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Abstract 

 

Flourishing is an important criterion to assess wellbeing, however, controversies remain, 

particularly around assessing it with self-report measures. Due to this reason, to be able to 

understand the underlying neural mechanisms of well-being, researchers often utilize 

neuroimaging techniques. However, rather than individual answers, previous neuroimaging 

studies using statistical approaches provided an answer in average sense. To overcome these 

problems, we applied machine learning techniques to discriminate 43 highly flourishing from 

regular flourishing individuals by using a publicly available resting state functional near infrared 

spectroscopy (rs-fNIRS) dataset to get an answer in individual level. We utilized both Pearson’s 

correlation (CC) and Dynamic Time Warping (DTW) algorithm to estimate functional 

connectivity from rs-fNIRS data on temporo-parieto-occipital region as input to nine different 

machine learning algorithms. Our results revealed that by utilizing oxyhemoglobin 

concentration change with Pearson’s correlation (CC – ΔHbO) and deoxy hemoglobin 

concentration change with dynamic time warping (DTW – ΔHb), we could be able to classify 

flourishing individuals with 90 % accuracy with AUC 0.90 and 0.93 using nearest neighbor and 

Radial Basis Kernel Support Vector Machine. This finding suggests that temporo-parieto-

occipital regional based resting state connectivity might be a potential biomarker to identify the 

levels of flourishing and using both connectivity measures might allow us to find different 

potential biomarkers. 
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1. Introduction 

 

Well-being is one of the most critical public health issues in populations (Moore et al., 2018). 

Although there is no consensus about its definition, World Health Organization (WHO) defines 

well-being for an individual as a self-realization of potential, ability to handle the stress in life, 

ability to work efficiently and adding values to the community (WHO, 2014). It has been 

extensively studied and also reviewed for different populations such as mothers (Alderdice et 

al., 2013), entrepreneurs (Stephan, 2018) and sportsman (Breslin et al., 2017). Well-being is 

used as important indicator of mental health and the main assumption that lies behind it is; 

“well-being would prevail when pathology was absent” (Huppert & So, 2013).  

 

Understanding well-being level of individuals is a challenging problem due to being dependent 

to self-reporting which is a subjective criteria (Diener, 1984). To objectively assess well-being, 

several neuroimaging studies have been performed to understand the neural correlates of well-

being and it was reported that anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), 

posterior cingulate cortex (PCC), superior temporal gyrus (STG) and thalamus was strongly 

associated to well-being and these regions are sub-components of default mode network 

(DMN) (see review (King, 2019)). This finding makes resting state functional connectivity (rsFC) 

based studies using fMRI (Kong, Liu, et al., 2015; Kong, Wang, et al., 2015; Kong, Wang, et al., 

2016; Kong, Xue, et al., 2016; Luo et al., 2014; Luo et al., 2016; Luo et al., 2017; W. Sato et al., 

2019) and fNIRS (F. Goldbeck et al., 2018) important to understand the underlying neural 

mechanisms of well-being.  

 

In this study, we utilized a previously collected rs-fNIRS dataset (F.  Goldbeck, 2018) and 

machine learning techniques to classify the individuals according to the levels of flourishing 

measured by a flourishing scale. To assess well-being, flourishing scale is a popular measure and 

widely used in well-being studies (Schotanus-Dijkstra et al., 2016) and flourishing is a term that 

describes “living within an optimal range of human functioning” (Fredrickson & Losada, 2005) 

and it is considered as a presence of mental health (Keyes, 2002). On the other hand, fNIRS has 
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recently emerged as an alternative neuroimaging tool to conventional neuroimaging 

approaches such as fMRI, EEG etc. Main advantages of fNIRS that led to become popular among 

researchers are; being non-invasive, easy to use, less prone to head motion, low-cost, 

portability, having high temporal resolution. Since 1990s, it has widely been preferred by 

researchers from many different fields including neurodevelopment, cognition, anesthesia, 

psychiatric disorders etc. (see review (Boas et al., 2014)). rs-fNIRS studies has been conducted 

(see review (Niu & He, 2014)) and several studies validated efficiency of fNIRS to reveal resting 

state networks by performing simultaneous fMRI and fNIRS measurement (Duan et al., 2012; 

Sasai et al., 2012; White et al., 2009). Also, rs-fNIRS provides several meaningful inputs to 

machine learning models to predict mood (Fukuda et al., 2014; M. Sato et al., 2013) or classify 

psychiatric or neurological disorders (Cheng et al., 2019; J. Li et al., 2016). Also, while estimating 

the connectivity matrices we utilized the conventional Pearson’s correlation coefficient (CC) 

and Dynamic Time Warping (DTW) distance. DTW is an elastic matching algorithm that allows to 

capture the lags between two time series and has recently been used as a functional 

connectivity metric in several neuroimaging studies (Gokcay et al., 2019; Jin et al., 2020; Linke 

et al., 2020; Meszlényi et al., 2016; Meszlenyi, Buza, et al., 2017; Meszlenyi, Hermann, et al., 

2017; Mohanty et al., 2020). 

 

From machine learning perspective, prediction of well-being was carried out by using Gradient 

Boosting classifier on 10518 Chinese adolescents via an online survey and subjects’ subjective 

well-being was predicted with %90 accuracy (N. Zhang et al., 2019). Using domotic sensor data 

and random forest classifier, mean absolute error of prediction of physical, mental and general 

health index of elderly individuals were found as %32, %13 and %17, respectively (Casaccia et 

al., 2020). Other measures such as physiological data (heart rate, skin conductance), phone, 

mobility and modifiable behavior features were also used in a previous study and classification 

of high or low stress, high or low mental health, and high or low stress groups was found as 

78%, 86% and %74 respectively (Sano et al., 2018). Another study that utilizes multimodal data 

such as laboratory, demographic and lifestyle to predict wellness found the highest AUC value 
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as 0.726 by using machine learning algorithms such as SVM, Bagging, Adaboost, Random Forest 

(Agarwal et al., 2016). 

 

In line of these information, our primary objective is to develop a highly accurate model that 

allows us to classify highly and regular flourishing individuals and also to reveal the potential 

neural markers that cause this discrimination by utilizing functional connections from 

individuals. To our best knowledge, this is the first study that uses neuroimaging data to classify 

flourishing levels and our research question was “Can we find potential biomarkers that allow 

us to classify individuals according to their levels of flourishing by using resting state fNIRS data 

and ML techniques?”. For prediction of well-being and conventional statistical approaches used 

for both self-reporting scales and neuroimaging data provide us an answer on average sense 

which might be misleading for interpretation of a biomarker for individual prediction of 

subjective well-being. Classifying highly flourishing individuals is a crucial problem because it 

will be possible to identify potential objective biomarkers that might lead new perspective in 

neural correlates of well-being research. 

 
2. Methods 

 
In this study, we used a publicly available RS-fNIRS dataset (F.  Goldbeck, 2018) collected from 

43 individuals who were identified as highly flourishing (HF) and normal flourishing (NF). Details 

of the subject recruitment, ethical approval, demographic and experimental information can be 

found in (F. Goldbeck et al., 2018). Participants were sub-grouped as HF / NF by using 

Flourishing Scale (Diener et al., 2010; Esch et al., 2013). In flourishing scale, participants having 

scores higher than 48 were assigned to HF and the rest was assigned to NF group. This 

threshold was determined by using a median-split approach to create a balanced dataset (F. 

Goldbeck et al., 2018). By using this approach, among 43 participants 23 of them and 20 of 

them were assigned to NF and HF groups, respectively.  In addition to flourishing scale, trait 

rumination was tested by utilizing the subscale rumination of ruminative response scale (RRS) 

(Nolen-Hoeksema & Morrow, 1991). Also, depression module of patient health questionnaire 

(PHQ -9) (Kroenke et al., 2001) was used to assess depressive symptoms and open-thought 
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protocol (OTP) was applied to participants to evaluate their personal experiences during the 

experiment (Rosenbaum et al., 2017). 

 

2.1. fNIRS System 

 

In this study, fNIRS measurements were carried out by using a Hitachi ETG-4000 continuous 

wave (CW) fNIRS system (Hitachi Co. Japan). The system uses near infrared (NIR) light both in 

695 and 830 nm wavelengths and NIR light was sent via a source optode and emitted by using a 

detector optode. A 3 x 11 optode configuration that includes 17 sources and 16 detectors was 

used and every source- detector (SD) couple was considered as a channel. In this configuration, 

52 channels were used to collect fNIRS time series. SD separation distance were 3 cm and no 

short SD channel was used to obtain superficial (scalp) signals to regress out for further data 

analysis. Optical intensity data was converted to oxyhemoglobin (ΔHbO) and deoxyhemoglobin 

(ΔHb) concentration changes by using Modified Beer-Lambert law (Cope & Delpy, 1988). 

Sampling frequency of the system was 10 Hz.  

 

2.2. Probe Positioning 

 

Optodes were located onto temporo-parieto-occipital region. According to the EEG 10-20 

system (Jasper, 1958) T3, T4 and Pz channels were selected as reference points. Previous 

studies revealed that default mode network (DMN) comprises regions such as precuneus, 

temporoparietal junction (Raichle et al., 2001) and angular gyrus (Igelstrom & Graziano, 2017). 

Also, covered regions were reported in previous studies that they have significant associations 

(see review (King, 2019)). Channel coordinates were obtained by using a navigation system on a 

subject’s head. Channel positions and corresponding regions were reported in Table 1. Located 

regions are primary somatosensory cortex (PSC - BA 3,1,2), Supramarginal Gyrus (SupG - BA 40), 

Superior Temporal Gyrus (STG - BA 22), Middle Temporal Gyrus (MTG - BA 21), Angular Gyrus 

(AngG - BA 39), Somatosensory Association Cortex (SAC - BA 7) and Third Visual Cortex (V3 - BA 
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19), Fusiform Gyrus (FusG – BA 37) and Subcentral Area (SC – BA 43). An example of channel 

locations and their corresponding cortical structures are shown in Figure 1.  

 

----- Insert Table 1.------ 

----- Insert Figure 1.------ 

 

 

 

2.3. Data Analysis 

 
Our data preprocessing pipeline includes; band-pass filtering, independent component analysis 

using fastICA (Hyvarinen, 1999), motion artifact correction using wavelet based-filtering (Molavi 

& Dumont, 2012) and wavelet-based linear detrending using minimum description length (Jang 

et al., 2009). We used a 2nd order butterworth band-pass filter with cut-off frequencies 

between 0.01-0.08 Hz to filter out the heart beat (>1 Hz), respiration (0.15-0.4 Hz) (Fekete et 

al., 2011) and Mayer waves (~0.1 Hz) (Yucel et al., 2016) effects. Previous studies revealed that 

higher correlation values between homologous cortical regions were shown in a wide 

frequency band (see review (Niu & He, 2014)). After visually inspecting all channels, we noticed 

some channels were distorted and to overcome this problem, channel interpolation with 

surrounding channels was performed. To remove motion artifacts, we used wavelet-based 

motion artifact correction using Daubechies 5 wavelet. Hemodynamic response might include 

very low frequency artifacts that may influence the functional connections (Di et al., 2013). To 

remove this effect, we used the wavelet-based-linear detrending using minimum description 

length algorithm. Independent component analysis was used to separate the neuronal sources 

from non-neuronal sources. 

 

After performing the preprocessing pipeline, to estimate functional connectivity matrices, we 

used both CC and Dynamic Time Warping (DTW) distance between all channels for all 

participants by utilizing ΔHb and ΔHbO time series. In contrast to conventional approach that 

uses ΔHbO for FC analysis, we also used ΔHb due to previous evidence that suggests both 
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hemoglobin concentrations should be analyzed for sparse networks (Montero-Hernandez et al., 

2018b). In addition to this, there are several fNIRS based ML studies that focuses on 

classification of several psychiatric disorders also uses ΔHb (Cheng et al., 2019; Crippa et al., 

2017; Hernandez-Meza et al., 2018; Hernandez-Meza et al., 2017; J. Li et al., 2016; Rosas-

Romero et al., 2019; Sirpal et al., 2019; Sutoko et al., 2019) and for some cases ΔHb based 

features might also show higher accuracy results compared to ΔHbO based ones (Crippa et al., 

2017). After estimating the CC based FC matrix, it was normalized by performing Fisher’s z-

transformation due to reduce skewness. All preprocessing steps until machine learning process 

were done using MATLAB (The Mathworks Inc. Natick, MA, USA). 

 

2.3.1. Dynamic Time Warping (DTW) 

 

The other approach, DTW has previously been used in both fMRI (Linke et al., 2020; Meszlenyi, 

Hermann, et al., 2017), EEG (Karamzadeh et al., 2013) and fNIRS based connectivity studies 

(Gokcay et al., 2019). DTW is a template matching method used for similarity measurement of 

two time-varying time series (Sakoe & Chiba, 1978). It is widely used in speech recognition, 

bioinformatics. It performs an optimum sequence alignment between two time series and it 

allows to detect identical shapes between time series that may vary in time by performing 

elastic transformation. For instance, let �� � ���,�, ��,�, ��,� … … . ��,���� and 

�� � ���,�, ��,�, ��,� … … . ��,���� be two time series that have the same length 	 and 
 is a 

distance matrix with 	 � 	 dimensions. For every index of 
, we estimate the Euclidean 

distance between ��,�  and ��,� as stated Eq. 1;  

 


��	
���,� , ��,�� (1) 

 

After estimating 
��  that represent the distance for every data point, DTW algorithm tries to 

find the shortest path between two time series by searching from the index �0,0� to �	 �

1, 	 � 1�. The shortest path is called Warping path and represented as �. 
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� � ���, ��, … … . . �
� (2) 

 

� is constructed by using linear programming. First, euclidean distance 
���,� , ��,�� should be 

found and defined as cost value to estimate the minimum distance between two time series. To 

move forward in the warping matrix, minimum value of the neighboring cells (
�� � 1, � �

1�, 
�� � 1, ��, 
��, � � 1��) is selected and the 
��, �� is calculated by summing of 
���,� , ��,�� 

and minimum value as shown in Eq (3). 

 


��, �� �  
���,� , ��,�� � min �
�� � 1, � � 1�, 
�� � 1, ��, 
��, � � 1�� (3) 

 

If we define indices of the warping matrix as � and � for one time series and � and � for the 

other one, �th and � � 1th point in our warping path can be identified as �� � ��, �� and 

���� � ���, ��� and this warping path must satisfy following four constraints;  

 

Monotonicity constraint: In warping path indices either increase or stay same in time domain. 

Therefore, it will not be possible to repeat the warping path. Indices ensure the following 

condition as shown in Eq. (4) 

 

�  �� & �  �� (4) 

 

Continuity constraint: Warping path advances one step at a time. Index change between 

� �  �� and � �  �� can be less or equal to one. Equation 5 shows this condition. 

 

� � �� " 1 & � � �� " 1 (5) 

 

Boundary constraint: The path initiates from value 
�0,0� and ends in value 
�	 � 1, 	 � 1�.  

Warping window constraint: An intuitive alignment path onto distance matrix 
 is not 

expected to drift from the diagonal. For warping window length #,  
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|� � �| % # & |� � �| % # (6) 

 

We chose warping window length # as 1 sec (10 samples). After estimating the DTW distance for 

functional connectivity, as it was previously stated in (Linke et al., 2020; Meszlenyi, Hermann, et 

al., 2017), we first normalized the distance by dividing it to length of the time series. Then, we 

multiplied the values to -1 and demeaned to a transform distance. If this transformed distance 

is greater than 0, it is represented as above average similarity and if it is lower than 0, it is 

represented as below average similarity.  

 

2.3.2. Machine Learning 

 

First, we separately used the extracted features from ΔHb and ΔHbO and performed 

classification. In this study, we defined the correlation coefficient based ΔHb and ΔHbO feature 

set as CC-ΔHb and CC-ΔHbO. For DTW, we defined the feature sets as DTW-ΔHb and DTW-

ΔHbO.  Then, we concatenated the feature sets for both ΔHb and ΔHbO and performed the 

same procedure again for both connectivity measures as DTW-Fuse and CC-Fuse. All machine 

learning steps including, feature selection, parameter optimization and classification were 

carried out by using Python based Scikit-Learn toolkit (Pedregosa et al., 2011).  

 

2.3.2.1. Feature Selection 

 

Before feature selection, we first converted the 52 x 52 connectivity matrix to 52 x 51 /2 = 1326 

pairwise connectivity features. Every connection was considered as a feature. Therefore, for 

every dataset (CC-ΔHbO, CC-ΔHb, DTW-ΔHbO and DTW-ΔHb), we had a 43 x 1326 feature 

vector. To select optimum features from every dataset, we used L1- norm Support Vector 

Machine (SVM). For L1-norm SVM based feature selection, the regularization parameter (C) 

controls the sparsity and as we increase C value, we get more features. For optimum number of 

features to avoid overfitting, we used C = 0.1.  
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For classification of flourishing individuals, we selected connections for CC-ΔHbO as L SMG – L 

SMG, R V3 – R SAC, R STG – L STG, L AngG – L SAC, for CC-ΔHb as L STG – L MTG, L FusG – L 

MTG, L FusG – L AngG. For DTW measure, we selected connections for DTW-ΔHbO as L SAC – R 

SMG, RAngG – R SCA, L FusG – R SMG, L FusG – R SAC, R FusG – R SMG and for DTW-ΔHb as L 

SAC- L SAC, L FusG - L SCA, L FusG – R SMG, L V3 – L SAC. After feature selection step, we also 

created a third feature vector for every connectivity measure for classification of flourishing 

individuals by fusing the ΔHbO and ΔHb results. For CC, we created CC-Fuse by concatenating 

the CC-ΔHbO with CC-ΔHb and for DTW, we created DTW-Fuse by concatenating DTW-ΔHbO 

with DTW-ΔHb.  

 

2.3.2.2. Hyperparameter-Optimized Classification using Nested Cross-Validation 

 

After selecting features, we performed nested cross-validation that includes hyperparameter 

optimization as inner loop and classifier generalization step in outer loop. After splitting the 

dataset as training and test dataset, in the inner loop, we trained the model using training 

dataset and found the optimal hyperparameters for the classifier. In the outer loop, we built 

the model with the optimal hyperparameters from the inner loop and tested it by using the test 

dataset. We did not include the feature selection into this nested cross validation due to having 

low number of samples (N=43) and to observe whether our selected features can be potential 

biomarkers that discriminates highly/normal flourishing individuals or not. We used 10 fold for 

inner loop and 10 fold for outer loop in nested cross-validation for 30 times and averaged the 

scores. Whole data analysis pipeline is shown in Figure 2. 

 

----- Insert Figure 2. ------- 

 

We used several classifiers such as SVM with Linear and Radial Basis Function (RBF) kernels, 

Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), k-nearest 

neighborhood, Gradient Boosting, AdaBoost, Naïve Bayes and Logistic Regression. For every 

algorithm, we used several parameters to optimize the classifier. All those parameters were 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.18.427167doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427167


reported in Table 2. To find the optimal parameters of classifiers, we used grid-search algorithm 

by using GridSearchCV() function in scikit-learn toolkit to carry out this operation. We also 

extracted receiver operating characteristic (ROC) curves and estimated Area Under Curve (AUC) 

values for every feature set and every classifier. We accepted the AUC greater than 0.9 as 

success rate due to being accepted as excellent (0.9-1) according to the previous studies (El 

Khouli et al., 2009; Ludemann et al., 2006; Metz, 1978; Obuchowski, 2003).  

--------- Insert Table 2--------- 

 

2.3.2.3. Statistical Analysis 

 

After performing the classification process, Pearson’s correlation was carried out between all 

features of four flourishing feature sets (CC-ΔHbO, CC-ΔHb, DTW-ΔHbO, DTW-ΔHb) and clinical 

data. For statistical significance, we defined p value as 0.001.  

 

3. Results 

 

3.1. Classification Accuracy Results 

 

For CC based features, CC-Fuse showed higher accuracy scores for all classifiers except for 

AdaBoost classifier compared to CC-ΔHbO and CC-ΔHb. Among all classifiers, highest accuracy 

was found by using Linear SVM and LDA for CC-Fuse (mean ± std: 0.89 ± 0.01). Among CC-ΔHb 

and CC-ΔHbO classification results, we found the highest accuracy by using LDA and logistic 

regression (mean ± std: 0.81 ± 0.01). Except for gradient boosting classifier, CC-ΔHbO feature 

set yield higher accuracy results compared to CC-ΔHb feature set.  

 

For DTW based features, we found the highest accuracy by using DTW-Fuse dataset and Naïve 

Bayes classifier (mean ± std: 0.89 ± 0.01). Among DTW-ΔHbO and DTW-ΔHb classification 

results, we found the highest accuracy by using DTW-ΔHb feature set and LDA classifier (mean 

± std: 0.82 ± 0.01). When we compared the DTW-ΔHbO and DTW-ΔHb classification results, 
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DTW-ΔHb based classification accuracies are higher than DTW-ΔHbO based ones for all 

classifiers. All accuracy results of flourishing individuals are shown in Table 3 and all accuracy 

violin plots were shown in Figure 3. 

---- Insert Table 3.------ 

---- Insert Figure 3.------ 

AUC results for classification of flourishing individuals showed that there are several classifiers 

and feature sets that showed AUC score more than 0.9. Among all classifiers and feature sets, 

highest AUC value was found by using DTW-Fuse feature set and Naïve Bayes classifier as 0.95. 

AUC results of all classifiers and the corresponding ROC curves are shown in Table 4 and Figure 

4 respectively. 

 

----- Insert Table 4----- 

---- Insert Figure 4 ----- 

 

3.1.1. Classifying Flourishing Individuals by Using Both Connectivity Measures 

Having noticed the efficiency of CC-ΔHbO and DTW-ΔHb based features for classification of 

flourishing individuals, we created another type of feature set by fusing these two feature sets. 

We performed classification by following the same paradigm mentioned above and we found 

the highest accuracy as 90% by using Nearest Neighbour and RBF SVM with 0.90 and 0.93 AUC. 

All accuracy values are numerically shown in Table 5 and also are shown as violin plots in Figure 

5. Also, corresponding ROC curves were shown in Figure 6. 

----- Insert Table 5----- 

---- Insert Figure 5 ----- 

 

3.2. Association Between Features and Clinical Variables 

 
For all clinical data, we both analyzed the correlation between CC and DTW based features. We 

found negative significant correlation between flourishing score and CC-ΔHbO measure of R V3 

– R SAC connection (r = -0.551, p < 0.001) and DTW-ΔHb measure of L V3 – L SAC connection (r 
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= -0.496, p < 0.001). Correlation plots between connection measures and flourishing scores are 

shown in Figure 7.   

---- Insert Figure 6 ----- 

--- Insert Figure 7 ---- 

 

 

 

 

4. Discussion 

 
In this study, we investigated the neural correlates of flourishing levels of individuals by using a 

previously collected resting-state fNIRS data and different machine learning approaches. We 

classified both groups (HF / NF) with high accuracy and AUC values. In addition to conventional 

connectivity measure CC, we utilized DTW algorithm to try to extract discriminative features. 

We classified individuals with 90% accuracy by fusing the CC-ΔHbO and DTW-ΔHb based 

connections. To our best knowledge, our study includes several novelties such that being the 

first study that neuroimaging data was used to classify flourishing individuals via ML techniques 

and being the first study that compares efficiency of DTW and CC using ΔHb and ΔHbO signals 

on classification of a resting state fNIRS data. 

 

4.1. Efficiency of Connectivity Measures 
 
We utilized both DTW and CC measures to estimate functional connectivity in this study and 

found that DTW-ΔHb dataset gave higher accuracy than DTW-ΔHbO and CC-ΔHbO dataset gave 

higher accuracy than CC-ΔHb dataset for classification of flourishing. Also, 7 of 9 classifiers gave 

higher accuracy results for DTW-ΔHb dataset than for CC-ΔHbO dataset. Compared to CC, DTW 

is a novel measure in functional connectivity estimation and few studies were performed by 

utilizing DTW for EEG (Karamzadeh et al., 2013), fMRI (Jin et al., 2020; Linke et al., 2020; 

Meszlenyi, Hermann, et al., 2017; Mohanty et al., 2020) and fNIRS (Gokcay et al., 2019). In a 

recent study, it was shown that its efficiency outperformed conventional CC approach to detect 

atypical connectivity patterns in autism and it was reported that DTW was found sensitive to 
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BOLD signal amplitude which is dependent on Hb concentration (Linke et al., 2020). In another 

study that uses DTW and CC to classify ADHD patients and gender groups, it was reported that 

DTW showed better performance for classification using SVM and Least Absolute Shrinkage and 

Selection Operator (LASSO) (Meszlényi et al., 2016). Similar results were also found for 

classification of amnestic mild cognitive impairment patients using rsfMRI and Convolutional 

Neural Network (Meszlenyi, Buza, et al., 2017). Also, it was reported that DTW showed more 

stable FC than conventional CC and also captured the non-stationarity in simulated fMRI data 

(Meszlenyi, Hermann, et al., 2017). Unlike CC, DTW allows to catch similar but delayed changes 

between time series, therefore it can detect the non-linear behaviors of time series 

(Karamzadeh et al., 2013). On the other hand, in case of such a lag, CC will be low regardless of 

which time series it was used and this might directly lower the classification accuracy. 

 

We also found that DTW-ΔHb and CC-ΔHbO feature sets showed higher classification scores for 

classification of flourishing levels of individuals. In general, fNIRS based connectivity studies 

generally utilizes ΔHbO and ΔHbO signals have higher signal-to-noise ratio (SNR) than ΔHb 

signals (Homae et al., 2010; Montero-Hernandez et al., 2018a; Niu et al., 2011; Y. J. Zhang et al., 

2010). On the other hand, having low SNR of ΔHb signals might cause this difference due to less 

affection from extracerebral and intra cerebral systemic artifacts (Kirilina et al., 2012). Despite 

performing several preprocessing steps, short-channel regression could not be performed to 

remove extracerebral systemic artifacts out. Another finding was to obtain highest accuracy 

result by combining the feature sets DTW-ΔHb and CC-ΔHbO. Our result supports the idea to 

combine the feature sets extracted from both connectivity measures for classification to obtain 

higher accuracy compared to using one type of connectivity measure (Meszlenyi, Buza, et al., 

2017).  Both measures have their own pros and cons and they should be used together to 

reveal the potential differences between groups due to focusing different aspects of functional 

networks (Linke et al., 2020). Further basic research is needed to reveal the reason that causes 

this difference. 

 
 

4.2. Selected Features as Potential Biomarkers 
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After extracting functional connections between regions, we found discriminative regions for 

classification of flourishing levels. We utilized connections L SMG – L SMG, R V3 – R SAC, R STG 

– L STG, L AngG – L SAC for CC-ΔHbO, L STG – L MTG, L FusG – L MTG, L FusG – L AngG for CC-

ΔHb, L SAC – R SMG, RAngG – R SCA, L FusG – R SMG, L FusG – R SAC, R FusG – R SMG for DTW-

ΔHbO and L SAC- L SAC, L FusG - L SCA, L FusG – R SMG, L V3 – L SAC for DTW-ΔHb. As it was 

previously stated, these regions are strongly involved in DMN (Greicius et al., 2003; Raichle et 

al., 2001). Among these regions, right and left STG was strongly associated to social well-being 

according to a recent study (Kong, Xue, et al., 2016) and STG plays an important role social 

perception (Kanai et al., 2012; Yang et al., 2015). Also, by using SVM as a feature extraction 

technique instead of conventional statistical approaches, L MTG – L FusG connection was found 

as a reproduced result to discriminate flourishing (F. Goldbeck et al., 2018). FusG is widely 

known about its role in face perception (Grill-Spector et al., 2017). A previous PET study 

reported that baseline glucose metabolism in bilateral FusG, STG and MTG was found 

significantly associated to subjective well-being (Volkow et al., 2011). 

 

In parietal region, L SMG, the subpart of left inferior parietal lobe (IPL), was strongly associated 

with well-being (Luo et al., 2016; Volkow et al., 2011; Waytz et al., 2015). The other subpart of 

inferior parietal lobe, AngG was found strongly related to subjective happiness (Katsumi et al., 

2020). Association between well-being and IPL might be related to the role of IPL in episodic 

memory (Liang et al., 2012; Wagner et al., 2005). On the other hand, a very recent study related 

to relationship between rsfMRI and subjective happiness showed that right SAC (BA 7) and 

amygdala connection were strongly associated with subjective happiness (W. Sato et al., 2019). 

Like IPL, SAC is also related to episodic memory (see review (Cabeza et al., 2008)). These regions 

suggested that subcomponents of DMN might be potential neural markers to identify levels of 

flourishing for individual level. 

 
 

4.3. Classification Results 
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Among classification results, utilizing both CC-ΔHbO and DTW-ΔHb datasets, we found highest 

accuracy (90%) with 0.90 and 0.94 AUC values by using nearest neighbor and RBF SVM 

classifier, respectively. To our best knowledge, there is no study that uses neural data to classify 

levels of well-being however, there are two rsfMRI studies that uses neural data to predict well-

being (Kong, Wang, et al., 2016; Kong, Xue, et al., 2016). In the first study, eudaimonic well-

being was predicted by using regional homogeneity in inferior frontal gyrus and using linear 

regression with 4-fold cross validation (Kong, Wang, et al., 2016). The other study showed that 

right posterior STG and thalamus was used to predict social well-being using mediation analysis 

(Kong, Xue, et al., 2016). Also, there are some studies that utilizes behavioral and physiological 

data to both predict the levels of well-being. A recent study that utilized behavioral data 

collected via online survey such as Adolescent Self-Rating Life Events Check List, Big Five 

Inventory, Child and Adolescent Social Support Scale found 90% accuracy with 92% sensitivity 

and 90% specificity (N. Zhang et al., 2019). Also, a well-being level prediction study that 

considered a physical, mental and general health index by utilizing domotic sensor data and ML 

techniques revealed that mean absolute error of prediction of physical, mental and general 

health index were found as 32%, 13% and 17%, respectively (Casaccia et al., 2020). In another 

study, physiological data (heart rate, skin conductance), phone, mobility and modifiable 

behavior features gave 78% accuracy for classification of high or low stress, 86% accuracy for 

classification of high or low mental health, and 74% accuracy for classification of high or low 

stress groups (Sano et al., 2018). By utilizing laboratory (blood pressure, cholesterol etc.) , 

demographic (age, gender, race, weight etc.) and lifestyle (frequency of drinking alcohol, 

vigorous work activity, number of cigarettes per day etc.) data and using machine learning 

algorithms such as SVM, Bagging, Adaboost, Random Forest etc., highest AUC value was found 

as 0.726 (Agarwal et al., 2016). Compared to these studies, our results are notable and 

outperformed some previous studies that was used several different objective measures. Also, 

while reaching these accuracy values, we utilized neural data which is an objective measure. 

 

On the other hand, compared to fMRI, fNIRS has several advantages such as ease of use, 

mobility, being inexpensive and there are several studies that utilizes fNIRS data to classify 
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several psychiatric disorders such as depression (Husain et al., 2020; Takizawa et al., 2014; Zhu 

et al., 2020), schizophrenia (Azechi et al., 2010; Chuang et al., 2014; Dadgostar et al., 2018; 

Einalou et al., 2016; Hahn et al., 2013; Ji et al., 2020; Koike et al., 2017; Z. Li et al., 2015; Song et 

al., 2017) using machine learning techniques. High classification accuracies revealed that fNIRS 

might be a promising tool to identify the levels of flourishing and also closely related to other 

psychiatric disorders (Baskak, 2018; Ehlis et al., 2014). 

 

4.4. Correlation Results Between Flourishing Scores and Used Features 
 

We found negative significant correlations between flourishing score and CC-ΔHbO measure of 

R V3 – R SAC connection and DTW-ΔHb measure of L V3 – L SAC connection. Bilateral SAC (BA 7) 

was strongly associated with well-being according to the previous fMRI (W. Sato et al., 2019) 

and PET studies (Volkow et al., 2011). SAC is a wide region and one of the sub-regions is 

precuneus that is strongly related to well-being (Kong, Ding, et al., 2015; W. Sato et al., 2015; 

W. Sato et al., 2019; Volkow et al., 2011). Precuneus plays an important role in self-awareness 

(Kjaer et al., 2002), self-consciousness (see review (Cavanna & Trimble, 2006)) and self-

reflection (Johnson et al., 2009; Johnson et al., 2006). Previous studies suggested that it 

combines external and internal information such as personal experience, past memories and 

future thoughts and this feature might lead precuneus to play an important role in well-being 

(W. Sato et al., 2015). 

 
5. Limitations 

 
In the current study, we used rs-fNIRS to show its efficiency by utilizing two different 

connectivity measure for classification of flourishing levels and to understand cortical structures 

that are related to well-being. However, there are some critical limitations that need to be 

addressed.  

First, the number of subjects that participated in this study is low to perform a machine 

learning study. In machine learning applications, training and testing the model using larger 

samples allows us to create more robust and reliable models. To overcome this problem, we 

used nested cross-validation due to producing robust and unbiased estimation without 
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considering the sample size (Vabalas et al., 2019) and also prevented overfitting (Hosseini et al., 

2020). However, more extensive research by recruiting larger cohorts ideally from different 

centers must be realized to increase the reliability of the model and validate the suggested 

biomarkers. 

Second, due to penetration depth limitation of fNIRS which is around 1-2cm depending 

on source detector distance, it was not possible to measure the sub cortical regions. Used 

connections was estimated by using only cortical regions. Therefore, we could not observe 

some direct connections across regions.  

Finally, as we stated in methods section, there was no short source-detector separation 

channels in the dataset to eliminate systemic blood flow on scalp. To remove this effect using 

short separation channels is a necessity. Due to not being able to perform this, this effect might 

be available in time series.  

 

6. Conclusion 

In this study, it has been shown that rs-fNIRS data might be used to discriminate the individuals 

according to their flourishing levels by utilizing ML techniques. To our best knowledge, this is 

the first study that utilizes rsfNIRS and ML techniques to classify the individuals according to 

their flourishing levels. Previous studies utilized some features to understand well-being of 

individuals by either self-report data or physiological or laboratory data. We found 90% 

accuracy with 0.90 and 0.93 AUC by using Nearest neighbour and SVM algorithms. This result 

outperformed the results that were previously reported and showed the efficiency of rs-fNIRS. 

Also, we also showed that sub-components of DMN in temporo-parieto-occipital region might 

be potential biomarkers to understand the flourishing levels of individuals. Using fNIRS to 

reveal these biomarkers is critical, compared to using fMRI due to being inexpensive and having 

high degree of mobility. Also, rather than using statistical approaches that gives an answer in 

group level, ML provides us an answer in individual level. However, more extensive research is 

needed to understand the underlying neural mechanisms of well-being and validate the 

suggested biomarkers. 
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Figure Captions 

 
Figure 1. Channel configuration and corresponding cortical structure. For every region, its 
corresponding channel number was shown after its label. a) Coronal view, b) left hemisplere 
view  c) right hemisphere view. SupG: Supramarginal gyrus,  STG: Superior Temporal Gyrus, 
AngG : Angular Gyrus, MTG : Middle Temporal Gyrus, V3: Third visual cortex, SAC : 
Somatosensory association cortex, FusG : Fusiform Gyrus. 
 

Figure 2. Data Analysis Flow Chart. CC - ΔHbO: Feature set of ΔHbO using Pearson’s correlation, 

CC - ΔHb : Feature set of ΔHb using Pearson’s correlation, CC - Fuse: Feature set of fusion of 

ΔHb and ΔHbO feature sets using Pearson’s correlation, DTW - ΔHbO : Feature set of ΔHbO 

using Dynamic Time Warping, DTW - ΔHb : Feature set of ΔHb using Dynamic Time Warping, 

DTW - ΔHbO : Feature set of ΔHbO using Dynamic Time Warping, DTW - Fuse: Feature set of 

fusion of ΔHb and ΔHbO feature sets using Dynamic Time Warping. 
 

Figure 3. Accuracy violin plots for every classifier. CC - ΔHbO: Feature set of ΔHbO using 

Pearson’s correlation, CC - ΔHb : Feature set of ΔHb using Pearson’s correlation, CC - Fuse: 

Feature set of fusion of ΔHb and ΔHbO feature sets using Pearson’s correlation, DTW - ΔHbO : 

Feature set of ΔHbO using Dynamic Time Warping, DTW - ΔHb : Feature set of ΔHb using 

Dynamic Time Warping, DTW - ΔHbO : Feature set of ΔHbO using Dynamic Time Warping, DTW 

- Fuse: Feature set of fusion of ΔHb and ΔHbO feature sets using Dynamic Time Warping. RBF 
SVM : Radial Basis Function Support Vector Machine. 
 
Figure 4. Receiver operating characteristic (ROC) curves for every classifier and every feature 

set. CC - ΔHbO: Feature set of ΔHbO using Pearson’s correlation, CC - ΔHb : Feature set of ΔHb 

using Pearson’s correlation, CC - Fuse: Feature set of fusion of ΔHb and ΔHbO feature sets using 

Pearson’s correlation, DTW - ΔHbO : Feature set of ΔHbO using Dynamic Time Warping, DTW - 

ΔHb : Feature set of ΔHb using Dynamic Time Warping, DTW - ΔHbO : Feature set of ΔHbO 

using Dynamic Time Warping, DTW - Fuse: Feature set of fusion of ΔHb and ΔHbO feature sets 
using Dynamic Time Warping. RBF SVM : Radial Basis Function Support Vector Machine. AUC : 
Area under curve. 
 
Figure 5. Receiver operating characteristic (ROC) curves for every classifier for fusion of CC - 

ΔHbO and DTW - ΔHb feature sets. AUC : Area under curve 
 

Figure 6. Accuracy violin plots for every classifier for fusion of CC - ΔHbO and DTW - ΔHb 
feature sets. LDA : Linear Discriminant Analysis, QDA : Quadratic Discriminant Analysis. 
 

Figure 7. Correlation plots between flourishing scores and R V3 – R SAC using CC - ΔHbO (a) and 

L V3 – L SAC using DTW - ΔHb (b). In a) the CC values were Z-transformed. 
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Channel Number X Coordinate Y Coordinate Z Coordinate Corresponding Region 
1 -85.00 -18.00 39.00 PSC 

2 -78.00 -35.00 59.00 SupG 

3 -63.00 -51.00 74.00 SupG 

4 -41.00 -63.00 89.00 SAC 

5 -16.00 -69.00 95.00 SAC 

6 16.00 -68.00 94.00 SAC 

7 42.00 -60.00 86.00 SAC 

8 64.00 -49.00 70.00 SupG 

9 76.00 -31.00 54.00 SupG 

10 81.00 -13.00 34.00 SC 

11 -88.00 -18.00 19.00 STG 

12 -86.00 -39.00 41.00 SupG 

13 -73.00 -56.00 59.00 SupG 

14 -54.00 -70.00 74.00 AngG 

15 -29.00 -79.00 84.00 SAC 

16 1.00 -81.00 86.00 SAC 

17 31.00 -77.00 82.00 SAC 

18 55.00 -66.00 70.00 SupG 

19 71.00 -51.00 54.00 SupG 

20 83.00 -33.00 35.00 PSC 

21 84.00 -13.00 14.00 STG 

22 -88.00 -40.00 21.00 STG 

23 -80.00 -57.00 41.00 SupG 

24 -65.00 -74.00 56.00 AngG 

25 -42.00 -85.00 69.00 SAC 

26 -16.00 -91.00 75.00 SAC 

27 16.00 -90.00 73.00 SAC 

28 43.00 -83.00 67.00 SAC 

29 65.00 -67.00 54.00 AngG 

30 79.00 -53.00 35.00 SupG 

31 86.00 -35.00 17.00 STG 

32 -90.00 -40.00 -1.00 MTG 

33 -84.00 -58.00 21.00 STG 

34 -71.00 -74.00 39.00 AngG 

35 -52.00 -90.00 51.00 SAC 

36 -28.00 -96.00 62.00 SAC 

37 1.00 -98.00 63.00 SAC 

38 30.00 -95.00 59.00 V3 

39 54.00 -86.00 50.00 AngG 

40 70.00 -72.00 33.00 AngG 

41 81.00 -53.00 15.00 STG 

42 88.00 -34.00 -5.00 MTG 

43 -83.00 -58.00 -0.00 FusG 

44 -75.00 -73.00 20.00 FusG 

45 -61.00 -90.00 33.00 AngG 

46 -39.00 -99.00 45.00 V3 

47 -15.00 -104.00 50.00 V3 

48 15.00 -105.00 49.00 V3 

49 41.00 -99.00 44.00 V3 

50 62.00 -85.00 33.00 AngG 

51 74.00 -71.00 13.00 FusG 

52 83.00 -54.00 -4.00 FusG 

 

Table 1. Channel numbers with their corresponding coordinates and regions. Primary 

somatosensory cortex (PSC), Superior Parietal Gyrus (SupG), Superior Temporal Gyrus (STG), 

Middle Temporal Gyrus (MTG), Angular Gyrus (AngG), Somatosensory Association Cortex (SAC) 

and Third Visual Cortex (V3), Fusiform Gyrus (FusG) and Subcentral Area (SC) 
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Classifier Parameter 

Nearest 
neighbor 

• Nearest neighbor : 2,3…,10 

• Weights : Uniform, distance 

Linear SVM 
• C : 0.001, 0.01, 0.1, 1, 10, 100 

• Gamma: 0.001, 0.01, 0.1, 1 

• Class weight : balanced, none 

RBF SVM 
• C : 0.001, 0.01, 0.1, 1, 10, 100 

• Gamma: 0.001, 0.01, 0.1, 1 

• Class weight : balanced, none 

Gradient 
Boosting 

• Number of estimators : 50, 100 

• Learning rate : 0.001, 0.005, 0.01, 0.01, 0.05 

AdaBoost 
• Number of estimators : 50, 100 

• Learning rate : 0.001, 0.005, 0.01, 0.01, 0.05 

Naïve Bayes No parameter 

Linear 
Discriminant 

Analysis 
No parameter 

Quadratic 
Discriminant 

Analysis 
No parameter 

Logistic 
Regression 

• Penalty : L1 and L2 regularization 

• Alpha : 0.01, 0.1 

• Number of iteration : 1,2,5,10,100,500 

 

Table 2. Used hyperparameters for classifiers. 
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   Feature Set 
 

Classifier 

CC – ΔHbO 
 
 

CC -ΔHb 
 
 

CC-Fuse 
 
 

DTW-ΔHbO 
 
 

DTW-ΔHb 
 
 

DTW-Fuse 
 
 

Nearest 
Neighbour 

0.74 ± 0.04 0.61 ± 0.05  0.75 ± 0.04  0.70 ± 0.03 0.78 ± 0.03 0.79 ± 0.04 

Linear SVM 0.80 ± 0.02 0.65 ± 0.03  0.89 ± 0.01  0.72 ± 0.03 0.79 ± 0.03 0.88 ± 0.03 

RBF SVM 0.77 ± 0.02 0.69 ± 0.04  0.88 ± 0.02  0.70 ± 0.02 0.79 ± 0.02  0.85 ± 0.07 

Gradient 
Boosting 

0.62 ± 0.04 0.63 ± 0.04 0.66 ± 0.04 0.68 ± 0.04 0.78 ± 0.04  0.74 ± 0.05 

AdaBoost 0.74 ± 0.04 0.65 ± 0.03 0.74 ± 0.04 0.66 ± 0.02 0.80 ± 0.02 0.78 ± 0.03 

Naïve Bayes 0.76 ± 0.01 0.69 ± 0.01  0.78 ± 0.02 0.72 ± 0.01 0.81 ± 0.01 0.89 ± 0.01 

Linear 
Discriminant 

Analysis 
0.81 ± 0.01 0.68 ± 0.02  0.89 ± 0.01 0.71 ± 0.01 0.82 ± 0.01 0.85 ± 0.03 

Quadratic 
Discriminant 

Analysis 
0.80 ± 0.03 0.70 ± 0.02 0.82 ± 0.04 0.67 ± 0.02 0.81 ± 0.02 0.79 ± 0.02 

Logistic 
Regression 

0.81 ± 0.01 0.65 ± 0.02 0.87 ± 0.02 0.72 ± 0.02 0.79 ± 0.02 0.88 ± 0.03 

 

 

 

Table 3. Mean and Standard deviation accuracy results for classification of highly flourishing and normal flourishing participants 

using different classifiers. CC: Correlation coefficient, ΔHb : Deoxyhemoglobin concentration change, ΔHbO : Oxyhemoglobin 

concentration change. SVM : Support Vector Machine, RBF : Radial Basis Function, DTW : Dynamic Time Warping. Bold highlighted 

results are the accuracy values greater than 80 % and bold highlighted and underlined results are the accuracy values greater than 

85 %. 
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   Feature Set 
 

Classifier 

CC – ΔHbO 
 
 

CC -ΔHb 
 
 

CC-Fuse 
 
 

DTW-ΔHbO 
 
 

DTW-ΔHb 
 
 

DTW-Fuse 
 
 

Nearest 
Neighbour 

0.82 0.68 0.84 0.73 0.83 0.84 

Linear SVM 0.82 0.66 0.90 0.79 0.86 0.91 

RBF SVM 0.83 0.69 0.92 0.75 0.87 0.90 

Gradient 
Boosting 

0.65 0.69 0.66 0.74 0.81 0.77 

AdaBoost 0.76 0.68 0.81 0.66 0.87 0.82 

Naïve Bayes 0.81 0.74 0.86 0.82 0.93 0.95 

Linear 
Discriminant 

Analysis 
0.86 0.72 0.91 0.79 0.88 0.89 

Quadratic 
Discriminant 

Analysis 
0.87 0.75 0.87 0.77 0.92 0.86 

Logistic 
Regression 

0.87 0.71 0.90 0.78 0.86 0.91 

 

Table 4. Area under curve (AUC) results for classification of highly flourishing and normal flourishing participants using different 

classifiers. CC: Correlation coefficient, ΔHb : Deoxyhemoglobin concentration change, ΔHbO : Oxyhemoglobin concentration change. 

SVM : Support Vector Machine, RBF : Radial Basis Function, DTW : Dynamic Time Warping. Bold highlighted and underlined results 

are the AUC values greater than 0.9. 
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   Feature Set 
 

Classifier 

CC – ΔHbO & 
DTW-ΔHb 
Accuracy 

 

CC – ΔHbO 
& 

DTW-ΔHb 
AUC 

 

Nearest Neighbor 0.90 ± 0.01 0.90 

Linear SVM 0.87 ± 0.02 0.91 

RBF SVM 0.90 ± 0.03 0.94 

Gradient Boosting 0.74 ± 0.03 0.78 

AdaBoost 0.79 ± 0.03 0.88 

Naïve Bayes 0.85 ± 0.02 0.95 

Linear Discriminant 
Analysis 

0.85 ± 0.01 0.93 

Quadratic 
Discriminant 

Analysis 
0.85 ± 0.02 0.92 

Logistic Regression 0.86 ± 0.01 0.90 

 

Table 5. Mean and Standard deviation accuracy results and Area Under Curve (AUC) results for classification of highly flourishing and 

normal flourishing participants using different classifiers and fused features from different connectivity metrics. AUC: Area Under 

Curve, CC: Correlation coefficient, ΔHb : Deoxyhemoglobin concentration change, ΔHbO : Oxyhemoglobin concentration change. 

SVM : Support Vector Machine, RBF : Radial Basis Function, DTW : Dynamic Time Warping. Bold highlighted results are the accuracy 

values greater than 80 % and bold highlighted and underlined results are the accuracy values greater than 85 %. 
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