1	Small molecule analysis of extracellular vesicles produced by Cryptococcus gattii:
2	identification of a tripeptide controlling cryptococcal infection in an invertebrate
3	host model
4	
5	Flavia C. G. Reis ^{1,2} , Jonas H. Costa ³ , Leandro Honorato ⁴ , Leonardo Nimrichter ⁴ , Taícia P.
6	Fill ³ *, and Marcio L. Rodrigues ^{1,4} *
7	
8	¹ Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba – PR, Brazil;
9	² Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro,
10	Brazil;
11	³ Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas – SP,
12	Brazil;
13	⁴ Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de
14	Janeiro, Rio de Janeiro - RJ, Brazil.
15	
16	*TPF and MLR share senior authorship on this manuscript. Correspondence:
17	taicia@unicamp.br (TPF) or marcio.rodrigues@fiocruz.br (MLR).
18	
19	
20	
21	
22	

23 Abstract

24	The small molecule (molecular mass < 900 Daltons) composition of extracellular
25	vesicles (EVs) produced by the pathogenic fungus Cryptococcus gattii is unknown,
26	which limits the understanding of the functions of cryptococcal EVs. In this study, we
27	analyzed the composition of small molecules in samples obtained from solid cultures
28	of C. gattii by a combination of chromatographic and spectrometric approaches, and
29	untargeted metabolomics. This analysis revealed previously unknown components of
30	EVs, including small peptides with known biological functions in other models. The
31	peptides found in C. gattii EVs had their chemical structure validated by chemical
32	approaches and comparison with authentic standards, and their functions tested in a
33	Galleria mellonella model of cryptococcal infection. One of the vesicular peptides
34	(isoleucine-proline-isoleucine, Ile-Pro-Ile) improved the survival of G. mellonella
35	lethally infected with C. gattii or C. neoformans. These results indicate that small
36	molecules exported in EVs are biologically active in Cryptococcus. Our study is the first
37	to characterize a fungal EV molecule inducing protection, pointing to an immunological
38	potential of extracellular peptides produced by C. gattii.

40 Introduction

42	Cryptococcus gattii is a fungal pathogen that causes disease in
43	immunocompetent individuals. This fungus was responsible for outbreaks in the Pacific
44	Northwest and in the Vancouver Island (1). C. gattii virulent strains, which are endemic
45	in Brazil (2), likely emerged from South America (3). C. gattii can cause severe lung
46	disease and death without dissemination. In contrast, its sibling species C. neoformans
47	disseminates readily to the central nervous system (CNS) and causes death from
48	meningoencephalitis (1). C. gattii and C. neformans share major virulence
49	determinants, including the ability to produce extracellular vesicles (EVs) (4–6). EVs are
50	membranous structures produced by prokaryotes and eukaryotes, including fourteen
51	fungal genera (7). In fungi, they were first characterized in culture fluids of C.
52	neoformans (6). A decade later, C. gattii was also demonstrated to produce EVs in
53	liquid matrices (4).
53 54	liquid matrices (4). The perception that EVs are essential players in both physiology and
53 54 55	liquid matrices (4). The perception that EVs are essential players in both physiology and pathogenesis of fungi is now consolidated. Much of the knowledge on the functions of
53 54 55 56	liquid matrices (4). The perception that EVs are essential players in both physiology and pathogenesis of fungi is now consolidated. Much of the knowledge on the functions of fungal EVs has derived from studies of their composition. During the last decade,
53 54 55 56 57	liquid matrices (4). The perception that EVs are essential players in both physiology and pathogenesis of fungi is now consolidated. Much of the knowledge on the functions of fungal EVs has derived from studies of their composition. During the last decade, proteins, lipids, glycans, and nucleic acids were characterized as components of fungal
53 54 55 56 57 58	liquid matrices (4). The perception that EVs are essential players in both physiology and pathogenesis of fungi is now consolidated. Much of the knowledge on the functions of fungal EVs has derived from studies of their composition. During the last decade, proteins, lipids, glycans, and nucleic acids were characterized as components of fungal EVs (8,9). Molecules of low molecular mass, however, have been overlooked. A recent
53 54 55 56 57 58 59	liquid matrices (4). The perception that EVs are essential players in both physiology and pathogenesis of fungi is now consolidated. Much of the knowledge on the functions of fungal EVs has derived from studies of their composition. During the last decade, proteins, lipids, glycans, and nucleic acids were characterized as components of fungal EVs (8,9). Molecules of low molecular mass, however, have been overlooked. A recent study has characterized the small molecule composition of <i>Histoplasma capsulatum</i>
53 54 55 56 57 58 59 60	liquid matrices (4). The perception that EVs are essential players in both physiology and pathogenesis of fungi is now consolidated. Much of the knowledge on the functions of fungal EVs has derived from studies of their composition. During the last decade, proteins, lipids, glycans, and nucleic acids were characterized as components of fungal EVs (8,9). Molecules of low molecular mass, however, have been overlooked. A recent study has characterized the small molecule composition of <i>Histoplasma capsulatum</i> (10) and <i>Penicillium digitatum</i> EVs (11), but the low molecular mass components of
53 54 55 56 57 58 59 60 61	liquid matrices (4). The perception that EVs are essential players in both physiology and pathogenesis of fungi is now consolidated. Much of the knowledge on the functions of fungal EVs has derived from studies of their composition. During the last decade, proteins, lipids, glycans, and nucleic acids were characterized as components of fungal EVs (8,9). Molecules of low molecular mass, however, have been overlooked. A recent study has characterized the small molecule composition of <i>Histoplasma capsulatum</i> (10) and <i>Penicillium digitatum</i> EVs (11), but the low molecular mass components of other fungal EVs are unknown. Considering the molecular diversity found in both <i>H</i> .
53 54 55 57 58 59 60 61 62	liquid matrices (4). The perception that EVs are essential players in both physiology and pathogenesis of fungi is now consolidated. Much of the knowledge on the functions of fungal EVs has derived from studies of their composition. During the last decade, proteins, lipids, glycans, and nucleic acids were characterized as components of fungal EVs (8,9). Molecules of low molecular mass, however, have been overlooked. A recent study has characterized the small molecule composition of <i>Histoplasma capsulatum</i> (10) and <i>Penicillium digitatum</i> EVs (11), but the low molecular mass components of other fungal EVs are unknown. Considering the molecular diversity found in both <i>H</i> .

64 the metabolome analysis of *P. digitatum* EVs revealed the presence of

65 phytopathogenic molecules that inhibited the germination of the plant host's seeds66 (11).

67	We have recently described a protocol for the isolation of cryptococcal EVs
68	through which the vesicles were obtained from solid fungal cultures (5). Although the
69	general properties of fungal EVs obtained from solid cultures resembled those
70	described for vesicles obtained from liquid media, a recent analysis of the protein
71	composition of cryptococcal EVs obtained from solid medium revealed important
72	differences in comparison to those obtained in early studies using liquid cultures
73	(12,13). This observation and the fact that culture conditions impact the composition
74	of small molecules in <i>H. capsulatum</i> EVs (10) reinforce the importance of the
75	compositional characterization of vesicles obtained from solid medium.
76	In this manuscript, we characterized the low mass components of EVs produced
77	by C. gattii. The synthesis of some of the small molecules detected in the EVs revealed
78	a vesicular peptide that protected an invertebrate host against a lethal challenge with
79	C. gattii in a dose-dependent fashion. These results indicate the existence of new
80	venues of exploration of the functions of EVs in fungal pathogens, and suggest that
81	small molecules of fungal EVs have immunological potential.
82	

- 83
- 84

85 Results

86

Small molecule characterization of *C. gattii* EVs. *C. gatti* EV samples were prepared as 87 88 independent triplicates. EV extracts were analyzed by ultra-high performance liquid 89 chromatography-tandem mass spectrometry (UHPLC-MS/MS), and the data submitted 90 to molecular networking analysis in the Global Natural Product Social Molecular 91 Networking (GNPS) platform, an interactive online small molecule–focused tandem 92 mass spectrometry data curation and analysis infrastructure (14). Molecular 93 networking using high-resolution MS/MS spectra allows the organization of vesicular 94 compounds in a visual representation (15,16). In this analysis, each node is labeled by a precursor mass and represents a MS/MS spectrum of a compound, and compounds 95 96 of the same molecular family are grouped together, connected by arrows, forming 97 clusters of similarity (15–18). Since the molecules can be identified in a database 98 through their fragmentation patterns and are represented in the molecular 99 networking, the benefits of this approach include fast dereplication, identification of 100 similar compounds, and effortless comparisons between different metabolic profiles 101 or conditions (16,17). 102 The cluster-based molecular networking analysis revealed secondary 103 metabolites present in the C. gattii EVs. The molecules detected in our analysis were

104 classified as EV components if they were detected in the three replicates. Using this

105 criterion, our small molecule analysis identified 13 genuine components of the *C. gattii*

106 EV samples (Table 1). This analysis revealed previously unknown components of EVs,

107 including peptides, amino-acids, vitamins, and a carboxylic ester. The metabolites were

108 identified through hits in the GNPS database (Supplemental Figures 1-13) and

109 corresponded to IIe-Pro-IIe (m/z 342.2384), Phe-Pro (m/z 263.1387), Pyro Glu-IIe (m/z110 243.1335), Pyro Glu-Pro (m/z 227.1022), Leu-Pro (m/z 229.1544), Pyro Glu-Phe (m/z 111 277.1180), Val-Leu-Pro-Val-Pro (*m/z* 652.4025), cyclo (Trp-Pro) (*m/z* 284.1393), cyclo 112 (Tyr-Pro) (*m*/*z* 261.1234), tryptophan (*m*/*z* 205.0972), asperphenamate (*m*/*z* 113 507.2278), riboflavin (*m/z* 377.1456) and pantothenic acid (*m/z* 220.1181). The 114 structures and MS data of the detected metabolites are shown in Figure 1 and Table 1, 115 respectively. The cluster-based molecular networking analysis of the C. gattii EV 116 components is detailed in Figure 2. For validation of some key GNPS hits, we performed another round of 117 118 spectrometric characterization of C. gattii small molecules including additional criteria 119 as follows. We classified as authentic EV compounds those whose structure was 120 observed in EV extracts, but not in mock samples (extracted from sterile culture 121 medium). Finally, these compounds obligatorily had chromatographic and 122 spectrometric properties similar to those of synthetic standards. Due to the easiness in 123 chemical synthesis and lack of functional information in the literature, the linear 124 dipeptides Phe-Pro, pyro-Glu-Ile, pyro-Glu-Pro, Leu-Pro, and pyro-Glu-Phe, and the 125 tripeptide Ile-Pro-Ile were selected for the validation assays. We then searched for 126 their presence in EV and mock extracts. Six peptides were classified as authentic EV 127 components according to these criteria (Table 2). Indeed, this analysis revealed similar 128 fragmentation patterns and retention times for the vesicle peptides and the standard 129 metabolites (Figure 3). The peptides exhibited typical fragments of protonated amino 130 acids at *m*/*z* 70.06, 86.09, 116.07 and 120.08 (Figure 4). In compounds containing 131 proline, fragments at m/z 116.07 and 70.06 corresponded, respectively, to the loss of 132 protonated proline and subsequent loss of H₂O and CO. In peptides composed by

133	isoleucine or leucine, fragments at m/z 132.02 and 86.09 corresponded, respectively,
134	to protonated leucine/isoleucine and subsequent loss of H_2O and CO. Finally, the loss
135	of H ₂ O and CO in protonated phenylalanine formed the major fragment ion at m/z
136	120.08 (19). Assuming that the vesicular components are synthesized within the cells
137	and exported extracellularly, we also analyzed cellular and supernatant extracts. The
138	six peptides listed in Table 3 were also found in these extracts (data not shown).
139	
140	Biological activity of EV peptides of C. gattii. After characterization of
141	Ile-Pro-Ile, Phe-Pro, Pyro-Ile, Pyro-Pro, Leu-Pro, and Pyro-Phe as authentic EV
142	components of C. gattii, we used their synthetic forms to analyze their possible
143	biological activities. On the basis of the previously reported ability of fungal peptides
144	to kill bacteria (20), we initially tested their antibacterial capacity against
145	Staphylococcus aureus and Pseudomonas aeruginosa. None of the peptides had any
146	effect on microbial growth (data not shown). Since cryptococcal EVs regulate
147	intercellular communication (4), we also speculated that the peptides could mediate
148	quorum sensing, Titan cell formation or capsule growth. Once again, none of the
149	peptides had any apparent effects on these processes in <i>C. gattii</i> (data not shown).
150	It has been recently reported that fungal EVs, including cryptococcal vesicles,
151	protect mice and the invertebrate host Galleria mellonella against lethal challenges
152	with pathogenic fungi (12,21–23). The vesicular molecules responsible for the
153	protection remained unknown. We then asked whether the peptides listed in Table 3
154	could protect G. mellonella against a lethal challenge with C. gattii. We compared the
155	mortality curves of G. mellonella infected with C. gattii alone with the mortality of the
156	invertebrate host receiving C. gattii and each of the peptides at 10 μ g/ml (Figure 5A).

157	Phe-Pro, Pyro-Iso, Pyr-Pro, Leu-Pro and Pyro-Phe did not have any effect on the	
-----	---	--

- 158 survival curves. In contrast, the tripeptide Ile-Pro-Ile significantly improved the survival
- 159 of *G. mellonella*. We repeated this experiment using *C. neoformans* instead of *C. gattii*
- and obtained similar results (Figure 5B). On the basis of these results, we selected Ile-
- 161 Pro-Ile for tests at lower concentrations (1, 0.5 and 0.1 µg/ml) in the *C. gattii* infection
- 162 model. Once again, the peptide was highly efficient in prolonging the survival of
- 163 lethally infected *G. mellonella* in a dose-dependent fashion (Figure 6).
- 164
- 165
- 166
- 167

168 Discussion

169	The knowledge of the functions of fungal EVs has continuously increased in the
170	recent years (7), but the biological roles of low mass structures exported in EVs are
171	unknown. Small molecules secreted by Cryptococcus are immunologically active and
172	affect IL-1 β inflammasome-dependent secretion (24), but their association with EVs
173	has not been established. In our study, we aimed at proving the concept that
174	biologically active small molecules are exported in cryptococcal EVs. This idea
175	culminated with the characterization for the first time of a fungal EV molecule inducing
176	protection against pathogenic fungi.
177	Fungal EVs were demonstrated to mediate intercellular communication (4),
178	prion transmission (25), biofilm formation associated with antifungal resistance (26),
179	immunological responses in vitro (23,27–30), and protection of different hosts against
180	lethal challenges with fungal pathogens (12,21–23). In any of these examples, these
181	biological effects attributed to the EVs were correlated with the identification of the
182	bioactive vesicular molecules. The only known exception was the protection of G.
183	mellonella induced by cryptococcal EVs enriched with sterol glycosides and capsular
184	polysaccharides (22). However, it is important to mention that the EVs in this study
185	were produced by genetically engineered cells and, therefore, did not correspond to
186	native vesicles. It remained also unknown if other molecules influenced the protective
187	effects, since compositional studies have not been performed.
188	The identification of bioactive EV molecules is challenging in multiple aspects.
189	The compositional analysis of fungal EVs in different models include a formidable
190	variability in culture conditions, since each of the fungal pathogens tested so far
191	manifest growth particularities. In this scenario, biomarkers of fungal EVs are still not

192 known, although it has been suggested that mannoproteins and claudin-like Sur7 193 family proteins are important components of vesicles produced by C. neoformans and 194 C. albicans, respectively (12,31). The knowledge of small molecules mediating 195 important biological activities in fungal EVs is even more limited. In *H. capsulatum*, 196 carbohydrate metabolites were abundantly detected in EVs, in addition to L-ornithine 197 and ethanolamine, among other small molecules (10). In the plant pathogen P. 198 *digitatum*, EVs were characterized as the carriers of tryptoguialanine A, a toxin that 199 inhibited the germination of orange seeds (11). So far, tryptoquialanine A is the only 200 low mass component of fungal EVs with a reported function. In this model, the 201 mycotoxin fungisporin was also detected (11), but its function in fungal EVs remains to 202 be determined. Together, these findings illustrate the need for an improved 203 knowledge of the composition and functions of EV metabolites in fungi. 204 The isolation of cryptococcal EVs from solid medium is much more efficient 205 than the similar protocols using liquid cultures (5). RNA and proteins in cryptococcal 206 EVs obtained in liquid cultures were characterized in early studies (8,32), but their 207 distribution in EVs obtained from solid medium was only recently described in C. 208 neoformans (12). Other molecules remained unknown, and the metabolite 209 composition of cryptococcal EVs has not been investigated so far. In our study, we 210 initially aimed at understanding what are the low molecular weight components 211 exported by C. gattii in solid medium. We identified small molecules of different 212 chemical natures as putative components of cryptococcal EVs, but their functions 213 remain widely unknown. However, our chemical and biological methods for structural 214 validation revealed that one tripeptide was capable to protect G. mellonella against 215 lethal challenges with C. gattii or C. neoformans. The mechanisms by which the

216 peptides induced protection against cryptococcal infection remain unknown, but the 217 immune response of G. mellonella is innate and relies on the activity of hemocytes in combination with antimicrobial peptides and lytic enzymes, among others (33). 218 219 Accordingly, immunity to Cryptococcus relies on innate immune cells coordinating 220 adaptive responses to stimulate fungal killing (34). Therefore, we hypothesize that the 221 tripeptide identified in our study is an inducer of innate responses, which have a key 222 general role in the control of fungal infections (35). 223 The peptide inducing protection against *Cryptococcus* in *G. mellonella* was 224 demonstrated to have important biological activities in other models. Ile-Pro-Ile, also 225 known as diprotin A, is an inhibitor of dipeptidyl peptidase 4, an enzyme participating 226 in insulin metabolism (36) and chemotaxis of murine embryonic stem cells towards 227 stromal cell-derived factor-1 (37). Its role in fungal physiology and/or pathogenesis are 228 still unknown. Noteworthy, our study did not elucidate any physiological or pathogenic 229 functions. Instead, we present a proof of concept that fungal EVs are the vehicles for

230 exporting biologically active molecules of low molecular mass that may be involved in

immunological and/or pathogenic mechanisms. Since fungal EVs have been

232 consistently proposed as vaccine candidates in different models, the potential of these

233 findings can be substantial.

234

235

237 Methods

239	Preparation of EVs. The EV-producing isolate used in this study was the standard strain
240	R265 of <i>C. gattii</i> . Of note, the R265 strain has been recently reclassified as <i>C</i> .
241	deuterogattii (38). In this study, we kept its classification as C. gattii, as largely
242	employed in the Cryptococcus literature. EV isolation was based on the protocol that
243	we have recently established for C. gattii and other fungal species (5). Briefly, One
244	colony of C. gattii R265 cultivated in solid Sabouraud's medium was inoculated into
245	yeast extract-peptone-dextrose (YPD) medium (5 ml) and cultivated for 1 day at 30°C
246	with shaking. The cell density was adjusted to of 3.5× 10 ⁷ cells/ml in YPD. From this
247	suspension, aliquots of 300 μ l were taken for inoculation in YPD agar plates, which
248	were cultivated for 1 day at 30°C. The cells were recovered from the plates with an
249	inoculation loop and transferred to a single centrifuge tube containing 30 ml of PBS
250	filtered through 0.22- μ m-pore membranes. The cells were then removed by
251	centrifugation (5,000 × g for 15 min at 4°C), and the supernatants were centrifuged
252	again (15,000 \times g for 15 min at 4°C) to remove debris. The resulting supernatants were
253	filtered through 0.45- μ m-pore syringe filters and again centrifuged (100,000 × g, 1 h at
254	4°C). Supernatants were discarded and pellets suspended in 300 μl of sterile PBS. To
255	avoid the characterization of medium components as EV molecules, mock (control)
256	samples were similarly prepared using sterile plates containing YPD. Four petri dishes
257	were used for each EV isolation, and EV isolation was performed independently three
258	times. In all samples, the properties of EVs and their concentration was monitored by
259	nanoparticle tracking analysis (NTA) as described by our group (5). The samples

prepared for mass spectrometry analyses had the typical properties of *C. gattii* EVs
(data not shown), and were in the range of 4 to 6 x 10¹⁰ EVs within the triplicate set.

262

283

263 Mass spectrometry analyses. C. gattii EVs were vacuum dried and extracted with 1 ml 264 of methanol during 1 h in an ultrasonic bath. The extracts were filtered (0.22 μ m), 265 dried under a gentle N₂ flux and stored at -20 °C. EV extracts were resuspended in 200 266 µl of MeOH and transferred into glass vials. Ultra high-performance liquid 267 chromatography-mass spectrometry (UHPLC-MS) analyses were performed using a 268 Thermo Scientific QExactive[®] hybrid Quadrupole-Orbitrap mass spectrometer with the 269 following parameters: electrospray ionization in positive mode, capillary voltage at 3.5 270 kV; capillary temperature at 300 °C; S-lens of 50 V and *m/z* range of 100.00-1500.00. 271 Tandem Mass spectrometry (MS/MS) was performed using normalized collision energy 272 (NCE) of 20, 30 and 40 eV; maximum 5 precursors per cycle were selected. Stationary 273 phase was a Waters ACQUITY UPLC[®] BEH C18 1.7 µm (2.1 mm x 50 mm) column. 274 Mobile phases were 0.1 % (v/v) formic acid in water (A) and acetonitrile (B). Eluent 275 profile (A:B) 0-10 min, gradient from 95:5 up to 2:98; held for 5 min; 15-16.2 min 276 gradient up to 95:5; held for 3.8 min. Flow rate was 0.2 mL min⁻¹. Injection volume was 277 3 μL. UHPLC-MS operation and spectra analyses were performed using Xcalibur 278 software (version 3.0.63). 279 280 Molecular Network. A molecular network was created using the online workflow 281 (https://ccms-ucsd.github.io/GNPSDocumentation/) on the GNPS website 282 (http://gnps.ucsd.edu). The data was filtered by removing all MS/MS fragment ions

within +/- 17 Da of the precursor m/z. MS/MS spectra were window filtered by

284 choosing only the top 6 fragment ions in the +/- 50Da window throughout the 285 spectrum. The precursor ion mass tolerance was set to 0.02 Da and a MS/MS fragment ion tolerance of 0.02 Da. A network was then created where edges were filtered to 286 287 have a cosine score above 0.5 and more than 5 matched peaks. Further, edges 288 between two nodes were kept in the network if and only if each of the nodes 289 appeared in each other's respective top 10 most similar nodes. Finally, the maximum 290 size of a molecular family was set to 100, and the lowest scoring edges were removed 291 from molecular families until the molecular family size was below this threshold. The 292 spectra in the network were then searched against GNPS' spectral libraries. The library 293 spectra were filtered in the same manner as the input data. All matches kept between 294 network spectra and library spectra were required to have a score above 0.5 and at 295 least 5 matched peaks (14).

296

Peptides. The peptides selected for biological tests were synthesized by GenOne
Biotechnologies (<u>https://www.genone.com.br</u>, Rio de Janeiro, Brazil). Purity and
structural properties of each peptide were confirmed by high-performance liquid
chromatography coupled to mass spectrometry. All peptides were water-soluble and
had their purity at the 95% range.

302

Galleria mellonella infection model. Groups of 10 larvae (250 – 350 mg) were infected
with 10 μl of sterile PBS containing 10⁶ cells of *C. gattii* or *C. neoformans* into the last
left proleg using a Hamilton micro-syringe. Control systems were injected with PBS
alone. Fungal inoculation was followed by injection of 10 μl PBS solutions containing
Ile-Pro-Ile, Phe-Pro, Pyro-Ile, Pyro-Pro, Leu-Pro, and Pyro-Phe at 10 μg/ml. Due to its

- 308 promising effects, Ile-Pro-Ile was also tested at 1, 0.5, and 0.1 µl/ml in a *C. gattii* model
- 309 of infection. Injected larvae were placed in sterile Petri dishes and incubated at 37°C.
- 310 The survival was monitored daily in a period of seven days. Larvae were considered
- dead if they did not respond to physical stimulus. Statistical analysis was performed
- 312 using the Graphpad Prism software, version 8.0.
- 313
- 314

315 Figures and legends

316

- **Figure 1.** Structures of the metabolites identified in *C. gatti* EVs through the GNPS
- 318 MS/MS database.

319

- **Figure 2.** Clusters A and B of the molecular networking obtained for the *C. gattii* EV
- 321 cargo. Nodes circled in blue indicate molecules identified by comparison with the
- 322 GNPS platform database. Authentic standards were used to validate the hits within the
- 323 GNPS database.

- 325 Figure 3. Structural analysis of EV peptides produced by *C. gattii*, including Ile-Pro-Ile 326 (A), pyr-Glu-Phe (B), Phe-Pro (C), pyr-Glu-Ile (D), Leu-Pro (E), and pyr-Glu-Pro (F). For each peptide, the chromatographic separation of synthetic standards, EV extracts, and 327 328 control (mock) samples is presented on the left side of each panel. The peaks with 329 retention times similar to the corresponding standards (red boxed area) were selected 330 for MS analyses, which are shown on the right side of each panel. These analyses 331 confirmed that the structural match between the EV components and the synthetic 332 standards. 333 334 Figure 4. Main mass fragments obtained for amino acids leucine, proline and 335 phenylalanine. 336 337
- 338

339	Figure 5. Effects of the EV	peptides (10 μ g/ml) on the survival	of G. mellonella lethally
	0		,

- 340 infected with *C. gattii* R265 (Cg; A) or *C. neoformans* H99 (Cn; B). A. Ile-Pro-Ile was the
- only peptide prolonging the survival of *G. mellonella*. The other peptides did not
- 342 interfere with the host's survival. The experiment illustrated in A was repeated using *C*.
- 343 *neoformans* H99 instead of *C. gattii* R265, producing similar results.
- 344
- 345 Figure 6. Dose-dependent protection of G. mellonella against C. gattii (Cg) induced by
- 346 Ile-Pro-Ile. Survival of *G. mellonella* after injection with PBS (control) or with *C. gattii*
- 347 yeast cells (left panel) is shown, in addition to the comparative survival curves of *G*.
- 348 *mellonella* after injection with *C. gattii* alone (red curves) or with the fungus in the
- 349 presence of variable concentrations of Ile-Pro-Ile.

350 **Table 1.** MS data obtained for *Cryptococcus gattii* secondary metabolites detected on

351 EVs.

Compound	lon formula	Calculated Experimental		Error (nnm)	
Compound	ion formula	m/z	m/z	Error (ppm)	
Ile-Pro-Ile (Diprotin A)	$C_{17}H_{32}N_3O_4$	342.2392	342.2384	-1.1	
Phe-Pro	$C_{14}H_{19}N_2O_3$	263.1395	263.1387	-1.3	
Pyro Glu-Ile	$C_{11}H_{19}N_2O_4$	243.1344	243.1335	-1.8	
Pyro Glu-Pro	$C_{10}H_{15}N_2O_4$	227.1031	227.1022	-1.7	
Leu-Pro	$C_{11}H_{21}N_2O_3$	229.1552	229.1544	-1.4	
Pyro Glu-Phe	$C_{14}H_{17}N_2O_4$	277.1188	277.1180	-1.0	
Val-Leu-Pro-Val-Pro	$C_{31}H_{54}N_7O_8$	652.4033	652.4025	-1.2	
Cyclo(Trp-Pro)	$C_{16}H_{18}N_3O_2$	284.1399	284.1393	-2.1	
Cyclo(Tyr-Pro)	$C_{14}H_{17}N_2O_3$	261.1239	261.1234	-1.9	
Tryptophan	$C_{11}H_{13}N_2O_2$	205.0977	205.0972	-2.4	
Asperphenamate	$C_{32}H_{31}N_2O_4$	507.2283	507.2278	-1.0	
Riboflavin	$C_{17}H_{21}N_4O_6$	377.1461	377.1456	-1.3	
Pantothenic acid	$C_9H_{18}NO_5$	220.1184	220.1181	-1.3	

354 Table 2. Chromatographic identification of peptides in cryptococcal EVs*.

355

Sample (retention time, min)

Peptide	Control	Mock	EVs	Synthetic
				standards
Ile-Pro-Ile	NF	NF	4.03	3.76
Phe-Pro	NF	NF	3.18 and 3.64	3.28 and 3.62
Pyro-lle	NF	NF	3.55	3.53
Pyro-Pro	NF	NF	1.8	1.8
Leu-Pro	NF	NF	2.83	2.78
Pyro-Phe	NF	NF	4	4

356

357 *Peptide identification was performed in blank samples (control) in addition to

358 preparations obtained from sterile medium (mock) or fungal EVs. The results were

359 compared to those obtained with synthetic peptides. NF, not found.

361 Acknowledgements

- 362 M.L.R. is currently on leave from the position of associate professor at the
- 363 Microbiology Institute of the Federal University of Rio de Janeiro, Brazil. M.L.R. is
- 364 supported by grants from the Brazilian Ministry of Health (grant 440015/2018-9),
- 365 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grants
- 366 405520/2018-2 and 301304/2017-3), and Fiocruz (grants PROEP-ICC 442186/2019-3,
- 367 VPPCB-007-FIO-18, and VPPIS-001-FIO18). JHC and FCGR were financed in part by
- 368 scholarships from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- 369 (CAPES, Brazil, Finance Code 001). MLR also acknowledges support from the Instituto
- 370 Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações
- 371 Negligenciadas (INCT-IDPN). The funders had no role in the decision to publish, or
- 372 preparation of the manuscript.
- 373
- 374 **Conflict of interest statement:** The authors report no conflict of interest.
- 375

376 References

377	1.	Kwon-Chung KJ, Fraser JA, Doering TÁL, Wang ZA, Janbon G, Idnurm A, Bahn YS.
378		Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of
379		cryptococcosis. Cold Spring Harb Perspect Med (2015)
380		doi:10.1101/cshperspect.a019760
381	2.	Fernando Silva Rocha D, Cruz KS, da Silva Santos CS, Stephanny Fernandes
382		Menescal L, da Silva Neto JR, Pinheiro SB, Silva LM, Trilles L, Vicente Braga de
383		Souza J. MLST reveals a clonal population structure for Cryptococcus
384		neoformans molecular type VNI isolates from clinical sources in Amazonas,
385		Northern-Brazil. PLoS One (2018) doi:10.1371/journal.pone.0197841
386	3.	Hagen F, Ceresini PC, Polacheck I, Ma H, van Nieuwerburgh F, Gabaldón T, Kagan
387		S, Pursall ER, Hoogveld HL, van Iersel LJJ, et al. Ancient Dispersal of the Human
388		Fungal Pathogen Cryptococcus gattii from the Amazon Rainforest. PLoS One
389		(2013) doi:10.1371/journal.pone.0071148
390	4.	Bielska E, Sisquella MA, Aldeieg M, Birch C, O'Donoghue EJ, May RC. Pathogen-
391		derived extracellular vesicles mediate virulence in the fatal human pathogen
392		Cryptococcus gattii. Nat Commun (2018) 9 : doi:10.1038/s41467-018-03991-6
393	5.	Reis FCG, Borges BS, Jozefowicz LJ, Sena BAG, Garcia AWA, Medeiros LC, Martins
394		ST, Honorato L, Schrank A, Vainstein MH, et al. A novel protocol for the isolation
395		of fungal extracellular vesicles reveals the participation of a putative scramblase
396		in polysaccharide export and capsule construction in Cryptococcus gattii.
397		<i>mSphere</i> (2019) 4 :e00080-19. doi:10.1128/mSphere .00080-19
398	6.	Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O,
399		Alvarez M, Nakouzi A, Feldmesser M, Casadevall A. Vesicular polysaccharide

400		export in Cryptococcus neoformans is a eukaryotic solution to the problem of
401		fungal trans-cell wall transport. <i>Eukaryot Cell</i> (2007) 6: doi:10.1128/EC.00318-06
402	7.	Rizzo J, Rodrigues ML, Janbon G. Extracellular Vesicles in Fungi: Past, Present,
403		and Future Perspectives. Front Cell Infect Microbiol (2020) 10:
404		doi:10.3389/fcimb.2020.00346
405	8.	Rodrigues ML, Nakayasu ES, Almeida IC, Nimrichter L. The impact of proteomics
406		on the understanding of functions and biogenesis of fungal extracellular
407		vesicles. J Proteomics (2014)97:177-186. doi:10.1016/j.jprot.2013.04.001
408	9.	de Toledo Martins S, Szwarc P, Goldenberg S, Alves LR. Extracellular Vesicles in
409		Fungi: Composition and Functions. Curr Top Microbiol Immunol (2019) 422:45–
410		59. doi:10.1007/82_2018_141
411	10.	Cleare LG, Zamith D, Heyman HM, Couvillion SP, Nimrichter L, Rodrigues ML,
412		Nakayasu ES, Nosanchuk JD. Media matters! Alterations in the loading and
413		release of Histoplasma capsulatum extracellular vesicles in response to different
414		nutritional milieus. Cell Microbiol (2020) doi:10.1111/cmi.13217
415	11.	Costa JH, Bazioli JM, Barbosa LD, dos Santos Júnior PLT, Reis FCG, Klimeck T,
416		Crnkovic CM, Berlinck RGS, Sussulini A, Rodrigues ML, et al. Phytotoxic
417		tryptoquialanines produced in vivo by
418		Penicillium digitatum are exported in extracellular
419		vesicles. <i>bioRxiv</i> (2020)2020.12.03.411132. doi:10.1101/2020.12.03.411132
420	12.	Rizzo juliana, Wong SSW, Gazi AD, Moyrand F, Chaze T, Commere P-H, Matondo
421		M, Novault S, PEHAU-ARNAUDET G, Reis F, et al. New insights into Cryptococcus
422		extracellular vesicles suggest a new structural model and an antifungal vaccine
423		strategy. <i>bioRxiv</i> (2020)2020.08.17.253716. doi:10.1101/2020.08.17.253716

424	13.	Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC,
425		Casadevall A. Extracellular vesicles produced by Cryptococcus neoformans
426		contain protein components associated with virulence. Eukaryot Cell (2008) 7:
427		doi:10.1128/EC.00370-07
428	14.	Wang M, Carver JJ, Phelan V V., Sanchez LM, Garg N, Peng Y, Nguyen DD,
429		Watrous J, Kapono CA, Luzzatto-Knaan T, et al. Sharing and community curation
430		of mass spectrometry data with Global Natural Products Social Molecular
431		Networking. Nat Biotechnol (2016) doi:10.1038/nbt.3597
432	15.	Krug D, Müller R. Secondary metabolomics: The impact of mass spectrometry-
433		based approaches on the discovery and characterization of microbial natural
434		products. <i>Nat Prod Rep</i> (2014) doi:10.1039/c3np70127a
435	16.	Purves K, Macintyre L, Brennan D, Hreggviðsson G, Kuttner E, Ásgeirsdóttir ME,
436		Young LC, Green DH, Edrada-Ebel R, Duncan KR. Using molecular networking for
437		microbial secondary metabolite bioprospecting. Metabolites (2016)
438		doi:10.3390/metabo6010002
439	17.	Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, Van Der Voort
440		M, Pogliano K, Gross H, Raaijmakers JM, et al. Mass spectral molecular
441		networking of living microbial colonies. Proc Natl Acad Sci U S A (2012)
442		doi:10.1073/pnas.1203689109
443	18.	Nguyen DD, Wu CH, Moree WJ, Lamsa A, Medema MH, Zhao X, Gavilan RG,
444		Aparicio M, Atencio L, Jackson C, et al. MS/MS networking guided analysis of
445		molecule and gene cluster families. Proc Natl Acad Sci U S A (2013)
446		doi:10.1073/pnas.1303471110
447	19.	Zhang P, Chan W, Ang IL, Wei R, Lam MMT, Lei KMK, Poon TCW. Revisiting

448		Fragmentation Reactions of Protonated α -Amino Acids by High-Resolution
449		Electrospray Ionization Tandem Mass Spectrometry with Collision-Induced
450		Dissociation. Sci Rep (2019) doi:10.1038/s41598-019-42777-8
451	20.	Kombrink A, Tayyrov A, Essig A, Stöckli M, Micheller S, Hintze J, van Heuvel Y,
452		Dürig N, Lin C wei, Kallio PT, et al. Induction of antibacterial proteins and
453		peptides in the coprophilous mushroom Coprinopsis cinerea in response to
454		bacteria. <i>ISME J</i> (2019) doi:10.1038/s41396-018-0293-8
455	21.	Vargas G, Honorato L, Guimarães AJ, Rodrigues ML, Reis FCG, Vale AM, Ray A,
456		Nosanchuk JD, Nimrichter L. Protective effect of fungal extracellular vesicles
457		against murine candidiasis. Cell Microbiol (2020) doi:10.1111/cmi.13238
458	22.	Ana Caroline Colombo, Rella A, Normile T, Joffe LS, Tavares PM, Glauber GR,
459		Frases S, Orner EP, Farnoud AM, Fries BC, et al. Cryptococcus neoformans
460		glucuronoxylomannan and sterylglucoside are required for host protection in an
461		animal vaccination model. <i>MBio</i> (2019) doi:10.1128/mBio.02909-18
462	23.	Vargas G, Rocha JDB, Oliveira DL, Albuquerque PC, Frases S, Santos SS,
463		Nosanchuk JD, Gomes AMO, Medeiros LCAS, Miranda K, et al. Compositional
464		and immunobiological analyses of extracellular vesicles released by Candida
465		albicans. Cell Microbiol (2015) 17:389–407. doi:10.1111/cmi.12374
466	24.	Bürgel PH, Marina CL, Saavedra PHV, Albuquerque P, Holanda PH, de Araújo
467		Castro R, Heyman H, Coelho C, Cordero RJB, Casadevall A, et al. Cryptococcus
468		neoformans secretes small molecules that inhibit IL-1 β inflammasome-
469		dependent secretion. <i>bioRxiv</i> (2019) doi:10.1101/554048
470	25.	Kabani M, Melki R. Sup35p in its soluble and prion states is packaged inside
471		extracellular vesicles. <i>MBio</i> (2015) 6 : doi:10.1128/mBio.01017-15

172	26	Zarnowski R	Sanchez H	Covelli AS	Dominguez E	laromin A	Bornhardt I
4/Z	20.	Zathowsking	, Sanchez n,	COVEIII AS	, Donninguez e	, Jai Ollilli A	, Dermarut J,

- 473 Mitchell KF, Heiss C, Azadi P, Mitchell A, et al. Candida albicans biofilm–induced
- 474 vesicles confer drug resistance through matrix biogenesis. *PLOS Biol* (2018)
- 475 doi:10.1371/journal.pbio.2006872
- 476 27. Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML,
- 477 Nimrichter L. Extracellular vesicles from Cryptococcus neoformans modulate
 478 macrophage functions. *Infect Immun* (2010) doi:10.1128/IAI.01171-09
- 479 28. Da Silva TA, Roque-Barreira MC, Casadevall A, Almeida F. Extracellular vesicles
- 480 from Paracoccidioides brasiliensis induced M1 polarization in vitro. *Sci Rep*
- 481 (2016) doi:10.1038/srep35867
- 482 29. Bitencourt TA, Rezende CP, Quaresemin NR, Moreno P, Hatanaka O, Rossi A,
- 483 Martinez-Rossi NM, Almeida F. Extracellular vesicles from the dermatophyte
- 484 trichophyton interdigitalemodulate macrophage and keratinocyte functions.

485 *Front Immunol* (2018) doi:10.3389/fimmu.2018.02343

- 486 30. Almeida F, Wolf JM, Da Silva TA, Deleon-Rodriguez CM, Rezende CP, Pessoni
- 487 AM, Fernandes FF, Silva-Rocha R, Martinez R, Rodrigues ML, et al. Galectin-3
- 488 impacts Cryptococcus neoformans infection through direct antifungal effects.

489 *Nat Commun* (2017) doi:10.1038/s41467-017-02126-7

- 490 31. Dawson CS, Garcia-Ceron D, Rajapaksha H, Faou P, Bleackley MR, Anderson MA.
- 491 Protein markers for Candida albicans EVs include claudin-like Sur7 family
- 492 proteins. *J Extracell Vesicles* (2020) doi:10.1080/20013078.2020.1750810
- 493 32. Da Silva RP, Puccia R, Rodrigues ML, Oliveira DL, Joffe LS, César G V., Nimrichter
- 494 L, Goldenberg S, Alves LR. Extracellular vesicle-mediated export of fungal RNA.
- 495 *Sci Rep* (2015) **5**:7763. doi:10.1038/srep07763

496	33.	Trevijano-Contador N. Zaragoza O. Immune response of Galleria mellonella

- 497 against human fungal pathogens. *J Fungi* (2019) doi:10.3390/jof5010003
- 498 34. Gibson JF, Johnston SA. Immunity to Cryptococcus neoformans and C. gattii
- 499 during cryptococcosis. *Fungal Genet Biol* (2015) doi:10.1016/j.fgb.2014.11.006
- 500 35. Shoham S, Levitz SM. The immune response to fungal infections. Br J Haematol
- 501 (2005) doi:10.1111/j.1365-2141.2005.05397.x
- 502 36. Kieffer TJ, Mc Intosh CHS, Pederson RA. Degradation of glucose-dependent
- 503 insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in
- 504 vivo by dipeptidyl peptidase iv. *Endocrinology* (1995)
- 505 doi:10.1210/endo.136.8.7628397
- 506 37. Guo Y, Hangoc G, Bian H, Pelus LM, Broxmeyer HE. SDF-1/CXCL12 Enhances
- 507 Survival and Chemotaxis of Murine Embryonic Stem Cells and Production of
- 508 Primitive and Definitive Hematopoietic Progenitor Cells. *Stem Cells* (2005)
- 509 doi:10.1634/stemcells.2005-0085
- 510 38. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R,
- 511 Parnmen S, Lumbsch HT, Boekhout T. Recognition of seven species in the
- 512 Cryptococcus gattii/Cryptococcus neoformans species complex. *Fungal Genet*
- 513 Biol (2015) doi:10.1016/j.fgb.2015.02.009

lle-Pro-lle

Pyro Glu-Pro

Leu-Pro

Pyro Glu-Phe

Cyclo(Trp-Pro)

Cyclo(Tyr-Pro)

Val-Leu-Pro-Val-Pro

Tryptophan

Asperphenamate

Pantothenic Acid

Riboflavin

ion proline m/z 116.07

m/z 70.06

ion leucine m/z 132.10

m/z 86.09

ion phenylalanine m/z 166.08

m/z 120.08

