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ABSTRACT

Dynamics underlying epileptic seizures span multiple scales in space and time, therefore,
understanding seizure mechanisms requires identifying the relations between seizure components
within and across these scales, together with the analysis of their dynamical repertoire. In this
view, mathematical models have been developed, ranging from single neuron to neural population.

In this study we consider a neural mass model able to exactly reproduce the dynamics of
heterogeneous spiking neural networks. We combine the mathematical modelling with structural
information from non-invasive brain imaging, thus building large-scale brain network models to
explore emergent dynamics and test clinical hypothesis. We provide a comprehensive study on
the effect of external drives on neuronal networks exhibiting multistability, in order to investigate
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the role played by the neuroanatomical connectivity matrices in shaping the emergent dynamics.
In particular we systematically investigate the conditions under which the network displays a
transition from a low activity regime to a high activity state, which we identify with a seizure-like
event. This approach allows us to study the biophysical parameters and variables leading to
multiple recruitment events at the network level. We further exploit topological network measures
in order to explain the differences and the analogies among the subjects and their brain regions,
in showing recruitment events at different parameter values.

We demonstrate, along the example of diffusion-weighted magnetic resonance imaging (MRI)
connectomes of 20 healthy subjects and 15 epileptic patients, that individual variations in
structural connectivity, when linked with mathematical dynamic models, have the capacity to
explain changes in spatiotemporal organization of brain dynamics, as observed in network-based
brain disorders. In particular, for epileptic patients, by means of the integration of the clinical
hypotheses on the epileptogenic zone (EZ), i.e. the local network where highly synchronous
seizures originate, we have identified the sequence of recruitment events and discussed their
links with the topological properties of the specific connectomes. The predictions made on the
basis of the implemented set of exact mean-field equations turn out to be in line with the clinical
pre-surgical evaluation on recruited secondary networks.

Keywords: Neural mass model, quadratic integrate-and-fire neuron, patient-specific brain network model, epileptic seizure-like event,

topological network measure

1 INTRODUCTION

Epilepsy is a chronic neurological disorder characterized by the occurrence and recurrence of seizures and
represents the third most common neurological disorder affecting more than 50 million people worldwide.
Anti-epileptic drugs are the first line of treatment for epilepsy and they provide sufficient seizure control in
around two-thirds of cases Kwan and Brodie (2000). However, about 30 to 40% of epilepsy patients do
not respond to drugs, a percentage that has remained relatively stable despite significant efforts to develop
new anti-epileptic medication over the past decades. For drug-resistent patients, a possible treatment is the
surgical resection of the brain tissue responsible for the generation of seizures.

As a standard procedure, epilepsy surgery is preceded by a qualitative assessment of different brain
imaging modalities in order to identify the brain tissue responsible for seizure generation, i.e. the
epileptogenic zone (EZ) Rosenow and Lüders (2001), which in general represents a localized region
or network where seizures arise, before recruiting secondary networks, called the propagation zone (PZ)
Talairach and Bancaud (1966); Bartolomei et al. (2001); Spencer (2002). Outcomes are positive whenever
the patient has become seizure-free after surgical operation.

Intracranial electroencephalography (iEEG) is commonly used during the presurgical assessment to
find the seizure onset zone David et al. (2011); Duncan et al. (2016); Rosenow and Lüders (2001), the
assumption being that the region where seizures emerge, is at least part of the brain tissue responsible for
seizure generation. As a part of the standard presurgical evaluation with iEEG, stereotactic EEG (SEEG) is
used to help correctly delineating the EZ Bartolomei et al. (2002). Alternative imaging techniques such
as structural MRI, M/EEG, and positron emission tomography (PET) help the clinician to outline the EZ.
Recently, diffusion MRI (dMRI) started being evaluated as well, thus giving the possibility to infer the
connectivity between different brain regions and revealing reduced fractional anisotropy Ahmadi et al.
(2009); Bernhardt et al. (2013) and structural alterations in the connectome of epileptic patients Bonilha
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et al. (2012); DeSalvo et al. (2014); Besson et al. (2014). However, epilepsy surgery is often unsuccessful
and the long-term positive outcome may be lower than 25% in extra-temporal cases De Tisi et al. (2011);
Najm et al. (2013), thus meaning that the EZ has not been correctly identified or that the EZ and the seizure
onset zone may not coincide.

In order to quantitatively examine clinical data and to determine targets for surgery, many computational
models have been recently proposed Hutchings et al. (2015); Goodfellow et al. (2017); Khambhati et al.
(2016); Lopes et al. (2017); Sinha et al. (2017), that use MRI or iEEG data acquired during presurgical
workup to infer structural or functional brain networks. Taking advantages of recent advances in our
understanding of epilepsy, that indicate that seizures may arise from distributed ictogenic networks
Richardson (2012); Bartolomei et al. (2017); Besson et al. (2017), phenomenological models of seizure
transitions are used to compute the escape time, i.e., the time that each network node takes to transit
from a normal state to a seizure-like state. Nodes with the lowest escape time are then considered as
representative of the seizure onset zone and therefore candidates for surgical resection, by assuming seizure
onset zone as a proxy for the EZ Hutchings et al. (2015); Sinha et al. (2017). Alternatively, different possible
surgeries are simulated in silico to predict surgical outcomes Goodfellow et al. (2017); Lopes et al. (2017,
2019) by making use of synthetic networks and phenomenological network models of seizure generation.
Further attention has been paid to studying how network structure and tissue heterogeneities underpin the
emergence of focal and widespread seizure dynamics in synthetic networks of phase oscillators Lopes et al.
(2019, 2020).

More in general there is a vast and valuable literature on computational modeling in epilepsy, where two
classes of models are used: 1) mean-field (macroscopic) models and 2) detailed (microscopic) network
models. Mean field models are often preferred over the more detailed models since they have fewer
parameters and thus simplify the study of transitions from interictal to ictal states and the subsequent EEG
analysis of data from epilepsy patients. This is justified as the macroelectrodes used for EEG recordings
represent the average local field potential arising from neuronal populations. Indeed, much effort has been
made so far to explain the biophysical and dynamical nature of seizure onsets and offsets by employing
neural mass models Da Silva et al. (1974); Wendling et al. (2002); Kalitzin et al. (2010); Touboul et al.
(2011); Kramer et al. (2012); Jirsa et al. (2014). Mechanistic interpretability of the mean field parameters is
lost, as many physiological details are absorbed in few degrees of freedom. Since the mean field models
remain relatively simple, they can also be employed to describe epileptic processes occurring in “large-
scale” systems, e.g. the precise identification of brain structures that belong to the seizure-triggering zone
(epileptic activity often spreads over quite extended regions and involves several cortical and sub-cortical
structures). However, only recently, propagation of epileptic seizures started to be studied using brain
network models, and was limited to small scales Terry et al. (2012) or absence seizures Taylor et al. (2013),
while partial seizures have been reported to propagate through large-scale networks in humans Bartolomei
et al. (2013) and animal models Toyoda et al. (2013). All in all, even though neural mass models are in
general easier to analyze numerically because relatively few variables and parameters are involved, they
drastically fail to suggest molecular and cellular mechanisms of epileptogenesis.

On the other hand, detailed network models are best suited for understanding the molecular and cellular
bases of epilepsy and thus they may be used to suggest therapeutics targeting molecular pathways Destexhe
and Sejnowski (1995); Van Drongelen et al. (2005); Turrigiano (2008); Cressman et al. (2009); Ullah et al.
(2009). Due to the substantial complexity of neuronal structures, relatively few variables and parameters
can be accessed at any time experimentally. Although biophysically explicit modeling is the primary
technique to look into the role played by experimentally inaccessible variables in epilepsy, the usefulness

Frontiers 3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.01.15.426839doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426839


Gerster et al. Patient-specific network connectivity

of detailed biophysical models is limited by constraints in computational power, uncertainties in detailed
knowledge of neuronal systems, and the required simplification for the numerical analysis. Therefore an
intermediate “across-scale” approach, establishing relationships between sub-cellular/cellular variables of
detailed models and mean-field parameters governing macroscopic models, might be a promising strategy
to cover the gaps between these two modeling approaches Brocke et al. (2016); Schirner et al. (2018);
Lindroos et al. (2018).

In view of developing a cross-scale approach, it is important to point out that large-scale brain network
models emphasize the network character of the brain and merge structural information of individual
brains with mathematical modeling, thus constituting in-silico approaches for the exploration of causal
mechanisms of brain function and clinical hypothesis testing Proix et al. (2017, 2018); Olmi et al. (2019).
In particular, in brain network models, a network region is a neural mass model of neural activity, connected
to other regions via a connectivity matrix representing fiber tracts of the human brain. This form of virtual
brain modeling Fuchs et al. (2000); Jirsa et al. (2002, 2010) exploits the explanatory power of network
connectivity imposed as a constraint upon network dynamics and has provided important insights into
the mechanisms underlying the emergence of asynchronous and synchronized dynamics of wakefulness
and slow-wave sleep Goldman et al. (2020) while revealing the whole-brain mutual coupling between the
neuronal and the neurotransmission systems to understand the flexibility of human brain function despite
having to rely on fixed anatomical connectivity Kringelbach et al. (2020). Recent studies have pointed
out the influence of individual structural variations of the connectome upon the large-scale brain network
dynamics of the models, by systematically testing the virtual brain approach along the example of epilepsy
Proix et al. (2017, 2018); Olmi et al. (2019). The employment of patient-specific virtual brain models
derived from diffusion MRI may have a substantial impact for personalized medicine, allowing for an
increase in predictivity concerning the pathophysiology of brain disorders, and their associated abnormal
brain imaging patterns. More specifically a personalized brain network model derived from non-invasive
structural imaging data would allow for testing of clinical hypotheses and exploration of novel therapeutic
approaches.

In order to exploit the predictive power of personalized brain network models, we have implemented,
on subject-specific connectomes, a next generation neural mass model that, differently from the previous
applied heuristic mean-field models Proix et al. (2017, 2018); Olmi et al. (2019), is exactly derived from
an infinite size network of quadratic integrate-and-fire neurons Montbrió et al. (2015), that represent the
normal form of Hodgkin’s class I excitable membranes Ermentrout and Kopell (1986). This next generation
neural mass model is able to describe the variation of synchrony within a neuronal population, which is
believed to underlie the decrease or increase of power seen in given EEG frequency bands while allowing
for a more direct comparison with the results of electrophysiological experiments like local field potential,
EEG and event-related potentials (ERPs), thanks to its ability to capture the macroscopic evolution of
the mean membrane potential. Most importantly, the exact reduction dimension techniques at the basis
of the next generation neural mass model have been developed for coupled phase oscillators Ott and
Antonsen (2008) and allow for an exact (analytical) moving upwards through the scales: While keeping the
influence of smaller scales on larger ones they level out their inherent complexity. In this way it is therefore
possible to develop an intermediate “across-scale” approach exploiting the 1:1 correspondence between
microscopic and mesoscopic level that allows for a more detailed modelling parameters and for mapping
the microscopic results to the relative ones in the regional mean field parameters.

The next generation neural mass model developed by Montbrió et al. (2015), has been recently extended
to take into account time-delayed synaptic coupling Pazó and Montbrió (2016); Devalle et al. (2018) and,
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when integrated in a large-scale brain network, time delays in the interaction between the different brain
areas, due to the finite conduction speed along fiber tracts of different lengths Rabuffo et al. (2020). The
time delay, together with the effective stochasticity of the investigated dynamics give rise, both on structural
connectivity matrices of mice and healthy subjects, to preferred spatiotemporal pattern formation Jirsa
(2008); Petkoski and Jirsa (2020) and short-lived neuronal cascades that form spontaneously and propagate
through the network under conditions of near-criticality Rabuffo et al. (2020). The largest neuronal cascades
produce short-lived but robust co-fluctuations at pairs of regions across the brain, thus contributing to the
organization of the slowly evolving spontaneous fluctuations in brain dynamics at rest. The introduction of
extrinsic or endogenous noise sources in the framework of exact neural mass models is possible in terms of
(pseudo)-cumulants expansion in Tyulkina et al. (2018); Goldobin et al. (2021).

In this paper, we have built brain network models for a cohort of 20 healthy subjects and 15 epileptic
patients, implementing for each brain region a neural mass model developed by Montbrió et al. (2015). As
paradigms for testing the spatiotemporal organization, we have systematically simulated the individual
seizure-like propagation patterns, looking for the role played by the individual structural topologies
in determining the recruitment mechanisms. Specific attention has been devoted to the analogies and
differences among the self-emergent dynamics in healthy and epilepsy-affected subjects. Furthermore, for
epileptic patients, we have validated the model against the presurgical stereotactic electroencephalography
(SEEG) data and the standard-of-care clinical evaluation. More specifically Sec. 2 is devoted to the
description of the implemented model and the applied methods. In Sec. 3.1 are reported the results specific
for healthy subjects, while in Sec. 3.2 is reported a detailed analysis performed on epileptic patients. Finally
a discussion on the presented results is reported in Sec. 4.

2 METHODS

2.1 Network Model

The membrane potential dynamics of the i-th QIF neuron in a network of size N can be written as

τmV̇i = V 2
i (t) + ηi + IB + IS(t) + τm

1

N

N∑
j=1

J̃ij(t)Sj(t) , i = 1, . . . , N (1)

where τm = 20 ms is the membrane time constant and J̃ij(t) the strength of the direct synapse from neuron
j to i that we assume to be constant and all identical, i.e. J̃ij(t) = J . The sign of J determines if the neuron
is excitatory (J > 0) or inhibitory (J < 0); in the following we will consider only excitatory neurons.
Moreover, ηi represents the neuronal excitability, IB a constant background DC current (in the following
we assume IB = 0), IS(t) an external stimulus and the last term on the right hand side the synaptic current
due to the recurrent connections with the pre-synaptic neurons. For instantaneous post-synaptic potentials
(corresponding to δ-spikes) the neural activity Sj(t) of neuron j reads as

Sj(t) =
∑

tj(k)<t

δ(t− tj(k)), (2)

where Sj(t) is the spike train produced by the j-th neuron and tj(k) denotes the k-th spike time in such
sequence. We have considered a fully coupled network without autapses, therefore the post-synaptic current
will be the same for each neuron.
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In the absence of synaptic input, external stimuli and IB = 0, the QIF neuron exhibits two possible
dynamics, depending on the sign of ηi. For negative ηi, the neuron is excitable and for any initial condition
Vi(0) <

√
−ηi, it reaches asymptotically the resting value −

√
−ηi. On the other hand, for initial values

larger than the excitability threshold, Vi(0) >
√
−ηi, the membrane potential grows unbounded and a reset

mechanism has to be introduced to describe the spiking behaviour of a neuron. Whenever Vi(t) reaches
a threshold value Vp, the neuron i delivers a spike and its membrane potential is reset to Vr, for the QIF
neuron Vp = −Vr = ∞. For positive ηi the neuron is supra-threshold and it delivers a regular train of
spikes with frequency ν0 =

√
ηi/π.

2.2 Neural Mass Model

For the heterogeneous QIF network with instantaneous synapses (Eqs. (1)-(2)), an exact neural mass
model has been derived in Montbrió et al. (2015). The analytic derivation is possible for QIF spiking
networks using the Ott-Antonsen Ansatz Ott and Antonsen (2008) applicable to phase-oscillators networks,
whenever the natural frequencies are distributed according to a Lorentzian distribution. In the case of the
QIF network this corresponds to a distribution of the excitabilities {ηi} given by

g(η) =
1

π

∆

(η − η̄)2 + ∆2
, (3)

which is centred in η̄ and has half width at half maximum (HWHM) ∆ (∆ = 1 throughout this work). In
particular, this neural mass model allows for an exact macroscopic description of the population dynamics,
in the thermodynamic limit N →∞, in terms of only two collective variables, namely the mean membrane
voltage potential v(t) and the instantaneous population rate r(t), as follows

τmṙ(t) =
∆

τmπ
+ 2r(t)v(t) (4a)

τmv̇(t) = v2(t) + η̄ + IB + IS(t)− [πτmr(t)]
2 + τmJ̃(t)r(t) ; (4b)

where the synaptic strength is assumed to be identical for all neurons and for instantaneous synapses
in absence of plasticity J̃(t) = J . However, by including a dynamical evolution for the synapses and
therefore additional collective variables, this neural mass model can be extended to any generic post-
synaptic potential, see e.g. Devalle et al. (2017) for exponential synapses or Coombes and Byrne (2019) for
conductance based synapses with α-function profile.

2.3 Multipopulation Neural Mass Model

The neural mass model can be easily extended to account for multiple interconnected neuronal populations
Npop. In the following we consider personalized brain models derived from structural data of magnetic
resonance imaging (MRI) and Diffusion Tensor weighted Imaging (DTI), thus implementing different
structural connectivity matrices for healthy subjects and epileptic patients. For healthy subjects cortical
and volumetric parcellations were performed using the Automatic Anatomical Atlas 1 (AAL1) (Tzourio-
Mazoyer et al., 2002) with Npop = 90 brain regions: each region will be described in terms of the presented
neural mass model. For epileptic subjects cortical and volumetric parcellations were performed using
the Desikan-Killiany atlas with 70 cortical regions and 17 subcortical regions (Desikan et al., 2006) (one
more empty region is added in the construction of the structural connectivity for symmetry). In this case
the structural connectivity matrix is composed, for each epileptic patient, by 88 nodes equipped with the
presented region specific neural mass model capable of demonstrating epileptiform discharges.
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The corresponding multi-population neural mass model can be straightforwardly written as

τmṙk =
∆k

τmπ
+ 2rk(t)vk(t) k = 1, 2, . . . , Npop (5a)

τmv̇k = v2k(t) + η̄(k) + IB + I
(k)
S (t)− (πτmrk(t))2 + τm

Npop∑
l=1

Jklrl(t), (5b)

where {Jkl} is the connectivity matrix, representing the synaptic weights among the populations. Diagonal
entries Jkk denote intra-population and non-diagonal entries Jkl, k 6= l inter-population connections. Here
we have assumed that the neurons are globally coupled both at the intra- and inter-population level, hence
removing the dependency on the neuron indices.

The connectivity matrix entries Jkl are determined via a second matrix {J̃kl}, which represents the
topology extracted from empirical DTI. The values of {J̃kl} are normalized in the range [0, 1] via rescaling
with the maximal entry value, and have J̃kk = 0 on the diagonal. In order to account for strong intra-
coupling (recurrent synapses) and intermediate inter-coupling, we choose the entries of each structural
connectivity as

Jkl = σ

{
5 J̃kl if k 6= l
20 if k = l,

(6)

where σ is a rescaling factor common to all synapses, that we assume to be constant and equal to 1, apart
few cases where we investigate the dependence on the synaptic weights. Hence, the synaptic weights
for k 6= l are in the range Jkl ∈ [0, 5], while the intra-coupling is set to Jkk = 20 (apart when specified
otherwise). The time dependent stimulus current I(k)S (t) is population specific and a single population at
a time is generally stimulated during a numerical experiment. The applied stimulus I(k)S (t) consists of a
rectangular pulse of amplitude IS and duration tI ; the dependence on these parameters is studied in this
paper to support the generality of the results.

2.4 Topologies

As a first set of data, we have selected 20 diffusion-weighted magnetic resonance imaging connectomes
of healthy subjects (mean age 33 years, standard deviation 5.7 years, 10 females, 2 left-handed) that
participated in a study on schizophrenia as a control group (Melicher et al., 2015). All subjects were
recruited via local advertisements and had none of the following conditions: Personal lifetime history
of any psychiatric disorder or substance abuse established by the Mini-International Neuropsychiatric
Interview (M.I.N.I.) (Lecrubier et al., 1997), any psychotic disorder in first or second-degree relatives.
Further exclusion criteria included current neurological disorders, lifetime history of seizures or head injury
with altered consciousness, intracranial hemorrhage, neurological sequelae, history of mental retardation,
history of substance dependence, any contraindication for MRI scanning.

The scans were performed on a 3T Siemens scanner in the Institute of Clinical and Experimental Medicine
in Prague, employing a Spin-Echo EPI sequence with 30 diffusion gradient directions, TR = 8300 ms,
TE = 84 ms, 2× 2× 2mm3 voxel size, b-value 900s/mm2. The diffusion weighted images (DWI) were
analyzed using the Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006), part of FMRIB’s Software
Library (FSL) (Smith et al., 2004). Image conversion from DICOM to NIfTI format was accomplished
using dcm2nii. With FMRIB’s Diffusion Toolbox (FDT), the fractional anisotropy (FA) images were
created by fitting a tensor model to the raw diffusion data and then, using the Brain Extraction Tool (BET)
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(Smith, 2002), brain-extracted. FA identifies the degree of anisotropy of a diffusion process and it is a
measure often used in diffusion imaging where it is thought to reflect fiber density, axonal diameter, and
myelination in white matter. A value of zero means that diffusion is isotropic, i.e. it is unrestricted (or
equally restricted) in all directions, while a value of one means that diffusion occurs only along one axis
and is fully restricted along all other directions. Subsequently the FA images were transformed into a
common space by nonlinear registration IRTK(Rueckert et al., 1999). A mean FA skeleton, representing
the centers of all tracts common to the group, was obtained from the thinned mean FA image. All FA data
were projected onto this skeleton. The resulting data was fed into voxel-wise cross-subject statistics. Prior
to analysis in SPM, the FA maps were converted from NIfTI format to Analyze.

The brains were segregated into 90 brain areas according to the Automated Anatomical Labeling Atlas
1 (AAL1) (Tzourio-Mazoyer et al., 2002). The anatomical names of the brain areas for each index k is
shown in Tab. 1. In each brain network, one AAL brain area corresponds to a node of the network. The
weights between the nodes were estimated through the measurement of the preferred diffusion directions,
given by a set of ns = 5000 streamlines for each voxel. The streamlines are hypothesized to correlate with
the white-matter tracts. The ratio of streamlines connecting area l and area k is given by the probability
coefficient plk. Then, the adjacency matrix Jkl is constructed from this probability coefficient. The DTI
processing pipeline has been adopted from Ref. (Cabral et al., 2013).

Besides the healthy connectomes, we selected 15 connectomes (9 females, 6 males, mean age 33.4,
range 22-56) of patients with different types of partial epilepsy that underwent a presurgical evaluation.
The scans were performed at the Centre de Résonance Magnétique et Biologique et Médicale (Faculté de
Médecine de la Timone) in Marseille. Diffusion MRI images were acquired on a Siemens Magnetom Verio
3T MR-scanner using a DTI-MR sequence with an angular gradient set of 64 directions, TR = 10700 ms,
TE = 95 ms, 2× 2× 2mm3 voxel size, 70 slices, b-value 1000s/mm2.

The data processing pipeline (Schirner et al., 2015; Proix et al., 2016) made use of various tools such
as FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), MRtrix3 (Tournier, 2010) and Remesher
(Fuhrmann et al., 2010), to reconstruct the individual cortical surface and large-scale connectivity. The
surface was reconstructed using 20,000 vertices. Cortical and volumetric parcellations were performed
using the Desikan-Killiany atlas with 70 cortical regions and 17 subcortical regions Desikan et al. (2006).
The final atlas consists of 88 regions since one more empty region is added in the construction of the
structural connectivity for symmetry. After correction of the diffusion data for eddy-currents and head
motions using eddy-correct FSL functions, the Fiber orientation was estimated using Constrained Spherical
Deconvolution (Tournier et al., 2007) and improved with Anatomically Constrained Tractography (Smith
et al., 2012). For tractography, 2.5× 106 fibers were used and, for correction, Spherical-Deconvolution
Informed Filtering of Tractograms (Smith et al., 2013) was applied. Summing track counts over each region
of the parcellation yielded the adjacency matrix. Here, the AAL2 was employed for brain segregation
leading to 88 brain areas for each patient, see Tab. 2.

2.5 EEG and SEEG data

All 15 drug-resistant patients, mentioned in the previous Section, affected by different types of partial
epilepsy accounting for different Epileptogenic Zone (EZ) localizations, underwent a presurgical evaluation
(see Supplementary Tables 3, 4). For each patient a first non-invasive evaluation procedure is foreseen, that
comprises of the patient clinical record, neurological examinations, positron emission tomography (PET),
and electroencephalography (EEG) along with video monitoring. Following this evaluation, potential EZs
are identified by the clinicians. Further elaboration on the EZ is done in a second, invasive phase, which
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consists of positioning stereotactic EEG (SEEG) electrodes in or close to the suspected regions. These
electrodes are equipped with 10 to 15 contacts that are 1.5 mm apart. Each contact has a length of 2 mm
and measures 0.8 mm in diameter. Recordings were obtained using a 128 channel DeltamedTM system
with a 256 Hz sampling rate and band-pass filtered between 0.16 Hz and 97 Hz by a hardware filter. All
patients showed seizures in the SEEG, starting in one or several localized areas (EZ), before recruiting
distant regions, identified as the Propagation Zone (PZ). Precise electrode positioning was performed by
either a computerized tomography or MRI scan after implanting the electrodes.

Two methods were used for the identification of the propagation zone (see Supplementary Table
4). First, the clinicians evaluated the PZs subjectively on the basis of the EEG and SEEG recordings
gathered throughout the two-step procedure (non-invasive and invasive). Second, the PZs were identified
automatically based on the SEEG recordings: For each patient, all seizures were isolated in the SEEG time
series. The bipolar SEEG was considered (between pairs of electrode contacts) and filtered between 1-50
Hz using a Butterworth band-pass filter. An area was defined as a PZ if its electrodes detected at least 30%
of the maximum signal energy over all contacts, and if it was not in the EZ. In the following, we call the
PZs identified by the subjective evaluation of clinicians PZClin and the PZs identified through SEEG data
PZSEEG.

2.6 Network Measures

Topological properties of a network can be examined by using different graph measures that are provided
by the general framework of the graph theory. These graph metrics can be classified in terms of measures
that cover three main aspects of the topology: segregation, integration and centrality. The segregation
accounts for the specialized processes that occur inside a restricted group of brain regions, usually densely
connected, and it eventually reveals the presence of a dense neighborhood around a node, which results to
be fundamental for the generation of clusters and cliques capable to share specialized information. Among
the possible measures of segregation, we have considered the clustering coefficient, which gives the fraction
of triangles around a node and it is equivalent to the fraction of node’s neighbors that are neighbors of each
other as well. In particular the average clustering coefficient C of a network gives the fraction of closed
triplets over the number of all open and closed triplets, where a triplet consists of three nodes with either
two edges (open triplet) or three edges (closed triplet). The weighted clustering coefficient cwi (Barrat et al.,
2004) considers the weights of its neighbors:

cwi =
1

si(ki − 1)

∑
j,h

wij + wih

2
aijaihajh, (7)

where si is the node strength (to be defined below), ki the node degree, wij the weight of the link, and
aij is 1 if the link i→ j exists and 0 if node i and j are not connected. The average weighted clustering
coefficient CW is the mean of all weighted clustering coefficients: CW = 1

N

∑
i ci.

The measures of integration refer to the capacity of the network to rapidly combine specialized information
from not nearby, distributed regions. Integration measures are based on the concept of communication
paths and path lengths, which estimate the unique sequence of nodes and links that are able to carry the
transmission flow of information between pairs of brain regions. The shortest path dij between two nodes
is the path with the least number of links. The average shortest path length of node i of a graph G is the
mean of all shortest paths from node i to all other nodes of the network: L(G, i) = 1

N−1
∑

j∈N,j 6=i dij . The
average shortest path length of all nodes is the mean of all shortest paths (Boccaletti et al., 2006): L(G) =

Frontiers 9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.01.15.426839doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426839


Gerster et al. Patient-specific network connectivity

1
N−1

∑
i,j∈N,i 6=j dij . In a weighted network, distance and weight have a reciprocal relation. If a weight

between two adjacent nodes is doubled, their shortest path is cut by half: L(G) = 1
N−1

∑
i,j∈N,i 6=j

dij
wij

.

Centrality refers to the importance of network nodes and edges for the network functioning. The most
intuitive index of centrality is the node degree, which gives the number of links connected to the node; for
this measure, connection weights are ignored in calculations. In this manuscript, we employ the network
measure node strength si, which corresponds to the weighted node degree of node i and equals the sum of
all its weights: si =

∑
j∈Nwij . Accordingly, the average node strength S corresponds to the mean of all

node strengths S = 1
N

∑
i si. All finite networks have a finite number of shortest paths d(i, j) between any

pair of nodes i, j. The betweenness centrality cB(s) of node s is equal to all pairs of shortest paths that
pass through s divided by the number of all shortest paths in the network: cB(s) =

∑
i,j∈N

d(i,j|s)
d(i,j) . For the

weighted betweenness centrality, the weighted shorted paths are used.

3 RESULTS

The detection of epileptic seizures via electrophysiological recordings allowed for the establishment of
a detailed taxonomy of seizures. The majority of seizures recorded in humans and experimental animal
models can be described by a generic phenomenological mathematical model, the Epileptor Jirsa et al.
(2014). In this model, seizure events are driven by a slow permittivity variable and occur via saddle node
and homoclinic bifurcations at seizure onset and offset, respectively. The saddle-node bifurcation at the
onset of ictal discharges was chosen based on experimentally observed features, such as fixed frequency
and fixed amplitude of abruptly starting oscillations, and a shift of baseline field potential. The homoclinic
bifurcation at the offset of ictal discharges, on the other hand, reproduces the logarithmic scaling of
interspike intervals when approaching seizure offset. As part of the dynamic repertoire of the Epileptor, the
epileptic attractor is described in terms of a self-sustained limit cycle that comes from the destabilisation of
the physiological activity while multiple types of transitions allow for the accessibility of seizure activity,
status epilepticus and depolarization block, that coexist, as verified experimentally in El Houssaini et al.
(2020).

The Epileptor model has been reduced to a minimal canonical mathematical representation of high
codimension (up to 4) that, appropriately tuned, can display several types of fast-slow behaviors Saggio
et al. (2017). The model contains two subsystems acting at different time scales, in which the fast
subsystem is unfolded in a plane showing several bifurcation paths of a high codimension singularity. The
slow subsystem steers the fast one back and forth along these paths leading to fast-slow (aka bursting)
behavior, mimicking epileptiform activity. The model is able to produce almost all the classes of bursting
predicted for systems with a planar fast subsystem, including the Epileptor class, which is also the target
class in this paper and has been demonstrated to be the dominant class, so-called dynamotype, in empirical
epilepsy data Saggio et al. (2020). Other dynamotypes have been also found empirically.

When performing the analysis of the single-population firing rate equations (4), it turns out that, in the
absence of forcing, the only attractors are fixed points. As it will become clear in the following Section, a
stable node and a stable focus are observable, separated by a bistability region between a high- and a low-
activity state, whose boundaries are the locus of a saddle-node bifurcation (for more details see (Montbrió
et al., 2015)). In this context are not observable self-sustained oscillations, but only damped oscillations at
the macroscopic level that reflect the oscillatory decay to the stable fixed point. This oscillatory decay will
here be considered as representative of a seizure-like event, not being able to observe a stable limit cycle to
describe the emergence of a fully developed seizure as in the Epileptor. However, seizure-like events can be
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used as paradigm to investigate propagation of seizure-like activity in the network. Furthermore, a recently
developed model of interictal and ictal discharges, called Epileptor-2 Chizhov et al. (2018), makes links to
underlying physiology and suggest how to eventually obtain all observed dynamotypes for the exact neural
mass model (4) and enable transitions towards fully developed seizure activity.

Epileptor-2 is a simple population-type model that includes four principal variables, i.e. the extracellular
potassium concentration, the intracellular sodium concentration, the membrane potential and the synaptic
resource diminishing due to short-term synaptic depression. A QIF neuron model, whose dynamics is
ruled by an equation similar to Eq. (1), is used as an observer of the population activity. While the
potassium accumulation governs the transition from the silent state to the state of ictal discharge, the
sodium accumulated during the discharge, activates the sodium-potassium pump, which terminates the
ictal discharge by restoring the potassium gradient, thus polarizing the neuronal membranes. This means
that, in high potassium conditions, Epileptor-2 produces bursts of bursts, described as ictal-like discharges.

Therefore, the association of a slow subsystem describing ion concentration variations together with a
fast subsystem, identified by Eqs. (4), should give rise to self-emergent periodic and bursting dynamics
at the macroscopic level, thus allowing us to identify different combinations of onset/offset bifurcations.
Whenever not sufficient, it will be possible to investigate the dynamics emergent in the exact neural mass
model, provided with short-term synaptic plasticity, when subject to a global feedback acting on a slow
timescale, describing ion concentration variations. The exact neural mass model, when equipped with
short-term synaptic plasticity, shows a more complex dynamics that eventually results in a bifurcation
diagram that provides stable limit cycles Taher et al. (2020). However the introduction of short-term
plasticity, itself, adds complexity to the dynamics, allowing for the emergence of bursting activity Tsodyks
et al. (1998).

3.1 Healthy Subjects

3.1.1 Phase and Bifurcation Diagrams

The analysis of the single-population firing rate equations (4), performed in (Montbrió et al., 2015),
has revealed that there are three distinct regions, when considering the phase diagram of the system as a
function of the external drive η̄ and synaptic weight J , in absence of time dependent forcing (I(t) = 0):
(1) a single stable node equilibrium corresponding to a low-activity state, (2) a single stable focus (spiral)
generally corresponding to a high-activity state, and (3) a region of bistability between low and high
firing rate. In particular, in the region where the stable focus is observable, the system undergoes damped
oscillatory motion towards this fixed point. The presence of damped oscillations at the macroscopic level
reflects the transitory synchronous firing of a fraction of the neurons in the ensemble. While this behavior is
common in network models of spiking neurons, it is not captured by traditional firing-rate models (Schaffer
et al., 2013; Devalle et al., 2017; Taher et al., 2020).

When considering the multipopulation neural mass model (5) with homogeneously set η̄(k) = η̄, the
corresponding phase diagram (shown in Fig. 1 B) is qualitatively the same as the one shown in Fig 1 in
(Montbrió et al., 2015), since the same attractors are observable. In the original model these attractors are
single-population states, while they reflect multipopulation states in the present case. Single-population
low-activity (LA) and high-activity (HA) states translate into network LA and HA states. In the former
all populations have low, in the latter high firing rates. We observe that the single-population bistability
accurately reflects the hysteretic transition in the network when changing η̄. In the following we will
address how this relation between single-node and multipopulation phase diagram occurs.
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Figure 1. A1-A3 Equilibrium firing rates 〈r∗〉 vs. η̄ for the up-sweep (blue dots) and down-sweep (orange
squares). For each η̄ ∈ [−50, 10] in steps of ∆η̄ = 1.5 the system is initialized using the final state of
the previous run and evolves for 2 s after which the average network firing rate in the equilibrium state
is determined. Different panels correspond to different σ values: σ = 1.5 (A1), σ = 1 (A2), σ = 0.5
(A3). The solid (dashed) black line corresponds to the stable (unstable) equilibria in the single-node case.
Maps of regimes as a function of σ and η̄ showing the network average 〈r∗〉 color coded for up- (B)
and down-sweep (C), obtained by following the same procedure as in A1-A3 for σ ∈ [0, 2] in steps of
∆σ = 0.05. The black line indicates the single-node map of regimes like in (Montbrió et al., 2015). In
panels B-C the cyan square and triangle mark η̄ = −6.3,−9.54 respectively. Parameter values: Npop = 90,
τm = 20 ms, ∆ = 1, Jkk = 20, Jkl = 5J̃kl ∀k 6= l.

The network bifurcation diagrams shown in panels A1-A3 for increasing σ values are obtained by
performing an adiabatic analysis along two different protocols: up-sweep and down-sweep. Following the
up-sweep protocol, the system’s state variables rk, vk are initialized at η̄ = −50 with the values rk = 0,
vk = 0; then the excitability is increased in steps ∆η̄ = 1.5 until the maximal value η̄ = 10 is reached. At
each step, the initial conditions for mean firing rates and mean membrane potentials correspond to the final
state obtained for the previous η̄ value. Note, that the average firing rate increases for increasing η̄ values,
both for the single node and for the network. Once the maximum η̄ value is reached, the reverse procedure
is performed, thus following the down-sweep protocol. This time the initial conditions correspond to the
high-activity state at η̄ = 10, while the excitability is adiabatically decreased in steps ∆η̄ = 1.5, until
a low-activity state at η̄ = −50 is approached. For both protocols, the investigation of the nature of the
dynamics emerging at each η̄-step is done by using the same procedure: the system is simulated for a
transient time T = 2 s, until it has reached an equilibrium state. At this time the firing rate averaged over all
populations 〈r∗〉 is calculated and the next η̄ iteration is started, using this final state as initial conditions.

The transition from LA to HA network dynamics is hysteretic: the system doesn’t follow the same path
during the up-sweep and the down-sweep protocol. When the system is initialized in the low activity regime,
it remains there until a critical excitability value η̄HA is reached. For further increase of the excitability,
the average firing rate exhibits a rapid jump to higher values. However, when the system is initialized in
the high-activity regime, this regime survives for a large η̄ interval until it collapses toward a low-activity
state at η̄ < η̄LA, where η̄LA < η̄HA. There is a considerable difference between the critical excitability
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values required to lead the system to a high-activity or a low-activity regime and the difference increases
for increasing coupling strength σ. While the up-sweep protocol (blue dots) is well approximated by
the bifurcation diagram of the single population, represented in panels A1-A3 by the black (dashed and
continuous) curve, this is no more true for the down-sweep protocol, where the coupling plays a role in
determining the transition at the multipopulation level (orange squares). This results in different phase
diagrams for the two protocols: the maps of regimes is dominated by the low-activity (high-activity) state
when following the up-sweep (down-sweep) protocol. Merging together these results we observe that the
region of bistability between LA and HA network dynamics, is still identifiable by the original boundaries
found for the single population in (Montbrió et al., 2015) (see black curve in panels B, C), even though, for
the multipopulation system, the region is wider.

We can make further use of the single-population bifurcation diagram to understand the hysteretic
transition of the multipopulation model in more detail. First of all, the weight matrix {Jkl} has its largest
components on the diagonal (Jkk = 20), reflecting recurrent synapses. This means that synaptic inter-
coupling plays a minor role, as long as the firing rates of the adjacent populations are small. During the
up-sweep protocol, this condition is fulfilled, as all populations are initialized in a low activity regime.
Under these conditions, the dynamics of all nodes is rendered identical and equal, approximately, to the
single population dynamics. Consequently the single-population LA branch describes the multipopulation
LA behaviour (in terms of 〈r∗〉) accurately as a function of η̄. Secondly, as soon as the single-population
LA state vanishes for large enough η̄ > η̄HA, the individual nodes of the multipopulation system all transit
to the HA state.

In this HA regime, deviations of the network bifurcation diagram with respect to the single-population
curve are observed. The populations in the system have large firing rates, such that the inter-coupling
becomes a relevant contribution to the total current on each node. This explains why the LA branch of the
network is located at higher firing rates with respect to the black single-population curve: The populations
in the network behave, approximately, as decoupled, irrespectively of being subject, in the HA regime,
to an additional current due to the inter-coupling. This effectively shifts the single-population bifurcation
diagram towards smaller η̄. Moreover this shift occurs for each population individually, depending on the
matrix {Jkl}. During the down-sweep protocol, due to the population dependent shift, the HA population
states vanish at different values of η̄. Accordingly, whenever this occurs, the network average 〈r∗〉 decreases
by a small amount, such that the network LA state is reached via various intermediate states. We can infer,
using the same type of argument, that single-population LA states disappear for increasing η̄ in a region
around η̄HA. They are not observed here, due to the nature of the up-sweep protocol and the initialization
procedure of rk, vk.

From the reversed viewpoint we can hypothesize, that stable single-population HA states may take form
near η̄LA for increasing η̄, as well as stable LA states for decreasing η̄ near η̄HA. This implies that the
network possesses complex multistability between many network states in the region η̄LA < η̄ < η̄HA. For
these states the existence of LA and HA states of individual populations are interdependent: whether or
not any given population can be in the LA or HA state is conditioned by the LA-HA configuration of all
other populations. This not only demonstrates how multistability emerges in the multipopulation system,
but it also has influence on the response of the network towards transient input in such a setting. Most
importantly, if such an input recruits one population into high activity, other populations might follow,
leading to a cascade of recruitments.
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3.1.2 Seizure-like Recruitment in Dependence of Perturbation Site and η̄

To analyze the response of the multipopulation system to transient current, we stimulate one population
with a step function IS(t) of amplitude IS = 10 and duration tI = 0.4 s. By setting η̄ = −9.54, the system
is placed in the multistable regime (see cyan triangle in Fig. 1C), but, due to the low η̄ value, it only allows
for LA-HA configurations with most of the populations in LA. We start by initializing all nodes in the
low-activity state and stimulating a single node (see Fig. 2 A). During the stimulation (panel A1), the
stable states of the network change, due to the strong additional current. More specifically, the initial
equilibrium vanishes and a new focus equilibrium of the system appears as the only stable network state.
This focus is characterized by an LA-HA configuration for which only the stimulated node finds itself
in HA while the rest remains in the LA regime; the focus is approached via damped oscillations in the
time interval 0 < t < 0.4 s (panel A2-A3). Due to the multistability in absence of stimulation, an identical
LA-HA configuration exists. Thus, when the current is removed, the system is able to maintain the LA-HA
configuration. However, the position of the focus equilibrium is shifted in absence of the transient input
and is reached, again, via damped oscillations for t > 0.4 s.

When the perturbation of a single node has no consequences on the dynamics of the other populations, as
shown in Fig. 2 A2), A3), we are in the presence of an asymptomatic seizure-like event, where the activity
is limited to the epileptogenic zone (here represented by the stimulated node) and no propagation takes
place. For higher excitability values (η̄ = −6.3, marked by a cyan rectangle in Fig. 1B), the perturbation
of a single node gives rise to a different response dynamics. In this case other brain areas are “recruited”
and not only the perturbed node, but also other populations reach the high-activity regime by showing
damped oscillations (see Fig. 2 panels B2, B3). In terms of pathological activity, the seizure-like event
originates in the EZ (as a results of the stimulation) and propagates to the PZ, identified by the other regions
which rapidly propagate the oscillatory activity. The recruitment of the regions in the propagation zone
can happen either by independent activation of the single areas, or by activating multiple areas at the same
time, until the propagation involves almost all populations (generalized seizure-like event).

The transition of a single population to the HA regime, upon stimulus onset, is characterized by a
transient activity in the δ band (< 12 Hz) and a sustained activity in the γ band (40-80 Hz), present
throughout the stimulation, as shown in Fig. 2, panels A4-A5. Here the spectrograms show time varying
power spectral densities (PSD) of the mean membrane potentials averaged over the network (A4) and for
the single stimulated population (A5). When more populations are recruited at higher excitability values,
in addition to the former activity, it is possible to observe γ activity at higher frequencies (see panels
B4-B5). High-frequency oscillations, between 80 and 500 Hz, can be recorded with EEG and reflect the
seizure-generating capability of the underlying tissue, thus being used as markers of the epileptogenic zone
(Jacobs et al., 2012). Moreover, even for the generalized seizure-like case, the δ band activity is evoked
whenever a brain area gets recruited, leading to a sustained signal in the time interval 1.1 s < t < 1.8s,
where a majority of the populations approach the HA state. Similar results have been obtained for all the
other investigated subjects (results not shown).

In the following we report a wide analysis of the impact of the perturbation site on the recruitment effect,
for different excitability values. As before, we use a step current IS(t), with fixed amplitude IS = 10 and
duration tI = 0.4 s, to excite a single population. In each run the stimulating current targets a different
brain area and the number of recruitments, i.e. the number of populations, that pass from the LA state to
the HA state, is counted. The 90 brain areas are targeted, one at a time, in 90 individual simulations. We
repeat the procedure varying η̄ in a range [−15,−4], with steps of ∆η̄ = 0.1. The results for five exemplary
subjects are shown in Fig. 3 A1)-E1).
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Figure 2. Spectrograms of mean membrane potentials for subject sc0. (A1-B1) Stimulation current I(k)S ,
(A2-B2) population firing rates rk and (A3-B3) mean membrane potentials vk for the EZ (orange) and
other populations (black). The blue curves show the network average firing rate and membrane potential.
Non-stimulated node dynamics is plotted as transparent gray curves: some of the nodes adapt their voltage
to the stimulation of the EZ and change during stimulation. However they do not reach the high-activity
state regime. (A4-B4) Spectrogram of the network average membrane potential and (A5-B5) of the vk
of the EZ. Column A shows an asymptomatic seizure-like event for η̄(k) = η̄ = −9.54, column B a
generalized seizure-like event for η̄(k) = η̄ = −6.3. In both cases the EZ node 46 is stimulated. Parameter
values: Npop = 90, τm = 20 ms, ∆ = 1, Jkk = 20, σ = 1, Jkl = 5J̃kl ∀k 6= l.

If the perturbed area jumps back to the LA state when the stimulation is removed and no further
recruitment takes place, then the total number of recruited areas is zero, here color coded in white. If the
perturbed area remains in the HA state without recruiting other areas, we are in presence of an asymptomatic
seizure-like event (blue regions). For every further recruited brain area, the color code changes from cyan
to purple. If all brain areas are recruited, we observe a generalized seizure-like event (coded as red). For
η̄ < −9, most of the targeted brain areas goes back to the LA state, when the perturbation ends, while for
η̄ ≈ −9, we generally observe asymptomatic seizure-like events for all the subjects and for most of the
perturbation sites. For increasing η̄ values, the probability for larger recruitment cascades increases, until
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Figure 3. Number of recruited brain areas as a function of the excitability parameter η̄ for 5 exemplary
healthy subject connectomes A-E. Color coding is the following: blue corresponds to the asymptomatic
threshold (one area in HA regime); red represents 90 areas in HA regime (generalized threshold); cyan to
purple indicate intermediate recruitment values, white marks no recruitment. When performing a vertical
cut, all nodes are characterized by the same η̄ for panels (A1-E1). At the contrary, in panels (A2-E2),
η̄G represents the mean value of a Gaussian distribution with standard deviation 0.1. Therefore, when
perturbing one brain area at a time, excitabilities are distributed and not uniform in the latter case; the
results are averaged over 10 repetitions with different Gaussian excitability distributions. A), B), C), D),
and E) correspond to subjects 0, 4, 11, 15, and 18. Parameters: N = 90, ∆ = 1, σ = 1, IS = 10, tI = 0.4
s.

the system exhibits generalized seizure-like events for η̄ > −6. However, some notable differences between
brain areas and among the different subjects are observable. Brain area 72, for example, corresponding to
the rh-CAU, exhibits asymptomatic seizure-like events at η̄ > −11 for most of the subjects, thus suggesting
that the rh-CAU favours pathological behavior with respect to other brain areas. On the other hand, some
brain areas are less likely to cause generalized seizure-like events, when stimulated, than others: Brain
area 40, for example, the rh-PHIP1, causes no generalized seizure-like events for any η̄ > −5. Note that,
for very large η̄ values, the system doesn’t exhibit multistability anymore, but instead has only one stable
state, namely the network HA state, corresponding to high firing rate of all populations. Approximately,
this happens for η̄ ∈ [−5.7,−4.9], with small variations among the subjects.

The scenario remains unchanged when we take into account heterogeneous excitabilities η̄(k), as shown
in Fig. 3 A2)-E2). In this case η̄(k) is drawn from a Gaussian distribution with mean η̄G, thus mimicking
the variability present in a real brain. The populations are stimulated, as before, one at a time in individual
simulation runs. However, this time the procedure is repeated for varying η̄G ∈ [−15,−4], while keeping
the standard deviation of the Gaussian distribution fixed at 0.1. Larger standard deviations hinder the rich

1 While the actual role of the specific regions might in reality be affected by other factors, not captured by the used structural connectivity estimate and the
details of the current model, this highlights the effect of network structure on propensity to seizure-like events. The (para)hippocampal region is, in fact, one of
the most commonly affected by epilepsy.
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multistability of the network, by eliminating the bistability between LA and HA for individual populations,
due to excessively small or large η̄(k), thus impeding the analysis of the impact of the stimulation. The
shown results are obtained averaging over 10 Gaussian distribution realizations of the η̄ parameter; slightly
more variability becomes apparent especially when considering the threshold in η̄ to observe generalized
seizures.

Figure 4. A) Number of recruited brain areas as a function of the excitability parameter η̄, as shown in
Fig. 3 A1)-E1), averaged across all subjects. B) η̄ threshold values for asymptomatic and generalized
seizure-like events. Grey dots show the thresholds for each brain area and each subject. Blue and red
dots show the average over η̄(k)asy and η̄(k)gen across all subjects. The blue and red cross at the bottom show
the average value and its standard deviation for both thresholds across all subjects and across all areas.
Parameters as in Fig. 3.

An overview over all the investigated subjects is possible when looking at Fig. 4 A), where is reported
the average, over all subjects, of the data shown in Fig. 3 A1)-E1) for five exemplary subjects only. The
averaging operation smears out the transition contours and, while the region of generalized seizure-like
events shrinks, it becomes wider the region of accessibility of partial seizure-like events, where a small
percentage of nodes (∼ 20%) are recruited. In panel B we report η̄(k)asy (η̄(k)gen), i.e. the smallest η̄ value for
which an asymptomatic (generalized) seizure-like event occurs when stimulating population k. Grey dots
indicate the individual thresholds η̄(k)asy and η̄(k)gen for each of the 20 subjects and 90 brain areas; the averages
over all subjects are denoted by blue and red circles, respectively, for each k ∈ [1, 90]. Averaging these
thresholds over all subjects and brain areas yields an asymptotic threshold of η̄asy = −9.36 ± 0.43 and
a generalized threshold of η̄gen = −6.04± 0.38. Brain areas 72, 73, 67, and 3 have lower thresholds for
asymptomatic seizure-like events, areas 40, 86, and 82 have larger thresholds for generalized seizure-like
events and do not fall within a standard deviation. The variability in the response among the different areas
is more evident for η̄(k)gen values compared to the η̄(k)asy ones: the threshold values to obtain an asymptomatic
seizure-like event are very similar among the areas and among the subjects, while the threshold values to
obtain a generalized seizure-like event strongly depend on the stimulated area and on the subject.
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3.1.3 The Role Played by Brain Area Network Measures on Enhancing Recruitment

As shown in Fig. 4 B), η̄(k)asy does not vary significantly among the subjects and among the brain areas;
it mainly occurs in the range η̄(k)asy ∈ [−10,−9], with just few nodes (k ∈ [72, 73, 67, 3]) showing smaller
values. Since each brain area is characterized by its own network measure, the first hypothesis that we
aim to test, is the role played, on the identification of the threshold, by the different network measures.
In particular, we investigate the dependency of η̄(k)asy on the node strength, clustering coefficient, shortest
path length, and betweenness centrality of the corresponding brain area, as shown in Fig. 5. A very strong
correlation between asymptomatic threshold and node strength becomes apparent: Brain areas that are
strongly connected, need a smaller excitability to pass from the LA to the HA regime (panel A). The same
holds true for the clustering coefficient, even though the relationship is less sharp (panel B). Moreover it
is possible to observe a direct correlation between η̄(k)asy and shortest path length (i.e. shortest is the path
smallest is the threshold value), while betweenness is smaller for higher threshold values (panels C and D
respectively).

(k)

Figure 5. Threshold η̄(k)asy for asymptomatic seizure-like events as a function of node measures: A) Node
strength, B) clustering coefficient, C) average shortest path length, D) betweenness centrality. For each
panel, the thresholds η̄(k)asy are calculated for all k ∈ [1, 90] brain areas and averaged over all 20 subjects.
Parameters as in Fig. 3.

(k)
-

Figure 6. Threshold for generalized seizure-like events as a function of node measures: A) Node strength,
B) clustering coefficient, C) average shortest path length, D) betweenness centrality. For each panel, the
thresholds η̄(k)gen are calculated for all k ∈ [1, 90] brain areas and averaged over all 20 subjects. Parameters
as in Fig. 3.
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When considering the threshold for generalized seizure-like events, we face a higher variability among
different nodes (as shown in Fig. 4B, η̄(k)gen varies mainly between −6.5 and −5.5). The dependency of η̄(k)gen

on the node strength reveals a strong correlation: Areas with very small node strengths are characterized
by large thresholds and are less likely to cause generalized seizure-like events. On the other hand, for
large node strengths, η̄(k)gen saturates at a value ≈ −6.5 (see Fig. 6 A)). The clustering coefficient, shown
in Fig. 6 B), shows a similar relationship as the node strength, even though more scattered. This is not
surprising since node strength and clustering coefficient are strongly correlated with each other (the Pearson
Correlation coefficient in this case is r = 0.75, as shown in Fig. 1 of the Supplementary Material), thus
explaining the similarity between the analyses reported in panels A) and B). Moreover, regarding the
integration measure, it turns out that the average shortest path length correlates positively with η̄(k)gen (see Fig.
6 C)). Brain areas that are characterized, on average, by a short path to all the other areas are more likely to
cause generalized seizure-like events. Finally, the betweenness centrality correlates negatively with η̄(k)gen

(panel D). This means that brain areas that are crossed by many shortest path lengths (large betweenness
centrality) are more likely to cause generalized seizure-like events. For increasing node strength, clustering
coefficient and betweenness centrality, we observe a saturation toward η̄(k)gen ≈ −6.5, that corresponds to the
critical excitability value, during the up-sweep simulation, at which the system jumps to the HA network
state (Fig. 1 A2).

To explore the causal mechanisms of brain function and understand the sequential mechanism of node
recruitment in more detail, we investigate the timing at which different brain areas are recruited. For this,
the excitability parameter η̄, common to all populations, is set to the threshold value η̄(k)gen of the perturbed
brain area k, ensuring complete recruitment of all populations, when perturbing populations k ∈ [1, 90].
The results shown in Fig. 7 are obtained by averaging over k and over the different subjects: in 90 individual
simulations for each subject, a single brain area k = 1, . . . , 90 is stimulated with an external step current
IS(t), characterized by an amplitude IS = 10 and a duration tI = 0.4 s. For each k the recruitment time
of all the other areas is registered. The stimulated brain area stands in for the EZ. The brain areas and
corresponding node measures are sorted by the recruitment time in ascending order. The weight and
shortest path values taken into account are divided in two types: those related to the nodes outgoing the EZ
(i.e. the subgraph connected to the EZ), and those related to the connections between the recruited area
and all the other nodes except the EZ. Therefore, for the first case, if a certain recruited area is not directly
connected to the EZ, its corresponding weight is equal to 0. The values for recruitment time (panel A),
weight of a connection between a single area and the EZ (panel B) and shortest path (panel C) are finally
obtained averaging over all the stimulated nodes and all the subjects (i.e. the average is performed over
1800 simulations across all 90 brain area perturbations times all 20 subject). The same averaging procedure
has been employed to obtain the data shown in panels D-G. However, in this case, the node measures are
evaluated over all the connections of the recruited node minus the connection to the EZ. While ignoring the
link to the excited area (EZ), the overall network measure for connection weights (panel D), clustering
coefficient (panel E), shortest path (panel F) and betweenness centrality (panel G) are reported.

On average, the first recruited brain area (labelled as 1) is connected to the EZ with a weight equal to 0.25
(1/4 of the maximum possible weight) and it is characterized by an average shortest path length to the EZ
of less than 4.7. Moreover the area is recruited within an average time of less than 156 ms (calculated after
the onset of the external perturbation current). However the first recruited area has, not only the strongest
weight and the shortest path to the EZ but it also has, in general, the largest node strength, largest clustering
coefficient, shortest average path length and largest betweenness centrality. Clearly, the seizure-like event
spreads rapidly along the brain areas with strongest connection weights outgoing from the EZ; to the
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Figure 7. A) Recruitment times reported in descending order: Brain area 1 is the brain area which is
recruited first and brain area 90 is the last recruited brain area. B) Connection weights between the recruited
brain area and the EZ, ordered according to their recruitment time, thus following the indexing of panel
A). C) Shortest path between the recruited area and the EZ, ordered according to their recruitment time.
D) Connection weights between the recruited brain area and all the nodes except EZ, ordered according
to their recruitment time. E) Clustering coefficient between the recruited brain area and all the nodes
except EZ, ordered according to their recruitment time. F) Shortest path between the recruited area and
all the other nodes except EZ, ordered according to their recruitment time. G) Betweenness centrality
between the recruited brain area and all the nodes except EZ, ordered according to their recruitment time.
The excitability η̄(k) is set to the subject-specific threshold η̄(k)gen, according to Fig. 3 B) for each subject
separately. Data are averaged over all subjects and all the stimulated areas. Parameters: N = 90, ∆ = 1,
σ = 1, IS = 10, tI = 0.4 s as in Fig. 3.

stronger weights are associated the shortest paths from the EZ. Overall, a region well connected is a region
well recruited; this is related to the log-normal distribution of the weights (see Supplementary Fig. 2): few
connections per node have a strong weight, thus allowing for fast recruitment. Note that the results for one
exemplary subject and just one perturbed brain area per time (i.e. not averaged over all the brain areas and
over all subjects) are comparable, even though the corresponding relationships are characterized by more
variability (data not shown).

If we vary the amplitude IS of the perturbation current, the recruitment time will vary accordingly,
decreasing for increasing IS . In particular, in Fig. 8 we show an exemplary case, obtained from the
stimulation of one brain area (45), for a specific subject (results are similar for other trials). Irrespectively
of the recruitment order, the time needed by the first ten recruited brain areas to pass from the LA to the
HA state decreases slightly for increasing amplitude. However, this decrease reaches a saturation at a
current value IS ≈ 40 already. The order of recruitment varies little: we observe some exchanges between
the 4-th and 5-th and between the 9-th and 10-th recruited areas. For example, for an amplitude IS = 15,
the 9-th recruited area (dark blue circles) gets recruited earlier than the 10-th area (pink dots) while, for
very strong currents (IS = 100), the 9-th area gets recruited latest. On the other hand we do not observe a
significant change in the recruitment time and order if we increase the duration tI of the stimulation (see
Supplementary Fig. 3).
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S

Figure 8. Recruitment times of the first 10 recruited areas as a function of the input current IS . The
strength of the input current is varied between 0 and 100 on the x-axis. The order of the recruitment is
color coded for each current strength and it changes slightly with different current strengths. Parameters:
N = 90, ∆ = 1, σ = 1, tI = 0.4 s, η̄(k) = η̄ = −6, stimulation site: brain area k = 45 of subject 0.

3.2 Epileptic Patients

3.2.1 Phase and Bifurcation Diagrams

In this section the structural connectivity matrices of epileptic patients are employed and an analysis,
analogous to the one in Sec. 3.1.1, is provided. We present the phase and bifurcation diagrams for the
multipopulation neural mass model, here employing the structural connectivity matrices of epileptic
patients. As detailed before, the bifurcation diagrams shown in Fig. 9 A1)-A3), for different σ values, are
obtained by performing an adiabatic scan along η̄(k) = η̄, following the up- and down-sweep protocols.

As for the healthy subjects, the transition is hysteretic with η̄LA < η̄HA. However in this case, the width
of the hysteretic transition is bigger, especially for larger σ values. This increased width can be translated
in terms of the extension of the multistability region in the phase diagram (see Fig. 9 B, C), which turns
out to be slightly larger than before. The increase in size mainly occurs due to a shift of η̄LA, i.e. of the
left boundary of the multistability regime. In this region, the transition from HA to LA, following the
down-sweep, is more smooth and elongates towards smaller η̄ values. This implies that, in this transition
region, more single population HA states exist for epileptic patients than for healthy subjects. In other
words, brain areas of epileptic subjects are more prone to recruitment2.

While the phase diagram is obtained in the absence of time-varying input, we investigate the response
of the multipopulation system to transient stimulation in the following. As for the healthy subjects, a
single population is excited by injecting a step current IS(t) of amplitude IS = 10 and duration tI = 0.4
s. Initially (t < 0), the system is in a multistable regime, starting in the low-activity network state. For
small η̄ values (η̄ = −14, identified by the triangle in Fig. 9C), when a single node is stimulated, the
system reacts analogously to the healthy subject case: During the stimulation only one stable network state

2 Please note that, irrespectively of the numerical results, any difference observed between the structural connectivity matrices obtained from the cohort of
healthy subjects and epileptic patients may be (at least partially) ascribed to the different acquisition and processing procedures in the two research centers rather
than due to disease-related causes.
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Figure 9. Phase and bifurcation diagrams for patient FB. A1-A3 Equilibrium firing rates 〈r∗〉 vs. η̄ for the
up-sweep (blue dots) and down-sweep (orange squares). For each η̄ ∈ [−50, 10] in steps of ∆η̄ = 1.5 the
system is initialized using the final state of the previous run and evolves for 2 s after which the average
network firing rate in the equilibrium state is determined. Different panels correspond to different σ values:
σ = 1.5 (A1), σ = 1 (A2), σ = 0.5 (A3). The solid (dashed) black line corresponds to the stable (unstable)
equilibria in the single-node case. Maps of regimes as a function of σ and η̄ showing the network average
〈r∗〉 color coded for up- (B) and down-sweep (C), obtained by following the same procedure as in A1-A3
for σ ∈ [0, 2] in steps of ∆σ = 0.05. The black line indicates the single-node map of regimes like in
(Montbrió et al., 2015). In panels B-C the cyan square and triangle mark η̄ = −7.5,−14 respectively.
Parameter values: Npop = 88, τm = 20 ms, ∆ = 1, Jkk = 20, Jkl = 5J̃kl ∀k 6= l.

exists, i.e. a focus equilibrium with a LA-HA configuration for which only the stimulated node is in HA.
This focus is approached via damped oscillations (0 s < t < 0.4 s). When the stimulation is removed,
the network maintains the LA-HA configuration, but approaches the new location of the focus again via
damped oscillations. As a result, the stimulated node has large firing activity, while the remaining network
is in a LA regime. For higher excitability values (η̄ = −7.5, identified by the square in Fig. 9B), the
perturbation of a single node gives rise to a cascade of recruitments, where other brain areas, initially not
perturbed, reach the HA regime by showing damped oscillations (panels B2, B3). With respect to the
recruitment features shown in Fig. 2, we observe here a faster emergence of the generalized seizure-like
event: once a brain area is stimulated, the others react, in substantial number, quite immediately.

Looking at the spectrograms, the transition of the stimulated population to the HA regime is characterized
by a transient activity at low frequency (< 20 Hz) and a sustained activity in the γ band (50-180 Hz),
observable throughout the duration of the stimulus, as shown in panel A5, where the spectrogram for the
single stimulated population is reported. Regarding the spectrogram of the mean membrane potentials
averaged over the network population (panel A4), it turns out that the low frequency activity in the δ, θ
bands is present, while the activity at high frequency simply reflects the activity of the stimulated area. In
the case of large recruitment events, at larger excitability values, it is possible to observe γ activity at higher
frequencies (see panels B4-B5), which is enhanced with respect to the situation where an asymptomatic
seizure-like event is present. Moreover, comparing the spectrograms in Fig. 10 and those reported in Fig. 2,
we see that the activity takes place at higher frequency ranges when considering structural connectivity
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Figure 10. Spectrograms of mean membrane potentials for patient FB. (A1-B1) Stimulation current I(k)S ,
(A2-B2) population firing rates rk and (A3-B3) mean membrane potentials vk for the EZ (orange) and
other populations (black). The blue curves show the network average firing rate and membrane potential.
(A4-B4) Spectrogram of the network average membrane potential and (A5-B5) of the vk of the EZ. Column
A shows an asymptomatic seizure-like event for η̄ = −14, column B a generalized seizure-like event for
η̄ = −7.5. In both cases the EZ node 46 is stimulated. Parameter values: Npop = 88, τm = 20 ms, ∆ = 1,
σ = 1.25, Jkk = 20, Jkl = 5J̃kl ∀k 6= l.

matrices of epileptic patients and the activity is mainly concentrated in the EZ. The last statement may
be qualified, however, by recent studies proposing high frequency oscillations (80-500 Hz) recorded not
only at seizure onset but also between seizures (the interictal period), as a putative new marker of the
epileptogenic focus Jacobs et al. (2012). More specifically fast cortical ripples superimposed to interictal
epileptiform discharges were correlated with the seizure onset zone and primary propagation area in
neocortical epilepsy Khadjevand et al. (2017). Neocortical ripples were also found to be more specifically
confined to the seizure onset and propagation regions, and thus a better marker compared to interictal
epileptiform discharges alone Wang et al. (2013). High frequency oscillations, as shown in Fig. 10 B4, B5,
are much more frequent in the seizure-like onset zone than outside, where they are often totally absent.
The rather empty spectrograms of mean membrane potentials for patient FB are a result of a rather rapid
recruitment of a majority of nodes, thus giving rise to a strong signal change, immediately upon recruitment,
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which suppresses the rest of the signal in the spectrogram. At the same time the damped oscillations are all
compressed within a narrow time window, and not very elongated in time, as it happens for healthy subjects
(see Fig. 2). In other words, if the generalized seizure-like event is rapid, all the signals overlap, and this is
especially clear looking at the strong low frequency bands. A fast generalized seizure-like event, in absence
of high frequency oscillations outside the EZ, can be obtained for healthy subjects only increasing the
excitability parameter: for higher η̄ values, the recruitment is more sudden, as shown in the Supplementary
Fig. 21.

3.2.2 Temporal Recruitment of Clinically and SEEG Predicted Propagation Zones
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Figure 11. Recruitment times of all brain areas for the cohort of epileptic patients: The recruitment time,
reported on the x-axis, identifies the time needed by a brain area to jump to the HA regime after the
application of the perturbation current. The boxplots consist of the recruitment times of all brain areas for
each patient. Patients are identified according to their initials on the y-axis. The median is represented as a
green vertical line while the boxes contain the second and third quartile of the distribution. The whiskers
are chosen with maximum length 1.5×IQR and show the most extreme observed values that are within
1.5×IQR from the upper or lower quartiles. The grey dots represent the recruitment times for each brain
area. The red × shows the recruitment of a brain area clinically predicted to be part of the propagation
zone PZClin. The blue + represents the recruitment of a brain area which is part of the propagation zone
according to the SEEG measurements PZSEEG. Parameters: Npop = 88, ∆ = 1, σ = 1.25, IS = 10,
tI = 0.4 s, η̄(k) = η̄ = −7.5 (except for patients AC (η̄ = −6) and ML (η̄ = −6.5)).

In the following we test the clinical predictions for epileptic patients, by choosing the EZs, identified by
clinical doctors via presurgical invasive evaluation, as perturbation sites. We investigate the recruitment
times of different brain areas following such a perturbation and compare the order of recruitment with
the experimental data given for each individual subject. A general overview on the recruitment times of
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all brain areas, for all patients, is shown in Fig. 11. As perturbation sites, the clinical EZs, are used for
all patients. The perturbation step current (IS = 10, tI = 0.4 s) is applied, to each perturbation site, in
correspondence with the dashed vertical black line. The parameters are identical for almost all patients and
are chosen such that at least 90% of the brain areas are recruited while still allowing multistability among
various LA-HA configurations, including the network LA state. For each patient (identified via the initials
on the y-axis), the recruitment time of each brain area is reported: The grey dots represent the time values
for each brain area. Superimposed on the grey dots are red × and blue + marks that identify the brain areas
belonging to the PZ, according to the non invasive (PZClin) or invasive (PZSEEG) presurgical evaluation,
respectively. The recruitment time averaged over all brain areas is identified, for each patient, by a green
vertical line, while the boxes contain the second and third quartile of the distribution, and the whiskers
have 1.5 the length of the InterQuartile Range (IQR) from the upper or lower quartiles. Remarkably, the
propagation zones PZClin and PZSEEG turn out to be among the first recruited brain areas for all patients
in the numerical experiments. However the temporal dynamics vary for all patients, with GC and AC
having late recruitments. Looking at the set of the first ten recruited brain areas for each patient (reported
in detail in the Tables 5-7 in the Supplementary Material), we notice that most of the areas, identified by
clinicians as belonging to the PZ, are actually within this set: For patients CV, ET, FB, IL, SF all the areas
belonging to PZClin are among the first ten recruited areas, while the same holds true for patients CJ, CM,
FB if we consider the areas identified by the stereotactic EEG analysis as belonging to the propagation
zone (PZSEEG). In general a large number of the first ten recruited areas, as revealed by our simulations,
coincides with the areas that are supposed to be crucial in the seizure spreading according to the medical
doctors (e.g. for patients CJ, CM, JS, PC, PG, RB). Moreover the predictabiliy of the model is higher if
we compare our results with the predictions PZClin. Finally, the brain areas belonging to the predicted
propagation zones, are in general recruited before the median recruitment time.

To evaluate the dependence of the shown results on the chosen parameters, with the idea in mind of going
towards a more biologically realistic framework, we have repeated the previous numerical experiment by
employing a random Gaussian distribution of the excitability parameter η̄(k) (see Fig. 12). The distribution
is centred at η̄G = −7.5 with standard deviation 0.1 for all patients except AC and ML. For the latter
patients we shifted the center towards larger values, in order to get a sufficient number of recruitments
when the EZ is stimulated. In all cases the results are averaged over 10 different random realizations of the
distribution. More details on the impact of different realizations of η̄(k) are given, for one exemplary patient,
in the Supplementary Fig. 22. For larger standard deviations than the one employed, a too large fraction
of the populations would not be able to exhibit bistability between LA and HA, highlighting the system
sensitivity to small parameter changes. However, for the chosen distribution, the results are comparable
with the ones obtained with identical η̄(k) = η̄, shown in Fig. 11. For patients CJ, CM, CV, ET, FB, IL
the predicted propagation zones are always the first ones to be recruited. Moreover most of the areas are
usually recruited in the first half of the recruitment process, rapidly increasing in number, once the areas
in the propagation zones have been recruited (thus giving rise to a peak in the histogram). As a general
remark, in view of the distributed nature of the excitabilities, recruitments at later times, with respect to the
former case with homogeneous η̄(k) = η̄, may now take place.

For patients with many nodes in the EZ, the recruitment process may result to be more complex, as it
happens for patients RB and JS, for which the histograms are less narrow, but instead widely distributed.
However this cannot be taken as a general rule, since comparable histograms are obtained for patients
PG (one node in the EZ) and GC (two nodes in the EZ), while for SF and PC (with both four nodes in
the EZ) the histograms result to be very narrow, thus implying a fast recruitment process of most of the
brain areas. The differences among the histograms can be partially justified by the facts that patients have
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Figure 12. Histograms of recruitment times for all epileptic patients. For each patient (identified by his/her
initials), the recruitment times of all the brain areas are collected, once the EZ is stimulated. The EZ is
chosen according to the presurgical evaluation (see Table 4 of the Supplementary Material) and vary from
one patient to the other. Parameters as in Fig. 11 except for η̄(k) = −7.5± 0.1 (for AC η̄(k) = −6± 0.1, for
ML η̄(k) = −6.5±0.1). Results are averaged over 10 repetitions of different random Gaussian distributions.

specific connectomes with individual characteristics and by the analysis that we have proposed by choosing
similar η̄ values for all the patients. In this way we have preferred to have a general look on the multiple
self-emergent dynamics in a group of patients, instead of fine-tuning the excitability parameter in order to
obtain similar collective behaviors. What we observe here is strongly related to what we have presented in
Fig. 10 and in the Supplementary Fig. 21: the recruitment speed depends on the excitability parameter and
on the individual network structure. Faster recruitment events may be obtained for different subjects by
increasing the excitability value.

3.2.3 Relationship Between DTI Network Structure and Temporal Seizure Recruitment

In order to understand the mechanism underlying the recruitment events, we evaluate the relationship
between the network structure, in terms of topological measures, and the recruitment times of the first
10 recruited brain areas. For simplicity, we consider patients with only one brain area in the EZ and we
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Figure 13. Graph plot of the first 10 recruited areas, ordered clockwise according to their recruitment
times. Node circle size corresponds to the inverse recruitment time (A1-D1), to the connection strength to
the EZ (A2-D2) and to the inverse shortest path length to the EZ (A3-D3). The purple dot identifies the
EZ and its size remains fixed. Blue dots distinguish a recruited area to belong to the PZSEEG, i.e. the PZ
identified according to the presurgical invasive evaluation. Results are obtained for patients CJ (panels
A1-A3), CM (panels B1-B3), FB (panels C1-C3), PG (panels D1-D3). Parameters as in Fig. 11.

report, in Fig. 13, the EZ (purple dot) and the first 10 recruited areas in a graph representation. The first
recruited areas are ordered according to their recruitment times in clockwise order. Moreover we indicate in
blue the areas belonging to the PZ, as identified according to the presurgical invasive evaluation (PZSEEG).
Black lines identify the weighted connections between all areas and their thickness is proportional to their
weight. The sizes of the circles representing each brain area are proportional to their inverse recruitment
time (A1-D1), to their weight connecting each area to the EZ (A2-D2), and to their inverse shortest path
length between each node and the EZ (A3-D3), while the size of the purple EZ circle remains fixed.

Since in (A1-D1) the node size is proportional to the inverse recruitment time, large circles indicate early
recruitment while small circles indicate late recruitments: Hence the circles become smaller clockwise.
In panels (A2-D2) the node size is proportional to the weight connecting each area to the EZ and it turns
out that, for all patients, the first recruited area has the strongest connecting weight. However, after a few
recruitments this does not hold true anymore. There are many examples in which areas with a strong weight
to the EZ (see e.g. area 46 or 48 for patient FB) are recruited much later than areas with very small weights
(e.g. area 83 for FB). The seizure-like event propagates as a chain reaction and, therefore, the strongest
connecting weight to the EZ is only decisive for the very first recruited area. Later, strong connections
to other early recruited areas play a decisive role, as it is the case for area 83 in FB which has a weak
connection weight to the EZ. However, through its strong connection to area 74, its weighted shortest
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path length to the EZ is quite short, thus meaning that the weighted shortest path length to the EZ cannot
be underestimated in order to find the recruitment ordering. Indeed, in (A3-D3) one can see the good
predictability of the shortest path: the node size, proportional to the inverse shortest path length to EZ,
decreases in general with later recruitment. This is expected, given the fact that the average shortest path to
the EZ considers all connections in the network, not just the connections subgraph outgoing the EZ. An
example of the high predictability of the shortest path is given by the node 38 in patient CJ, which has a
shorter path length to the EZ than node 18. Node 38 is recruited before node 18 irrespectively of its strong
connection to node 16 and a connection strength to the EZ comparable with the one of node 38.

For later recruitments, the prediction becomes even more difficult because one needs to account for the
temporal order of the seizing brain areas. As shown before, the area which is first recruited, is the one with
the strongest connection to the EZ. However, depending on the strength of the connection, the recruitment
time changes and it increases for decreasing strength. In the case of patient CJ the recruitment of the second
area is determined, more by the strength of the connections to the EZ (i.e. area 20) than by the connection
to area 16, while, for the recruitments of the third and forth areas, the strong connections of node 18 to
16 and of node 17 to 38, i.e. the first and second recruited nodes, are fundamental. On the other hand,
when the first recruited areas have strong connections to the EZ, as for example area 74 in patient FB, the
successive recruitments are strongly influenced by the first recruited area, whose outgoing graph reveals
areas that are recruited with high probability. Thus the connection to area 74 turns out to be, for the second,
third, and fourth recruitment almost as important as the connection to the EZ (i.e. area 76). Finally, if we
compare two late recruited areas that are characterized by the same shortest path length to the EZ, but with
a path to the EZ that crosses very different nodes, we observe that the area with the path going through
earlier recruited nodes is recruited earlier. The longer the seizure-like event propagates, the less important
the shortest path length to the EZ becomes and the more important the path lengths to other recruited nodes
become. This underlines the difficulty of predicting the seizure propagation in complex networks.

To confirm the importance of the shortest path length and the strength of the connections outgoing the EZ
in determining recruitment events, we report in Fig. 14 the recruitment time values as a function of the
shortest path and the connection weights for the patients with a single node as EZ (panels A, B) and for
all 15 epileptic patients (panels C, D). While in panel B the recruitment time is plotted over the logarithm
of the weight, in panel C (D) the values of the recruitment time, plotted as a function of the shortest path
(connection weight), are ordered according to their recruitment order. In particular the order for recruitment,
shortest path, and weight to EZ is ascending from small values to large values. This means that, in panel
D, the areas with the strongest weights (87th, 86th, etc.) correspond to the areas that are recruited earliest
(1st, 2nd, etc.). The ordering has been preferred to the specific values of the shortest path and connection
weight when reporting data for all 15 patients, in order to obtain a better visualization. For patients CJ,
CM, PG, FB, the recruitment time grows almost linearly with the shortest path, while it decreases for
increasing weights. This analysis is confirmed in the Supplementary Fig. 23, where a regression fit is
performed over the data shown in panel A, thus underlying the approximately linear relationship between
the shortest path length and the recruitment time for larger trec. The relationship is not anymore so evident
when we consider different cases of EZs, that are composed of more that one area. However, in this case, it
is still possible to affirm that the earliest recruitments are associated with the shortest path lengths and the
strongest weights, while the nodes corresponding to PZSEEG or PZClin that, according to our simulations,
were recruited late, have very long shortest path lengths to the EZs or very small weights.

In general the recruitment mechanism is not completely defined by the shortest path length and the
connection weight, therefore it is not possible to match the pre-surgical predictions in terms of PZSEEG and
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Figure 14. Relationship between network measure and recruitment time for four patients with one EZ: A)
Shortest path to EZ; B) Logarithmic value of the weight to EZ. In A) all four EZs are shown at (0, 0) while
in B) the EZs are omitted. The recruitment time is calculated, in seconds, after the perturbation current has
started. In C), D) the recruitment time values are plotted according to their order, as a function of shortest
path to EZ (C) and weight to EZ (D) for all 15 patients. In D) the x-axis was inverted for better comparison.
Parameters as in Fig. 11.
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Figure 15. Recruitment times trec of the areas belonging to PZSEEG (A) and PZClin (B) as a function of
the shortest path length to EZ, for all patients. Parameters as in Fig. 11.

PZClin if we try to identify the nodes belonging to the PZ by calculating the first recruited nodes according
to their shortest paths length or their connection weights. In particular, it turns out that the PZSEEG areas
are well predicted by the investigated model if the shortest path length between the predicted PZ and
the EZ is short, as shown in Fig. 15 A). However, for patients GC and JS, the recruitments of the nodes
belonging to PZSEEG happen much later when compared to brain areas of other patients with a similar
shortest path length. Equivalently in panel B) it is possible to observe that, for short values of the shortest
path length (<5), there is a linear correspondence between short recruitment times and PZClin areas that
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are characterized by small values of the shortest path. However the areas belonging to PZClin are still not
identifiable, in terms of topological measures, for patient GC.
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Figure 16. Recruitment times of all brain areas and all patients. The patients are sorted from top to bottom
according to their median shortest path length, calculated by listing all the shortest path lengths of all
areas to the EZ and then locating the number in the centre of that distribution. Grey dots and diamonds
show individual recruitments (we use two different symbols to highlight those values that are beyond one
standard deviation); boxes cover the 2nd and 3rd quartile and whiskers extend 1.5 times the interquantile
range (whiskers are asymmetric, comprising the most extreme observed values that are within 1.5×IQR
from the upper or lower quartiles). Parameters as in Fig. 11.

To conclude this Section on the influence of single connectome topology in determining activity spreading
and area recruitment, we elaborate the data reported in Fig. 11 by sorting, from top to bottom, the patients
according to their median shortest path length, calculated on all areas with respect to the EZ. In Fig. 16
are shown the recruitment times of all brain areas for all patients. Since patients are ordered according to
their median shortest path length, the brain areas of CV have, on average, the shortest paths to the EZ and
the areas of AC the longest. In general, it is possible to detect a slight trend, for the overall recruitment
events, to delay with longer average shortest path lengths. More in detail, JS and GC show both very long
and very short recruitment times, thus confirming the results obtained in Fig. 12 for Gaussian-distributed
excitabilities. The scattering of the recruitment times for these patients reflects that, on average, their
recruitment times are longer with respect to the other patients. However the mean recruitment times are
comparable with those of ML, AC, that show comparatively late recruitments irrespectively of the fact that
are characterized by a longer median shortest path. A common characteristic that brings together patients
JS, GC, ML, AC is the weak connection among the EZ and the first recruited area, that slows down the
recruitment time (as already mentioned when discussing about Fig. 13), thus suggesting that is the interplay
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between connection strength and shortest path to determine the efficacy of seizure spreading and not the
single topology measure alone.

3.2.4 The Impact of the Input Current Strength on the Recruitment Time

S                                                                                                                    S

Figure 17. Recruitment times of the first 10 recruited areas as a function of the input current IS for the
epileptic patients A) CJ, B) CM, C) FB and D) PG. The strength of the input current is varied between
0 and 100 on the x-axis while its duration is kept unchanged at tI = 0.4 s with respect to the previous
numerical experiments. The order of the recruitment is color coded for each current strength (i.e. blue dots
indicate the recruitment of the EZ, green dots indicate the first recruited area, red the second, etc.) and it
holds the same for all investigated patients. Parameters as in Fig. 11.

Following the same approach used to obtain the results shown in Fig. 8 for a healthy subject, we present
here an analysis on the impact of the stimulation strength on the recruitment mechanism. Fig. 17 displays
the recruitment times of the first ten recruited areas using different amplitudes IS of the step current
IS(t), while fixing the duration tI = 0.4 s. The analysis has been performed for patients CJ (panel A),
CM (panel B), FB (panel C) and PG (panel D), thus integrating the information on the dependency on
topological measures presented in the previous section. As expected, the recruitment times decrease for
larger amplitudes. However, the order of recruitment does not substantially change. This implies that,
whenever we increase the amplitude, the recruitment mechanism remains unaffected: the same populations
are involved in the seizure spreading and in the same order. What changes is the speed of the spreading and
the time necessary to observe a generalized seizure-like event, which is smaller for stronger currents. As
a general remark, the brain areas that are recruited after the first ones (i.e. the 5th, 6th,...,10th recruited
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areas), tend to be recruited more simultaneously for increasing IS, thus leading to possible changes in
the recruitment order. This can be appreciated especially for patient CJ: For an amplitude IS = 10, for
example, the 10th brain area (pink) gets recruited later than the 9th area (darkblue), while for a very strong
currents (IS = 100) the darkblue area gets recruited latest whereas the pink area gets recruited earlier.

On the other hand if we vary the step current duration tI keeping the amplitude IS = 15 fixed, we do
not observe any change in the recruitment times of the first 10 recruited areas, analogously to the healthy
subject case presented in Fig. 20 of the Supplementary Material. Results not shown.

4 DISCUSSION

Neural mass models have been actively used since the 1970s to model the coarse grained activity of
large populations of neurons and synapses Wilson and Cowan (1972); Zetterberg et al. (1978). They have
proven especially useful in understanding brain rhythms Da Silva et al. (1974, 1976); Sotero et al. (2007),
epileptic dynamics Wendling et al. (2016); Jirsa et al. (2014), brain resonance phenomena Spiegler et al.
(2011), resting state Ghosh et al. (2008); Deco et al. (2011), task activity Huys et al. (2014); Kunze et al.
(2016), neurological and psychiatric disorders Bhattacharya and Chowdhury (2015) and are very popular
in the neuroimaging community Valdes-Sosa et al. (2009); Moran et al. (2013). Moreover, the desire to
understand large scale brain dynamics as observed using EEG, MEG and fMRI has prompted the increasing
use of computational models Bojak and Breakspear (2014). Large-scale simulators such as The Virtual
Brain (TVB) Sanz-Leon et al. (2015) and research infrastructures such as EBRAINS (http://ebrains.eu)
make heavy use of networks of interconnected neural mass models and enable non-expert users to gain
access to expert state-of-the-art brain network simulation tools.

Although motivated by neurobiological considerations, neural mass models are phenomenological in
nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue.
In particular their state variables track coarse grained measures of the population firing rate or synaptic
activity. At best they are expected to provide appropriate levels of description for many thousands of near
identical interconnected neurons with a preference to operate in synchrony, but they cannot reproduce the
variation of synchrony within a neuronal population which is believed to underlie the decrease or increase
of power seen in given EEG frequency bands. Importantly, unlike its phenomenological counterpart, the
next generation neural mass model we have implemented in this paper, is an exact macroscopic description
of an underlying microscopic spiking neurodynamics, and is a natural candidate for use in future large
scale human brain simulations. The alternative method to heuristic neural mass models employed so far
consists in performing large numerical simulations. Since the next generation neural mass model allows
to overcome the limitations in the maximal affordable number of simulated neurons, it solves also the
problems that are usually encountered in the analysis of spiking neural circuits addressed through numerical
simulations, i.e. the limited available numerical resources.

In addition to this, the inability of a single neural mass model to support event-related
desynchronisation/synchronisation Pfurtscheller and Da Silva (1999) or to capture the onset of synchronous
oscillations in networks of inhibitory neurons Devalle et al. (2017), reminds us that these phenomenological
models could be improved upon. While building more detailed biophysically realistic models of neurons
would increase the computational complexity and the difficulties to interpret the behaviour of very high
dimensional models in a meaningful way, the next generation neural mass models here applied, are very
much in the original spirit of neural mass modelling, yet importantly they can be interpreted directly in
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terms of an underlying spiking model. This exact derivation is possible for networks of quadratic integrate-
and-fire neurons, representing the normal form of Hodgkin’s class I excitable membranes Ermentrout and
Kopell (1986), thanks to the analytic techniques developed for coupled phase oscillators Ott and Antonsen
(2008). This new generation of neural mass models has been recently used to describe the emergence of
collective oscillations in fully coupled networks Devalle et al. (2017); Laing (2017); Coombes and Byrne
(2019); Dumont and Gutkin (2019) as well as in balanced sparse networks di Volo and Torcini (2018).
Furthermore, it has been successfully employed to reveal the mechanisms at the basis of theta-nested
gamma oscillations Segneri et al. (2020); Ceni et al. (2020) and the coexistence of slow and fast gamma
oscillations Bi et al. (2020). Finally it has been recently applied to modelling electrical synapses Montbrió
and Pazó (2020), working memory Taher et al. (2020) and brain resting state activity Rabuffo et al. (2020).

In this paper we have extended the single next generation neural mass model derived in Montbrió et al.
(2015) to a network of interacting neural mass models, where the topology is determined by structural
connectivity matrices of healthy and epilepsy-affected subjects. In this way we coped non only with the
macroscopic dynamics self-emergent in the system due to the interactions among nodes, but also with the
various differences related to the patient-specific analyses.

In absence of external forcing, the phase diagram of the system as a function of the mean external drive η̄
and synaptic weight J resembles this of the single neural mass model, since the same distinct regions can
be observed: (1) a single stable node corresponding to a low-activity state, (2) a single stable focus (spiral)
generally corresponding to a high-activity state, and (3) a region of bistability between low and high firing
rate. However, when the system is subject to a transient external current, the scenario changes and is ruled
by the interactions among different nodes. In this case, for low excitability values, a single stimulated
node abandons the bistable region due to the applied current and it approaches, with damped oscillations,
the high-activity state, which is a stable focus. On the other hand, for sufficiently high excitabilities, the
single node stimulation leeds to the recruitment of other brain areas that reach, as the perturbed node, the
high-activity regime by showing damped oscillations. This activity mimicks a seizure-like event and enables
the modeling of propagation and recruitment: the seizure-like event originates in the EZ (as a results of the
stimulation) and propagates to the PZ, identified by the other regions that fastly propagates the oscillatory
activity. It is distinct from an actual seizure, which would require the emergence of self-sustained activity
in the high-activity state Jirsa et al. (2014); Saggio et al. (2017, 2020)

The spectrogram analysis has revealed that the recruitment process is characterized by high frequency γ
oscillations, thus reproducing the high-frequency (γ-band) EEG activity typical of electrophysiological
patterns in focal seizures of human epilepsy. Many hypotheses have been formulated on the origin of
this fast activity: (i) the behaviour of inhibitory interneurons in hippocampal or neocortical networks in
the generation of gamma frequency oscillations Jefferys et al. (1996); Whittington et al. (2000); (ii) the
nonuniform alteration of GABAergic inhibition in experimental epilepsy (reduced dendritic inhibition and
increased somatic inhibition) Cossart et al. (2001); Wendling et al. (2002); (iii) the possible depression of
GABAA,fast circuit activity by GABAA,slow inhibitory postsynaptic currents White et al. (2000); Banks
et al. (2000); iv) the out of phase patterns of depolarizing GABAergic post-synaptic potentials onto
pyramidal cells, generated by feed-forward activation of cortical interneurons Shamas et al. (2018). In any
case high-frequency EEG waves originating from one or several brain regions are the most characteristic
electrophysiological pattern in focal seizures of human epilepsy and can be observed, in our numerical
experiments, both for healthy subjects and epileptic patients, though with a distinction: for the same
excitability value, the activity takes place at higher frequency ranges in epileptic patients and it is mainly
concentrated in the EZ. Even though it is not possible to exclude discrepancies partially imputable to the
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different scanning and preparation procedure of the structural connectivity matrices for the cohort of healthy
and epilepsy-affected subjects, it turns out that the recruitment process is faster in epileptic patients, for
which it is possible to observe generalize seizure-like events for smaller values of the excitability parameter
η̄. In particular, when comparing the results obtained for healthy subjects and epileptic patients, it turns
out that the time necessary to recruit areas in the PZ is usually smaller for epileptic patients. However, the
first recruited area is, in general, the area with the stronger connection to the EZ, independently of the
considered structural connectivity matrix. The recruitment time in both cases is influenced by the strength
of the external perturbation IS , and decreases for increasing strength, while no dependence is shown on the
duration of the external perturbation.

More specifically for healthy subjects we have investigated the dependence of the recruitment mechanism
on the single subject, in terms of the position of the eventual EZ and in terms of the topological measures
of the single connectome. Brain network models of healthy subjects comprise 90 nodes equipped with
region specific next generation neural mass models and each subject is characterized by a specific structural
large-scale connectivity amongst brain areas. The smallest excitability values for which an asymptomatic
seizure-like event occurs (η̄(k)asy) do not vary significantly from one subject to the other and do not show a
relevant dependence on the stimulated area, while the smallest excitability values for which a generalized
seizure-like event occurs (η̄(k)gen), show fluctuations in the interval (−7,−5) for all stimulated nodes and
for all the subjects. Nonetheless we have found many similarities at the level of topological measures,
since there is always a strong correlation between η̄(k)asy (η̄(k)gen) and node strength, clustering coefficient and
shortest path, thus meaning that a region well connected is a region well recruited.

For epileptic patients, we have systematically simulated the individual seizure-like propagation patterns
and validated the numerical predictions of the PZ against clinical diagnosis and SEEG signals. Patient-
specific brain network models of epileptic patients comprise 88 nodes equipped with region specific
next generation neural mass models and, for this set-up, we have studied the role of the large-scale
connectome based on diffusion MRI, in predicting the recruitment of distant areas through seizure-like
events originating from a focal epileptogenic network. We have demonstrated that simulations and analytical
solutions approximating the large-scale brain network model behavior significantly predict the propagation
zone as determined by SEEG recordings and clinical expertise, with performances comparable to previous
analyses on this set of data Proix et al. (2017); Olmi et al. (2019), thus confirming the relevance of using a
large-scale network modeling to predict seizure recruitment networks.

Most computational models of seizure propagation focus on small continuous spatial scales Hall and
Kuhlmann (2013); Ursino and La Cara (2006); Kim et al. (2009) or population of neurons Miles et al.
(1988); Golomb and Amitai (1997); Compte et al. (2003); Bazhenov et al. (2008); Chouzouris et al. (2018);
Lopes et al. (2019); Gerster et al. (2020) while only small networks are commonly used to investigate the
role of the topology and localization of the epileptogenic zone Terry et al. (2012). However functional,
volumetric and electrographic data suggest a broad reorganization of the networks in epileptic patients
Lieb et al. (1987, 1991); Cassidy and Gale (1998); Rosenberg et al. (2006); Bettus et al. (2009), thus laying
the foundations for a different approach based on large-scale connectomes to identify the recruitment
networks. The large-scale character of partial seizure propagation in the human brain has been only recently
investigated, using patient-specific diffusion MRI data to systematically test the relevance of the large-scale
network modeling in predicting seizure recruitment networks Proix et al. (2014, 2017, 2018); Olmi et al.
(2019). In this framework of large-scale network modeling we can also place the results presented in this
paper, since we have confirmed the importance of patient-specific connectomes to identify the recruitment
process. As shown above, the topological characteristics of connection strength and shortest path play
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a non-trivial role in determining the spreading of seizure-like events, together with the localization of
the epileptogenic zone, while the next generation neural mass model, here employed for the first time to
study seizure spreading, allows us to construct patient-specific brain models via a multiscale approach: the
variability of brain regions, as extracted from the human brain atlas, can be introduced in the mean-field
parameters, thanks to the exact correspondence between microscopic and macroscopic scales guaranteed by
the model itself. Improving the predictive power of the model by the means of anatomical data (available
e.g. in the BigBrain and human brain atlas) will be the scope of further research.
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Label Region Abbreviation Label Region Abbreviation
1 Precentral Gyrus PRE 46 Cuneus Q
2 Precentral Gyrus PRE 47 Lingual Gyrus LING
3 Superior Frontal Gyrus F1 48 Lingual Gyrus LING
4 Superior Frontal Gyrus F1 49 Superior Occipital Gyrus O1
5 Superior Frontal Gyrus Orbital Part F1O 50 Superior Occipital Gyrus O1
6 Superior Frontal Gyrus Orbital Part F1O 51 Middle Occipital Gyrus O2
7 Middle Frontal Gyrus F2 52 Middle Occipital Gyrus O2
8 Middle Frontal Gyrus F2 53 Inferior Occipital Gyrus O3
9 Middle Frontal Gyrus Orbital Part F2O 54 Inferior Occipital Gyrus O3
10 Middle Frontal Gyrus Orbital Part F2O 55 Fusiform Gyrus FUSI
11 Inferior Frontal Gyrus Opercular Part F3OP 56 Fusiform Gyrus FUSI
12 Inferior Frontal Gyrus Opercular Part F3OP 57 Postcentral Gyrus POST
13 Inferior Frontal Gyrus Triangular Part F3T 58 Postcentral Gyrus POST
14 Inferior Frontal Gyrus Triangular Part F3T 59 Superior Parietal Gyrus P1
15 Inferior Frontal Gyrus Orbital Part F3O 60 Superior Parietal Gyrus P1
16 Inferior Frontal Gyrus Orbital Part F3O 61 Inferior Parietal Gyrus P2
17 Rolandic Operculum RO 62 Inferior Parietal Gyrus P2
18 Rolandic Operculum RO 63 Supramarginal Gyrus SMG
19 Supplementary Motor Area SMA 64 Supramarginal Gyrus SMG
20 Supplementary Motor Area SMA 65 Angular Gyrus AG
21 Olfactory Cortex OC 66 Angular Gyrus AG
22 Olfactory Cortex OC 67 Precuneus PQ
23 Superior Frontal Gyrus Medial F1M 68 Precuneus PQ
24 Superior Frontal Gyrus Medial F1M 69 Paracentral Lobule PCL
25 Superior Frontal Gyrus Medial Orbital F1MO 70 Paracentral Lobule PCL
26 Superior Frontal Gyrus Medial Orbital F1MO 71 Caudate Nucleus CAU
27 Gyrus Rectus GR 72 Caudate Nucleus CAU
28 Gyrus Rectus GR e 73 Putamen PUT
29 Insula IN 74 Putamen PUT
30 Insula IN 75 Pallidum PAL
31 Anterior Cingulate and paracingulate gyri ACIN 76 Pallidum PAL
32 Anterior Cingulate and paracingulate gyri ACIN 77 Thalamus THA
33 Median Cingulate and paracingulate gyri MCIN 78 Thalamus THA
34 Median Cingulate and paracingulate gyri MCIN 79 Heschl Gyrus HES
35 Posterior Cingulate Gyrus PCIN 80 Heschl Gyrus HES
36 Posterior Cingulate Gyrus PCIN 81 Superior Temporal Gyrus T1
37 Hippocampus HIP 82 Superior Temporal Gyrus T1
38 Hippocampus HIP 83 Heschl Gyrus HES
39 ParaHippocampal Gyrus PHIP 84 Temporal Pole: superior temporal gyrus T1P
40 ParaHippocampal Gyrus PHIP 85 Temporal Pole: superior temporal gyrus T1P
41 Amygdala AMYG 86 Temporal Mid T2
42 Amygdala AMYG 87 Temporal Mid T2
43 Calcarine fissure and surrounding cortex V1 88 Temporal Pole: middle temporal gyrus T2P
44 Calcarine fissure and surrounding cortex V1 89 Middle Temporal Gyrus T2
45 Cuneus Q 90 Inferior Temporal Gyrus T3

Table 1. Cortical and subcortical regions, according to the Automated Anatomical Labeling atlas
1(AAL1) Tzourio-Mazoyer et al. (2002). Odd/even numbers correspond to the left/right hemisphere.
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Label Region Abbreviation Label Region Abbreviation
1 Unknown
2 Brain-Stem
3 Left-Cerebellum Cortex 46 Right-Cerebellum-Cortex
4 Left-Thalamus Proper lh-Th 47 Right-Thalamus Proper rh-Th
5 Left-Caudate lh-Cd 48 Right-Caudate rh-Cd
6 Left-Putamen lh-Pu 49 Right-Putamen rh-Pu
7 Left-Pallidum lh-Pal 50 Right-Pallidum rh-Pal
8 Left-Hippocampus lh-Hi 51 Right-Hippocampus rh-Hi
9 Left-Amygdala lh-Amg 52 Right-Amygdala rh-Amg
10 Left-Accumbens-Area 53 Right-Accumbens Area
11 Left-unknown 54 Right-unknown
12 Left-bankssts 55 Right-bankssts
13 Left-Caudal Anterior Cingulate lh-CACC 56 Right-Caudal Anterior Cingulate rh-CACC
14 Left-Caudal Middle Frontal lh-CMFG 57 Right-Caudal Middle Frontal rh-CMFG
15 Left-Cuneus lh-Cun 58 Right-Cuneus rh-Cun
16 Left-Entorhinal Cortex lh-EntC 59 Right-Entorhinal cortex rh-EntC
17 Left-Fusiform Gyrus lh-FuG 60 Right-Fusiform Gyrus rh-FuG
18 Left-Inferior Parietal Cortex lh-IPC 61 Right-Inferior Parietal Cortex rh-IPC
19 Left-Inferior Temporal Gyrus lf-ITG 62 Right-Inferior Temporal Gyrus rh-ITG
20 Left-Isthmus Cingulate Cortex lh-ICC 63 Right-Isthmus Cingulate Cortex rh-ICC
21 Left-Lateral Occipital Cortex lh-LOCC 64 Right-Lateral Occipital Cortex rh-LOCC
22 Left-Lateral Orbito Frontal Cortex lh-LOFC 65 Right-Lateral Orbito Frontal Cortex rh-LOFC
23 Left-Lingual Gyrus lf-LgG 66 Right-Lingual Gyrus rh-LgG
24 Left-Medial Orbito Frontal Cortex lh-MOFC 67 Right-Medial Orbito Frontal Cortex rh-MOFC
25 Left-Middle Temporal Gyrus lh-MTG 68 Right-Middle Temporal Gyrus rh-MTG
26 Left-Parahippocampal Gyrus lh-PHiG 69 Right-Parahippocampal Gyrus rh-PHiG
27 Left-Paracentral Cortex lh-PaC 70 Right-Paracentral Cortex rh-PaC
28 Left-Pars Opercularis lh-Pop 71 Right-Pars Opercularis rh-Pop
29 Left-Pars Orbitalis lh-POr 72 Right-Pars Orbitalis rh-POr
30 Left-Pars Triangularis lh-PT 73 Right-Pars Triangularis rh-PT
31 Left-Pericalcarine lh-PC 74 Right-Pericalcarine rh-PC
32 Left-Postcentral Gyrus lh-PoG 75 Right-Postcentral Gyrus rh-PoG
33 Left-Posterior Cingulate Gyrus lh-PCG 76 Right-Posterior Cingulate Gyrus rh-PCG
34 Left-Precentral Gyrus lh-PrG 77 Right-Precentral Gyrus rh-PrG
35 Left-Precuneus Cortex lh-PCunC 78 Right-Precuneus Cortex rh-PCunC
36 Left-Rostral Anterior Cingulate Cortex lh-RACC 79 Right-Rostral Anterior Cingulate Cortex rh-RACC
37 Left-Rostral Middle Frontal Gyrus lh-RMFG 80 Right-Rostral Middle Frontal Gyrus rh-RMFG
38 Left-Superior Frontal Gyrus lh-SFG 81 Right-Superior Frontal Gyrus rh-SFG
39 Left-Superior Parietal Cortex lh-SPC 82 Right-Superior Parietal Cortex rh-SPC
40 Left-Superior Temporal Gyrus lh-STG 83 Right-Superior Temporal Gyrus rh-STG
41 Left-Supramarginal Gyrus lh-SMG 84 Right-Supramarginal Gyrus rh-SMG
42 Left-Frontal Pole lh-FP 85 Right-Frontal Pole rh-FP
43 Left-Temporal Pole lh-TmP 86 Right-Temporal Pole rh-TmP
44 Left-Transverse Temporal Pole lh-TTmP 87 Right-Transverse Temporal Pole rh-TTmP
45 Left-Insula lh-Ins 88 Right-Insula rh-Ins

Table 2. Cortical and subcortical regions, according to the Desikan-Killiany atlas Desikan et al. (2006).
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Patient Gender Epilepsy Age at seizure Epilepsy Surgical Surgical MRI Histopathology Side
duration onset (years) type procedure outcome
(years)

AC F 14 8 Temporo Sr III Anterior temporal Gliosis R
-frontal necrosis

CJ F 14 9 Occipital Sr III N FCD type 1 L
CM M 35 7 Insular GK I N NA L
CV F 18 5 SMA Sr I N FDC type 2 L
ET F 23 7 Parietal Sr I FCD SPC FCD type 2 L
FB F 16 7 Premotor Th II N NA R
FO M 45 11 Temporo Sr I FCD F FCD type 2 R

-frontal
GC M 5 28 Temporal Sr III Temporopolar FCD type 1 R

hypersignal
IL F 18 20 Occipital N NO N NA R
JS M 11 18 Frontal Sr I Frontal necrosis Gliosis R

(post-trauma)
ML F 10 17 Temporal Gk II Hyppocampal NA R

sclerosis
PC M 15 14 Temporal N NO N NA R
PG M 29 7 Temporal Sr I Cavernoma Cavernoma R
RB M 28 35 Temporal Sr III N Gliosis L
SF F 24 4 Occipital N NO PVH NA R

Table 3. Clinical characteristics of the patients. N, normal; L, left; R, right; Th, thermocoagulation; Gk,
Gamma knife; Sr, surgical resection; NO, not operated; PVH, periventricular nodular heterotopia; FCD,
focal cortical dysplasia; SPC, superior parietal cortex; F, Frontal; NA, not available.

Patient EZ location PZ location SEEG PZ clinical prediction
AC rLOFC, rTmP rRMFG, lRMFG rRMFG, rMOFC, rPOr, rIns

rPu, rPT, rAccumbes
CJ lLOCC lFuG, lPC, lSPC lFuG, lSPC, lITG, lIPC, lPC, lLgG
CM lIns lPoG lPu, lLOFC, lSMG, lPrG, lPop, lPoG
CV lPCG, lCMFG, lSFG lPrG, lSPC, lPoG lRMFG, lPrG, rSFG, lCACC, lPaC
ET lPCG, lPCunC lPoG, lIPC lICC, lIPC, lSPC
FB rPrG rCMFG rPoG, rCMFG, rPop, rSFG

rTh, rPu, rPaC, rSMG
FO rAmg, rTmP, rLOFC rFuG, rLOFC, lPHiG, rITG rTmP, rIns, rPu, rMOFC, rPOr, rRMFG
GC rAmg, rHi rITG, rTmP rPHiG, rEntC, rTmP, rFuG, rPal, rTh
Il rLgG, rPHiG rHi, rFuG, rIPC, rLOCC, rSPC, rITG rFuG, rHi, rPC, rLOCC, rICC
JS rMOFC, rFP, rRMFG, rPOr rPop, rMTG, rLOFC rSFG, rPT, rPrG, rCd, rPop, rPu
ML rHi, rAmg rLOFC, rMTG rTh, rLOFC, rRACC, rIns

rCd, rPu, rMOFC
PC rHi, rFuG, rEntC, rTmP lFuG, rITG rITG, rLOCC, rLgG, rPHiG, rAmg
PG rFuG rEntC, rIPC, rHi rITG, rLOCC, rTmP
RB lAmg, lHi, lEntC, lFuG lMTG, rMTG, lIns lITG, lLOCC, lPHiG, lLgG

lTmP, rEntC lCerebellum
SF rLgG, rLOCC, rCun, rPC lPCunC, lCun, rPHiG rFuG, rIPC, rITG, rMTG, rSPC

Table 4. Results of Propagation zone prediction for each patient. Abbreviations are given in Supplementary
Table 2.
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Figure 18. Network measure correlations of healthy subjects. Panels A-F are obtained plotting
independently all node values for all the subjects (90*20=1800 data points). Panel G: Data are averaged
over all 20 subjects. The single node values are averaged over the different subjects and afterwards, the
correlation between node strength and clustering coefficient is estimated. Infinite values were excluded.
The Pearson correlation of clustering coefficient and node strength of the averaged healthy DTI topology is
r = 0.9 and much stronger compared to the average of all individual topologies r = 0.75 from panel A.
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Figure 19. Weight Distribution of the DTI graphs. The weight distribution with weights on the x-axis
in ascending order. a) Weight distribution, b) the inverse weight distribution, c) and the logarithmic weight
distribution of the healthy averaged DTI graph. Note that c) matches the curve of recruitment times in 7 a).
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 t I

Figure 20. Input Current Duration Variation. Dependence of the recruitment time on the current
duration tI while the current strength is kept constant at IS = 15. The y-axis shows the recruitment times
of the first 10 recruited areas for each current strength. Blue is the EZ, green is the first recruited area, red
the second, etc. The recruitment times are independent of the pulse duration. Parameters: N = 90, σ = 1,
∆ = 1, η̄ = −6, IS = 15, stimulation site: brain area k = 45 for the healthy subject 0.
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Figure 21. Spectrograms of mean membrane potentials for healthy subject sc2. (A1-B1) Stimulation
current I(k)S , (A2-B2) population firing rates rk and (A3-B3) mean membrane potentials vk for the EZ
(orange) and other populations (black). The blue curves show the network average firing rate and membrane
potential. Non-stimulated node dynamics is plotted as transparent gray curves: some of the nodes adapt
their voltage to the stimulation of the EZ and change during stimulation. However they do not reach the
high-activity state regime. (A4-B4) Spectrogram of the network average membrane potential and (A5-B5)
of the vk of the EZ. Column A shows an asymptomatic seizure-like event for η̄ = −9.20, column B a
generalized seizure-like event for η̄ = −5.3. In both cases the EZ node 46 is stimulated. Parameter values:
Npop = 90, τm = 20 ms, ∆ = 1, Jkk = 20, σ = 1, Jkl = 5J̃kl ∀k 6= l.
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Patient Recruitment order Recruitment time (s) Type Region
AC 0 0.0 EZ rh-LOFC
AC 1 0.0005 EZ rh-TmP
AC 2 0.123 PZSEEG, PZClin rh-RMFG
AC 3 0.1324 PZClin rh-Pu
AC 4 0.1546 other rh-SFG
AC 5 0.1587 PZClin rh-Ins
AC 6 0.1718 other rh-Pal
AC 7 0.1747 other rh-PrG
AC 8 0.175 other rh-MOFC
AC 9 0.1769 other rh-Cd
AC 10 0.1797 other lh-SFG
AC 11 0.1801 other rh-PoG
CJ 0 0.0 EZ lh-LOCC
CJ 1 0.0255 PZSEEG, PZClin lh-FuG
CJ 2 0.0294 PZSEEG, PZClin lh-SPC
CJ 3 0.0333 PZClin lh-ITG
CJ 4 0.0354 PZSEEG, PZClin lh-IPC
CJ 5 0.045 other lh-MTG
CJ 6 0.046 other lh-SMG
CJ 7 0.0466 other lh-PCunC
CJ 8 0.0479 PZClin lh-LgG
CJ 9 0.0482 other lh-PoG
CJ 10 0.0521 other lh-PrG
CM 0 0.0 EZ lh-Ins
CM 1 0.0224 PZClin lh-Pu
CM 2 0.0369 other lh-SFG
CM 3 0.0394 PZClin lh-LOFC
CM 4 0.04 PZClin lh-PrG
CM 5 0.0438 PZSEEG, PZClin lh-PoG
CM 6 0.0446 other lh-RMFG
CM 7 0.0451 other lh-Th
CM 8 0.0453 other lh-CMFG
CM 9 0.0459 other rh-SFG
CM 10 0.0465 PZClin lh-Pop
CV 0 0.0 EZ lh-SFG
CV 1 0.0016 EZ lh-CMFG
CV 2 0.0026 EZ lh-PCG
CV 3 0.007 PZSEEG, PZClin lh-PrG
CV 4 0.0085 PZClin lh-RMFG
CV 5 0.0122 PZSEEG lh-PoG
CV 6 0.0126 PZClin rh-SFG
CV 7 0.0155 PZClin lh-PaC
CV 8 0.0168 other lh-Pop
CV 9 0.0168 other lh-Pu
CV 10 0.0175 other lh-Th
CV 11 0.0211 other lh-SMG
CV 12 0.0212 PZClin lh-CACC
ET 0 0.0 EZ lh-PCunC
ET 1 0.0006 EZ lh-PCG
ET 2 0.0181 PZClin lh-SPC
ET 3 0.0219 PZClin lh-ICC
ET 4 0.0244 PZSEEG, PZclin lh-IPC
ET 5 0.0284 other lh-SFG
ET 6 0.0318 other lh-LOCC
ET 7 0.0345 other rh-SFG
ET 8 0.0363 other lh-Cun
ET 9 0.0364 other lh-SMG
ET 10 0.0366 other lh-Th
ET 11 0.0374 other lh-PrG

Table 5. List of the first 10 recruited brain areas for each patient. The column “Type” indicates whether
the recruited area belongs or not to the PZ estimated via presurgical invasive (PZSEEG) or non-invasive
(PZClin) evaluation.
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Patient Recruitment order Recruitment time (s) Type Region
FB 0 0.0 EZ rh-PrG
FB 1 0.0146 PZClin rh-PoG
FB 2 0.02 PZClin rh-SFG
FB 3 0.0287 PZSEEG, PZClin rh-CMFG
FB 4 0.0342 PZClin rh-SMG
FB 5 0.0369 PZClin rh-Pop
FB 6 0.038 other lh-SFG
FB 7 0.0382 PZClin rh-Th
FB 8 0.0396 other rh-RMFG
FB 9 0.0417 PZClin rh-PaC
FB 10 0.042 PZClin rh-Pu
FO 0 0.0 EZ rh-LOFC
FO 1 0.0012 EZ rh-TmP
FO 2 0.0012 EZ rh-Amg
FO 3 0.0379 PZClin rh-Ins
FO 4 0.0516 PZClin rh-Pu
FO 5 0.0875 other rh-SFG
FO 6 0.0949 other rh-PrG
FO 7 0.0954 other rh-Pal
FO 8 0.098 PZClin rh-RMFG
FO 9 0.1027 other rh-PoG
FO 10 0.1031 other rh-CMFG
FO 11 0.1034 other lh-SFG
FO 12 0.1067 other rh-Th
GC 0 0.0 EZ rh-Hi
GC 1 0.0003 EZ rh-Amg
GC 2 0.3184 PZClin rh-PHiG
GC 3 0.3735 PZClin rh-FuG
GC 4 0.3905 PZSEEG rh-ITG
GC 5 0.3965 other rh-LOCC
GC 6 0.3999 other rh-MTG
GC 7 0.4027 other rh-LgG
GC 8 0.4097 other rh-IPC
GC 9 0.4106 other rh-STG
GC 10 0.4137 other rh-PC
GC 11 0.4179 other rh-bnks
IL 0 0.0 EZ rh-LgG
IL 1 0.0006 EZ rh-PHiG
IL 2 0.0128 PZSEEG, PZClin rh-FuG
IL 3 0.0181 PZSEEG, PZClin rh-Hi
IL 4 0.0205 PZSEEG, PZClin rh-LOCC
IL 5 0.0217 PZSEEG rh-ITG
IL 6 0.0264 PZClin rh-PC
IL 7 0.0408 PZSEEG rh-IPC
IL 8 0.0417 other rh-MTG
IL 9 0.0453 PZSEEG rh-SPC
IL 10 0.0483 other rh-Th
IL 11 0.0483 other rh-Cun
JS 0 0.0 EZ rh-RMFG
JS 1 0.0006 EZ rh-MOFC
JS 2 0.0008 EZ rh-FP
JS 3 0.0008 EZ rh-POr
JS 4 0.0414 PZClin rh-SFG
JS 5 0.0745 PZClin rh-PrG
JS 6 0.0882 other rh-PoG
JS 7 0.0894 other rh-CMFG
JS 8 0.0957 other rh-SMG
JS 9 0.1035 other rh-SPC
JS 10 0.1103 PZSEEG, PZClin rh-Pop
JS 11 0.1119 other rh-IPC
JS 12 0.1155 other rh-PaC

Table 6. Continued from Table 5.
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Patient Recruitment order Recruitment time (s) Type Region
ML 0 0.0 EZ rh-Hi
ML 1 0.0003 EZ rh-Amg
ML 2 0.158 PZClin rh-Th
ML 3 0.185 PZClin rh-Cd
ML 4 0.19 other rh-SFG
ML 5 0.1993 other rh-RMFG
ML 6 0.2006 other BS
ML 7 0.2015 PZClin rh-Pu
ML 8 0.2035 other rh-Pal
ML 9 0.2072 other rh-PrG
ML 10 0.2084 other lh-SFG
ML 11 0.2123 other rh-CMFG
PC 0 0.0 EZ rh-FuG
PC 1 0.0006 EZ rh-Hi
PC 2 0.0014 EZ rh-EntC
PC 3 0.0016 EZ rh-TmP
PC 4 0.008 PZClin rh-LOCC
PC 5 0.0137 PZSEEG, PZClin rh-ITG
PC 6 0.0202 PZClin rh-LgG
PC 7 0.0215 other rh-MTG
PC 8 0.0243 other rh-SPC
PC 9 0.0267 other rh-IPC
PC 10 0.0288 other rh-PC
PC 11 0.0298 PZClin rh-PHiG
PC 12 0.0324 other rh-PCunC
PC 13 0.0325 other rh-SMG
PG 0 0.0 EZ rh-FuG
PG 1 0.035 PZClin rh-LOCC
PG 2 0.0375 PZClin rh-ITG
PG 3 0.062 other rh-MTG
PG 4 0.0683 PZSEEG rh-IPC
PG 5 0.0742 other rh-SPC
PG 6 0.084 other rh-STG
PG 7 0.0864 other rh-SMG
PG 8 0.0903 other rh-bnks
PG 9 0.0907 other rh-PrG
PG 10 0.0922 other rh-PoG
RB 0 0.0 EZ lh-Hi
RB 1 0.0 EZ lh-FuG
RB 2 0.0008 EZ lh-EntC
RB 3 0.0008 EZ lh-TmP
RB 4 0.0008 EZ rh-EntC
RB 5 0.0008 EZ lh-Amg
RB 6 0.016 PZClin lh-ITG
RB 7 0.0166 PZClin lh-PHiG
RB 8 0.0266 PZClin lh-LOCC
RB 9 0.0336 PZSEEG lh-MTG
RB 10 0.0391 PZClin lh-LgG
RB 11 0.0474 other lh-STG
RB 12 0.0504 other lh-IPC
SF 0 0.0 EZ rh-LOCC
SF 1 0.0003 EZ rh-PC
SF 2 0.0003 EZ rh-LgG
SF 3 0.0008 EZ rh-Cun
SF 4 0.0095 PZClin rh-FuG
SF 5 0.021 PZClin rh-IPC
SF 6 0.024 PZClin rh-SPC
SF 7 0.0253 PZClin rh-ITG
SF 8 0.0272 PZSEEG rh-PCunC
SF 9 0.0293 PZClin rh-MTG
SF 10 0.0338 other rh-SMG
SF 11 0.0361 other rh-bnks
SF 12 0.0374 other rh-PoG

Table 7. Continued from Tables 5, 6.
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Figure 22. Recruitment times for patient CJ obtained for 6 different random Gaussian distributions of η̄.
(A1-F1) Spacetime plots of the average firing rates of all brain areas. (A2-F2) Histograms of the recruitment
times. Red (blue) bins identify those recruited area that belong to PZClin ( PZSEEG). (A3-F3) Cumulative
histograms of the recruitment times. Purple bin: EZ. Red bins: first 10 recruited areas. Parameters as in
Fig. 11. For one exemplary patient, CJ, we show here in detail the impact of different realizations of η̄(k),
drawn from a Gaussian distribution (centred at η̄G = −7.5 with standard deviation 0.1), on the recruitment
times of the brain areas. In particular we have considered it to be sufficient to present results for six out
of ten realizations, due to the large similarities between the outcomes. Space-time plots of the average
firing rates give an immediate visualization of the recruitment events for each brain area. We find that
the pattern of recruitment does not change substantially for different realizations of the η̄(k). The EZ is
localized in the area lh-LOCC, that corresponds to node k = 20: The firing rate of this population increases
immediately upon stimulation, thus giving rise to the recruitment mechanism. The brain areas in the PZ
are rapidly recruited: In general the first ten areas are always recruited in less then 0.1 s, followed by a
continuous increase of the number of recruited nodes. Finally, it is worth noticing that the first recruited
areas correspond to those predicted clinically.

This is a provisional file, not the final typeset article 52

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.01.15.426839doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426839


Gerster et al. Patient-specific network connectivity

0 10 20 30 40 50
Shortest path all

0.00

0.05

0.10

0.15

0.20

0.25

0.30

t re
c(s

)
CJ
CM
FB
PG

Figure 23. Recruitment time and Shortest Path. The recruitment times trec as a function of the shortest
path to the EZ are shown for four patients and all brain areas. Same af Fig. 14 A, with a regression fit that
underlines the approximately linear relationship between the shortest path length and the recruitment time.
Parameters as in Fig. 14.
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