similar for the other chromosomes). The heatmaps were processed using the R package pheatmap. 16 

Results 17 

The analysis of the parametric LD in the populations shows that the LD level depends mainly 18 

on the gene density (Figure 1). The higher LD level was observed under high gene density (one 19 

gene each cM). Regardless of the gene density, the LD level is generally higher for the closest 20 

genes. As expected, 10 generations of random cross significantly decreased the LD level of the 21 

populations. The decrease was higher for the density of one gene each five cM, regardless of the 22 
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population (on average, approximately −95% for r2). The average decrease in the r2 for the density 1 

of one gene each cM was −81%. The LD level showed only a slight decrease after 10 generations of 2 

selfing (on average, approximately −14% for r2, regardless of the population). 3 

To characterize the magnitude of the genotypic variance components in non-inbred and inbred 4 

populations with contrasting LD levels, assuming no epistasis, we assumed a density of one gene 5 

each five cM. Because the populations with high and low LD levels have an average maf of 0.5, the 6 

decrease in the population mean due to inbreeding and the genotypic and additive variances are 7 

maximized, relative to populations with average maf lower or higher than 0.5. The same is true for 8 

the dominance variance in non-inbred populations. After 10 generations of selfing, the decreases in 9 

the population means were −15 and −17% for the populations with low and high LD level, 10 

respectively (Figure 2). The significance of the LD level is impressive on the magnitude of the 11 

genotypic and additive variances. Regardless of the LD level and the degree of inbreeding, the 12 

additive variance is the most important component of the genotypic variance,. The additive variance 13 

in the population with high LD is 6.8 times greater than the additive variance in the population with 14 

low LD in generation 0, 2.9 times greater after 10 generations of random cross, and 5.7 times 15 

greater after 10 generations of selfing. In the populations with intermediate LD level, the decreases 16 

in the population mean due to inbreeding are similar in magnitude. In both improved and not 17 

improved populations, there is also a decrease in the magnitude of the additive variance with 18 

random crosses and an increase with selfing. The additive variance is greater in the not improved 19 

population, regardless of the generation. In both populations the magnitude of the additive variance 20 

is intermediate to the values observed for the populations with high and low LD level. 21 

To characterize the components of the genotypic variance in non-inbred and inbred 22 

populations with high LD level, assuming epistasis, we also assumed the density of one gene each 23 

five cM. Regardless of the type of epistasis and the percentage of interacting genes, there are non-24 

significant changes in the population mean along 10 generations of random cross (remember that 25 

the average decrease in the r2 values was approximately −95%) (Figure 3). With 10 generations of 26 
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selfing, regardless of the percentage of epistatic genes, except for recessive epistasis, the inbreeding 1 

decreased the population mean in −19 to −20% with dominant epistasis to −9 to −10% with 2 

dominant and recessive epistasis (remember that the decrease assuming no epistasis was −17%). 3 

Regardless of the type of epistasis, the ratio epistatic variance/genotypic variance is 4 

proportional to the percentage of the epistatic genes. The epistatic variance in generation 0 5 

corresponded to 2 to 7% (dominant epistasis) of the genotypic variance with 30% of epistatic genes, 6 

but it corresponded to 10 to 64% (duplicate epistasis) assuming 100% of epistatic genes (Figures 4 7 

to 11). Irrespective of the type of epistasis and the percentage of epistatic genes, after 10 8 

generations of random cross or selfing the ratio epistatic variance/genotypic variance increased in 9 

the range of 11 to 660%. This occurred because the decrease in the genotypic variance was much 10 

higher than the decrease in the epistatic variance with random cross and because the increase in the 11 

genotypic variance was much lower than the increase in the epistatic variance with selfing. With 12 

three exceptions, regardless of the type of epistasis and the percentage of epistatic genes, the most 13 

important component of the genotypic variance is also the additive variance. The magnitude of the 14 

additive variance decreased with random cross and increased with selfing. With duplicate epistasis 15 

and 100% of epistatic genes, the additive x additive variance was higher than the additive variance, 16 

throughout 10 generations of random cross or selfing. Assuming dominant epistasis and dominant 17 

and recessive epistasis, 100% of epistatic genes, and inbred population, the sum of several epistatic 18 

covariances (after four selfings) and the additive x additive variance were greater than the additive 19 

variance, respectively. Except for duplicate genes with cumulative effects and non-epistatic genic 20 

interaction, the magnitude of the additive variance was two to 16 times greater assuming 30% of 21 

epistatic genes, compared with 100% of epistatic genes, for both random cross and selfing. 22 

Assuming duplicate genes with cumulative effects and non-epistatic genic interaction, the 23 

magnitude of the additive variance was 1.1 and 1.4 times higher with 100% of interacting genes, 24 

respectively. 25 
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For the epistatic variances, except for duplicate epistasis and dominant and recessive epistasis, 1 

100% of epistatic genes, their magnitudes are much lower than the magnitude of the additive 2 

variance. The additive x additive variance is the most important epistatic variance. Generally, a 3 

non-significant variation in the magnitudes of the epistatic variances was observed throughout 10 4 

generations of random cross, regardless of the type of epistasis and the percentage of the epistatic 5 

genes. A significant increase in the magnitude of the additive x additive, additive x dominant, and 6 

dominant x additive variances occurred with selfing, regardless of the percentage of epistatic genes 7 

and the type of epistasis. When inbreeding increased, the dominant x dominant variance decreased 8 

in the population with high LD but increased in the other populations. 9 

For the populations with intermediate and low LD levels, the previous inferences generally 10 

holds but the magnitudes of the genotypic and genetic variances are generally lower than the values 11 

for the population of high LD level, regardless of generation, type of epistasis, and percentage of 12 

epistatic genes, as exemplified assuming 30% of epistatic genes showing all types of epistasis 13 

(Figure 12). With no exception, the additive variance is also the most important component of the 14 

genotypic variance, regardless of the generation. 15 

Discussion 16 

Comstock and Robinson (1948) provided the basic knowledge on Quantitative Genetics, 17 

partitioning the genotypic variance in the variance due to the average effects of the genes (additive) 18 

and the variance due to allelic interaction (dominance). Assuming effects between non-allelic genes, 19 

Kempthorne (1954) and Cockerham (1954) demonstrated that the genotypic variance and the 20 

covariance between relatives depends on the additive, dominance, and four epistatic variances, 21 

assuming digenic epistasis. Cockerham and Weir (1977) derived the very complex functions for the 22 

components of the genotypic variance assuming a two-gene model with inbreeding, LD, and 23 

epistasis. 24 

Meuwissen et al. (2001) proposed a method for predicting the additive values of non-25 

phenotyped individuals who were genotyped for thousands of SNPs, from the model fitted by 26 
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analyzing a limited number of phenotyped and genotyped individuals. Since then, the knowledge on 1 

gene effects, LD, and covariance between relatives has been directly or implicitly used for 2 

modelling additive, dominance, and epistatic SNP and QTL effects, deriving observed genomic 3 

relationship matrices, and assessing prediction accuracy, power of QTL detection, and rate of FDR 4 

in thousands of genomic prediction and association studies (Stich and Gebhardt 2011; Varona et al. 5 

2018; Vitezica et al. 2017). 6 

Unfortunately, for over 70 years the joint significance of LD, epistasis, and inbreeding on the 7 

genotypic variance and the covariance between relatives remained unclear. This is because the 8 

theory available, even assuming only two loci, is of “little use” (Cockerham and Weir, 1977). 9 

Additionally, no feasible theoretical model can depict the complexity of the development of a 10 

phenotype from a genotype (Robinson et al. 2014). Thus, our simulation-based study provides a 11 

better understanding of the influence of LD and epistasis on the genotypic variance and the 12 

covariance between relatives in non-inbred and inbred populations. 13 

We assumed low to high LD levels for genes, under a relatively low gene density, and digenic 14 

epistasis. In maize, for example, the genome size is approximately 2 Gb, including approximately 15 

42,000 to 56,000 genes. The density is approximately 1-11 genes per 100 kb over a relatively even 16 

distribution (Haberer et al. 2005). Because grain yield is affected by most of these genes, the gene 17 

density for this very complex quantitative trait should be higher than the gene density for other less 18 

complex quantitative traits. Although there is evidence for higher-order epistasis, pairwise epistasis 19 

can contribute substantially to phenotypic variation between individuals (Domingo et al. 2019). 20 

Our main results explain the general knowledge on the efficacy of genomic prediction and 21 

GWAS provided by numerous published papers. Because the LD has a significant positive effect on 22 

the magnitude of the genotypic and genetic variances, especially the additive variance, the efficacy 23 

of the additive value genomic prediction and GWAS are proportional to the LD level for genes 24 

(Forneris et al. 2017) and to the degree of inbreeding (Martini et al. 2017). The accuracy of future 25 

predictions in non-inbred populations, such as human populations and in animal breeding, decreases 26 
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mainly due to the decrease in the LD, because the covariance between relatives in distinct 1 

generations depends on the components of the genotypic variance in the first generation. Updating 2 

training data after some generations implies in defining a new training population with lower LD 3 

and, consequently, lower components of the genotypic variance, but it makes the individuals in the 4 

training and selection generations more related. However, in animal breeding, probable because 5 

changes in the SNP and QTL frequencies due to selection, increasing the LD level for SNPs and 6 

QTLs, field and simulation-based studies have showed increase in the prediction accuracy (Neyhart 7 

et al. 2017). 8 

Because the epistatic variances have a lower magnitude relative to the additive variance, some 9 

field and simulation-based investigations have not shown an increase in the additive value 10 

prediction accuracy by fitting SNP epistatic effects (Chen et al. 2019; Forneris et al. 2017; Vitezica 11 

et al. 2018). However, including epistasis can improve accuracy and unbiasedness of genomic 12 

predictions (Su et al. 2012) as well as QTL detection power and control of the type I error in GWAS 13 

(Monir and Zhu 2017; Pecanka et al. 2017; Stich and Gebhardt 2011). However, epistatic variances 14 

can be the most important components of the genotypic variance with higher-order epistasis, 15 

especially assuming a high number of interacting genes (Viana 2000). Because the additive x 16 

additive variance is the most important epistatic variance, predicting the additive value of inbred 17 

plants over generations of selfing, including epistasis, can increase the selection efficiency (Jiang 18 

and Reif 2015). 19 

In conclusion, our main results from a simulation-based study supported by quantitative 20 

genetics theory involving LD, epistasis, and inbreeding were: 1) the LD level for genes, even under 21 

a relatively low gene density, has a significant positive effect on the magnitude of the components 22 

of the genotypic variance in non-inbred and inbred populations; 2) assuming digenic epistasis, the 23 

additive variance is the most important component of the genotypic variance in non-inbred and 24 

inbred populations; 3) the magnitude of the epistatic variance is proportional to the percentage of 25 

interacting genes, regardless of the degree of inbreeding; 4) except for duplicate and dominant and 26 
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recessive epistasis, with 100% of epistatic genes, the additive variance is greater than the epistatic 1 

variance; and 5) regardless of the degree of inbreeding, the additive x additive variance is the most 2 

important component of the epistatic variance. This explains why LD for genes and relationship 3 

information are key factors affecting the genomic prediction accuracy of complex traits and the 4 

efficacy of GWAS. 5 
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Figure 1. Parametric r2 (above the diagonal) and |D’| (below the diagonal) values for 40 genes 

along chromosome 1 in the populations with higher gene density and high LD (a, b, c), and lower 

gene density and high (d, e, and f), intermediate (g, h, i, j, k, l), and low (m, n, and o) LD levels, in 

the generations 0 (a, d, g, j, and m) and 10, assuming random cross (b, e, h, k, and n) or selfing (c, f, 

i, l, and o). 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Parametric population means (M and MF; a and d), additive (V(A)) and dominance (V(D)) variances, and covariance between additive and dominance values (CovAD), in 

populations with high and low LD levels (b and c) and in populations with intermediate LD level (not improved and improved) (e and f), along 10 generations of random cross (b and 

e) and 10 generations of selfing (c and f). 
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(a) (b) 

  
(c) (d) 

Figure 3. Parametric population means (M and MF) in population with high LD level, along 10 

generations of random cross (a and c) and 10 generations of selfing (b and d), assuming no 

epistasis, a single type of digenic epistasis (complementary, duplicate, dominant, recessive, 

dominant and recessive, duplicate genes with cumulative effects, and non-epistatic genic 

interaction) or an admixture of the seven digenic types (all), and 100 (a and b) and 30% (c and d) of 

epistatic genes. 
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(a) (b) 

  
(c) (d) 

Figure 4. Components of the genotypic variance in population with high LD level, along 10 generations of random cross (a and c) or selfing (b and d), assuming complementary 

epistasis, 100 (a and b) and 30% (c and d) of epistatic genes, and sample size of 5,000 per generation. 
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Figure 5. Components of the genotypic variance in population with high LD level, along 10 generations of random cross (a and c) or selfing (b and d), assuming duplicate epistasis, 

100 (a and b) and 30% (c and d) of epistatic genes, and sample size of 5,000 per generation. 
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(c) (d) 

Figure 6. Components of the genotypic variance in population with high LD level, along 10 generations of random cross (a and c) or selfing (b and d), assuming dominant epistasis, 

100 (a and b) and 30% (c and d) of epistatic genes, and sample size of 5,000 per generation. 
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Figure 7. Components of the genotypic variance in population with high LD level, along 10 generations of random cross (a and c) or selfing (b and d), assuming recessive epistasis, 

100 (a and b) and 30% (c and d) of epistatic genes, and sample size of 5,000 per generation. 
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Figure 8. Components of the genotypic variance in population with high LD level, along 10 generations of random cross (a and c) or selfing (b and d), assuming dominant and 

recessive epistasis, 100 (a and b) and 30% (c and d) of epistatic genes, and sample size of 5,000 per generation. 
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(c) (d) 

Figure 9. Components of the genotypic variance in population with high LD level, along 10 generations of random cross (a and c) or selfing (b and d), assuming duplicate genes 

with cumulative effects, 100 (a and b) and 30% (c and d) of epistatic genes, and sample size of 5,000 per generation. 
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(c) (d) 

Figure 10. Components of the genotypic variance in population with high LD level, along 10 generations of random cross (a and c) or selfing (b and d), assuming non-epistatic genic 

interaction, 100 (a and b) and 30% (c and d) of epistatic genes, and sample size of 5,000 per generation. 
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(c) (d) 

Figure 11. Components of the genotypic variance in population with high LD level, along 10 generations of random cross (a and c) or selfing (b and d), assuming an admixture of 

digenic epistasis, 100 (a and b) and 30% (c and d) of epistatic genes, and sample size of 5,000 per generation. 
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(d) (e) (f) 

Figure 12. Components of the genotypic variance in the populations not improved (a and b) and improved (c and d), with intermediate LD level, and in the population with low LD 

level (e and f), along 10 generations of random cross (a, c, and e) or selfing (b, d, and f), assuming an admixture of digenic epistasis, 30% of epistatic genes, and sample size of 5,000 

per generation. 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted January 20, 2021. 
; 

https://doi.org/10.1101/2021.01.19.427275
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2021.01.19.427275
http://creativecommons.org/licenses/by-nc-nd/4.0/

