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Abstract

The purpose of this study was to examine the impact of age and education on the neural and 

behavioral correlates of verbal fluency. Forty-eight healthy adult participants were 

included: high-educated young and elderly, low-educated young and elderly. Participants 

performed semantic and phonemic and a control task during fMRI scanning. The phonemic 

fluency data showed an education effect across age groups. As for the semantic fluency 

data, there was an education effect only in young participants. The second-level fMRI 

results showed, in phonemic fluency, a main effect of age in the left posterior cingulate, 

superior temporal gyrus (STG) and right caudate, whereas the main effect of education 

involved activation in the right semantic fluency, there were a main effect of age in the left 

paracentral lobule and posterior cingulate, a main effect of education in the left claustrum 

and an interaction in the right claustrum and STG and the hippocampus bilaterally. 
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1. Introduction 

Verbal fluency (VF) tasks have traditionally been administered as a clinical 

neuropsychological paradigm to assess linguistic, mnestic and/or executive abilities; they 

are also among the most widely used linguistic fMRI paradigms (1–4). The cognitive 

components assessed by this paradigm include executive abilities, such as initiation, 

inhibition, planning, updating and shifting; verbal long-term memory (word knowledge), 

both semantic and phonological; and lexical-semantic linguistic processes (5,6). 

Since the end of the decade, neuroimaging studies have also been conducted using 

VF with healthy adults to characterize its neural correlates in an intact brain. Nevertheless, 

most such studies investigated brain activation during VF tasks in younger high-educated 

adults (4,7). Fewer studies have analyzed the neural correlates of VF in healthy elderly 

adults (5,8–11). Among the insufficiently analyzed results reported on the effect of aging 

on brain dynamics during VF, researchers found different patterns of recruitment of the left 

frontal lobe and more widespread activation in elderly people (11), which corroborates 

HAROLD (Hemispheric Asymmetry Reduction in Older Adults) model (12) which points 

to a dedifferentiation process occurring between the hemispheres, with increased 

participation of the right hemisphere compared to young adulthood and CRUNCH 

(Compensation-related utilization of neural circuits hypothesis) model (13) that argues that 

the engagement of more neural circuits than in younger adults could be explained by 

declining neural efficiency.

Comparing young and elderly participants’ performance in a VF task, Marsolais et 

al. (9) found a decrease in the functional integration of speech production networks and a 

significant interaction between task demand (comparing performance with more and less 

demanding semantic and orthographic stimuli) and age regarding functional connectivity in 

the anterior and posterior subnetworks of the VF network. Thus, age and education seem to 

play an important role both in behavioral performance and in the neural activity associated 

with language and other cognitive tasks, including VF; task demands also determine the 

patterns of brain activation. 

Another issue with past studies using VF fMRI tasks is that almost all of them 

assessed participants with high levels of education. The brain modifications associated with 

educational experience have hardly been studied. Dehaene et al. (14) reviewed studies of 
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illiterate adults and concluded that literacy reorganizes the brain to accommodate a novel 

cultural competence; the ventral occipito-temporal pathway and the right hemisphere are 

among the brain areas affected. Education can also be seen as one of the main components 

of cognitive reserve in aging (15). Evidence shows that brain damage may be overridden by 

the impact of education, as illustrated by the finding that different VF clusters in brain-

damaged patients were better explained by level of education rather than by the lesion itself 

(16). Education was initially explored as a covariant in neuroimaging studies of aging, such 

as Nagels et al. (17). Nevertheless, the lower educational levels in most of these studies can 

still be considered as relatively high for some cultures and countries, apart from the wider 

range of educational levels in the sample recruited by Kim et al. (18) for a PET paradigm, 

where the low-educated people had less than six years of schooling. 

Regarding methodological issues, fMRI studies have mainly used VF tasks that 

differ considerably from the procedures used in a standard clinical neuropsychological 

administration. First, although overt VF tasks have become more common (for a review, 

see Wagner et al. (1), more studies have been based on covert or silent paradigms (18–20). 

The main disadvantage of this procedure is that it includes errors among accurate answers 

(7). Additionally, even when the paradigm involves overt naming, one of the most frequent 

choices is an experiment-paced method (e.g., Abrahams et al. (21), in which the examinee 

recovers each word according to a fixed rhythm and not based on his/her self-monitoring. 

Another methodological issue relates to the duration of VF fMRI tasks, which are usually 

short, about 10 to 20 seconds (Allen and Fong, 2008; Birn et al., 2010; Wagner et al., 

2014); only a few studies have used tasks lasting 60 seconds or more (e.g., Abrahams et al., 

2003; Marsolais et al., 2014). Moreover, past studies were generally conducted with a 

block-design paradigm, which makes it impossible for each word to be treated as an event 

(7); the study by Marsolais et al. (9) is an exception in this respect. Regarding the fMRI 

system, of 26 fMRI studies with VF tasks, only 8 were conducted in a 3T scanner (1). 

There are also concerns related to the control tasks, which range from resting conditions to 

cognitively dissimilar control tasks, such as repetition of the same word, naming syllables 

or forward counting (1,20). The use of a month-listing task has been validated and is useful 

as a control automatic task (7). In general, there are not sufficient studies investigating both 
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phonemic and semantic paradigms, both of which are very valuable tools in the clinical 

neuropsychology routine. 

Surprisingly, despite the widespread interest in the effects of age and education on 

human cognition in behavioral studies of VF abilities, which generally report a negative 

impact of low education and decreased expressiveness as a result of aging (22–25), as far as 

we know no functional neuroimaging studies have yet investigated the possible impacts of 

age and education on semantic and phonemic VF and their neural correlates by comparing 

younger to older and better-educated to less-educated participants. 

Therefore, working toward a better understanding of the effects of aging and 

educational background on brain organization and cognition, the purpose of this study is 

twofold: (1) to verify if age, education, or an interaction between these factors affects 

phonemic and semantic fMRI VF; and (2) to examine the neural correlates in brain 

activation or deactivation, if any, of age, education or their interaction. To do this, we used 

a recently developed mixed-design fMRI VF task (9). We also sought to analyze the 

relationship between brain activation or deactivation and VF performance. The innovative 

features of Marsolais et al.’s paradigm include the following: longer and thus more 

representative of clinical gold standards (90 seconds); overt; self-paced; alternate semantic 

and phonemic cues; control task involving automatic VF in naming months; and words 

considered as events. Furthermore, for the first time, we applied this hitherto little-used 

paradigm, on which only two studies had been based (9,26), to analyze the impacts of both 

age and education on underlying cognitive abilities. 

Some predictions were made. First, we expected that education would be the most 

prominent variable affecting VF performance in both phonemic and semantic tasks. In 

association with high-functioning aging, more diffuse and right-lateralized brain activation 

should be found in elderly participants. More intense deactivation of language- and 

executive-related regions should be found for low-educated adults, insofar as evoking 

words would be more difficult for them, while greater activation should be found for 

higher-educated participants. Finally, we expected to see a continuum of activation and 

deactivation, both fostering better performance in VF tasks, related to the level of 

complexity and executive function recruitment, as follows: high-educated young adults 

(HY) would show more deactivation due to their greater facility in performing the tasks, 
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followed by high-educated elderly adults (HE) and low-educated young adults (LY), who 

would present a mid-range activation/deactivation pattern, while in low-educated elderly 

adults (LE) some executive control regions would be activated more further to their 

attempts to perform better. 

2. Methods 

2.1 Participants

Sixty-seven participants were first recruited for this study based on their age and 

education. The final sample contained 48 participants, who were divided into four groups 

(n = 12 each) according to their age and education level: (1) LY, (2) HY, (3) LE and (4) 

HE. Low- and high-educated groups were matched by age, and older and younger groups 

were matched by education, socioeconomic level, and psychological test scores 

(intelligence, dementia and depression). All four groups were matched by gender; there 

were 6 men and 6 women in each group. Younger participants ranged from 19 to 40 years 

old, while elderly participants were aged 60 to 77 years old. Low-educated adults had 

received from 5 to 10 years of formal education, whereas high-educated participants had 12 

years or more of formal education. Detailed demographic characteristics and 

neuropsychological testing scores of the four groups are reported in Table 1. 

Inclusion criteria were (1) participants should be monolingual native speakers of 

Brazilian Portuguese; and (2) right-handed prior to the study, according to a cut-off score of 

80% right dominance in the Brazilian Portuguese version of the Edinburgh Inventory test 

(27). Exclusion criteria were (1) self-report of neurological or psychiatric illness; (2) use of 

medications with psychotropic effects; (3) abnormal or uncorrected visual or auditory 

acuity; (4) identification of brain tissue abnormality on structural MRI; and (5) presence of 

Mild Cognitive Impairment (MCI) or dementia prior to the study. To screen for signs of 

MCI or dementia, the Mini Mental State Examination (27–30) was administered to all 

participants; for low-educated individuals, a minimum score of 24 was required, whereas a 

minimum score of 28 was required for high-educated participants. To screen for depression 

signs, the Beck Depression Inventory (BDI) (31,32) was administered, and participants 

with a score higher than 9 were excluded. Finally, the Vocabulary and Block design dyad 
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of the Wechsler Adult Intelligence Scale (WAIS-III) (33,34) was administered to exclude 

any participants with intellectual impairments.

A total of 19 participants were excluded: 3 due to technical difficulties with audio 

recordings or missing imaging data, 9 because of MRI results compatible with 

neurovascular diseases (images compatible with stroke, traumatic brain injury or brain 

tumor) or claustrophobia, and 7 because they misunderstood or did not complete the task, 

due to lower educational level. All participants were recruited on a voluntary basis in the 

community, at the university or at work. This research project was approved by the Ethical 

Committee of the Pontifical Catholic University of Rio Grande do Sul. Written informed 

consent was obtained from all individuals before they took part in the experiment.

2.2 Procedure, design and paradigm

All participants were individually evaluated at the Clínica de Diagnóstico por 

Imagem, Rio de Janeiro, Brazil, by three trained neuropsychologists. A neuroradiologist 

first performed an anatomical screening for all participants to check for exclusion criteria. 

When selected for the study, they performed three training VF tasks, based on the tasks in 

the Protocole Montréal d’Évaluation de la Communication (2), adapted for use in Brazil 

(35). First, participants were asked to say as many words as possible for two and a half 

minutes, without any constraint other than not using proper nouns or numbers (free VF). 

Then, they were asked to name as many words as possible belonging to a semantic category 

(fruits) for two minutes (semantic fluency). Finally, they had to name as many words as 

possible beginning with the letter F for two minutes (phonemic fluency). They were 

selected for the fMRI procedures only if, as well as meeting all standard prerequisites for an 

fMRI study, they were able to complete all three training tasks. Then each participant was 

scanned with MRI and fMRI sequences, while he/she performed the experimental tasks.

2.2.1 Design and paradigm

Participants performed an overt, self-paced VF task. A mixed design was used. 

Specifically, data were collected in blocks of different VF tasks, but the words were 

analyzed as events, thus using a mixed design. The whole experiment was conducted in 

eight epochs, in which we alternated a resting phase (10 seconds), the control task (90 
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seconds), a resting phase (10 seconds), and the semantic or phonemic fluency task (90 

seconds). Thus, each epoch lasted 200 seconds and was part of a unique run lasting 1,600 

seconds. Each phase was presented visually in black and white at the center of the screen 

while the task lasted. The eight epochs started with a “?”centered on the screen (resting 

phase), followed by “months” (control task), “?” again (resting phase), and, finally, “letter” 

or “category” (phonemic or semantic fluency task). The experimental tasks were 

counterbalanced across subjects, in four different orders. The design of an epoch is 

represented in Figure 1. 

INSERT IMAGE 1 HERE

Figure 1. Illustration of an epoch of the mixed-design verbal fluency paradigm for fMRI

A training session preceded imaging acquisition. The training task consisted of a 

task similar to the experimental one, but with different stimuli: the letter F in the phonemic 

condition and “fruits” in the semantic condition. Participants were instructed to generate as 

many words as possible belonging each criterion. The experimental fMRI VF task 

consisted in naming the semantic categories of animals, clothes, sports and vegetables, 

while the phonemic task required participants to name words starting with the letters P, M, 

L and V. These experimental tasks had previously been pilot-tested outside the scanner in a 

separate group of 20 healthy adults, with successful results. The control task consisted of 

naming the months of the year consecutively, beginning with January, continuing to 

December and restarting with January. 

2.3 fMRI acquisition

Brain images were acquired with a 3T scanner (Verio, Siemens Medical, Erlangen 

Germany) using a 12-channel head matrix coil. Before the fMRI scans, structural images 

were obtained in a sagittal plane using a T1-weighted 3D MPRAGE sequence (TR/TE = 

2530/3.43 ms, FOV = 256 mm, matrix size 192 x 256 x 128, voxel size 1.3 x 1.0 x 

1.3 mm3, slice thickness = 1.3 mm; acquisition = 128 slices in the axial plane, with a 

distance factor of 50%, so as to scan the whole brain, including the cerebellum). Functional 

data were obtained using a gradient echo EPI sequence in the transversal plane (TR/TE = 
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2000/30 ms, FOV = 215 mm, matrix size 122 x 122 x 28, voxel size = 3.4 x 3.4 x 5.0 mm, 

interleaved acquisition = 28 slices with a distance factor of 0%). The transversal plane was 

aligned along the AC-PC line. Finally, 800 volumes were acquired (TR = 2; TE = 30 ms). 

In order to reduce head movements, the subject’s head was restrained by foam pads inside 

the head coil. 

Visual stimuli were presented via E-prime (Psychology Software Tools) from a 

computer onto a screen at the head of the bore, and were visible in a mirror attached to the 

head coil. Participants’ verbal responses were recorded using an MRI compatible optical 

dual channel active noise-canceling microphone system (FoMRI II, Optoacoustics, Or-

Yehuda, Israel), also mounted on the head coil. The microphone was connected to an 

optical unit in order to record the responses with a coupled workstation. In this way, almost 

all scanner noise could be eliminated to achieve greater intelligibility when transcribing and 

analyzing verbal responses. 

2.4 Data analyses

2.4.1 Behavioral analyses

All evoked words were transcribed and analyzed as correct or incorrect answers. 

Correct answers included words that responded to the criterion and were non-perseverative, 

including synonyms. A total semantic fluency score was generated by adding the four 

scores for each category, and the same was done to generate a phonemic VF score. In order 

to avoid a large difference between the quantity of events of both semantic and phonemic 

VF and of the control task, and thus allow a comparison between behavioral and 

neuroimaging data, only the middle 10 seconds of the months fluency task in each epoch 

was summed to generate a total months task score for the eight epochs. These three VF 

accuracy scores were entered in a two-way ANOVA (age and education factors), in SPSS 

18 for Windows, with p < 0.05.

2.4.2 fMRI analyses

2.4.2.1 Whole-brain analyses

Raw data visualization and preprocessing were conducted with Matlab 7.11 

(MathWorks, Natick, MA) using standard procedures in SPM8 software (Wellcome 
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Department of Imaging Neuroscience, UK; http://www.fil.ion.ucl.ac.uk/spm). 

Preprocessing involved slice timing, realignment (to account for head movements), 

coregistration, segmentation, normalization and smoothing. The segmented images were 

corrected and spatially normalized to the Montreal Neurological Institute’s standard. The 

normalized functional images were spatially smoothed with an 8-mm Gaussian filter.

For further analysis, each correct word’s onset was precisely established in 

milliseconds using SoundForge 10 (Sony Pictures Digital, Inc.). First-level analyses were 

done using the general linear model in SPM8. For subject-level analysis, statistical 

parametric maps were obtained for each participant, by means of linear contrasts applied to 

the parameter estimates for the studied events. Therefore, for each individual, t-contrasts of 

the experimental conditions versus control condition were calculated for each voxel 

(semantic VF – months; phonemic VF – months). Separate t-tests against the null 

hypothesis that there was no change in activation were performed for each contrast and 

each group. This resulted in contrast maps used for group-level analysis. To quantify left or 

right lateralization for each group, a lateralization index was calculated for each contrast. 

The total of activated pixels in the left and right hemispheres was obtained, calculating an 

asymmetry index with the formula (L–R)⁄(L+R), considering activation to be left 

hemisphere (L) dominant if this score is higher than 0.20 and right-dominant (R) if the 

index is lower than –0.20 (36). Using this formula, a positive value indicates higher 

activation in the left hemisphere whereas a negative value indicates a lateralization in the 

right hemisphere.

Second-level group analyses were conducted in SPM by means of t-tests and 

ANOVAs. By employing a one-sample t-test, averages were calculated for each condition 

and for the four groups. To compare the groups and explore a possible interaction between 

age and education, a full factorial analysis was done for each contrast examined in a single 

analysis (phonemic VF – months and semantic VF – months). Each factor had two levels: 

age (older and younger) and education level (low and high). When a main effect or an 

interaction was found, a two-sample t-test was conducted to analyze the following 

subtractions: older versus younger, younger versus older, low- versus high-educated, high- 

versus low-educated. As is commonly done in the literature, and since random effects 
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analyses may be fairly conservative in fMRI data (37), a threshold of p < 0.001 uncorrected 

was used. Contrasts were performed with a cluster size of at least 10 voxels (k > 10). 

Considering the final sample size, when comparing age and education groups, the 

only possible contrasts to be included as dependent variables were semantic – control task 

and phonemic – control task (it was not possible to include VF modality or different 

frequency levels of productivity as independent variables, since they were counterbalanced 

in each modality). Although our initial sample size was acceptable, the sample for each age 

and education group (n = 12) was so small that additional subgroup analysis would inflate 

the chances of false positive or negative errors. Moreover, we would be testing a hypothesis 

that had not been sufficiently explored in neuroimaging studies with larger samples, which 

is not a positive scenario for subgroup analyses (Sun et al., 2010). 

2.4.2.2 Region of interest analyses

Finally, in order to better explore the observed effects in between-subject 

comparisons found with the ANOVAs, a complementary analysis was conducted. Aiming 

to obtain region of interest (ROI) data from each participant’s images, the percentage of 

signal change was extracted for each region where a main effect of age or education or an 

interaction between the two factors was observed, using MarsBaR 0.42 

(http://marsbar.scourceforge.net) software for ROI analyses. In this way, real activations 

could be identified for each group. To further investigate the relationship between 

activation or deactivation and VF performance, the percentage of signal change of each 

ROI for each participant was correlated with the individual performance scores for 

phonemic and semantic VF tasks through a Pearson linear analysis. 

3. Results

3.1 Behavioral data

Sociodemographic characteristics, neuropsychological screening scores and 

behavioral results for each group are reported in Table 1. Subgroup analysis of interaction 

effects with post hoc analysis with the Bonferroni procedure showed that the four groups 

had similar scores on the BDI. As expected, LY individuals scored significantly lower on 

the WAIS-III Vocabulary subtest than HY (p < 0.001) and HE individuals (p < 0.001), but 
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had similar scores to the LE group (p = 0.304). On the same subtest, the HY group scored 

significantly higher than the LE group (p < 0.001), but not the HE group (p = 0.798). HE 

individuals had significantly higher scores than LE participants (p = 0.008). Significant 

differences in performance were also encountered on the RAVLT B, on which the HY 

individuals outperformed the LY (p < 0.001), LE (p < 0.001) and HE participants (p = 

0.001). Finally, on the semantic VF task, LY participants scored lower than HY (p < 0.001) 

and HE participants (p = 0.001), and HY individuals performed better than the LE group (p 

< 0.001). There were no age differences between the education groups (t(46) = –0.103, p = 

0.918), and no education differences between the age groups (t(46) = 0.000, p = 1.000). We 

found an education effect on the economic status score (Higher Education > Lower 

Education), and main effects of age and education on the frequency of reading and writing 

habits. Descriptive data on the mean phonemic and semantic VF performance and on the 

control task (months) for each group are also reported in Table 1. 
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Table 1. Sociodemographic characteristics. neuropsychological screening scores and behavioral results per group 
LY HY LE HE Low-

Educated 
Total

High-
Educated 
Total

Young 
Total

Elderly 
Total

Total 
Sample

Age Effect Education Effect Interaction 
Effect

(n=12) (n=12) (n=12) (n=12) (n=24) (n=24) (n=24) (n=24) (n=48) F p F p F p
Age Mean 26.92 25.83 66.50 66.64 46.71 45.35 26.38 66.57 46.04 773.216 <0.001 0.107 0.745

SD 5.02 5.92 5.18 3.11 20.82 21.36 5.40 4.22 20.87
Education Mean 7.00 17.00 7.08 16.82 7.04 16.91 12.00 11.74 11.87 0.003 0.956 122.032 <0.00

1
SD 1.35 3.41 1.83 4.67 1.57 3.97 5.70 6.02 5.80

Economic status Mean 17.67 33.92 23.58 34.36 20.63 34.13 25.79 28.74 27.23 2.930 0.094 52.872 <0.00
1

SD 6.26 6.73 3.68 8.15 5.86 7.28 10.45 8.20 9.44
Mean 14.67 22.25 9.50 17.27 12.08 19.87 18.46 13.22 15.89 16.511 <0.001 37.837 <0.00

1
Frequency of writing 
and reading habits

SD 3.58 2.73 5.00 5.37 5.00 4.83 4.97 6.43 6.26
Mean 5.58 2.42 3.50 4.82 4.54 3.57 4.00 4.13 4.06 0.020 0.887 0.690 0.411 4.063 0.050BDI
SD 4.76 2.54 3.97 3.63 4.41 3.27 4.07 3.78 3.89

SRQ Mean 3.92 1.58 2.42 1.64 3.17 1.61 2.75 2.04 2.40 1.162 0.287 5.380 0.025
SD 2.78 2.19 2.35 1.69 2.63 1.92 2.72 2.06 2.42

Mini Mental State Mean 27.42 29.64 27.92 29.42 27.67 29.52 28.48 28.67 28.57 0.143 0.707 25.185 <0.00
1

SD 1.78 0.50 1.51 0.79 1.63 0.67 1.73 1.40 1.56
WAIS-III Vocabulary Mean 6.92 12.73 8.67 11.67 7.79 12.17 9.70 10.17 9.94 0.315 0.578 51.416 <0.00

1
5.232 0.027

SD 1.56 2.72 1.61 2.35 1.79 2.53 3.66 2.50 3.10
WAIS-III Blocks Mean 8.33 13.09 9.33 13.08 8.83 13.09 10.61 11.21 10.91 0.394 0.533 28.968 <0.00

1
SD 1.50 3.62 1.87 3.32 1.74 3.38 3.60 3.26 3.41
Mean 8.33 11.91 10.75 15.00 9.54 13.52 10.04 12.88 11.49 16.504 <0.001 33.321 <0.00

1
WAIS-III Sequence of 
Numbers and Letters 

SD 2.06 2.47 1.76 2.86 2.25 3.06 2.87 3.18 3.32
Mean 33.33 68.73 42.08 66.75 37.71 67.70 50.26 54.42 52.38 0.405 0.528 31.827 <0.00

1
Unconstrained Verbal 
Fluency 

SD 13.19 22.14 17.70 19.16 15.91 20.18 25.23 22.00 23.47
Mean 16.00 18.73 17.08 25.58 16.54 22.30 17.30 21.33 19.36 4.137 0.048 8.272 0.006Phonemic Verbal 

Fluency "P" SD 5.82 5.44 5.78 8.98 5.69 8.13 5.68 8.57 7.50
Mean 18.00 22.73 18.17 20.42 18.08 21.52 20.26 19.29 19.77 0.577 0.452 6.111 0.017Semantic Verbal 

Fluency "Clothes" SD 2.98 6.72 5.22 3.75 4.16 5.38 5.55 4.59 5.05
RAVLT A5 Mean 11.42 13.27 10.17 11.75 10.79 12.48 12.30 10.96 11.62 5.077 0.029 7.811 0.008
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SD 1.93 1.42 2.62 2.22 2.34 2.00 1.92 2.51 2.32
RAVLT B Mean 4.42 7.27 4.33 5.00 4.38 6.09 5.78 4.67 5.21 8.164 0.007 18.251 <0.00

1
7.050 0.011

SD 1.56 1.42 1.44 1.21 1.47 1.73 2.07 1.34 1.81
RAVLT A6 Mean 10.17 11.09 7.75 9.08 8.96 10.04 10.61 8.42 9.49 8.023 0.007 2.089 0.156

SD 2.48 2.47 2.01 3.50 2.53 3.15 2.46 2.87 2.87
RAVLT A7 Mean 9.75 10.55 8.33 9.00 9.04 9.74 10.13 8.67 9.38 3.529 0.067 0.860 0.359

SD 2.49 2.58 2.71 2.98 2.65 2.85 2.51 2.81 2.74
RAVLT Recognition Mean 13.25 13.64 9.83 9.83 11.54 11.65 13.43 9.83 11.60 11.780 0.001 0.034 0.855

SD 1.71 1.57 5.25 4.24 4.20 3.72 1.62 4.67 3.93
TMT A – Time Mean 55.88 35.57 68.73 43.07 62.31 39.48 46.17 55.90 51.14 3.172 0.082 16.193 <0.00

1
SD 19.93 9.32 28.02 15.35 24.67 13.11 18.59 25.69 22.79

TMT A – Errors Mean 0.17 0.09 0.17 0.25 0.17 0.17 0.13 0.21 0.17 0.376 0.543 0.001 0.977
SD 0.39 0.30 0.58 0.45 0.48 0.39 0.34 0.51 0.43

TMT B – Time Mean 151.48 73.53 184.99 91.55 168.23 82.93 114.20 138.27 126.49 3.429 0.071 37.940 <0.00
1

SD 52.78 22.05 69.42 28.82 62.69 26.85 56.56 70.57 64.56
TMT B – Errors Mean 0.50 0.64 1.58 0.50 1.04 0.57 0.57 1.04 0.81 0.887 0.351 0.887 0.351

SD 0.67 0.81 3.12 0.90 2.27 0.84 0.73 2.31 1.73
Time B–A Mean 95.60 38.50 117.96 48.48 106.78 43.71 68.29 83.22 75.91 2.270 0.139 34.766 <0.00

1
SD 39.38 18.27 53.60 23.60 47.39 21.36 42.16 53.85 48.55

Note: LY = Low-educated young group; HY = High-educated young group; LE = Low-educated elderly group; HE = High-educated elderly 
group; BDI = Beck Depression Inventory; SRQ = Self-Reporting Questionnaire; WAIS-III = Wechsler Adult Intelligence Scale (third 
edition); RAVLT = Rey Auditory Verbal Learning Test; TMT = Trail Making Test.

Post hoc Bonferroni correction (interactions)

After post hoc analysis with the Bonferroni procedure, the four groups presented similar scores on the BDI. As expected, LE individuals 

scored significantly lower on the WAIS-III Vocabulary subtest than HY (p < 0.001) and HE individuals (p < 0.001), but performed similarly 

to the LE group (p = 0.304). For the same subtest, the HY group scored significantly higher than the LE group (p < 0.001), but not the HE 

group (p = 0.798). In addition, HE individuals performed significantly better than the LE group (p = 0.008). Significant differences in 
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performance were also observed on the RAVLT B score, such that HY individuals outperformed LE (p < 0.001), LE (p < 0.001) and HE 

individuals (p = 0.001). 
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3.2 fMRI data

After conducting a one-sample t-test in a within-group analysis, activated regions 

per group for the phonemic – months contrast (Table 2) and for the semantic –months 

contrast (Table 3) were found. During the phonemic VF task, all groups except the HE 

group activated the right cingulate gyrus among other regions. LY and LE had activated the 

left insula. For semantic fluency, both LY and HY groups activated the left caudate tail. In 

addition, HE participants activated a greater range of regions, mainly in the right 

hemisphere, such as the bilateral anterior lobe of the cerebellum, right posterior lobe of the 

cerebellum, and bilateral superior temporal gyrus (STG). 

x Y z cluster Z x y z cluster Z

Left Hemisphere Right Hemisphere

Low-educated younger

Insula (13) –28 –2 26 97 3.57

Limbic lobe, subgyral (24) –22 –16 40 97 3.54

Cingulate gyrus (32/24) 18 20 26 73 5.25

Claustrum –24 26 16 81 3.54 28 10 18 11 3.45

High-educated younger

Cerebellum, posterior lobe 28 –54 –48 35 4.04

Postcentral gyrus (3) –42 –18 34 99 3.77

Posterior cingulate gyrus (31) 28 –68 12 11 4.99

Low-educated elderly

Insula (13) –30 28 14 51 3.78

Claustrum 24 28 14 94 3.58

Anterior cingulate gyrus (32) 24 40 6 94 3.47

High-educated elderly

Middle frontal gyrus (9) –16 32 36 19 3.39

Table 2. Activated brain areas for Phonemic VF versus Months contrast per group, p < 

0.001, uncorrected, k > 10
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x Y z cluster Z x y z cluster Z

Left Hemisphere Right Hemisphere

Low-educated younger

Caudate tail –16 –34 18 35 3.80

High-educated younger

Caudate tail –26 –40 14 10 3.49

Low-educated elderly

Cingulate gyrus (32) 22 12 30 29 3.75

High-educated elderly

Cerebellum, anterior lobe

Occipital lobe, lingual gyrus (19)

Middle frontal gyrus (9)

Parahippocampal gyrus (19)

Hippocampus

Cerebellum, posterior lobe

Cingulate gyrus (32)

Superior temporal gyrus (41)

–4

–10

–4

–16

–52

–44

–64

–50

8

–18

–14

–6

–28

38

–4

749

749

749

118

11

4.05

3.83

3.71

3.61

3.23

32

44

38

20

38

60

–46

–38

–28

–84

–66

–16

–34

–10

–14

–28

–40

2

245

32

32

16

47

44

4.22

3.66

3.26

5.20

3.38

3.56

Table 3. Activated brain areas for Semantic VF versus Months contrast per group, p < 

0.001, uncorrected, k > 10

In summary, regarding the main regions involved, VF was associated with 

activation in the STG, cingulate gyrus, cerebellum, claustrum, insula and caudate tail. For 

phonemic fluency, the lateralization index was 0.53 for the LY group, 0.36 for the HY 

group, –0.57 for the LE group, and 1 for the HE group. Thus, in this letter-based task, all 

groups revealed left-hemisphere dominance, except for the LE group, which activated more 

right-hemisphere regions (see Figure 2). For semantic fluency, the lateralization index was 
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1 for both LY and HY groups, –1 for the LE group, and 0.68 for the HE group. Again, the 

LE group was the only one showing right-hemisphere dominance (see Figure 3).

INSERT IMAGE 2 HERE

Figure 2. Patterns of activation changes in the phonemic fluency task for the (a) age effect, 

(b) education effect and (c) interaction between age and education (first column) and 

histograms for percentage of signal change per group in ROIs related to each effect

Note: The activation in the cerebellum for the education effect (b) was observed with a less 

conservative threshold.

INSERT IMAGE 3 HERE

Figure 3. Patterns of activation changes in the semantic fluency task for the (a) age effect, 

(b) education effect and (c) interaction between age and education (first column) and 

histograms for percentage of signal change per group in ROIs related to each effect

fMRI second-level results showed a main effect of age for phonemic VF, 

manifested in the left posterior cingulate gyrus (PCG), left STG and right caudate, whereas 

a main effect of education was found in the right cerebellum. There was an interaction in 

the left superior occipital gyrus (SOG). For semantic VF, there was a main effect of age in 

the left paracentral lobule and PCG, whereas a main effect of education was observed in the 

left claustrum. An interaction between age and education was found in the right claustrum 

and STG, as well as in the hippocampus bilaterally (see Table 4). 
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a The education effect was found to involve the cerebellum using a more liberal threshold (p 

< 0.005 uncorrected), in order to show an expected effect, considering the substantial 

impact of education on behavioral performance.

Table 4. fMRI data from second-level analyses (full factorial analyses and two-sample t 

Tests for interpretation)

Regarding the percentage of signal change in both tasks, the elderly groups 

presented greater activation, and the younger ones greater deactivation. However, for 

phonemic fluency, the main effect of education meant that low-educated participants 

showed deactivation of the cerebellum, while the high-educated groups presented activation 

of this region. On the other hand, in the semantic task, the opposite pattern of activation 

was found: low-educated groups showed activation while high-educated groups presented 

deactivation of the left claustrum. 

Regions (BA) per factor Side x y z cluster Z F Regions (BA) per factor Side x y z cluster Z T
PHONEMIC-MONTHS
Main effect of Age Positive effect of Age E-Y
posterior cingulate gyrus (23) LH 0 -38 20 115 3,64 17,43 posterior cingulate gyrus (23) LH 0 -38 20 189 3,64 4,18
superior temporal gyrus (22) LH -62 -42 12 29 3,53 16,36 superior temporal gyrus (22) LH -62 -42 12 53 3,53 4,04
caudate tail RH 28 -40 4 11 3,4 15,14 temporal subgyral (21) LH -38 0 -20 13 3,74 3,74

middle frontal gyrus LH -8 52 2 26 3,33 3,58
anterior cingulate gyrus (32) RH 4 54 0 26 3,18 3,39

Negative effect of Age Y-E
caudate tail RH 28 -40 4 21 3,59 3,89

Main effect of Education Positive effect of Education H-L
cerebellum, anterior lobea R 22 -38 -32 7 2,72 9,64 cerebellum, anterior lobe R 22 -38 -32 36 2,93 3,09

Interaction Age x Education Positive interaction YH/EL-YL/EH
superior occipital gyrus (19) LH -38 -84 26 33 3,91 20,49 superior occipital gyrus (19) LH -38 -84 26 44 3,79 4,15

SEMANTIC-MONTHS
Main effect of Age Positive effect of Age E-Y
paracentral lobule (5) LH -2 -44 68 78 3,98 21,22 paracentral lobule (5) LH -2 -44 68 78 3,98 21,2
posterior cingulate gyrus (23/30) LH -4 -36 22 200 3,82 19,36 posterior cingulate gyrus (23/30) LH -4 -36 22 200 3,82 19,4

superior temporal gyrus (38) LH -46 2 -22 15 3,58 3,88
middle frontal gyrus (9) LH -36 18 36 14 3,44 3,71
fusiform gyrus (19) LH -38 -66 -18 10 3,26 3,48

Main effect of Education Positive effect of Education H-L
claustrum LH -28 16 -8 40 3,38 14,94 claustrum LH -28 16 -8 76 3,56 3,86

supramarginal gyrus RH 60 -56 22 28 3,48 3,76
cingulate gyrus (31) RH 4 -56 30 32 3,42 3,69
middle frontal gyrus (9) LH -46 28 30 10 3,17 3,38

Interaction Age x Education Positive interaction YL/EH-YH/EL
superior frontal gyrus (8) LH -12 32 54 39 3,79 19,1 superior frontal gyrus (8) LH -12 32 54 82 3,96 4,36
parahippocampal gyrus RH 26 -42 0 38 3,66 17,68 parahippocampal gyrus RH 26 -42 0 72 3,83 4,2
claustrum RH 40 -8 2 74 3,62 17,25 claustrum RH 40 -8 2 172 3,79 4,15
insula (13) RH 42 2 8 74 3,32 14,43 insula (13) RH 42 2 8 172 3,51 3,79
superior temporal gyrus (39) RH 44 -48 8 20 3,54 16,49 superior temporal gyrus (39) RH 44 -48 8 36 3,71 4,05
hippocampus LH -30 -46 4 10 3,38 14,89 hippocampus LH -30 -46 4 31 3,56 3,85

middle frontal gyrus (6) LH 36 -8 62 10 3,42 3,69
insula (13) LH -34 -4 16 17 3,29 3,53
superior temporal gyrus (22) LH -50 -16 -6 15 3,26 3,49
lentiform nucleus, putamen RH 30 -4 -12 11 3,23 3,46

ANOVA Two-sample t-Test
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In light of correlations between the percentage of signal change and the total 

performance scores, some moderate to strong positive associations were found only for 

semantic VF. The percentage of signal change in the right claustrum tended to be correlated 

to semantic VF performance in HY adults (r = 0.527; p = 0.078). In addition, there was a 

correlation between the percentage of signal change in the right STG in LE participants (r = 

0.682; p = 0.015). Finally, in this same region, a correlation was found in younger adults (r 

= 0.515; p = 0.01). Therefore, for these three associations, more deactivation may represent 

better performance.

4. Discussion

In this study, we aimed to describe the impact of age and education on behavioral 

performance in phonemic and semantic VF tasks, and the possibility of an interaction 

between these sociodemographic factors. We also sought to verify whether there were 

differences regarding neural activation and deactivation between age and education groups 

and whether this pattern correlated with their performance, by means of a mixed fMRI 

design. For the phonemic paradigm only, we found that education played a role: higher-

educated adults performed better. On the other hand, for the semantic task, we observed an 

interaction between age and education: there was an education effect only for the younger 

group. In the fMRI findings, there were main effects of both age and education, as well as 

an interaction between them, in different brain areas depending on modality; sometimes the 

effect was seen in activation and in other cases it involved deactivation. 

4.1 Behavioral findings

We found an interaction between age and education on semantic VF task 

performance, which is line with previous findings (36,39–42). In parallel, we found main 

effects of age and education on the phonemic VF task. Previous behavioral studies have 

reported similar findings about the effects of age (43–46) and education (22,47) on 

phonemic VF tasks. Differential effects of age and education depending on the type of VF 

paradigm are commonly reported in the literature (48,49) and may be related to the 

different brain circuits and cognitive functions (20,50) that are recruited more by each 

paradigm.
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In addition, education effects were more frequent on behavioral assessment 

variables. This suggests that the sample of elderly people was a high-performing group. 

This finding is especially important regarding performance on the Vocabulary subtest 

(main effect of education only), which can be considered as an index of baseline semantic 

memory performance, from which VF can arise (51). Importantly, the Months task (control 

task) proved to be sensitive to the education factor, with LE adults performing worse than 

HE individuals. When analyzed together, these results indicate that the effects that were 

found can be attributed to the VF paradigm rather than to semantic memory or word 

generation activity alone. 

4.2 fMRI findings per group 

Given that, hitherto, no studies had presented the brain regions involved in 

phonemic and semantic VF tasks for four different age and education groups, the results of 

these first-level analyses may be very useful in developing a preliminary picture of the 

brain areas associated with the linguistic, mnestic and executive abilities underlying VF in 

HY, LY, HE and LE individuals. Although these brain regions have been investigated quite 

extensively in HY persons, and also quite frequently in HE adults, brain activation had not 

been sufficiently explored in either younger or older groups with less schooling. In light of 

the increasing recognition of the potential value of fMRI in clinical applications, studies 

that contribute evidence of activation patterns from normal participants should be helpful 

for the future development of normative scales evaluating individual patients’ outcomes 

(19).

In the phonemic VF paradigm, the right cingulate gyrus was among the most 

frequently activated regions for all groups except the HE group. This region has often been 

associated with VF performance (52). Its posterior portion has been related to attentional 

focus (53). The role of the insula, which was activated in the low-educated groups, has been 

increasingly explored, as it is associated with language production, repetition, complex 

linguistic processes and, more specifically, lexico-semantic associations (54). In view of the 

poorer performance associated with less education, and the role of the insula in language, 

this region may be related to language stimulation through formal educational experience. 

In line with this hypothesis, the claustrum was also important for the LY and LE groups; it 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.14.426642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426642
http://creativecommons.org/licenses/by/4.0/


22

is related to attentional control and segregation (55). For better-educated groups, two 

different brain regions proved important: the right cerebellum for HY people and the left 

middle frontal gyrus (MFG) for HE individuals. For the past three decades, the cerebellum 

has increasingly been found to be related to complex cognitive abilities (56), mainly 

language (57) and executive functions (58). Most VF fMRI studies have found that the left 

MFG plays an important role (see Costafreda et al. (20)).

In the semantic fluency paradigm, both LY and HY groups showed activation in the 

left caudate tail, whose role in working memory, mainly spatial (59), has already been 

recognized, probably due to the visual representations of each word through an image-

based strategy. In accordance with the findings for phonemic VF, HE individuals also 

recruited the left MFG. This activation may be related to this region’s essential 

participation in switching between semantic subcategories (60). The cingulate gyrus also 

played a very important role for semantic VF in both elderly groups, as in Meinzer et al.’s 

(11) study, which found more pronounced activation in elderly participants only for a 

category fluency task. 

A very interesting result refers to the right dominance of regions involved in both 

VF paradigms in the LE group. This is in line with the HAROLD model (12), which 

postulates greater right hemisphere activation in elderly people in order to try to maintain 

higher levels of performance, by recruiting right hemisphere brain regions to perform tasks 

normally accomplished by their left hemisphere homologues. One could also explain this 

result by means of Banich’s (61) theory that brain hemispheres couple and decouple to 

accomplish more cognitively demanding tasks. In this case, the task must have been more 

difficult for the LE population than for the other groups, therefore activating their right 

hemisphere more intensively to cope with a challenging task. This brain functional 

compensation strategy seemed to be necessary only for less-educated elderly participants, 

who seem to have been simultaneously impacted by their advanced age and lower 

schooling background. The concept of brain adaptation during aging has been widely 

explored, for instance through the scaffolding theory (62), which explains the contralateral 

activation as a function of inefficient inhibition related to behavioral deficits in elderly 

people. Cognitive deficits are more frequent in elderly participants who have less 
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education. Thus, in an aging brain, compensation strategies may enhance recruitment of 

right hemisphere regions when age and education simultaneously play a role in cognition. 

4.2.1 Main effect of age on phonemic and semantic VF

Although age had no effect on performance in either task, it did affect activation in 

the left PCG and left STG in the phonemic VF task, as well as the left paracentral lobule 

and left PCG in the semantic paradigm. With regard to the left PCG, younger adults 

showed more deactivation in that area, while more activation was observed in elderly 

participants. Leech and Sharp (53) observed that this region deactivates more with 

attentionally demanding tasks, reinforcing the hypothesis that cognition is internally 

directed in younger people. In elderly subjects, the greater activation may be related to the 

left PCG’s role in memory retrieval (63,64). In addition, the left STG, which shows the 

same activation/deactivation pattern, has been associated with verbal working memory 

processing (65). For instance, even though they presented comparable performance, elderly 

scored lower scores in random number generation, which can be linked to compensation for 

working memory overload during the phonemic VF task for this group. Schneider-Garces 

et al. (66) revisited the CRUNCH model to predict activation differences between younger 

and elderly individuals and highlighted the hypothesis that greater brain activation can be 

observed in elderly people due to individual variations in working memory span. For a 

review, please refer to Park and Festini (67). Lastly, Meinzer et al. (11) found the 

paracentral lobule to be more activated in elderly subjects; this region has been associated 

with flexibility demands (68). Recently, Hoyau et al. (69) found that elderly use a neural 

compensation strategy for word retrieval involving the inferior frontal cortex and the 

medial temporal cortex. 

4.2.2 Main effect of education on phonemic and semantic VF

In line with the behavioral results, education also played a special role in brain 

activation and deactivation for both phonemic and semantic VF tasks. This finding is 

challenging to explain due to the lack of literature on the issue. In an fNIRS study, Heinzel 

et al. (70) noted that education played a greater role in phonemic VF than in a semantic 

task. In the phonemic paradigm in our study, we observed a main effect of education in the 
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right cerebellum, with higher education associated with deactivation and the opposite 

pattern for less-educated subjects. Similarly, Bonnet et al. (71) used a Go/No-go fMRI 

paradigm and noted that healthy adults with higher education showed greater cerebellar 

activity than lower-educated people. Their main hypothesis was related to the cerebellum’s 

role in recruiting automatic strategies for more successful attentional – and we would add 

executive – processes. Furthermore, a group with right cerebellar lesions produced fewer 

words than a group with left cerebellar lesions and than healthy controls, showing this 

region’s important influence on phonemic word generation (72). Thus, it seems that the 

association between higher education and better performance in VF tasks, at least letter-

based ones, may depend on the cerebellum and executive/attentional ability.

On the other hand, in the semantic VF modality, a main effect of years of education 

was found in the left claustrum. The pattern of activation and deactivation was the opposite 

of the one observed in the phonemic paradigm: in higher-educated subjects this region was 

deactivated, whereas it was activated in lower-educated adults. This pattern may be 

explained by compensation for low education by means of greater recruitment of attentional 

control during a continuous word search. In this regard, Smythies et al. (73) emphasized 

that the claustrum plays a special role during multicenter cognitive tasks, contributing to 

intracortical and intraclaustral synchronization. More specifically, then, one can predict that 

it may be needed for semantic association. 

4.2.3 Interaction between age and education on phonemic and semantic VF

Based on the results of behavioral studies, the interaction between age and 

education cannot be simply interpreted through our fMRI findings. Our preliminary 

hypothesis was that there may be a continuum of activation and deactivation corresponding 

to these four age and education groups. However, in the phonemic cue paradigm, we 

noticed a very interesting and surprising interaction in the left SOG: this area was 

deactivated more in the LY and HE groups than in the HY and LE groups. This region has 

been associated with a semantic network common to both words and images (74). This 

crossed effect of age and education in the under-recruitment of the left SOG may possibly 

be further explained in future studies if deactivation occurs in all groups to avoid a conflict 

of semantic strategies with a letter-based paradigm. 
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Conversely, in the semantic task an interaction between age and education was 

noted in the right claustrum, the STG and the bilateral hippocampus, representing greater 

activation in HE individuals than in the other groups; increased deactivation in these 

regions was observed in the following order in the other three groups: LE > HY > LY. The 

right claustrum, as mentioned in our discussion of first-level analyses, is closely related to 

attentional control. The hippocampus and parahippocampal gyrus have been linked to the 

process of categorical recovery (75). We hypothesized that high-educated elderly adults 

needed more expressive participation of attentional control.

Taken together, the results on activation and deactivation do not seem to present a 

simple linear relationship with performance in VF tasks. According to Binder (76), 

deactivation should be further analyzed in light of types of baseline tasks, especially in 

language tasks; thus, its nature has not yet been fully understood. Persson et al. (77) 

remarked that the deactivation response is less sensitive to demand in older subjects than in 

young adults. Reviewing the neuronal basis for task-negative responses, Linn et al. (78) 

explored two models: (1) greater activation (reductions in metabolic rate) associated with 

effortful tasks, and the opposite pattern (2) greater activation linked to less effort in 

cognitive activities. Thus, further studies should analyze the nature of the relationship 

between deactivation and performance in more depth in twofold linguistic and executive 

tasks. 

4.3 Contributions and limitations

The novelty of this work was that it associated the less explored impact of education 

with the more frequently studied age effect on performance and brain neural correlates in a 

mixed phonemic and semantic VF design, with a 90-second paradigm and an automatic 

control task. The brain regions involved may be activated due to advanced age and/or lower 

educational background, and not necessarily due to clinical brain damage or brain 

dysfunction. In this way, our findings may be helpful in avoiding false fMRI positives, such 

as the widespread false positive findings of cognitive deficits.

Among caveats of the current study, we note that, although fluency in the months 

task has already been validated in the literature, such as by Birn et al. (7), considering the 

education effect, this task may have been too effortful for the less-educated participants. In 
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addition, activation and deactivation patterns were quite weakly correlated with each 

group’s performance. Finally, further investigations should use larger samples. However, 

this was the first study to simultaneously consider two age groups and two educational 

groups, aiming to describe the brain regions involved in phonemic and semantic VF. More 

specifically, this study was the first to assess use of fMRI and an overt, long-duration, self-

paced semantic and phonemic VF paradigm with lower-educated healthy adults.

4.4 Conclusions

The main aims of this study were twofold: to verify a potential impact of age and 

education or an interaction between these factors on phonemic and semantic fMRI VF; and 

(2) to examine possible neural correlates of these effects in brain area recruitment using a 

mixed-design fMRI VF task. Brain activation involved regions related to linguistic, 

executive and working memory abilities. Education was shown to a greater impact on 

performance than the age factor. Marsolais et al. (26) also posited that the age effect is less 

prominent than the education effect in VF, especially in highly educated samples. 

Moreover, the greater participation of the right hemisphere in coping with a high-demand 

task for older less-educated adults should be noted; it corroborates the literature on the role 

of cognitive reserve in aging, as well as the recruitment of additional brain areas to adapt to 

demanding tasks, as posited by Banich’s (61) model. Taken together, the behavioral and 

neuroimaging data provided by our study expand and advance existing knowledge of the 

interaction between age and education in a relevant linguistic task, correlating the 

behavioral results with the neural circuitry results.

Future studies should analyze brain and behavioral performance using another, even 

simpler, automatic baseline task for very low-educated populations, including illiterate 

participants. Another possible study could analyze in more depth the impact of stimulus 

complexity within both tasks (semantic and phonetic) on brain and behavioral performance. 

In addition, clinical populations could be investigated in comparison to healthy controls. 

Considering that VF is one of the most sensitive and effective tools for clinical 

neurocognitive diagnosis, further studies should shed more light on our understanding of all 

the sociodemographic and cognitive factors that impact VF ability.
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