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Abstract  
 

The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by 

spasticity and weakness in the lower body. Despite the identification of causative mutations in over 

70 genes, the molecular aetiology remains unclear. Due to the combination of genetic diversity and 

variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-

protein interaction network analysis as a tool to understand disease mechanism(s) and to aid 

functional stratification of phenotypes. In this study, experimentally validated human protein-protein 

interactions were used to create a protein-protein interaction network based on the causative 

Hereditary Spastic Paraplegia genes. Network evaluation as a combination of both topological analysis 

and functional annotation led to the identification of core proteins in putative shared biological 

processes such as intracellular transport and vesicle trafficking. The application of machine learning 

techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, 

suggesting there is scope to further classify conditions currently described under the same umbrella 

term of Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease. 

Keywords: Hereditary Spastic Paraplegias/ machine learning/ neurodegeneration/ PINOT/ protein 

interaction network  
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Introduction 
 

The Hereditary Spastic Paraplegias (HSPs) are a group of heterogeneous neurodegenerative diseases 

characterised by the core features of slowly progressive bilateral lower limb spasticity, hyperreflexia 

and extensor plantar responses (Harding, 1983) accompanied by degeneration of the upper-motor 

neurons (Deluca et al, 2004). Although the first description of clinical presentations we now refer to 

as HSPs dates back at least 140 years (Lorrain, 1898; Strümpell, 1880), the molecular mechanisms 

responsible for disease onset are, to date, still unclear. A number of mechanisms have been proposed 

to contribute to the degenerative process, including dysfunction of intracellular active transport and 

endolysosomal trafficking, alteration of lipid metabolism and endoplasmic reticulum shaping as well 

as disruption of mitochondria homeostasis (Blackstone, 2012, 2018a; Blackstone et al, 2011; Boutry 

et al, 2019). 

The heterogeneity of the HSPs derives from both the complex range of clinical presentations 

(summarised in Supplementary Table 1) and diverse underlying genetic causes. Regarding the former, 

the age of onset can vary from early childhood to late adulthood, all modes of inheritance can be 

observed, and the form of the disease can be pure or complex. Complex forms of the HSPs are defined 

by the co-occurrence of clinical features in addition to lower limb spasticity, including peripheral 

neuropathy, seizures, cognitive impairment and optic atrophy (Fink, 2013). Regarding the genetic 

heterogeneity of HSPs, mutations in over 70 genes have been associated with the HSPs (Faber et al, 

2017), rendering it one of the hereditary disorders with the highest numbers of known causative genes 

(Blackstone, 2018a). In such a complex scenario, it is not clear as to whether all the HSP syndromes, 

despite being classified under the same umbrella term, share the same underlying molecular aetiology 

(Blackstone, 2018a). Given the lack of treatments able to prevent, halt or revert the HSPs, 

understanding the aetiology of these disorders and gaining greater clarity in this area of HSP biology 

is crucial. 

The intersection of genetics and functional biology has, historically, been dominated by single gene 

investigations, focusing on understanding the role of individual genes in cellular processes and 

phenotypes. This approach is powerful, but it allows for studying a limited number of genes at a time 

(Manzoni et al, 2020). In contrast, systems biology approaches such as protein-protein interaction 

(PPI) network (PPIN) analyses provide tools to evaluate the entirety of known genes/proteins involved 

in a disease collectively through a holistic approach (Koh et al, 2012). The connections within the PPIN 

can be subjected to mathematical analysis to gain insight into the global relationships among potential 

contributors to the disease process, thus creating an in silico model system to investigate the 

molecular mechanisms and generate hypotheses to further support functional research and disease 

modelling (Manzoni et al., 2020). 

This paper describes the first study in which PPINs are created solely based on experimentally 

validated human PPIs of HSP genes, and are applied to the investigation of HSP pathogenesis to 

identify global mechanisms, as well as individual processes involved in subtypes of disease following 

stratification based on the association of specific HSP genes with particular clinical features. Based on 

a combination of network, functional, and machine learning analyses, we propose HSPs to be 

subdivided into at least 2 major aetiological groups. These results might suggest that not all the HSPs’ 

clinical manifestations relate to the same disruption at a molecular level, and that it is indeed possible 

to hypothesise stratification of HSP patients based on the molecular aspects of disease. This is an in 

silico modelling approach, thus it would require further functional validation; nevertheless it suggests 
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that both drug discovery and clinical trials for HSPs would need to take into consideration the 

molecular heterogeneity of disease. 

 

Results 
 

Generation of PPI networks  
The HSP seeds (HSP genes, n=66 and test seeds, n=17; see Table 1, Supplementary Table 1, and 

Materials and Methods) were used as the input list to query the online tool, PINOT (Tomkins et al, 

2020), generating a list of experimentally validated, human PPIs. Briefly, PINOT collects PPIs from 7 

manually curated databases that fully or partially comply with the IMEx annotation guidelines 

(Orchard et al, 2012), and scores each interaction based on the number of different methods and 

publications in which it has been described. PPIs with a final PINOT score <3 were excluded from 

further analyses as these interactions lack replication in the curated literature (i.e. they are reported 

in only 1 publication and detected by only 1 method). Following this filter, 746 interactors of HSP seeds 

were retained. Of note, 15 of the initial seeds were excluded due to no PPIs being identified (a total 

of 57 HSP seeds and 11 test seeds were retained). The resulted filtered network was termed the global 

HSP-PPIN and was composed of 814 nodes (57 HSP seeds + 11 test seeds + 746 interactors) connected 

via 925 edges (Supplementary File 1). The global HSP-PPIN (Supplementary Fig 1) was composed of 1 

main graph that contained the majority of nodes (n=755/814, 92.8%), including the majority of seeds 

(n=53/68, 77.9%) and 14 additional unconnected, smaller graphs. Of particular note is the presence 

of an interactor in the global HSP-PPIN, RNF170, which was found to be associated with the HSPs (i.e. 

an additional HSP gene) in a study published after the creation of the network (Wagner et al, 2019). 

Each protein of the global HSP-PPIN was scored based on the number of seeds to which it was directly 

connected, and a degree distribution was plotted (Supplementary Fig 2). All nodes interacting with at 

least 2 seeds (IIHs) were selected and used to extract the core HSP-PPIN composed of 164 nodes 

(including 45/57 HSP seeds [72.7%] and 8/11 test seeds [78.9%]) and 287 edges (Fig 1 and 

Supplementary File 2). The core HSP-PPIN represents the most interconnected part of the global HSP-

PPIN graph and contains the interactors that are communal to 2 or more seeds, thus it can be used to 

investigate common functionalities across the different HSP genes.  

Of note, the test-seed CCDC50 is present in the core HSP-PPIN and directly interacts with 2 proteins 

that are interactors of 6 HSP seeds. Comparatively, 95.5% of the proteins within the global HSP-PPIN, 

and 74.5% of the proteins within the core HSP-PPIN interacted with less than 6 HSP seeds. The strong 

connectivity of CCDC50 with HSP seeds indicates that they might be functionally related, and thus 

further supports the hypothesis that CCDC50 could be an HSP gene based on its genetic location 

[CCDC50 is located at 3q28 (https://www.ncbi.nlm.nih.gov/gene/152137), while the genetic loci of 

SPG14 is 3q27-28 (Boutry et al., 2019)]. 

 

  

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.425874doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/gene/152137
https://doi.org/10.1101/2021.01.14.425874
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

Functional enrichment: intracellular organization and trafficking 
The nodes composing the core HSP-PPIN were analysed through functional enrichment to identify 

associated Gene Ontology Biological Processes (GO-BPs). Three different enrichment tools were used 

(g:Profiler, PantherGO and WebGestalt; Supplementary File 3). Despite p-values being corrected 

differently in the different tools, the enrichment ratio was calculated via the same formula (see 

Materials and Methods). We therefore selected the top 10 GO-BP terms (based on the enrichment 

 
A. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

B. 
 

 

 
 

Figure 1. Functional enrichment of the core HSP-PPIN  
The core HSP-PPIN is the most interconnected part of the global HSP-PPIN and includes i) the interactors connecting at 
least 2 seeds, and ii) the connected seeds. Seeds (HSP genes) are represented with a black border, test seeds with a red 
border (ACO2, ALS2, BICD2, CCDC50, CCT5, IFIH1, KIDINS220, LYST). The size of each node positively correlates with its 
number of connections (i.e. node degree) within the core HSP-PPIN. The thickness of each edge positively correlates 
with the final score of the respective interaction as calculated by PINOT (which is a proxy for confidence as it represents 
the sum of the number of different publications and number of different methods reporting the interaction). (A) Nodes 
contributing to the enrichment of functional blocks (built on Gene Ontology Biological Processes) are colour coded 
according to the legend (grey nodes are those that did not contribute to any of the enriched functional blocks). (B) The 
involvement of nodes of the core HSP-PPIN in pathways is visualised by node colour-coding based on Reactome’s 
pathway analysis. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.425874doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.425874
http://creativecommons.org/licenses/by/4.0/


ratio) from each of the 3 tools (Fig 2). The majority of the top-terms indicated functions such as those 

of “Transport” or “Intracellular organisation” (collectively accounting for 60-70% of terms significantly 

enriched using the 3 tools). The remaining terms referred to “Cell death” and “Physiology-host/virus” 

with important reference to protein targeting and the endomembrane system. Of note, we observed 

a 60% match of the GO-BPs in the top 10 enriched terms across all the 3 tools, and 60-100% match 

between at least 2 tools (g:Profiler: 100%, WebGestalt: 100%, and PantherGO: 60%). The unique terms 

from each tool, however, were closely related to already shared terms (e.g. “Anterograde axonal 

transport” [unique to PantherGO] is closely related to “Retrograde neuronal dense core vesicle 

transport” and “Retrograde axonal transport” [g:Profiler, WebGestalt and PantherGO]) (Fig 2).   

 

 
 
Figure 2. Top 10 GO-BPs enriched within the core HSP-PPIN  
The 10 GO-BP terms from the functional enrichment of the core HSP-PPIN with the highest enrichment ratio were grouped 
into functional blocks based on semantic similarity. Most of the terms resulted from at least 2 enrichment tools (g:Profiler 
& WebGestalt: n=10/10, 100%; PantherGO: n=6/10, 60%). 

 

The entirety of enriched GO-BP terms were then grouped by semantic similarity into semantic classes, 

which were further organised into functional blocks, thus aiding the interpretation of the enrichment 

results (see Materials and Methods and (Bonham et al, 2018; Ferrari et al, 2018; Ferrari et al, 2017; 

Tomkins et al, 2018)). 
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The raw results from each tool were similar in all 3 levels explored: the identity of the GO-BP terms, 

of the semantic classes and of the functional blocks. In fact, most of the GO-BP terms were common 

to at least 2 tools (n=115/171, 67.3%) (Supplementary Fig 3A), while after semantic classification of 

GO-BPs a higher proportion of semantic classes derived from at least 2 tools (n=49/58, 84.5%) 

(Supplementary Fig 3B). Finally, all the functional blocks were represented by all 3 tools (n=11/11, 

100.0%) (Supplementary Fig 3C). Overall, this confirmed the consistency of results across different 

enrichment tools. However, these results also showed that even if consistency is very high at the more 

general levels of semantic classes and functional blocks, discrepancies can occur at the very specific 

GO-BP term level. Therefore, we decided to improve functional interpretation and reduce tool specific 

bias in further analyses by merging the GO-BP terms derived from the 3 tools within functional blocks 

replicated in at least 2 tools (in this case all terms) and adjusting the threshold of the p-value (see 

Materials and Methods). 

The majority of significant GO-BP terms from the core HSP-PPIN enrichment analysis were associated 

with the functional block “Intracellular organisation” (22.2%), followed by “Transport” (19.3%), and 

then “Protein localisation” (13.5%), collectively accounting for more than half of GO terms (55.0%) (Fig 

3, Supplementary Fig 4, Supplementary File 3). This result confirmed the findings previously obtained 

from the top-10 enriched terms, suggesting a role for these processes in the molecular mechanism(s) 

underlying HSP pathogenesis. Finally, and to increase specificity of the enrichment approach, we 

performed text mining for single words within all the significantly enriched GO-BP terms and detected 

significant enrichment for “axon” (n=7/171, 4.1% [8.9 fold enrichment] p<10-10 after 1000 random 

simulation), “endosomes” (n=3/171, 1.8% [5.7 fold enrichment] p<10-10), “membrane” (n=24/171, 

14.0% [5.7 fold enrichment], p<10-10), “neurons” (n=9/171, 5.3% [3.4 fold enrichment], p=7.85 10-7), 

“projection” (n=6/171, 3.5% [5.4 fold enrichment], p=6.54 10-7), and “vesicles” (n=10/171, 5.8% [4.5 

fold enrichment], p<10-10).  

Of note, the independent analysis of the core HSP-PPIN through Reactome (Supplementary File 3), 

suggested similar enrichment, whereby the 2 most significantly enriched pathways were: vesicle-

mediated transport (REA identifier: R-HSA-5653656, p<10-10, 46 (28.0%) contributing nodes) and 

membrane trafficking (REA identifier: R-HSA-199991, p<10-10, 44 (29.3%) contributing nodes) (Fig 1B).  

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.425874doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.425874
http://creativecommons.org/licenses/by/4.0/


 
 

Figure 3. Graphical representation of the functional enrichment of the core HSP-PPIN 
Functional enrichment was performed on the nodes of the core HSP-PPIN. The resulting GO-BP terms (n=171) 
(Supplementary File 4) were grouped into semantic classes (brief descriptions of several semantic classes are inside each 
circle) and then into functional blocks (title of each circle, bolded). The number and percentage of terms in each functional 
block was calculated for g:Profiler, WebGestalt, and PantherGO as described in Materials and Methods. For a more 
detailed version see Supplementary Fig 4. 

 

Stratification of HSP clinical groups into 2 clusters 
HSPs can present with a wide set of clinical features, with marked phenotypic heterogeneity between 

different patients. The complex forms of HSPs are defined by the co-occurrence of additional clinical 

features, the most frequently reported being: peripheral neuropathy (P), thinning of the corpus 

callosum (T), seizures (S), dementia or mental retardation (D) and optic atrophy (O). Finally, some 

patients also present with an early disease onset (E). Interestingly, medical reports and case studies 

sometimes state the presence of the above features in association with specific mutations in HSP 

genes. We have taken advantage of that this knowledge and grouped the genes based on the features 

with which they are associated. Therefore, the seeds within the core HSP-PPIN were coded based on 

their associated clinical features (Supplementary Fig 5). Of note, some seeds are associated with a 

single feature (n=9/57, 16%) while others are responsible for 2 (n=18/57, 32%), 3 (n=12/57, 21%) or 4 

(n=7/57, 12%) clinical features. This seed characterisation allowed the extraction of 6 smaller 

subnetworks from the core HSP-PPIN, each of them containing the interconnected seeds (and their 

interactors) associated with each specific feature mentioned above (Supplementary Fig 6). 
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Enrichment of biological processes was performed on each clinical subnetwork separately, as 

previously described, using g:Profiler, PantherGO and WebGestalt (Supplementary File 4 and 

Supplementary Fig 7). The enrichment results obtained from the 3 tools were compared to assess their 

reproducibility and identify GO-BP terms of functional blocks that were replicated in at least 2 tools. 

These terms were merged to increase functional coverage as described above. The percentage of GO-

BP terms within each functional block was calculated to weight its relevance. Principal components 

analysis (PCA) was then applied to reduce the complexity of the results obtained from the functional 

enrichment analyses to 2 principal components (PC1 and PC2). PCA thus allowed comparison of the 6 

clinical subnetworks (Fig 4A). Interestingly, some of the clinical subnetworks functionally clustered 

together. Of note, this result was obtained with PCA performed on both the percentage of the GO 

terms in each functional block (Fig 4A) and their absolute numbers (Supplementary Fig 8A). 

The PCA plot provided a first visual insight into potential functional clustering that was further 

confirmed by hierarchical clustering. Results were plotted into a cluster dendrogram (Fig 4B & 

Supplementary Fig 9) and the exact number of clusters to best fit the data was determined by 2 

methods: Silhouette method and Multiscale bootstrap resampling (Supplementary Fig 10). Both 

methods suggested the presence of 2 clusters (named clusters A and B) in the cluster dendrogram 

(Silhouette method: the highest score was for 2 clusters; Multiscale bootstrap resampling: Cluster A 

and B had a pvclust-p-value=0.99 and 0.91, respectively, showing 99% and 91% confidence in the 

result). Cluster A is composed of thin corpus callosum, and seizures (thereafter named TS), while 

cluster B is composed of early onset, peripheral neuropathy, optic atrophy and dementia or mental 

retardation (thereafter named EPOD). 

 

A.  
 

 

B. 
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The co-clustering of the T and S subnetworks within the TS cluster is not surprising as they had 23 

common proteins (n=23; T∩S = 82.1%, S∩T = 100%). However, we also observed a large overlap of 

proteins between the subnetworks of O and P (n=39; O∩P = 92.9%, P∩O = 53.4%); T and D (n= 25; 

T∩D = 89.3%, D∩T = 43.9%); S and E (n=23; S∩E = 100%, E∩S = 20.2%); and D and E (n=55; D∩E = 

96.5%, E∩D = 48.2%). In all these cases, the common composition was large, yet not able to guide the 

order of similarity based on the dendrogram, nor to promote the co-clustering (Fig 4B). A full report 

of the overlaps between the clinical subnetworks is detailed in Supplementary Tables 3-5. 

Plotting the percentages of overlaps across different clinical subnetworks allowed for running a 

statistical comparison. When considering the overlap of the subnetworks within cluster TS and within 

cluster EPOD (networks within the same cluster) in comparison with the overlaps of the subnetworks 

in TS vs EPOD (networks in different clusters) we found a non-significant difference in their 

distributions (p= 0.07; Fig 4C). This result suggests that the generation of the 2 distinct clinical clusters 

was highly affected by similarities in the functional profile of the subnetworks in terms of GO-BPs, 

while the overlap of nodes had a small or potentially no contribution. 

 

Differences between the clinical clusters based on functions and subcellular 

localisation 
The potential differences of the 2 clinical clusters were further explored by performing enrichment 

analysis for GO-BPs using as input the protein components of the 2 clusters, TS and EPOD 

(Supplementary File 5). The comparison of the 2 obtained functional profiles is shown in Fig 5A and 

Supplementary Fig 11. Despite an overlap in the identity of the GO-BPs functional blocks between the 

2 clusters (TS: n=4/5, 80%; EPOD: n=4/10, 40%), the granular distribution of specific GO-BP terms in 

each functional block differs between clusters, with the GO-BP functional blocks of: “Waste disposal” 

(+12.7-fold [compared to the core HSP-PPIN]), “Metabolism” (+9.3-fold), and “Protein metabolism” 

C. 
  

 
Figure 4. Comparison of the functional profiles of the 6 clinical subnetworks 
(A) In the PCA graph each clinical subnetwork is represented by a single point of coordinates calculated based on PCA 
performed for the percentage of GO-BP terms and adjusted based on the explained variation of each axis (for details see 
Materials and Methods) [i.e. (x, y) = (PC1x0.630, PC2x0.258)]. (B) Cluster dendrogram produced based on hierarchical 
clustering of the gene groups as analysed in (A), in which the 2 suggested clusters are shown. *: pvclust-p-value>0.90 
(pvclust-p-value A=0.99, pvclust-p-value B=0.91) E: Early onset, P: Peripheral neuropathy, T: Thin corpus callosum, S: 
Seizures, D: Dementia or mental retardation, O: Optic atrophy. (C) The percentage of protein identity between gene 
groups within the same cluster (EPOD and TS cluster) was compared to the protein identity between gene groups of 
different clusters using t-test (two-tailed, unequal distribution). 
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(+2.15-fold) being more represented in the TS rather than in the EPOD cluster (-0.13, -1.0, and 0.25-

fold respectively) (Fig 5A). Meanwhile, the GO-BP functional blocks “Physiology-host/virus” (+0.22-

fold), “Cell cycle” (+0.1-fold), and “Cell death” (+0.1-fold) were more represented in the EPOD rather 

than in the TS cluster (-1.0, -1.0, and -1.0-fold, respectively). Interestingly, 5 GO-BP terms related to 

the unfolded protein response (e.g. “Cellular response to unfolded protein” and “Cellular response to 

topologically incorrect protein”) were unique to the TS cluster (n=5/25, 25%), even with cluster EPOD 

having a 6-fold higher number of total GO-BP terms (nGO-BPtotalEPOD=158 vs NGO-BPtotalTS=25), thus 

highlighting the importance of protein folding for the TS cluster only. Overall, these results of GO-BP 

enrichment indicated that functions associated with protein metabolism, waste disposal and unfolded 

protein response might be more important processes in the TS rather than in the EPOD cluster; while 

the EPOD cluster presents with a functional enrichment profile very similar to that of the entire core 

HSP-PPIN. 

Similarly, we performed Gene Ontology Cellular Component (GO-CC) enrichment using as input the 

protein components of the 2 clusters A and B (Supplementary File 5). This analysis showed additional 

differences between the profiles of the 2 clusters (Fig 5B, Supplementary Fig 11). Even though, there 

are common GO-CC location blocks between the 2 clusters (TS: n=5/6, 83.3%; EPOD:, n=5/17, 29.4%), 

their order of relevance based on the percentage of GO-CC terms differed substantially. Interestingly, 

and confirming the results obtained previously with GO-BPs, a higher percentage of GO-CC location 

blocks are related to “ER” (+4.7-fold [compared to the core HSP-PPIN]), “Melanosomes” (+8.5-fold), 

and “Membranes” (i.e. “Membranes”: +25.0-fold, “Membrane/network” +8.5-fold, and 

“Membranes/organelle” +0.5-fold) for the TS cluster in comparison with the EPOD cluster (0.13, 0.13, 

0, 0.13, -0.30-fold, respectively). As for the EPOD clusters, higher relevance is observed in the GO-CC 

location blocks: “Other organelles” (+0.5-fold), “Microtubules” (+0.4-fold), “Cytoskeleton”, “Cytosol”, 

“Extracellular”, “”Mitochondria” and “Other membranes” (+0.1-fold) than in TS (-1-fold in TS).  

 

A.                                                                                         B. 

  

Figure 5. Differential patterns of enrichment for the TS and EPOD clusters 
The distribution of the GO-BPs (A) and GO-CCs (B) of the clusters, TS and EPOD, are presented as a fold change compared 
to the profile of the core HSP-PPIN. A more detailed version is shown in Supplementary Fig 11, while the totality of the 
results is shown in Supplementary File 5. 
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Discussion 
 

Network-based approaches have been increasingly used to study complex human diseases, such as 

neurodegenerative diseases and cancer (Manzoni et al., 2020). The Hereditary Spastic Paraplegias 

(HSPs) are neurodegenerative diseases with considerable genetic and clinical heterogeneity (Boutry 

et al., 2019; Faber et al., 2017), rendering them particularly interesting to study using a protein-protein 

interaction network (PPIN) approach. We applied a bottom-up approach, starting with the selection 

of genes involved in the disease and built the relevant interactome around them. We focused on 

experimentally validated human PPIs of HSP genes, not including genes associated with a disease 

spectrum in which HSP is involved (e.g. HSP-ataxia spectrum) or genes with related phenotype, in 

contrast with prior studies (Bis-Brewer et al, 2019; Novarino et al, 2014; Parodi et al, 2018; Synofzik & 

Schule, 2017). While the excluded data might be useful in the effort to conceptualise the possible 

interactions and mechanisms of HSP related diseases, they were not considered to be specific or 

supported strongly enough to be included in our analysis.  

We applied the PINOT pipeline to mine the curated literature and download PPIs for each single seed, 

thus obtaining each seed’s interactome (Ferrari et al., 2018). We then constructed the global HSP-

PPIN by combining each seed’s interactome in a modular fashion. We finally filtered the global HSP-

PPIN, excluding the nodes that interacted with a single seed, thus retaining those interactors that were 

bridging at least 2 seeds’ interactomes. This step allowed for removal of all the unique interactors of 

each seed and for the extraction of the core HSP-PPIN, which is the most connected part of the 

network, containing nodes that are shared across seeds, and responsible for connections across 

different interactomes. By containing all the shared interactors and connections among seeds, the 

core HSP-PPIN can be used to infer shared functions communal to multiple HSP genes. (Tomkins et al., 

2020). 

It is important to observe that most HSP seeds are indeed part of the core HSP-PPIN, meaning they 

are connected through at least one shared interactor. This result suggests that they are likely to be 

functionally related (based on the guilt-by-association principal (Oliver, 2000)) and therefore 

convergent molecular mechanism(s) drive disease pathogenesis, regardless of the mutated gene 

acting to initiate the degenerative process. The seeds that were absent from the core HSP-PPIN (i.e. 

seeds that do not share any interactors with other seeds) had a low number of curated interactors 

ranging from 0 to 4 (PLA2G6, CPT1C, CYP2U1, C12orf65, B4GALNT1, TECPR2, ENTPD1, ATL1, SPG11, 

DDHD1, AP5Z1, SLC16A2, GAD1, RAB3GAP2, and HACE1). With limited interactors, their absence from 

the core HSP-PPIN could be the result of ascertainment bias (i.e. these seeds are understudied 

proteins with limited number of known interactors) rather than representing a more fundamental 

divergence in aetiology (Schaefer et al, 2015) As more PPIs are discovered, the human interactome 

will become more complete (Huttlin et al, 2017; Luck et al, 2020; Rolland et al, 2014; Wewer 

Albrechtsen et al, 2018) and might be able to help us better understand the connecting processes of 

large groups of genes and potentially point towards the disease mechanism. Exceptions were EXOSC3 

(test-seed), SPG21 (HSP-seed) and KCNA2 (test-seed) with 21, 10 and 6 interactors, respectively. In 

this second scenario, it can be hypothesised that these seeds are not interacting with other HSP seeds, 

meaning that, by not sharing the same interactome, they might potentially be associated with 

different molecular mechanisms of disease.  

In this study we included 17 test seeds, genes for which there is no clear consensus regarding their 

potential association with HSPs, as they have been controversially reported in clinical literature. Eight 

of the test seeds (i.e. ALS2, BICD2, CCDC50, CCT5, KIDINS220, ACO2, LYST and IFIH1) were present in 
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the core HSP-PPIN, providing in silico evidence of their relevance within the HSP protein interaction 

landscape. The presence of five of those test seeds (i.e. CCT5, KIDINS220, ACO2, LYST and IFIH1) 

correlates with the processes and cellular components indicated to play a role in HSPs from previous 

and the current work, namely of lysosomal homeostasis, protein folding and transport, cell death, 

neurodegeneration, and antiviral responses, with which they also have been associated (Crow et al, 

2020; Faigle et al, 1998; Freund et al, 2014; Leong & Chow, 2006; Liao et al, 2007; Spiegel et al, 2012). 

The presence of ALS2 in the core HSP-PPIN is not surprising, as it is considered an HSP gene by many 

clinicians and researchers (Boutry et al., 2019; de Souza et al, 2017; Lo Giudice et al, 2014). An 

interesting test-seed present in the core HSP-PPIN is CCDC50, because it was included in this study 

based on its chromosomal location being within the locus of SPG14 [CCDC50 is located at 3q28 

(https://www.ncbi.nlm.nih.gov/gene/152137), while the genetic loci of SPG14 is 3q27-28 (Boutry et 

al., 2019)). ). Of note, CCDC50 formed interactions with more seeds than most interactors of the global 

HSP-PPIN and the core HSP-PPIN. This result represents an in silico prediction that alterations in 

CCDC50 could be leading to the HSP type SPG14 and it suggests to include CCDC50 in the list of 

prioritized genes to be screened for rare variant discovery. 

Notably, the protein product of the gene RNF170 was found to be associated with HSPs (and 

published) after this analysis commenced (Wagner et al., 2019) and was indeed present within the 

global HSP-PPIN. This result demonstrates the utility in using PPINs to study complex disorders, as they 

can aid prioritisation of candidate genes from genetic analysis (Erlich et al, 2011) and hint to key 

proteins involved in disease mechanisms.  

The analysis of a disease-focused PPIN based on functional annotation provides an opportunity to gain 

a deeper understanding of the underlying mechanism(s) of disease using a holistic view (Koh et al., 

2012). Therefore, enrichment analysis was performed for the components of the core HSP-PPIN, 

supporting the involvement of some of the processes previously suggested to be associated with the 

disease mechanism of HSPs. Out of the 10 mechanisms suggested by Lo Giudice et al (Lo Giudice et 

al., 2014), 3 were supported by the results of this work were 3, namely, “endosome membrane 

trafficking and vesicle formation”, ”abnormal membrane trafficking and organelle shaping”, 

“dysfunction of axonal transport”, but also, 3 additional processes, namely, “autophagy”, “axon 

development” and “abnormal cellular signalling in protein morphogenesis”, while we did not find 

evidence in our analysis for “oxidative stress”, “abnormal lipid metabolism”, “abnormal DNA repair” 

and “dysregulation of myelination”. Regarding the mechanisms hypothesised by de Souza and 

colleagues (de Souza et al., 2017), those in accordance with this work were “intracellular active 

transport”, “endolysosomal trafficking pathways” and “ER shaping”, while we did not find evidence in 

our analysis for “lipid metabolism”, “mitochondrial dysfunction”, nor “migration and differentiation 

of neurons”. Our results are more in line with the suggestion from Blackstone (Blackstone, 2018a) that 

the key biological processes at play in the aetiopathogenesis of HSPs are “organelle shaping and 

biogenesis” and “membrane cargo and trafficking”, further supporting the notion that HSPs could be 

considered transportopathies (Gabrych et al, 2019), and that the dysregulation of ER morphology and 

function could be implicated in HSPs (Lee & Blackstone, 2020). However, some of the suggested 

hypotheses, namely “nucleotide metabolism”, “mitochondrial function” and “lipid/cholesterol 

metabolism” (Blackstone, 2018a), were not supported by the findings of this study. Interestingly, 

functional data were not used for the creation of the HSP-PPINs, therefore the conclusions obtained 

here are only based on PPIs and represent a further validation of some of the published functional 

analyses. These results highlight the potential of a PPIN analysis approach combined with functional 

enrichment to identify the most relevant functions among the genes of interest related to a 

complicated disease, which is an important step for discovering disease modifying agents. 
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In order to explore if the clinical diversity of the HSPs reflects a mechanistic heterogeneity of disease, 

machine learning tools (PCA and hierarchical clustering) were used to analyse the functional profile of 

the core HSP-PPIN. Based on our in silico analysis, we suggest the existence of at least 2 main subtypes 

of HSPs. The first functional subtype includes the clinical features of thin corpus callosum and seizures 

(i.e. TS cluster); while the second gathers those cases characterized by early onset, peripheral 

neuropathy, dementia or mental retardation and optic atrophy (i.e. EPOD cluster). Further analysis for 

biological processes of the 2 clinical clusters suggested that “protein metabolism” and “waste 

disposal” are prominent in the TS cluster. In addition, most of the unique results for this cluster were 

related to the unfolded protein response. These results support the relevance of the regulation of 

protein level and conformation for the TS cluster. While for the EPOD cluster, the most important 

functions were related to “physiology-host/virus” and “cell death”, which suggest that the 

endomembrane system involved in the viral process, together with mechanisms involved in cell 

survival are of higher importance in the EPOD cluster. 

These findings were further supported by cellular component and pathways analysis, where the TS 

cluster showed a higher enrichment in different types of membranes, melanosomes and the ER, while 

results for the EPOD cluster were more focused on extracellular components, mitochondria, other 

organelles and the cytoskeleton.  

The results presented in this study require further functional validation, however they provide a 

platform indicating that HSP patients could be stratified based on the molecular mechanisms involved 

in disease aetiopathogenesis and this in turn can be beneficial for developing therapeutic strategies 

and aiding efforts to stratify patients for clinical trials. 

This application provides insight into the utility of PPIN analysis in the study of complex disorders, as 

PPINs are a powerful tool that can extract and combine a large extent of previous data in a relatively 

quick and easy fashion. Using this approach can create a comprehensive picture that summarises the 

current knowledge, helping in prioritising and confirming existing mechanistic theories, guiding 

research based on the identification of interesting proteins and pathways, as well as highlighting 

uncertain areas that require further investigation.  
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Materials and Methods 

 

Selection of seeds 
The protein products of 83 genes were selected as seeds based on their clinical relevance for HSPs (de 

Souza et al., 2017), among which 16 have not been widely recognised as HSP genes hereafter referred 

to as test seeds (Table 1 and Supplementary Table 2). 

 

Table 1. Seeds for the HSP network 

HSP seeds 
(n=66) 

ALDH18A1, AMPD2, AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, ARL6IP1, ARSI, ATL1, 
ATP13A2, B4GALNT1, BSCL2, C12orf65, C19orf12, CAPN1, CPT1C, CYP2U1, CYP7B1, 
DDHD1, DDHD2, DSTYK, ENTPD1, ERLIN1, ERLIN2, FA2H, FARS2, GBA2, GJC2, 
HSPD1, IBA57, KIF1A, KIF1C, KIF5A, KLC2, L1CAM, MAG, MARS, NIPA1, NT5C2, 
PGAP1, PLP1, PNPLA6, RAB3GAP2, REEP1, REEP2, RTN2, SLC16A2, SLC33A1, SPART, 
SPAST, SPG7, SPG11, SPG21, TECPR2, TFG, TPP1, UBAP1, UCHL1, USP8, VPS37A, 
WASHC5, WDR48, ZFR, ZFYVE26 and ZFYVE27 

Test seeds 
(n=17)  

ACO2 (Bouwkamp et al, 2018), ALS2 (Simone et al, 2018), BICD2 (Kropatsch et al, 
2019), CCDC50, CCT5 (Bouhouche et al, 2006), EXOSC3 (Blackstone, 2018a), GAD1 
(Lo Giudice et al., 2014), HACE1 (Akawi et al, 2015), IFIH1 (Liu et al, 2019), KCNA2 
(Helbig et al, 2016), KIDINS220 (Zhao et al, 2019), LYST (Shimazaki et al, 2014), MT-
ATP6 (Verny et al, 2011), MT-CO3 (Blackstone, 2018b), MT-ND4 (Pestronk, 2020), 
RETREG1 (Ilgaz Aydinlar et al, 2014) and SELENOI (Ahmed et al, 2017) 

 

Collection of PPIs and HSP-PPINs 
The 83 seeds were used as the input to query the PINOT webtool (Tomkins et al., 2020) 

[http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html]. PINOT produces a list of experimentally 

demonstrated binary PPIs containing unique, human PPI data obtained by merging and processing PPI 

data from 7 databases: BioGrid (Oughtred et al, 2019), InnateDB (Breuer et al, 2013), IntAct (Orchard 

et al, 2014), MBInfo (Singapore, 2019), MINT (Licata et al, 2012), UniProt (UniProt, 2019) and bhf-ucl. 

Through PINOT, interactions are filtered and scored based on the number of publications that report 

a particular interaction and the number of different methods used for their detection. The interactions 

provided from PINOT were then screened to remove PPIs with a final score <3 (those interactions 

without replication in the curated literature). The retained interactions were visualised using 

Cytoscape (v3.7.2), thus creating the global HSP-PPIN.  

Each node in the network was scored based on the number of seeds to which it connected. The nodes 

interacting with more than one seed, referred to as “inter-interactomes hubs (IIHs)” (Ferrari et al., 

2017), were used to extract a subnetwork composed of IIHs and the connected seeds. This subnetwork 

was termed the “core” HSP-PPIN. 

The interactions for the global HSP and core HSP networks were downloaded on the 09/07/2019, 

PINOT (beta version), using the stringent and Homo sapiens filters (default). 

 

Enrichment analyses 
The subset of proteins composing the core HSP network underwent enrichment analysis (Biological 

Processes [BPs] and/or Cellular Components [CCs] Gene Ontology [GO] annotations). The consistency 
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of the results was evaluated by using 3 independent online tools, which utilise different algorithms, 

multiple test correction and/or versions of the GO database. In particular: g:Profiler (July 2019, Over-

representation enrichment analysis (Fisher’s one tailed test), Bonferroni’s corrections, GO database 

release 11/07/2019, excluding electronic annotations and analysed against the annotated human 

genome) (Reimand et al, 2016) [https://biit.cs.ut.ee/gprofiler/gost], Gene Ontology using Panther’s tool 

(September/October 2019, Binomial test, Bonferroni’s corrections, GO database release 03/07/2019, 

analysed against the human genome) (Ashburner et al, 2000; Mi et al, 2017; The Gene Ontology, 2019) 

[http://geneontology.org/ and http://pantherdb.org/] and WebGestalt (October 2019, Over-representation 

enrichment analysis (Hypergeometric test), FDR, GO database release 14/01/2019, analysed against 

the protein coding human genome) (Wang et al, 2017) [http://www.webgestalt.org/]. 

The output of the functional enrichment includes a list of enriched GO terms and their respective 

enrichment ratio which can be calculated using the following formulas: 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜 =
Ng

Nexp_g
       (1) 

𝑁𝑒𝑥𝑝_𝑔 =
Ntg ∗ NgGO

Ntag
            (2) 

where Ng is the number of genes with a GO term in the data, Nexp_g the number of expected genes 

with a GO term in the data, Ntg the number of genes in the data, NgGO the number of genes annotated 

with a GO term in the GO database, and Ntag the total number of annotated genes in the GO database. 

 

The enriched BP and CC GO terms were grouped by semantic similarity into semantic classes using in-

house developed dictionaries. The semantic classes were further clustered into functional blocks and 

location blocks, respectively. The GO terms classified in the semantic classes “general” and 

“metabolism” were not included in the analysis as they refer to GO terms that provide limited 

functional specificity to the analysis (Ferrari et al., 2017). 

Finally, in order to reduce any tool specific bias, only the functional or location blocks confirmed to be 

enriched by at least 2 of the 3 enrichment tools (g:Profiler, PantherGO and WebGestalt) were retained 

for further analysis. Particularly, for those blocks that were replicated across at least 2 tools, we 

analysed the merge of their semantic classes resulting from each individual tool. The threshold for 

determining statistical significance of each GO term was therefore decreased to p=0.0166 (=0.05/3). 

Additionally, only the terms that were enriched in association with at least 4 genes were retained.  

The comparison of the clusters’ enrichment profiles for BP and CC was performed by calculating the 

following ratio for each block:   

%𝑐𝑙𝑢𝑠𝑡𝑒𝑟 − %𝑐𝑜𝑟𝑒

%𝑐𝑜𝑟𝑒
  (3) 

where %cluster is the percentage of GO terms of a cluster, and %core is the percentage of GO terms 

of the core-HSP-PPIN. 

In the case that the aforementioned ratio of the functional or location block had the value of zero for 

the core dataset, since dividing by zero results to ∞, we set up 25 as the maximum value and -25 as 

the minimum value for visualisation purposes.  
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Pathway enrichment was performed using Reactome’s online analysis tool (v69 & v70 in September 

and December 2019) (Jassal et al, 2020) [https://reactome.org/PathwayBrowser/#TOOL=AT]. The pathways 

that were significantly enriched (p-value<0.05) were retained and filtered further to remove those 

with 3 or less proteins involved. 

Text mining was performed on the GO-BP terms after the merging of results from the 3 tools. The 

number of terms related to axons, cytoskeleton, endosomes, membranes, neurons, projections and 

vesicles were counted based on the presence of “axo*”, “cytoskelet*”, “endos*”, “membrane*” 

“microtubu*”, “vesic*”, “neuro*” and “projections*”, respectively. An enrichment analysis was 

performed using the same key words, based on their frequency in the results versus in the in-house 

dictionary that included a collection of GO terms, using the described formulas (1) & (2). The statistical 

analysis was performed by running 100,000 random simulations where these key words were 

extracted from the in-house dictionary, and the pnorm() value was calculated. 

 

Principal component analysis & Hierarchical clustering 
In order to compare functional enrichment profiles, Principal Component Analysis (PCA) was 

conducted through R (v. 4.0.2) using the prcomp() function of the stats package. The analysis of the 

number and percentage of GO terms in each functional block were both rendered necessary due to 

the substantial difference in the number of resulting GO terms of the 6 groups, whose functional 

enrichment profiles were compared (22<n<114) (Supplementary File 4).  

Hierarchical clustering was performed using the hclust() function (R stats package) for the groups in 

the PCA plot, using Euclidean as a distance measure for row clustering. However, one unit of distance 

in the x axis of the PCA plot is more important than on the y axis, due to PC1 (x axis) explaining more 

variation than PC2 (y axis) (63% and 25.8%, respectively for the analysis based on the percentage of 

GO terms). Thus, the coordinates of each point had to be transformed; they were multiplied by the 

explained variation, so that the distance between points can have the same significance in any 

direction and can thus be used for hierarchical clustering. Through Hierarchical clustering, the cluster 

dendrogram was produced. Choosing the best fit for the number of clusters derived from Hierarchical 

clustering was based on the Silhouette method (P.J., 1987) and the Multiscale bootstrap resampling 

method (Suzuki & Shimodaira, 2006). For the former, the index/score were calculated for 2 up to 6 

clusters. The latter was based on the R package “pvclust” that assigns pvclust p-values to each branch 

of the dendrogram, which show the confidence of the result (the higher the value, the more confident 

we are of the result) (Suzuki & Shimodaira, 2006) (Supplementary File 1). 
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