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ABSTRACT

The COVID-19 pandemic has seen an unprecedented response from the sequencing community.
Leveraging the sequence data from more than 140,000 SARS-CoV-2 genomes, we study mutation
rates and selective pressures affecting the virus. Understanding the processes and effects of mutation
and selection has profound implications for the study of viral evolution, for vaccine design, and for
the tracking of viral spread. We highlight and address some common genome sequence analysis
pitfalls that can lead to inaccurate inference of mutation rates and selection, such as ignoring skews
in the genetic code, not accounting for recurrent mutations, and assuming evolutionary equilibrium.
We find that two particular mutation rates, G→U and C→U, are similarly elevated and considerably
higher than all other mutation rates, causing the majority of mutations in the SARS-CoV-2 genome,
and are possibly the result of APOBEC and ROS activity. These mutations also tend to occur many
times at the same genome positions along the global SARS-CoV-2 phylogeny (i.e., they are very
homoplasic). We observe an effect of genomic context on mutation rates, but the effect of the context

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.14.426705doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426705
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - JANUARY 14, 2021

is overall limited. While previous studies have suggested selection acting to decrease U content at
synonymous sites, we bring forward evidence suggesting the opposite.

Keywords SARS-CoV-2 · COVID-19 ·Mutation · Selection · Sequencing · Viral genomics

1 Introduction

The abundant and rapid availability of viral genomic data has had a profound effect on the response to the COVID-19
pandemic, from tracking and tracing of transmission [1, 2, 3], to vaccine and drug development [4]. Genomic SARS-
CoV-2 data also allows us to investigate the evolutionary dynamics of the virus such as its mutational and selective
pressures [5]. Understanding the contribution of mutation and selection in shaping SARS-CoV-2 genome evolution is
important, for example, for drug and vaccine development [6], for predicting variants of clinical and epidemiological
importance [7, 8, 9, 10, 11], for understanding the biological mechanisms underlying the virus’ genome evolution
(such as recombination [12] and mutagenic immune system responses [13, 14, 15, 16]), to improve the accuracy of
phylogenetic approaches for epidemiological applications [17, 18, 19] and for inferring its origin [20].

When deciphering genome evolution, one has to disentangle the effect of mutation and selection affecting the emergence
and spread of genetic variants. It has been observed by several studies that SARS-CoV-2 presents a very skewed
mutational spectrum, with most observed genetic variation resulting from C→U mutations [21, 5, 22, 23]. It is important
to account for these mutational skews when inferring selection, since recurrent mutations can generate a phylogenetic
signal that can be confused with positive selection when using phylogenetic methods (e.g. [24, 25]). Such strong
mutational skews, if unaccounted for, can also cause errors in phylogenetic tree inference [23, 22].

Here, we identify common pitfalls when analysing SARS-CoV-2 genomic data, and we present alternative, more robust
approaches for identifying the contribution of mutation and selection in SARS-CoV-2 evolution. We confirm that
the C→U mutation rate is very high in SARS-CoV-2, in particular within the context UCG→UUG, putatively as the
result of APOBEC ("Apolipoprotein B mRNA Editing Catalytic Polypeptide-like") proteins activity. However, the
majority of C→U mutations occur outside of this context. Secondly, and in contrast to most other studies, we find
that the G→U mutation rate is nearly as high (about 97%) as C→U. The reason why this has not been noted in most
other studies is because they did not account for the biases in the genetic code that causes most G→U mutations to be
selectively deleterious, particularly compared to C→U mutations. This has a large effect on inferred mutation rates
also because most of the SARS-CoV-2 genome is composed of coding sequence. This causes G→U mutations to be
underrepresented among the observed genetic variation, despite its high mutation rate. Finally, we investigate selection
acting on synonymous variants. We find evidence contrary to previous claims of selection against U content [5].

2 New Approaches

Estimating accurate mutation rates is essential for understanding the evolutionary and immunological pressures acting
on the virus, as well as to infer accurate phylogenies and for detecting selection. One of the main aims of our work is
the estimation of mutation rates in SARS-CoV-2, in particular while trying to account for the effects of selection, which
can affect the spread of certain types of mutation, and therefore decrease or increase our chances of detecting them.

Previous studies investigating mutation rates in SARS-CoV-2 have used the approach of counting the number of genome
positions at which alternative alleles are observed (see e.g. [5, 21]). This approach works well when the number
of mutations occurred is small relative to the number of genome positions considered. However, when the same
mutation events occur multiple times at the same position on different branches of the phylogenetic tree (as the case for
SARS-CoV-2 [22, 23, 9]), this approach can underestimate the most elevated mutation rates, since multiple mutation
events can end up conflated and counted as a single variant allele.

Our approach consists instead of, first, inferring a maximum likelihood phylogenetic tree for considered SARS-CoV-2
genomes. Then, we infer a mutational history on this tree for each position of the genome using parsimony. This
gives us, for each given mutation type (for example, synonymous mutations from nucleotide A to C) an estimated
number of mutation events. We then normalize this number of mutation events, dividing it by the number of mutation
"possibilities". These possibilities represent the number of sites in the reference genome in which a mutation of a
certain type is possible. At each position, multiple mutation events of the same type are possible along the phylogeny,
so the inferred number of mutation events of a certain type can be larger than the number of mutation possibilities for
the same type. These normalized counts represents our estimates of relative neutral mutation rates.

In order to obtain multiple independent estimates, and in order to assess and possibly correct for the contribution of
possible issues in our sequences, we separate mutation counts in 3 bins according to the number of descendants of
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each mutation: (i) those with only one descendant tip ("singletons"); (ii) those with ≥ 2 and ≤ 4 descendants ("low
frequency"); and (iii) those with > 4 descendants ("high frequency"). The main rationale for this is that sequence errors
and RNA degradation, for example, are expected to mostly cause apparent mutation events with only 1 or very few
descendants.

For completeness, we also show results from the alternative approach to estimating mutation rates used in previous
studies, based on counting the number of alignment columns at which alternative alleles are observed. We note
again, however, that due to possibly multiple mutation events of the same type occurring at the same site in different
lineages, this approach is expected to underestimate the number of mutation events, in particular for recurring mutations.
Similarly to before, we classify three classes of sites with a variant allele: (i) those where the variant allele is present in
any number of sequences; (ii) those where it is present in at least two sequences; (iii) those where it is present in at least
five sequences.

Another issue that needs to be considered when estimating mutation rates is that different mutations can have different
effects on the ability of the virus to replicate and transmit. In this manuscript, we mainly focus on synonymous
mutations, as they are sufficiently abundant in our dataset to allow reliable estimates of mutation rates, and as they are
expected to usually have a more limited effect on the viral fitness [26], therefore providing more limited biases in the
inference of neutral mutation rates.

Later in the manuscript we describe a method to investigate possible fitness effects of synonymous mutations in
SARS-CoV-2. This method is based on the comparison of ratios of estimated numbers of mutations with different
numbers of descendants. The principle behind this method is that negative selection tends to decrease the frequency
of new mutations, while positive selection tends to increase it. So, for example, if we want to compare the fitness
of synonymous C→U mutations versus A→C ones, we can compare the ratio of high-frequency vs low-frequency
synonymous C→U mutations, to the same ratio for synonymous A→C mutations. If the former is significantly higher,
we take this as evidence that synonymous C→U mutations have typically higher fitness than A→C ones.

More details on our approaches are given in the Results and Material and Methods sections below.

3 Results

3.1 Neutral mutation rates in SARS-CoV-2

Here, we want to estimate the underlying mutability of different nucleotides, in a way that is as unbiased as possible
with regards to how these mutations might affect the ability of new mutations to replicate and spread. To do this, firstly,
we mostly focus on synonymous mutations, which are expected to affect, on average, the fitness of the virus much less
than nonsynonymous mutations [26]. Secondly, we only consider new SARS-CoV-2 mutations observed within the
human population, and ignore long-term divergence (between-species substitutions) which are expected to be more
affected by selective forces [27]. While we cannot exclude that selection still affects some of the patterns observed
below, for example making some types of synonymous mutations more lethal for the virus than others, we tried to
reduce these biases as much as possible in the following.

First, to put our results in perspective of previous studies, we looked at numbers of sites with alternative alleles. When
looking at patterns across the whole genome, it appears that all transitions (C→U, U→C, A→G and G→A) are quite
common, as well as G→U mutations; note however that A and U bases have more opportunities to mutate as they are
more common in the genome (Figure 1A). If we focus only on possible synonymous mutations (which we expect to be
less likely affected by strong selection), we see C→U and G→U synonymous alternative variants at the vast majority of
sites at which such variants could have been observed (Figure 1B). This means that sites at which synonymous C→U
and G→U mutations might have occurred are possibly saturated with such mutations. In fact, using our phylogenetic
approach to estimate numbers of mutation events of each type at each genome position, we clearly see that C→U and
G→U are the most frequent mutations (Figure 1C), despite having fewer opportunities to occur due to GC content
being lower than AT content. Focusing again on synonymous mutations, we can see that, while we don’t infer more
overall G→U mutations than U→C or A→G ones, given the very low number of sites at which synonymous G→U
mutations are possible, G→U and C→U seem the synonymous mutations that occur proportionally more often (Figure
1D). We also observe similar patterns for non-coding, non-synonymous and 4-fold degenerate sites (Figure S1). These
observations suggest that the G→U and C→U underlying neutral mutation rates are considerably higher than all others.

Our results further suggest that inferring mutation rates from counting the number of sites with variants (the counts
in Figure 1A-B, and as in e.g. [5, 21]) can lead to underestimating the G→U and C→U synonymous mutation rates.
This is because sites at which such mutations are possible are probably often saturated (multiple mutation events of
exactly the same type have occurred along the phylogeny). However, saturation in previous studies was probably not as
extreme as here since we investigate a considerably larger number of genomes. Another difference of our approach
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Figure 1: Numbers of possible mutations, observed mutations, and sites with alternative alleles. On the X axes
are the 12 distinct types of mutation events, A→C, A→G, etc. In green we always show the number of genome
positions at which the considered mutation type is possible. In A,C we consider all possible mutations, while in B,D
we consider only synonymous mutations. In A,B we show, on the Y axis, the numbers of sites with alternative alleles in
the alignment (blue color hues). In dark blue we show the number of all sites with alternative variants of the given type;
in blue, we only show the number of such sites at which the alternative variant is present in at least 2 sequences; in light
blue, only sites at which the considered alternative allele is present in at least 5 sequences. By definition, in plots A-B
green bars are necessarily taller than all blue ones. In C-D we show, in red, orange and yellow, the numbers of mutation
events inferred with parsimony on our phylogeny. In red we show the number of mutation events of the considered type
with exactly one descendant; in orange the number of these mutations with at least 2 but less than 5 descendants; in
yellow, those with at least 5 descendants. Mutation possibilities (green) can be fewer than inferred mutations events
(red, orange and yellow in plots C-D) for certain types of mutations since the same mutation event can be inferred
multiple times at the same site in different parts of the phylogenetic tree.

from most previous studies (but similar to [5]), is that we aim to disentangle the contribution of selection acting on the
amino acid sequence from the underlying mutation rates, and to do this we separate synonymous and nonsynonymous
mutations. This has a considerable further effect on the inference of the G→U mutation rates, because there are only
a few sites at which a G→U mutation is synonymous, and so most possible G→U mutations are probably under
significant purifying selection; skews in the genetic code [28, 29] are probably an important factor here. Of further
impact, G is less frequent in the SARS-CoV-2 genome than U, in particular at 4-fold degenerate sites (sites where
any 1-base mutation is synonymous) with a frequency of 6.5%, compared to frequencies of A 28.9%, C 11.4%, and
U 50.9%; this causes a further under-representation of observed G→U mutations relative to the underlying G→U
mutation rate.

A confirmation that many synonymous G sites are saturated with mutations can be seen in Figures 2 and S2. C→U
and G→U mutations are by far the most homoplasic (the same mutation occurs more than once along the phylogeny),
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Figure 2: Re-occurrence of mutation events at the same sites. Proportion of sites (Y axis) where a given mutation
(color, see legends) appears a certain number of times (X axis) along the phylogeny. A synonymous sites; B non-
synonymous sites.

especially at synonymous and non-coding positions. This is unlikely to be the result of positive selection favouring
these mutations, or of phylogenetic tree inference or parsimony mutation inference errors (since this seems to affect
only C→U and G→U mutations) and seems instead the result of underlying relatively high neutral C→U and G→U
mutation rates.

We also mostly find C→U or G→U mutations among the most homoplasic mutations of the genome: 55 out of 59
total mutations that occur more than 60 times at the same position are C→U or G→U. Here we ignore sites that
are so homoplasic as to probably cause issues in phylogenetic inference [23, 22]; these sites were masked before
any analysis here, and are namely the G→U mutation at position 11083, and the C→U mutations at positions 16887
and 21575. These three sites appear as the most mutable in the genome. However, the next 3 most homoplasic
mutations of the genome that we identify here are neither C→U nor G→U mutations. The most recurrent one is the
A→G nonsynonymous (K→R) mutation at position 10323 which we inferred to have occurred 138 times, with a total
of 1187 descendants, found in context CTTAAGCTTAAGGTTGATACA. The second is a A→G nonsynonymous
(K→R) mutation at position 21137, which occurred 130 times with a total of 472 descendants, found in context
ATACAACAAAAGCTAGCTCTT. The third is a T→C synonymous mutation at position 27384 which occurred 119
times, with a total of 808 descendants, found in context TGGAGATTGATTAAACGAACA. We suspect that these 3
mutations are the results of frequent ADAR activity, considering also their context. For example, the first two are A→G
mutations with a G downstream and an A upstream (see [30, 31]). The third site is probably affected by ADAR acting
on the negative strand. The fourth highly homoplasic mutation we found that is not G→U or C→U is the 11th most
common in the genome, a G→A nonsynonymous (G→S) mutation at position 1820, with a total of 409 descendants
and in context AGCTAAAAAAGGTGCCTGGAA.

One of the principal aims of our work is to estimate mutation rates while taking into account the effect of selection
acting on the amino acid sequence, and trying to account as much as possible for other issues such as homoplasic
mutations. To do this, firstly, we focus on synonymous mutations, which are expected to be less subject to selective
constraints than nonsynonymous ones, while being much more abundant than non-coding mutations. Secondly, we use
inferred counts of mutation events (using parsimony inference along our phylogenetic tree, see Methods); this accounts
for the saturation of mutation events at more mutable positions, as discussed before. Thirdly, we separate mutation
counts according to the number of observed descendants of each mutation - this allows us to have independent estimates,
and to have estimates that do not rely on inferred mutation events with one descendant, which might be enriched in
sequence errors or RNA degradation (in the case errors RNA degradation would be present in our alignment). Fourthly,
we normalize mutation counts by the number of mutation possibilities, so to account for the fact that certain mutation
types (for example synonymous G→U mutations) are possible at fewer sites than other mutation types. For this last
point, we divide the number of inferred mutations of a certain type (e.g., red, orange and yellow bars in Figure 1D)
by the number of sites at which such mutations are possible (e.g., green bars in Figure 1D), always considering the
reference genome as the mutational ancestral background. We find that the G→U (transversion) mutation rate is similar
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Figure 3: Estimated synonymous mutation rates in SARS-CoV-2. To estimate synonymous mutation rates in SARS-
CoV-2 we used the counts of inferred synonymous mutation events (see Fig 1D) normalized by the numbers of reference
genome sites at which such mutations might have occurred. On the X axis are the 12 distinct types of mutation events,
A→C, A→G, etc. In red, orange and yellow we show respectively rates obtained from counts of mutation events with
1 descendant, more than 1 but less than 5 descendant, and 5 or more descendants. A Mutation rates represented as
average numbers of mutation events inferred per site at which such mutation type is possible. B Relative mutation rates
(the sum of all bars of one specific color is 1.0).

to A to C to G to U
from A 0.039 0.310 0.123
from C 0.140 0.022 3.028
from G 0.747 0.113 2.953
from U 0.056 0.261 0.036

Table 1: Mutation rates estimated from 4-fold degenerate sites. Only mutation events with more than 1 descendant
have been considered here. Rates are been normalized as typically done in phylogenetics, the normalizing constant
being the sum of the rates multiplied by the frequency of the ancestral allele:

∑
a,b qa,bπ(a), where a, b are nucleotides,

qa,b is the original unnormalized rate from allele a to b, and π(a) is the frequency of a at 4-fold degenerate sites.

to C→U (transition) (Figures 3 and S3), and they are both considerably higher than all other rates (about 4 times higher
than the next highest rate, G→A, see Table 1). We confirm that all other transitions, U→C, G→A and A→G, have
lower rates, but higher than all remaining transversions. In particular, the mutational process seems highly asymmetrical
and strand-asymmetrical, with mutation rate G→U being 82.0 times higher than U→G and 21.1 times higher than C→A
(Table 1). This strand-asymmetry is likely the result of ROS and APOBEC activity on single-strand RNA [14, 15].

Our results differ remarkably from those studies that either estimated mutation rates by comparing numbers of sites with
alternative alleles, did not divide these counts by the numbers of opportunities for such mutations, and/or did not account
for the biases in the genetic code by separating synonymous and nonsynonymous mutations (e.g. [20, 32]). Our results
are instead more consistent with those of studies that did take some of these steps and highlighted similarly high C→U
and G→U mutation rates in SARS-CoV-2 (e.g. [5]). While elevated C→U mutation rate in SARS-CoV-2 has been
frequently observed and usually attributed to the effects of APOBEC activity, the elevated G→U has been discussed
much less, but it has been usually suggested to be the result of the activity of reactive oxygen species (ROS), see [5, 15].
The number of descendants of mutation events seems to have little impact on our inferred relative mutation rates (Figure
3B); this suggests that phenomena like RNA degradation or sequence errors, which are expected to overwhelmingly
result in inferred mutation events with one descendant, do not considerably affect our mutation rate estimates.

3.2 Context dependencies

One of the observations that suggests APOBEC activity being the leading cause of the elevated C→U mutation rate
in SARS-CoV-2 is that nucleotide context seems to affect the C→U mutation rate in a way that is consistent with
the action of some of the human APOBECs [15]. Here we study the effect of neighbouring base context on C→U
mutability. We divide the set of possible and observed C→U mutations in classes based on the nucleotide context (5’
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Figure 4: C→U and G→U synonymous mutation rates in different base contexts. Here mutation rate are calculated
as in Figure 3A. A C→U mutations. B G→U mutations. The X axis shows the context of the considered mutation
(for example, in A, A_G represents the trinucleotide ACG and its synonymous mutation rate into trinucleotide AUG).
Colors are as in Figure 3.

to 3’ preceding and following base). Even though we focus only on C→U mutations, it is still important to separate
synonymous and nonsynonymous mutations, since different contexts can lead to synonymous or nonsynonymous C→U
mutations with different proportions. Additionally, different contexts can be present with different frequencies in the
SARS-CoV-2 genome. Focusing on synonymous mutations, and using the normalization procedure outlined above,
we find that UCG→UUG appears to be the most mutable context (Figures 4A and S4). Note that this pattern is not
observed if one considers unnormalized mutation counts, particularly those from nonsynonymous mutations (Figure
S5).

This confirms previous results which suggested an elevated UCG→UUG mutation rate [32, 16, 5], attributed to either the
context-specificity of APOBEC mutational targets, or to selection against CpG dinucleotides [15]. We discuss selection
in the next section. Here, we note that while we found a signal of context affecting mutation rates in SARS-CoV-2, and
while at least part of this observation is consistent with some of the known sequence targets of APOBEC, overall, C→U
mutations occurring in UCG or more generally UC→UU context represent only part (and a very small part for UCG) of
all C→U mutations in SARS-CoV-2 (Figure S1) and as such they don’t explain by themselves the whole C→U relative
hypermutability.

When we look at longer sequence context (previous 5 bases and following 5 bases) we see that U in the 2 bases
preceding a C seems to have a C→U mutagenic effect, while G in the previous 2 bases and C in the following 2 bases
seem to reduce the mutation rate (Figure S6).

Given the relatively high G→U mutation rate, we performed a similar analysis of context effects on G→U mutations.
However, while having a high rate, G→U synonymous mutations are quite rare (Figure S7 for numbers in different
contexts) and so estimates of context-dependent rates are expected to have substantial uncertainty. Additionally, some
contexts are not possible for G→U synonymous mutations, for example AG→AU mutations are never synonymous
(Figure S7). We don’t notice any one particularly elevated mutational G→U context, however, a G being preceded or
followed by a C (CG and GC contexts) seems to have a higher G→U mutation rate (Figures 4B and S8).

3.3 Testing for selection at synonymous sites using mutation frequencies

Previous authors have discussed the effect of selection on synonymous mutations in SARS-CoV-2. For example, the
elevated mutation rate in CpG context has been interpreted as a sign of selection against CpG content in SARS-CoV-2
in order to avoid zinc finger antiviral proteins (ZAP), see [15]. This is consistent with similar evidence found from
depleted CpG content in other coronaviruses [33]. However, evidence from CpG content and substitution rates can be
confounded by skewed mutation rates and mutational contexts like the ones due to APOBEC activity, which might be
the leading cause of mutation in SARS-COV-2.

To overcome this limitation, and in order to disentangle the contribution of mutation and selection over the synonymous
evolution of SARS-CoV-2, [5] compared equilibrium frequencies inferred from SARS-CoV-2 substitution rates to
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observed nucleotide and dinucleotide frequencies. Since selection tends to raise the frequency of favourable alleles in a
population, and to decrease the frequency of deleterious alleles, if a certain nucleotide is advantageous over another at
synonymous sites, for example, if C is advantageous over U, it is expected that relatively more U→C mutations will
reach fixation (completely replace the ancestral allele in the population) than C→U mutations. This means that, in the
long term, there would be fewer U nucleotides in the genome than expected based on the mutation rates estimated from
observed genetic variation within the population. [5] observed that U nucleotides are less common at 4-fold degenerate
sites in SARS-CoV-2 than expected from SARS-CoV-2 genetic variation within humans, and concluded that there is
ongoing selection against U nucleotides in SARS-CoV-2. With a similar analysis, they also concluded that there is no
ongoing selection against CpG content in SARS-CoV-2, despite opposite prior expectations (see [15, 33]).

[5] assumed that the evolutionary process is stationary, that is, that mutation rates and selective pressures did not change
recently (for example, since the introduction of SARS-CoV-2 into humans). This assumption is highly debatable. Due
to the recent host shift and to the fact that many mutations in SARS-CoV-2 seem to be the consequence of host immune
system activity, a recent significant change in mutation rates and selective pressure in SARS-CoV-2 (associated with its
introduction to humans) is likely. In fact, studies have suggested that the current G→U mutation rate of SARS-CoV-2
in humans, for example, is much higher than in its reservoir hosts [34, 35]. Specifically, [34] estimated that the G→U
mutation rate in SARS-CoV-2 increased 9-fold with its introduction in humans, possibly due to difference in ROS
activity between hosts.

We used the approach of [5] on our dataset to estimate mutation rates at 4-fold degenerate sites, and then from
these estimated equilibrium nucleotide frequencies using the python package discreteMarkovChain v0.22 https:
//pypi.org/project/discreteMarkovChain/. Similarly to [5], we find that 4-fold degenerate site U content is
considerably lower than the equilibrium U content (50.9% vs 65.5%). However, if we re-calculate the equilibrium
nucleotide frequencies after decreasing the G→U mutation rate 9-fold in this analysis (to mimic the putative reservoir
mutation rate estimated in [34]), the difference almost disappears (equilibrium U content 52.6%). If we repeat the
analysis above using mutation rates as in Table 1 (inferred from mutation counts) instead of mutation rates inferred as
in [5] (inferred from the numbers of sites with variant alleles, as in Figure 1B), we find an equilibrium U frequency of
77.4%, and, after decreasing G→U rate 9-fold, of 64.9%. These observations suggest that, indeed, changes in mutation
rates can cause strong changes in equilibrium frequencies, and the inference of selection from the comparison of current
and equilibrium nucleotide frequencies can be affected by changes in mutation rates.

To address this issue, we propose an alternative approach to test for selection acting on synonymous mutations. Since
selection increases the frequency of favourable alleles and decreases the frequency of deleterious alleles within a
population, we expect selection to change the relative proportion of alleles at different population frequencies. The
McDonald-Kreitman test [27], for example, compares numbers of synonymous and nonsynonymous within-species
polymorphisms and between-species polymorphisms; within this framework, purifying selection is expected to decrease
the number of nonsynonymous substitutions more than the number of nonsynonymous polymorphisms.

However, the emergence of SARS-CoV-2 in humans is relatively recent, too recent for variants (and especially a
statistically sufficient number of variants) to have reached fixation within the human population, making this type
of test not applicable. Instead, we use an alternative version in which we compare low-frequency mutations against
high-frequency ones. While our aim is to focus on comparing different types of synonymous mutations, we first
apply this approach to compare synonymous and nonsynonymous mutations, so as to make the similarity to the
McDonald-Kreitman test more apparent. Nonsynonymous mutations in SARS-CoV-2 appear significantly shifted
towards lower frequencies (Figure 5), consistent with the expectation that purifying selection tends to decrease the
frequencies of nonsynonymous mutations more than the frequencies of synonymous mutations.

Next, we focused on the hypothesis that U variants at synonymous sites are on average mildly deleterious [5]. This
time, not all of our comparisons are significant, but those that are, consistently suggest that selection favours U variants
(Figure 6), not the opposite. As we discussed before, the difference with the estimate from [5] probably lies in the
assumption of stationarity in SARS-CoV-2 evolution (although we also used a larger dataset and a different approach to
estimate mutation rates).

A possible explanation for the pattern we observe is that many mutations increasing U content are C→U or G→U,
and therefore may sometimes reduce CpG content. Selection against CpG content has already been suggested in
coronaviruses [33], and is expected due to ZAP activity [15]. However, using our approach the evidence in support of
this hypothesis is not significant (Figure S9). Similarly, when investigating possible selection affecting GC content,
only one of the comparisons is significant (Figure S10).
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Rate ratios of synonymous and non-synonymous mutations
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Figure 5: Evidence of selection affecting the population frequency of synonymous vs nonsynonymous mutations.
Counts and rate ratios of SARS-CoV-2 synonymous and non-synonymous mutations at different frequencies in the
human population. A counts of possible mutations (green), singleton mutations (red), low frequency (> 1 and ≤ 4
descendants) mutations (orange), and high frequency (> 4 descendants) mutations (yellow). B ratios of higher vs.
lower frequency mutation rates. In the absence of selection, ratios should not be significantly different between the
classes of synonymous and nonsynonymous mutations. Instead, we measure a significant deviation in each comparison,
with nonsynonymous mutations being relatively depleted of high frequency mutations. We calculated p-values using
the chi2_contingency function of the Scipy.stats package [36].
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Effect of mutation on U content Mutation Frequency comparison
Figure 6: Test of selection affecting U content at synonymous sites. Values are the same as in Figure 5, but this time
we focus on synonymous mutations that decrease U content ("<U"), increase it (">U"), or leave it unaltered ("=U").
Only p-values below 0.1 are shown.
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4 Discussion

In this study, we investigated mutation rates and selection at synonymous sites in SARS-CoV-2. We used a different
methodology than previous studies, so as to exploit more than 147, 000 SARS-CoV-2 genome sequences while trying to
avoid inaccuracies due to mutation saturation. Our approach also accounts for the fact that different types of mutations
can have, on average, different fitness due to their impact on the amino acid sequence and due to skews in the genetic
code. Also, we did not assume equilibrium in SARS-CoV-2 genome evolution, which is unlikely given the recent shift
of host the virus underwent.

We found that two mutation rates, C→U and G→U, are similar to each other and much higher than all others mutation
rates, leading to extremely frequent homoplasies. This also means that the SARS-CoV-2 mutation process is very far
from being symmetric or strand-symmetric; it is also considerably far from equilibrium. We also found some sites with
extremely high non-C→U non-G→U mutation rates that are consistent with targeted ADAR activity.

A consequence of these findings is that popular and efficient phylogenetic substitution models such as JC69 [37],
HKY85 [38], or GY94 [39] might be inappropriate with SARS-CoV-2 data and might cause biases in the inference
of phylogenetic trees [23], positive selection [9] and recombination [12] due to the neutral high recurrence of certain
mutations. It is therefore probably important to adopt phylogenetic substitution model that can account for elevated
C→U and G→U rates, such as the non-reversible UNREST model [40], which however we found to usually cause
numerical instability in current phylogenetic packages that allow it [41, 42]. In the future, if we want to alleviate these
biases, it will be important to implement such more general substitution models more broadly and in a more numerically
stable way.

When investigating selection at synonymous sites possibly affecting CpG or GC content, we found mostly non-
significant patterns. We also investigated the possibility of selection against U content in SARS-CoV-2 [5], but found
significant evidence in the opposite direction. While further analyses will be needed to establish with confidence what
kind of selection acts non SARS-CoV-2 synonymous mutations, we suggest that inference based on assumption of
genome equilibrium can be biased by changes in mutation rates and selective pressures associated with host shift. While
we tried to account for possible biases as much as possible, our methods still have some limitations. First of all, our
inference of mutation events is based on a prior phylogenetic inference, but tree inference from SARS-CoV-2 data
is typically not very reliable, in part due to the low genetic diversity among sequences, but also due to homoplasic
mutations [43, 23]. As mentioned above, our phylogenetic inference might also have been negatively affected by the
choice of substitution models; however, currently, more realistic models like UNREST are either not implemented or
are numerically unstable in sufficiently efficient phylogenetic packages such as [41, 44, 42]. In this study we tried not to
rely excessively on individual inferences of mutation events, but rather focused on general patterns averaged over many
sites and clades, which we think should provide robust inference despite the fact the inference of individual mutation
events might not be reliable. However, a potential bias that might affect our result derives from the fact that some sites
are very homoplasic, and our phylogenetic inference might lead to an over-parsimonious inference of their mutational
history. This, in turn, might lead us to underestimate their mutation rate and overestimate their number of descendant
tips per mutation events. In the future, a Bayesian phylogenetic approach might be useful to assess and possibly resolve
this issue and assess its impact on our inference of selective pressure; however so far Bayesian phylogenetic inference
has proved prohibitive with datasets of this size.

To further investigate and disentangle selective and mutational forces in SARS-CoV-2, it would be very promising
to combine an analysis of between-patients and within-patient SARS-CoV-2 genetic variation. In a similar way
as selection is expected to decrease the frequency of deleterious SARS-CoV-2 alleles at the human population
level, the same is true at the within-host levels, as selection is expected to act on within-host deleterious mu-
tations and often prevent them from reaching high frequency and transmit further on. While within-patient
genetic diversity data can indeed be very informative of the SARS-CoV-2 evolutionary patterns [13, 14, 45],
it is important to consider that such data is also more prone to sequencing, read processing, and RNA degra-
dation issues. These issues cause some errors in consensus sequences [23, 22] but they are expected to be
even more problematic at the level of detected within-host variation. Indeed, so far there is reason to be cau-
tious when interpreting these data [22], especially with specific datasets (see https://virological.org/t/
gained-stops-in-data-from-the-peter-doherty-institute-for-infection-and-immunity/486).
Given reliable data regarding evolution at different levels (e.g. within a patient, between patients, and between hosts),
it would be interesting to combine these sources of information to improve estimates of selective pressures (see e.g.
[46, 47]).

Our methodology to detect selection could also be improved by using the full site frequency spectrum of mutations,
instead of categorizing mutations into frequency classes (see e.g. [48, 49]). However, it is important to consider that
complex epidemiological dynamics and sampling biases in SARS-CoV-2 mean that it is hard to interpret the shape
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of any individual site frequency spectrum in terms of the effects of mutation and selection. We infer mutation and
selection patterns by comparing properties of site frequency spectra associated with different mutation types. This
approach should be robust to the effects of variable population dynamics and sampling biases, since these forces are
expected to affect in the same way site frequency spectra associated with different mutation types.

In the future, we hope to extend our current approach to also study insertions and deletions (indels): their frequency,
recurrence and possible fitness effects (see e.g. [50]). However, we expect that incorporating indels in our approach
will be challenging since standard phylogenetic approaches rarely model indels.

5 Materials and Methods

5.1 Data collection and phylogenetic inference

Full details and reproducible code for the construction of the global tree of SARS-CoV-2 samples are available in the
13/11/20 release of [51]. To summarise, this code creates a global phylogeny of all available samples from the GISAID
data repository as follows.

First, all sequences marked as ‘complete’ and ‘high coverage’ submitted up to 13/11/20 were downloaded from
GISAID. Sequences with known issues from previous analyses were then removed from this database (details are in the
excluded_sequences.tsv file at the above DOI).

Second, a global alignment was created by aligning every sequence individually to the NC_045512.2 accession from
NCBI, using MAFFT v 7.471 [52], faSplit (http://hgdownload.soe.ucsc.edu/admin/exe/), faSomeRecords
(https://github.com/ENCODE-DCC/kentUtils), and GNU parallel [53]. This approach aligns each sequence
individually to the reference, then joins them into a global alignment by ignoring insertions relative to the reference.

Third, sites that are likely to be dominated by sequencing error [23] are masked from the alignment using faSplit,
seqmagick (https://seqmagick.readthedocs.io/en/latest/), and GNU parallel, sequences shorter than 28KB
or with more than 1000 ambiguities are removed from the alignment using esl-alimanip (hmmer.org), and subsequently
sites that are > 50% gaps are removed (after converting N’s to gaps) using esl-alimask.

Fourth, the global phylogeny was estimated using IQ-TREE 2 [41] FastTree 2 [44] (v2.1.10 compiled with double
precision) in two stages. First, new sequences added to GISAID between 11/11/20 and 13/11/20 were added to the
phylogeny inferred on 11/11/20 using Maximum Parsimony placement in IQ-TREE 2. This produces a starting tree of
all sequences available on 13/11/20. Second, the starting tree was optimised using FastTree 2 with 2 rounds of Subtree
Pruning and Regrafting (SPR) using moves of length 1000 under a minimum evolution optimisation regime, and the
tree was then further optimised using multiple rounds of Maximum Likelihood Nearest Neighbour Interchange (NNI)
moves until no further improvement to the tree could be achieved using NNI. The resulting tree was rooted with our
reference (NC_045512.2 / MN908947.3 / Wuhan/Hu-1) sequence using nw_reroot [54].

From the resulting tree, we removed sequences on very long branches using TreeShrink [55] using the default,
q <= 0.05 threshold, to identify such branches. These sequences are likely to be either of poor quality and/or poorly
aligned, so rather unreliable to interpret in a phylogeny with such limited variation. The final tree and its related
alignment contains 147,137 SARS-CoV-2 genomes.

5.2 Estimation of mutation rates

To separate mutation events into different categories, each position of the reference genome (NC_045512.2 /
MN908947.3 / Wuhan/Hu-1, see https://www.ncbi.nlm.nih.gov/nuccore/MN908947) was classified as cod-
ing or non-coding. Start and Stop codons were not considered in the following analysis. The first and last 100bp
of the genome, in addition to sites marked as problematic in https://github.com/W-L/ProblematicSites_
SARS-CoV2/blob/master/problematic_sites_sarsCov2.vcf [22, 23], were also not considered here. We
counted "possibilities" of mutations based on the reference genome: for example a non-coding C allele in the reference
genome represents 3 possibilities for non-coding mutations (C→A, C→G and C→U). For coding sites, we split
synonymous and non-synonymous mutation possibilities into two separate counts. Similarly, we also used the reference
genome to define the number of possible mutations within each genetic context. Sites that were masked in the alignment
were still used here to define the genetic context of possible mutations at neighbouring non-masked sites.

We then inferred a mutational history with parsimony over our global maximum likelihood tree, as described in [23].
The software for doing this analysis is available from https://github.com/yatisht/strain_phylogenetics.
Given this inferred mutational history, for each site, we counted all the mutation events inferred from the reference allele
to any alternative allele, and we recorded the number of descendant tips of each mutation event, excluding those that are
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descendants of further downstream mutations at the same site. Note that we do not count mutation events that modify
a non-reference allele. For example, if at a U position of the genome we have a U→C mutation, and in one of the
descendants of this mutation event we have a C→A mutation at the exact same position, then we count the first U→C
mutation but not the second C→A; this is done to aid the normalization of mutation counts, see below. At each site and
for each mutation type, we kept counts of three different classes of mutations: (i) those with only one descendant tip
("singletons"); (ii) those with ≥ 2 and ≤ 4 descendants ("low frequency"); and (iii) those with > 4 descendants ("high
frequency"). Number of different mutation types and mutation possibilities observed across the SARS-CoV-2 genome
are given in Figures 1 and S1. Note that the number of observed mutations is often higher than the number of mutation
possibilities. For example, a reference 4-fold degenerate site with an reference A allele counts as one A→C, one A→G
and one A→U synonymous mutation possibility. However, an A→C mutation event can occur multiple times along the
phylogeny at this site, possibly resulting in multiple A→C synonymous mutations observed. When classifying mutation
events into different categories, we assume that mutations happen in the genetic background of the reference genome.
This might be inaccurate in some cases, but given the overall low level of divergence (all reliable sequences so far being
diverged less than 50 substitutions from the reference genome) the effect of this approximation should be very limited.

The low mutation rate observed in SARS-CoV-2 makes parsimony an efficient and reliable approach to infer mutational
histories [56]. However, phylogenetic inference from large SARS-CoV-2 datasets is difficult due to elevated computa-
tional demand and phylogenetic uncertainty [43], and we cannot exclude the presence of errors in our phylogenetic tree,
and therefore in our mutational history.

As mentioned earlier, we also consider an alternative approach to estimating mutation rates, based on counting the
number of alignment columns at which alternative alleles are observed. We classify three classes of variant allele: (i)
those present in any number of sequences; (ii) those present in at least two sequences; (iii) those present in at least five
sequences. Numbers of different types of variable sites found in our alignment are given in Figures 1 and S1.

For each class of mutations (synonymous, nonsynonymous, or noncoding; from any nucleotide to any other nucleotide;
within any sequence context) we estimate an approximate mutation rate by dividing its total mutation count by its
possibilities count. These rates represent the average number of mutation events of a certain type expected per given
site along the considered phylogeny.

6 Code Availability

The code and data used for this project (except for the sequences which fall under the restrictions of the GISAID terms
of use) are available at https://bitbucket.org/nicolademaio/mut-sel_sc2/.
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Figure S1: Numbers of possible mutations, observed mutations, and variable sites in the SARS-CoV-2 genome.
Counts of mutation events for each site class: A synonymous sites, B 4-fold degenerate sites, C non-coding sites, D
non-synonymous sites, E all sites. On the X axis are the 12 distinct types of mutation events, A→C, A→G, etc. In
green we show the number of reference sites at which a mutation might have occurred. In red, orange and yellow we
show respectively the number of observed mutations with 1 descendant, more than 1 but less than 5 descendants, and
more than 4 descendants. In dark blue, blue, and light blue, we show respectively the number of sites with > 0, > 1,
and > 4 variants of the given type.
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Figure S2: Re-occurrence of mutation events at the same sites. Here we show the proportion of sites (Y axis) where
a given mutation (color, see legends) appears a certain number of times (X axis) along the phylogeny. A synonymous
sites; B non-coding sites; C non-synonymous sites; D synonymous sites, but counting only mutation events with more
than 1 descendant; E non-coding sites, only mutations with more than 1 descendant; F non-synonymous sites, only
mutations with more than one descendant.
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Figure S3: Mutation rates estimated from mutation counts and variable sites counts. On the X axis are the 12
distinct types of mutation events, A→C, A→G, etc. On the Y axis are the inferred mutation rates for A synonymous
sites, B 4-fold degenerate sites, C non-coding sites, D non-synonymous sites, E all sites. In red, orange and yellow we
show respectively the mutation rates inferred from the numbers of observed mutations with 1 descendant, more than
1 but less than 5 descendant, and more than 4 descendant (and dividing each count by the number of reference sites
where such mutations might have happened). In dark blue, blue, and light blue, we show respectively the mutation rates
inferred from the numbers of sites with > 0, > 1, and > 4 variants of the given type.
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Figure S4: C→U mutation rates in different base contexts. C→U mutation rate depending on the previous and next
base (5’ and 3’ base neighbours, shown on the X axis). A_G represents, for example, the trinucleotide ACG and its
mutation rate into trinucleotide AUG. Colors are as in legend Figure 3. A synonymous sites, B 4-fold degenerate sites,
C non-coding sites, D non-synonymous sites, E all sites.
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Figure S5: C→U mutation and mutation possibility counts in different base contexts. C→U mutation counts
depending on the previous and next base (5’ and 3’ base neighbours, shown on the X axis). A_G represents, for example,
the trinucleotide ACG and its mutation counts into trinucleotide AUG. Colors are as in legend Figure 1. A synonymous
sites, B 4-fold degenerate sites, C non-coding sites, D non-synonymous sites, E all sites.
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Figure S6: C→U synonymous mutations and mutation rates in different longer-range base contexts. Here we
consider only synonymous C→U mutations. X axis values represent the distance of the considered base to the one
whose mutation rate is considered. Y axis values represent A the numbers of possible synonymous mutations with
the given context, B the numbers of observed synonymous mutations, D the numbers of observed non-singleton
mutations, C the effect on mutation rate that the considered base at the considered position has, E same as C but without
considering mutations with only one descendant. For example, the value for base G at position -1 in plot C represents
the increase in GC→GU mutation rate vs all other C→U mutation rates; a Y axis value of 0.1 means that the given
context increases the background mutation rate by 10%.
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Figure S7: G→U mutation and mutation possibility counts in different base contexts. The X axes show the 16
types of mutation contexts for a G→U mutation, for example C_A means the rate of mutation from trinucleotide CGA
to trinucleotide CUA. Colors are as in legends and as in Figure 1. A synonymous sites, B 4-fold degenerate sites, C
non-coding sites, D non-synonymous sites, E all sites.
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Figure S8: G→U mutation rates in different base contexts. G→U mutation rate depending on the previous and next
base (5’ and 3’ base neighbours, shown on the X axis). C_A represents, for example, the trinucleotide CGA and its
synonymous mutation rate into trinucleotide CUA. Colors are as in legend Figure 3. A synonymous sites, B 4-fold
degenerate sites, C non-coding sites, D non-synonymous sites, E all sites.
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Figure S9: Test of selection affecting CpG content at synonymous sites.. Values are the same as in Figure 5, but
this time we focus on synonymous mutations that decrease CpG content ("<CpG"), increase it (">CpG"), or leave it
unaltered ("=CpG"). Only p-values below 0.1 are shown.
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Figure S10: Test of selection affecting GC content at synonymous sites.. Values are the same as in Figure 5, but this
time we focus on synonymous mutations that decrease GC content ("<GC"), increase it (">GC"), or leave it unaltered
("=GC"). Only p-values below 0.1 are shown.
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