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Abstract:  

Connectome embedding (CE) are compact vectorized representations of brain nodes capturing their context in the global network 

topology. Applied to group-averaged structural connectivity, CE was previously shown to capture relations between inter-

hemispheric homologous brain regions and uncover putative missing edges from the network reconstruction. Here we extend this 

framework to explore individual differences with a novel embedding alignment approach. We test this approach in two lifespan 

datasets (NKI: n=542; Cam-CAN: n=601) that include diffusion-weighted imaging, resting-state fMRI, demographics and 

behavioral measures. We demonstrate that CE substantially improves structural to functional connectivity mapping in 

individuals. Furthermore, age-related differences in this structure-function mapping are preserved and enhanced. Importantly, CE 

captures individual differences by out-of-sample prediction of age and intelligence. The resulting predictive accuracy was higher 

compared to using structural connectivity and functional connectivity. Our novel approach allows mapping individual differences 

in the connectome through structure to function and behavior. 
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1. Introduction 

Understanding the neural basis of behavior is a fundamental goal in neuroscience. Traditionally, it has 

been addressed by relating the structure and activation patterns of individual brain regions to behavioral 

phenotypes or cognitive tasks. However, most complex behaviors are mediated not by a single, localized 

brain area, but rather by the integrated contribution of multiple regions forming a coherent, distributed 

network (Sporns, 2011). The connectome, a comprehensive map of the brain’s anatomical connections 

can be described and studied using methods and tools from network science. Research has gained 

valuable insight as to how individual nodes or modules in the network are organized to support 

specialized functional cognitive systems (Medaglia et al., 2015; Mišić & Sporns, 2016). In the past, most 

studies have aimed to detect differences in brain-behavior relations between groups of individuals. 

Increasingly, the focus has shifted to studying individual variations in connectome topology and its 

association with individual differences in brain function and behavior (Abdelnour et al., 2018; Lin et al., 

2020). 

The connectome is represented as a matrix comprising all dyadic connections among pairs of brain 

regions. Accordingly, a natural description of a single brain region would be a vector in this matrix, 

incorporating all its direct pairwise connections (a connectivity “fingerprint”; Passingham et al., 2002). 

Such representation is limited as it fails to capture relations of higher-order within the network (Goyal & 

Ferrara, 2018). While multiple graph descriptive measures have been proposed to capture local or global 

network attributes (Rubinov & Sporns, 2010), most are limited to describing only a specific network 

feature. Connectome embedding (CE) is an alternative approach for finding compact vectorized 

representations of nodes that capture their local and global topological attributes (Rosenthal et al., 2018). 

This approach, drawing from the field of natural language processing, is based on the Word2Vec 

algorithm (Mikolov et al., 2013) in which words are embedded in a low dimensional space that preserves 

their context as found in a given corpus of text. These representations were shown to capture semantic 

relations among words by applying simple vector arithmetic. For example, the result of combining 

vec(“King”) - vec(“Man”) + vec(“Woman”) was closer to vec(“Queen”) than to any other word in terms 

of its cosine similarity. Inspired by an adaptation of this approach to graph embedding (Grover & 

Leskovec, 2016; Perozzi et al., 2014), CEs are created by capturing a node’s “context” defined by its 

neighbors in a sequence of random walks on the brain graph. The resulting vectors were shown to capture 

relations between inter-hemispheric homologous brain regions and uncover putative edges that were 

missing from the structural network reconstruction (Rosenthal et al., 2018). This ability of the CE 

approach to capture meaningful topological attributes suggests that it could be used to improve the 

mapping of structural to functional connectivity and ultimately to behavior.    

It has long been argued in neuroscience that structure determines function (Kristan & Katz, 2006). 

Accordingly, the nature of the correspondence between structural and functional brain connectivity is one 

of the core questions in the study of connectomes (Honey, Thivierge, & Sporns, 2010; Suárez, Markello, 

Betzel, & Misic, 2020). The two are distinct but complementary measures of brain connectivity. 

Structural connectivity quantifies the physical connections among neuronal elements, while statistical 

dependence between their time course is measured in functional connectivity. Although functional 

connectivity depends on the structural backbone, the observed correlation between the two is only 

moderate (Honey et al., 2009; Suárez et al., 2020). This, in part, can be attributed to higher-order 

interactions that drive functional connectivity but are missing in dyadic structural connectivity (Adachi et 

al., 2012). Such higher-order relations are captured in CE and indeed they were shown to account for a 

larger portion of the observed variance in functional connectivity (Rosenthal et al., 2018). These previous 

attempts were conducted at the group-level and it is crucial to examine whether such mapping could also 
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be applied at the individual subject level and whether it would preserve inter-subject variability in 

structure-function relation.  

Large scale data sharing initiatives have enabled applications of predictive modeling to study individual 

differences and validate them within and across large cohorts. Nevertheless, employing such techniques 

to connectivity data remains challenging due to their high complexity and dimensionality. CE offers a 

promising complementary framework that addresses these challenges by representing nodes in low-

dimensional space while preserving their context in the global network topology. However, utilizing these 

nodal representations for predicting function and behavior requires their mutual alignment to the same 

latent space to allow comparison across individuals. Multiple fitting iterations of the Word2Vec 

algorithm, even on the same brain graph, result in sets of vectors with similar relative positions among 

each other but with different absolute values (Dev et al., 2019; for the stability of the relations among 

embeddings see Wang et al., 2020). In the domain of machine translation, this is typically addressed by 

finding a transformation that minimizes word distances from one language to another (Smith et al., 2017). 

However, such an approach could not be easily adopted to align brain nodes across individuals as it also 

eliminates parts of the variability associated with differences in the underlining structural connectivity. 

Hence, applying the CE framework to explore individual differences requires an alignment method that 

preserves this structural variability. 

In the current work, we advance the CE framework by presenting a novel approach which enables us to 

align separately learned embeddings to a common latent space (Fig. 1). The alignment is based on a 

closed-form solution that utilizes parameters identified during the embedding fitting process. We validate 

this approach using two large lifespan cohorts (Nooner et al., 2012; Taylor et al., 2015) that include 

diffusion-weighted imaging, resting-state fMRI, as well as demographics and cognitive performance 

measures. We align CE within and between individuals and test the alignment effect on the similarity of 

nodes and the relations between nodes across embeddings. We then demonstrate that CE can improve the 

mapping of structural to functional connectivity at the individual level as previously done at the group-

level (Rosenthal et al., 2018). We further examine whether this mapping preserves age-related variance in 

structure-function correspondence at the network-level and at the edge-level. Finally, we examine 

whether the aligned embeddings could be used to predict age and intelligence in a held-out sample. We 

include an in-depth derivation of the CE fitting and alignment process and share a set of interactive 

notebooks implementing the main findings and a python package implementation (Cepy; 

https://github.com/gidlev/cepy).  
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Fig. 1. A general outline of the connectome embedding framework and its usage at the individual subject level. a.i. The 

structural connectome is the input to the CE model. Multiple random walks are sampled from the structural connectivity 

graph. Letters represent all unique nodes in both hemispheres, dash lines represent edges that exist in the connectome 

and colored line represent sampled random walks. a.ii. Sliding, fixed size windows are taken over random walk 

sequences. Within each window, the center node is used as the target (black) and the surroundings as context (white). a.iii. 

Pairs of context and target nodes are used as the input and target of an artificial neural network with a single hidden 

layer, i.e. the embedding layer. The input, output and target layers are k dimensional vectors, where k is the number of 

nodes in the brain graph. The embedding layer is a k’ dimensional vector, where k’ is set to be k’<k. W and W’ are the 

learned weight matrices that define the transformation between the input and embedding layer, and the embedding and 

output layer, respectively. The model parameters, W and W’, are iteratively updated using stochastic gradient descent. b.i. 

Independent fits of the model (e.g. in different subjects) results in embedding vectors with similar angle among node pairs 

but different absolute values. Embedding alignment is required to allow a comparison of different CE. b.ii. Here, 

embeddings are transformed from the latent space of subject a (yellow) to the latent of subject b (blue) to allow their 

comparison. This is done in two stages, first, we apply the W’a transformation from the embedding to the output space. 

Then, we apply the pseudo-inverse of the W’b transformation from the output back to the embedding space.  In the 

embedding vectors the first subscript i denotes the node’s index and the second the source and current subject’s latent 

space. Similarly, the subscript in the transformation matrices denotes their associated subject. The same approach could 

be similarly used to align independent embedding iterations of the same subject. c.i. The pair-wise cosine similarities or 

the element-wise multiplication among embedding vectors are used to map structural to functional connectivity. c.ii. The 

aligned embeddings vectors are used for out-of-sample prediction of individual differences.   

2. Materials and Methods 

2.1 Participants 

The data were taken from two lifespan large-scale cross-sectional studies that included functional, 

structural, and diffusion brain magnetic resonance imaging (MRI) along with demographics and 

behavioral data. The first dataset is the enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS; 

Nooner et al., 2012) and the second is the Cambridge Centre for Ageing and Neuroscience dataset (Cam-

CAN; Shafto et al., 2014) referred here as dataset 1 (DS1) and dataset 2 (DS2), respectively. DS1 is 

composed of 542 subjects (305 females, 192 males) aged 7-84 recruited from Rockland County, USA. All 
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participants provided informed consent and the study was approved by the Institutional Review Board at 

the Nathan Kline Institute (#226781 and #239708) and Montclair State University (#000983 A and 

#000983B). The data is openly available online at 

http://fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html. DS2 includes 601 subjects aged 18-87 

roughly uniformly distributed from Cambridge City, UK. All participants provided informed consent and 

the study was approved by the local ethics committee, Cambridgeshire 2 Research Ethics Committee 

(reference: 10/H0308/50). The data is freely available upon online access request https://camcan-

archive.mrc-cbu.cam.ac.uk/dataaccess/. Additional information on the recruitment, eligibility criteria and 

demographics of both samples are available in the relevant publications (Nooner et al., 2012; Shafto et al., 

2014). Exclusion criteria included successful completion of the preprocessing and quality control stages 

and are specified in the methods (2.3) and in the supplementary information (SI 2). 

 

2.2 MRI acquisition 

DS1 and DS2 were both acquired on 3T Siemens scanners. For each subject of each dataset, a T1-

weighted image (T1w), diffusion-weighted image (DWI), and resting-state functional MRI (rsfMRI) were 

acquired. Both datasets include standard T1w anatomical acquisitions. DS1 includes DWI with 128 

directions in one shell with a b-value of 1500 s/mm2, and DS2 includes DWI with 60 directions over two 

shells of 1000 and 2000 s/mm2. DS1 includes a rsfMRI acquisition with a relatively short repetition time 

of 0.645 seconds with a scan time of 9.68 minutes, and DS2 includes a more standard acquisition scheme 

with a repetition time of approximately 2 seconds with a scan time of 8.56 minutes. The specific 

parameters of each acquisition in each dataset can be found in SI table 1.  

2.3 MRI preprocessing 

Here we report a general overview of the independent preprocessing pipelines applied for DS1 and DS2. 

Given recent reports of the effect of processing strategies on MRI analysis (Botvinik-Nezer et al., 2020), 

we intend to show converging results across two datasets employing different processing pipelines. 

Complete preprocessing details for both datasets are included in SI Section 1.  

T1w scans from both datasets were preprocessed through FreeSurfer’s (version 6.0) recon-all processing 

stream. FreeSurfer’s cortical segmentation and spherical warp were used to transfer parcellations to each 

subject’s volumetric anatomical space. In the case of DS1, the Schaefer 200-node cortical parcellation 

was rendered (Schaefer et al., 2018), whereas, in DS2, the Connectome Mapping toolkit was used to 

render the Lausanne 233 node parcellation (219 cortical, 14 subcortical; Gerhard et al., 2011).  

DWI of both datasets were preprocessed with pipelines that included the following steps: denoising, 

motion and eddy current distortion correction, and alignment to the T1w using FreeSurfer’s white matter 

segmentation (Ades-Aron et al., 2018; Bathelt et al., 2017). For both datasets, local orientation modeling 

and tractography was run via the Dipy package (Garyfallidis et al., 2014). Constrained spherical 

devolution was used to fit a local orientation model at each voxel, with a spherical harmonic order of 8 in 

DS1 and 6 in DS2. For DS1, probabilistic streamline tractography was conducted after seeding each white 

matter voxel five times. For DS2, deterministic streamline tractography was conducted with a seeding 

density of 27. In both datasets, streamlines shorter than 10mm or ones that did not terminate in grey 

matter were discarded. 

Functional images of DS1 were preprocessed with fMRIPrep (version 1.1.8; Esteban et al., 2019) and 

images of DS2 were preprocessed with the Configurable Pipeline for the Analysis of Connectomes (C-
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PAC; Cameron et al., 2013). Briefly, both pipelines included the following steps: slice-timing correction, 

motion correction, skull stripping, and estimation of motion parameters and other nuisance signal time 

series. For DS1, preprocessed images were rendered in the subject’s T1w space, at the original resolution 

of the rsfMRI. For DS2, preprocessed images were rendered in rsfMRI space.  

For DS1 and DS2, structural connectivity matrices were constructed by counting the number of 

streamlines between regions normalized by the volume of these regions, rendering a streamline density. 

For DS1 and DS2, subjects for which more than 10 nodes in the structural connectivity matrix had a 

degree of 0 were excluded and were not used in subsequent analysis (DS1: none omitted, 542 left; DS2: 

6% omitted, 601 left). The samples of both datasets were divided into a training (67%) and test set (33%) 

for subsequent analyses that required out-of-sample accuracy estimation (DS1: 361 and 181, DS2: 401 

and 200; training and test subjects, respectively). 

For DS1 and DS2, functional connectivity matrices were rendered after filtering the functional volumes 

for nuisance signals. For DS1 rsfMRI, the first four frames were dropped. These data were then bandpass 

filtered (0.008 – 0.08Hz) and confound regressed in a manner orthogonal to the temporal filters using 6 

motion estimates, the mean time series derived in CSF, WM, and whole brain masks, the derivatives of 

these nine regressors, and the squares of these 18 terms. Spike regressors were added for each frame with 

framewise displacement above 0.5mm. Data were linearly detrended and standardized. Exclusion criteria 

included greater than 15% spike frames and outlier image quality metrics (4% omitted; 542 subjects left; 

for more details, see SI 6.2). For DS2 rsfMRI, regression of the first 5 principal components of signal 

from white matter and CSF (Behzadi et al., 2007), 6 motion parameters and linear and quadratic trends, 

global signal regression, followed by temporal filtering between 0.1 and 0.01 Hz and. Finally, a scrubbing 

threshold of 0.5mm frame-wise displacement was applied (Power et al., 2014; removal of 1 TR before 

and 2 TR after excessive movement). Exclusion criterion for excessive movements was determined a 

priori to less than 50% (4 min and 20 sec) of the resting-state session after the scrubbing procedure (25% 

omitted; 452 subjects left). For DS1 and DS2, functional connectivity as used in all analyses, was defined 

as the Pearson correlation among pairs of ROIs’ time series followed by Fisher’s r-to-z transformation.  

2.4 Intelligence assessment  

Structural connectivity was previously associated with behavioral measures of intelligence (Booth et al., 

2013; Penke et al., 2012), and here was used to test the ability of the CE approach to capture individual 

differences in behavior. In DS1 general intelligence was assessed using the full scale of the Wechsler 

Abbreviated Scale of Intelligence (WASI-II; Wechsler, 1999). Subjects in DS2 underwent the Cattell 

Culture Fair test, Scale 2 Form A that aims to measure fluid intelligence independently of cultural 

differences (CFIT; Cattell & Cattell, 1973). In the relevant analyses, we used a sample of subjects in 

training and test sets for whom we had the structural connectivity matrices and intelligence behavioral 

scores (DS1: 528; d2: 587). Next, to remove outliers, participants with intelligence scores larger than 2 

standard deviations from the mean were omitted from the analyses (DS1: 0% omitted, 528 left; DS2: 4% 

omitted, 565 left). The WASI-II full scale in DS1 produced age-adjusted scores that were uncorrelated 

with age within the sample (r(526)=.038, p=.386). CFIT appeared in DS2 as the raw accuracy score for all 

test items. This score was significantly correlated with age (r(563)=-0.652, p<2.2e-16) and hence 

constitutes an age-related measure of intelligence. 

2.5 Node embedding –general outline and the random walk sampling 
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As in previous work (Rosenthal et al., 2018), we used the word2vec algorithm (Mikolov et al., 2013) to 

create a vectorized representation of brain nodes based on their high-level topological relations. 

Originally, the word2vec algorithm was used to create word embeddings that preserve their context as it 

typically appears in a sentence. Specifically, the model is given a corpus of words w and their context c.  

Its goal is to learn a set of parameters θ by maximizing the conditional probability p(c|w; θ) for the skip-

gram model or p(w|c; θ) for the continuous bag of words (CBOW) model (Goldberg & Levy, 2014). 

Simply put, the model’s goal is to predict the context given the target word or a target word given its 

context. The former is used in the current work. Recently, word2vec has been applied for embedding 

graph nodes instead of text (node2vec: Grover & Leskovec, 2016; Deepwalk: Perozzi, Al-Rfou, & 

Skiena, 2014). Here, for embedding brain graphs, we used a sliding, fixed-size window s taken from a 

sequence of a parameterized random walk on the brain graph (s=3). In each training sample, the center 

node in the sequence is the target w and the surrounding nodes are the context c. The surrounding nodes 

are defined as the s nodes that appeared before and s nodes that appeared after the target node w within 

the walk sequence. Training samples were produced by initiating o parameterized random walk sequences 

of length l from each node (o = 800, l = 20). We further elaborate on the parameterized random walk 

procedure in section 2.10. All the model’s parameters were set to be identical to those used by Rosenthal 

et al. (2018).  

2.6 Node embedding – model implementation and parameters estimation 

In its simplest form, the model represents a fully connected artificial neural network (ANN) with one 

hidden layer, i.e. the embedding layer, with no activation function. Both the context {c1,…,c2×s} and 

target w nodes are represented using a “one-hot encoding”, meaning that node i is encoded as a vector 

with zero in all its entries except the ith position that is equal to one. The number of neurons in the input 

and output layers is the number of nodes in the graph k and the number of neurons in the embedding layer 

is set to k’, when typically, k’<k (here k’ = 30). The transformation between the input, embedding and 

output layers, denoted here as vinput, vembedd, voutput, are defined using two weight matrices. A k × k’ matrix 

W between the input and the embedding layer, and a k' × k matrix W’ between the embedding layer and 

the output layer: 

𝑣𝑒𝑚𝑏𝑒𝑑𝑑 =
1

2×𝑠
∑ (𝑊⊺ ⋅ 𝑐𝑡)
2×𝑠
𝑡=1       (1) 

 

𝑣𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑊′⊺ ⋅ 𝑣𝑒𝑚𝑏𝑒𝑑𝑑     (2) 

Notice that the embedding layer is computed as the average of all vector-matrix product of the context 

node vectors with the W matrix. Both W and W’ are learned by fitting the model on a given sample of 

random walks. Effectively the model performs a classification task in which the input is the context nodes 

{c1,…,c2×s} and the goal is to predict the target node w. This is done by first applying a Softmax function 

to the output layer which normalizes its entries into a probability distribution that sums to one. Here for 

the ith entry:  

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑜𝑢𝑡𝑝𝑢𝑡)𝑖 =
exp(𝑣𝑖

𝑜𝑢𝑡𝑝𝑢𝑡
)

∑ exp(𝑣𝑗
𝑜𝑢𝑡𝑝𝑢𝑡

)𝑘
𝑗=0

    (3) 

Next, the model’s loss is computed by taking the negative log, i.e. the logarithmic loss, of the target node 

w entry, its index marked here as *: 
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𝑙𝑜𝑠𝑠 = − log(
exp(𝑣∗

𝑜𝑢𝑡𝑝𝑢𝑡
)

∑ exp(𝑣𝑗
𝑜𝑢𝑡𝑝𝑢𝑡

)𝑘
𝑗=0

)     (4) 

Here in simplified form: 

  

𝑙𝑜𝑠𝑠 = log (∑ exp(𝑣𝑗
𝑜𝑢𝑡𝑝𝑢𝑡

)𝑘
𝑗=0 ) − 𝑣∗

𝑜𝑢𝑡𝑝𝑢𝑡
    (5) 

Finally, for a given training sample, we update the model’s parameters θ, i.e. the weight matrices W and 

W’, by taking the derivative of the loss with respect to each matrix. The parameters are iteratively 

updated after each observation of a single sample or a batch of training samples, i.e. using stochastic 

gradient descent. For a more in-depth review of the model and training procedure including 

implementational details that are beyond the scope of the current work such as negative sampling, see 

Rong (2014).  

2.7 CE alignment 

Independent fitting iterations of the node2vec algorithm resulted in sets of vectors with similar cosine 

angle between each node pairs, but not necessarily similar absolute values (Dev et al., 2019). Here we 

demonstrate our novel approach which enables us to align separately learned CE to the same latent space 

(see Fig. 1.b.). As outlined in section 2.5, the ANN model includes two distinct representations. The first, 

which appears in the input and output layers, is defined by the one-hot encoding in which each entry 

corresponds to a particular node (see section 2.6). The second is a latent representation, the representation 

of the embedding layer, that is unique to each trained model. Notice that the learned matrices W and W’ 

encode the transformation between these two representations and for this reason, we refer to them here as 

transformations. The first transformation W reduces the input dimensions from k to k’ and effectively 

contains the embedding of each node. The second transformation W’ increases the dimensions of the 

embedding layer k’ again to the number of dimensions in the output layer k. While typically after fitting 

the algorithm on the data, only the first matrix W is retained, we suggest utilizing the second matrix W’ as 

a transformation from one latent space to another. Specifically, given two separately trained models with 

different latent embedding spaces a and b, we want to transform the latent representation of node i from 

space a to b. In each of the models, a separate W’ transformation was learned, W’a and W’b, respectively. 

First, the embedding of node i in space a could be derived by taking the ith row of Wa, or equivalently 

multiply the one-hot encoding of node i, vinput
i, with Wa: 

𝑣𝑖𝑎,𝑎
𝑒𝑚𝑏𝑒𝑑𝑑 = 𝑊𝑎

⊺ ⋅ 𝑣𝑖
𝑖𝑛𝑝𝑢𝑡

      (6) 

Note that for the embedding and output layers the first subscript denotes the node’s index and the second 

the source and current latent or output space. Next, the vector is multiplied with W’a to transform it to the 

ANN output representation: 

𝑣ia,a
output

= W′
a
⊺
⋅ 𝑣ia,a

embedd     (7) 

 

We assume that since the one-hot representational constraint exists in all fitting iterations, this 

representation is similar across separately trained models. Stemming from this, we can apply the inverse 

of transformation W’b, to move to latent space b. Since W’ is non-square we apply the pseudo-inverse 

transformation W’b
+: 
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𝑣𝑖𝑎,𝑏
𝑒𝑚𝑏𝑒𝑑𝑑 = 𝑊𝑏

′+⊺ ⋅ 𝑣𝑖𝑎,𝑎
𝑜𝑢𝑡𝑝𝑢𝑡

     (8) 

(7) and (8) could be summarized to a single step, incorporating the transformation of the embedding of 

node i from latent space a to latent space b: 

𝑣𝑖𝑎,𝑏
𝑒𝑚𝑏𝑒𝑑𝑑 = 𝑊𝑏

′+⊺ ⋅ (𝑊′
𝑎
⊺
⋅ 𝑣𝑖𝑎,𝑎

𝑒𝑚𝑏𝑒𝑑𝑑)    (9) 

This alignment method does not require any additional learning or optimization process and relies on the 

transformation already learned within the ANN. This method could be used to align embeddings 

originated from separate fitting iterations. These could be fitted on the same structural connectivity 

matrices, from matrices taken from different individuals, or matrices of the same individual across time. 

As an additional step to improve embedding stability over fitting iterations (Wang et al., 2020), in the 

subsequent analysis we averaged multiple embeddings of the same individual after aligning them to the 

same space (100 times, unless stated otherwise). Python notebooks are available online to demonstrate the 

random walk sampling, word2vec model, model fitting, and the alignment process – 

https://github.com/gidlev/cepy/tree/master/examples.  

2.8 Intra-individual CE similarity evaluation 

We examine the effect of embedding alignment on the similarity of identical nodes across separate 

embedding iterations. For a random sample of subjects (n = 100) we ran the node2vec algorithm multiple 

times (m = 50), then aligned the resulting vectors to a common space and averaged them. The common 

reference space was created by applying the node2vec algorithm on the group consensus structural 

connectivity matrix. This procedure was repeated twice and the node’s embedding similarity across the 

two learned CE was quantified using cosine similarity. The similarity measure was averaged across all 

nodes (DS1: 200, DS2: 233) and calculated for all subjects. Next, we evaluated the similarity of the 

cosine angle among pairs of nodes across CEs that resulted from independent fitting iterations. This was 

done by calculating the displacement vector, i.e. the result of vector subtraction, among all possible pairs 

of nodes (DS1: 19900, DS2: 27028). Similarly, the cosine angle among the displacement vector obtained 

from the two separate learned CE was taken. The similarity measure was averaged across all node pairs 

and calculated for all subjects. In both tests, the similarity measures were compared to a case where the 

alignment step was omitted (“non-aligned” condition). 

2.9 Inter-individual CE similarity evaluation 

To test the quality of the alignment, we applied the embedding ranking test (Rosenthal et al., 2018). First, 

multiple node2vec iterations (m = 100) were fitted to each subject, the resulting embeddings were aligned 

to a common space (see section 2.7) and averaged. Then, for every node in one individual, we obtained its 

cosine similarity to all nodes in a second individual. A ranking test score of k meant that for a particular 

node, its corresponding node in the second individual was the k-closest node. The test was conducted for 

each node and every possible subject pair (n = 100; 9,950 pairs). Finally, we tested the similarity of 

relations among pairs of nodes across individuals. This was done using an analogy ranking test. The test 

measured whether the displacement vector from node a to b in one individual would express the same 

relation in another individual. Here, the ranking score was conducted by adding the displacement vector 

from node a to b taken from one individual to node a of another individual. The query, in this case, was 

how close is the resulting vector to node b of the second individual. This test was repeated for every 

subject and node pairs resulting in k-times more computations (DS1: k=200, DS2: k=233). Thus, due to 

computational time considerations, the analysis was conducted on a smaller, randomly selected, set of 

subjects (n = 30). Both tests were compared to a condition in which the alignment step was omitted. 
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2.10 Group-level structure to function mapping 

Analyses on the group-level structure to function mapping were conducted on the consensus structural 

and functional connectivity matrices derived from all subjects in the test set. The functional group 

connectivity matrix was calculated by averaging the Fisher-r-to-z transformed correlations across all 

subjects. The structural group consensus connectivity matrix in each dataset was derived by averaging 

over all edge values that were present in at least 25% of subjects (de Reus & van den Heuvel, 2013). 

Structural edges on all other node pairs were assumed to be absent and set to zero in the consensus 

average. The group-level CE was created by applying the node2vec algorithm to the structural group 

consensus matrix. Structure-function correlation was quantified as Spearman’s correlation between all 

unique direct edges, i.e. edges that exist in the consensus matrix, for the structural connectivity. The same 

correlation measure was used for the CE cosine edges but applied to all edges, both direct and indirect. 

We used Spearman’s rank correlation because of the exponential distribution of the structural 

connectivity values. This measure was used in all subsequent connectome-level structure-function 

correlation assessments. To examine the contribution of individual edges to the increased CE-based 

structure-function mapping, we adopted the Leave-One-Trial-Out scheme (Gluth & Meiran, 2019). This 

was done by calculating Spearman’s rank correlation between the CE cosine similarity edges and their 

corresponding functional edges. This was followed by computing the difference in this correlation after 

removal of each of the edges. The correlation before minus after the removal, or Δ correlation, could 

inform us about the effect of a given edge on the overall correlation by examining its sign and relative 

magnitude.  

2.11 Parameters of the random walk and their relation to structure to function mapping 

In a fully diffusive communication process, signals propagate on the network structure driven only by 

local connectivity properties (Avena-Koenigsberger et al., 2018). In the node2vec algorithm, random 

walks are biased and assume some information about the node’s local neighborhoods. Two parameters 

guided the biased random walk, the return parameter p and the in-out parameter q (Grover & Leskovec, 

2016). Specifically, the parameter p sets the likelihood for a random walker to immediately revisit a node, 

i.e. that at time t+1 it would occupy the same node visited at time t-1. The parameter q controls the 

likelihood of a random walker to visit nodes that are not directly linked to the node visited in the previous 

step, i.e. that its step in time t+1 would be to a node with edge = 0 with the node visited in time t-1. While 

high p and low q would guide the walk to remain in the vicinity of the initial starting point (local bias), 

the opposite would promote exploration of distant nodes (global bias). In all analyses reported here, we 

used a locally biased random walk (p=0.1, q=1.6; Rosenthal et al., 2018). Additionally, we examined the 

effect of manipulating p and q on the observed correlation between the CE cosine similarity matrix and 

the functional connectivity matrix. We report this correlation for randomly selected subjects from the 

training set (n=25) with functional and structural connectivity measures. We report this correlation 

separately for direct and indirect edges. Parameterized random walks were produced using the reference 

node2vec Python implementation (https://github.com/aditya-grover/node2vec). 

 

2.12 Predicting group-level functional from structural connectivity with deep learning 

Previous work (Rosenthal et al., 2018) has shown that a CE-based structure to function mapping could be 

further improved using a deep neural network. Here we adopted the same methodology in which the 

element-wise multiplications of any pair of node embeddings were used as input and the functional 

connectivity between the two as the target label. We used a fully connected, 4-layer network with 256 

neurons in each layer. The network was implemented in Keras (François Chollet and contributors, 2015) 
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and Tensorflow (Abadi et al., 2016). The training was conducted using an Adam optimizer, a learning rate 

of 0.001, and 250 epochs. We used 3-fold cross-validation by randomly dividing the edges of the mean 

functional connectivity matrix into 3 folds. In each iteration, two folds were used for fitting and the 

remaining fold was used for prediction. We additionally applied cross-validation on the group matrices 

such that edges and CEs used for fitting were taken from subjects within the training set and CE used for 

the prediction was taken from subjects within the test set. Finally, we wanted to account for the fact that 

nodes from the same community, defined by the 7 canonical resting-state networks (Yeo et al., 2011), 

have similar functional connectivity patterns. For this reason, we divided the 3-folds such that each 

intersection of two communities would not be repeated across folds. For example, all edges connecting a 

visual node to a motor node appeared only in one of the folds. This scheme was used for the created CE-

based predictions for all possible functional edges, both direct and indirect.  

 

2.13 Individual-level structure to function mapping 

CE could be further utilized to map structural to functional connectivity at the individual subject-level. 

The following analyses were conducted for individuals that underwent DWI and a resting-state session, 

and were not excluded at the preprocessing stage (see section 2.3; DS1: 307 and 145, DS2: 361 and 181; 

subjects left in the training and test set, respectively). Structure-function correspondence was evaluated 

using subjects within the test set both for structural connectivity values and for the CE cosine similarity 

measure. Differences in structure-function mapping between CE and the connectivity values were 

examined using a paired-sample t-test between the correlation coefficient values. Finally, a deep learning 

model for structure-function mapping was applied using the same architecture and hyper-parameters 

described in section 2.10. Cross-validation was conducted both at the edge and subjects levels. On the 

edge-level we used the same 3-fold strategy as described in section 2.12. At the subjects-level, model 

fitting was conducted only on within the training set and testing on test set. We reported structure-

function connectivity correlation separately for direct edges, indirect edges, and all edges.  

2.14 Age-related changes in individual-level structure-function correspondence 

Age was previously found to be associated with a decrease in the strength of structure-function 

connectivity correlation (Zimmermann et al., 2016). Here we wanted to examine whether this negative 

correlation between age and structure-function relation is preserved when relating CE to functional 

connectivity. The correlation was calculated for all the subjects within the test set. Structure-function 

correspondence was evaluated using Spearman’s rank correlation only on direct edges. Comparing the 

magnitude of the aging effect on the structure-function correspondence was evaluated using Steiger’s t-

test for comparing dependent correlation values (Steiger, 1980; python implementation: 

https://github.com/psinger/CorrelationStats/). To test how age relates to edgewise structure-function 

correspondence we used the Leave-One-Trial-Out scheme described in section 2.10. The derived 

contribution score that measures the effect of a single node on the overall structure-function relation was 

applied for the same group of subjects. We then measured the Pearson correlation of each edge with age 

across subjects. Finally, we adapted the network contingency analysis method (Sripada et al., 2014). This 

method examines whether sub-blocks derived from each of seven canonical resting state networks (Yeo et 

al., 2011) present a larger number of edges correlated with age above a predetermined threshold than 

expected by chance, with chance defined through permutation testing. We repeated our analysis for a 

wide range of thresholds (|r| > 0.25, 0.3, 0.35, 0.4). To establish the null distribution, we used 10,000 

permutations of ages and only accepted cells for which none of the correlations obtained after 

permutation was larger than the empirical value (see SI 8 for a full description of the analysis). Finally, 
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we examined whether within the 7 canonical functional networks, within or between hemispheres, the 

supra-threshold edges were significantly larger or smaller than zero. We used a one sample t-test were the 

null hypothesis was that the population mean is zero. 

 

2.15 Modeling individual differences in age and intelligence using CE 

To test the ability of the CE framework to predict individual differences we trained a linear model to 

predict age and intelligence. First, a separate model was trained for each node and each input type, i.e. the 

CE, the CE cosine similarity matrix, the structural or the functional connectivity values as input. We used 

the rows of the CE cosine, structural and functional connectivity matrices and the nodal CE 

representations as the node-level inputs. The performance measure of the model was compared to the one 

obtained by fitting the same model to the structural or functional connectivity values. We used linear 

regression to predict age and intelligence. The performance was quantified as the Pearson correlation 

between the observed and predicted age or intelligence. The connectome-level model was created by 

taking the mean of all nodal-level predictions or training a second-level ensemble on them. Due to the 

high multicollinearity of the first-level prediction, an L2 regularized linear model trained with SGD was 

used as the ensemble model. As in the first-level model, the ensemble was trained within the training set 

and tested on the test set. Both models were implemented in Scikit-learn (LinearRegression and 

SGDRegressor; Pedregosa Fabian et al., 2011) with the default parameters. We additionally examined 

whether our results are confounded by a possible effect of gender, for age prediction, and gender and age, 

for intelligence prediction. We controlled for the two variables using linear regression by predicting the 

desired outcome, age and intelligence, with the covariates, gender or age and gender, as predictors, 

keeping only the residual. 

 

3. Results  

3.1 Individual CE alignment evaluation 

The Node2vec algorithm was previously shown to capture high-order structural relations within group-

averaged representations of the human connectome (Rosenthal et al., 2018). Extending the approach to 

individual brain networks requires that individual connectome embeddings are mutually aligned to allow 

an assessment of individual differences. Fitting the CE algorithm on a given individual graph results in an 

embedded vector representation for each brain node. Multiple fitting iterations result in sets of vectors 

with similar relative positions among each other, i.e. similar cosine angles between node pairs, but they 

generally do not retain their absolute values (Dev et al., 2019; for the stability of the relations among 

embeddings see Wang et al., 2020). As a result, utilizing the CE framework to explore individual 

differences among subjects requires a method which would align different CEs to the same latent space 

(Fig. 1). The following sections evaluate our proposed embedding alignment method.    

3.1.1 Intra-individual CE similarity evaluation 

We examined the effect of embedding alignment on the similarity of two independent CE fitting iterations 

of the same subject. This was done by testing the cosine similarity among pairs of identical nodes (Fig. 

2a,i). Next, we examined embedding alignment effects on the similarity of the relations among pairs of 

different nodes, again, across two independent fittings of the same subject. The relations were quantified 

as the cosine similarity between their displacement vectors (Fig. 2b,i).  DS1: For every subject (n = 100) 
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the effect of embedding alignment on the mean cosine similarity of pairs of identical nodes (200 pairs) 

was tested. Significant improvement in node pair similarity (t(199) = 111.14, p<2.2e-16) was observed 

after applying embedding alignment (cos(θ)=0.98 ±0.001) compared to before alignment (cos(θ)=0.92 

±0.005). In contrast, the relations among pairs of different nodes, were highly consistent across 

independent fitting iterations both before (cos(θ)=0.99±2.7e-6) and after embedding alignment 

(cos(θ)=0.99±2.4e-5; Fig. 2b). Applying the same approach to DS2 resulted in a similar outcome (t(232) 

= 118.31, p<2.2e-16; cos(θ)=0.96 ±0.004; cos(θ)=0.90 ±0.005; cos(θ)=0.99 ±8.7e-5; cos(θ)=0.99 ±9.1e-5; 

see SI 2 and SI Fig. 1a,b). These findings show that the alignment procedure successfully reduces the 

intra-individual variance in the embeddings. This is a crucial step towards identifying differences in CE 

embeddings obtained from different individuals. 

3.1.2 Inter-individual CE similarity evaluation 

Embedding alignment is meant to reduce variance that resulted from the stochasticity in node2vec fitting 

process. However, we do not expect perfect correspondence across individuals due to inherent differences 

in their underlying brain anatomy. To take this into account, we applied a more lenient test for estimating 

inter-individual CE similarity, the embedding ranking test (Rosenthal et al., 2018). Using the ranking test, 

we examined whether pairs of anatomically corresponding nodes across different individuals would be 

more similar than pairs of non-corresponding nodes, following embedding alignment. In this test, a given 

node would be ranked 0 if its closest neighbors in another individual, is the same anatomically 

corresponding node (Fig. 2c,i). In all analyses, query of the i-nearest node was done using cosine 

similarity. DS1: For every possible subject pair (n = 100; 9,950 pairs), we tested the effect of embedding 

alignment on the distribution of the node similarity rank. Before embedding alignment, 35.3% ±37.1% of 

the nodes were ranked in the top 2 nodes, compared to 86.3% ±4.6% following alignment. The percent of 

nodes ranked in the top 2 nodes was significantly higher following embedding alignment (t(9,949) = 

135.7, p<2.2e-16; see Fig. 2c for the complete distribution). Similar results were found in DS2 (n = 100; 

9,950 pairs; 10.8% ±16.7%; 52.7% ±7.9%; t(9,949) = 246.6, p<2.2e-16; see SI 3 and SI Fig. 1c). 

Next, to test the similarity of nodes’ relations we applied an analogy ranking test. This test measures 

whether the displacement vector from node a to b in one individual would express the same relation in 

another individual. We take the vectors of the right anterior cingulate cortex (rACC) and the right insula 

(rINS) as an example. In this case, a rank of 0 means that the rACC of subject a minus the rINS of subject 

a plus the rINS of subject b was closest to the rACC of subject b. DS1: The analogy test was conducted 

for every subject pair (a subset of n=30) and node pair (870 and 39,800 pairs respectively). Before 

embedding alignment 23.3% ±26.6% of the nodes were ranked in the top 2 nodes compared to 71.0% 

±6.7% following alignment. This difference was significant (t(869) = 52.2, p<2.2e-16; Fig. 2d). Similarly 

in DS2 (870 and 49,506 respectively; 4.1% ±6.5%; 31.2% ±5.2%; t(869) = 104.7, p<2.2e-16; see SI 3 and 

SI Fig. 1d). 
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Fig. 2. Individual CE alignment evaluation in DS1. Testing the effect of applying embedding alignment (dark blue) 

compared to its absence (yellow) on the similarity of identical nodes (a,c) and the similarity of displacement vectors 

among node pairs (b,d) across different embeddings. a, b Within individual comparisons. a.i. Test 1 – the cosine similarity 

between identical nodes of the same individual across independent CE fitting iterations. a.ii. Box plot depicting the effect 

of embedding alignment on the distribution of the intra-individual node similarity for all subjects. b.i Test 2 – the cosine 

similarity between the displacement vectors of all possible node pairs of the same individual across independent CE fitting 

iterations. b.ii. Box plot depicting the effect of embedding alignment on the distribution of the intra-individual nodes’ 

displacement vector similarity for all subjects. As is evident, across independent fitting iterations the cosine similarity 

among pairs of nodes is relatively stable while comparing individual nodes introduces considerable variation that could 

be reduced with CE alignment. c, d Between individuals comparisons. c.i. Test 3 – the cosine similarity rank between 

identical nodes across different individuals. Cosine similarity rank was evaluated by ranking how close a given node in 

one individual is to the same node in a different individual. For example, a rank of 0 means that the closest neighbors of a 

given node, in terms of cosine similarity, across two individuals is itself. d.i. Test 4 - the cosine similarity rank of an inter-

individual nodes’ analogy test of all possible node pairs. For example, a rank of 0 means that the rACC of subject a minus 

the rINS of subject a plus the rINS of subject b was closest to the rACC of subject b. The effect of alignment on the 

ranking test was examined across all nodes (c.ii.) and all possible nodes pairs (d.ii.) Rank distributions are presented in 

bins of two; error bars represent the standard deviation across all subject pairs. The rINS and rACC were used only to 

illustrate the different tests conducted in the left panel of each plot, but the tests were conducted on all possible nodes and 

nodes pairs.  

 

3.2 Mapping structural to functional connectivity using CE 

Resting-state functional connectivity refers to the temporal statistical dependence among activations in 

different brain nodes measured in the absence of an explicit task. While these patterns of coactivations 

depend on the structural connectivity, the observed correlation between the strengths of structural and 

functional connections is moderate, capturing only a fraction of the observed variance (Honey et al., 

2010; Suárez et al., 2020). Testing this relation on the individual level, rather than the group level, further 

weaken the observed structure-function correspondence (Straathof et al., 2019). The CE framework was 

shown to improve the mapping of structural to functional connectivity at the group-level, presumably due 
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to its ability to capture high-order graph relations (Rosenthal et al., 2018). Here we first reproduce those 

findings and extend the approach to structure-function relations within individuals. 

3.2.1 Group-level structure to function mapping 

The relation between the group-level structural connectivity and the functional connectivity was 

quantified using Spearman’s rank correlation among corresponding functional and structural edges. The 

structural consensus connectivity matrix is typically sparse and accordingly, 38.9% and 18.9% of the 

group-level structural edges in DS1 and DS2, respectively, were larger than zero. For this reason, the 

correlation was taken only for node pairs linked by a structural edge, i.e. direct edges, in comparison to 

edges not linked by a structural connection, i.e. indirect. An additional measure of structural relation 

among nodes could be derived by taking the cosine angle among each pair of node embeddings. The CE 

cosine similarity was previously shown to substantially improve structure-function mapping (Rosenthal et 

al., 2018) and allowed to estimate this relation for both direct and indirect edges, as the cosine angle could 

be quantified even for pairs of nodes for which no connecting tracts were reconstructed. DS1: A 

significant correlation between the raw, direct structural edges and their corresponding functional 

connectivity edges was found (ρ(7782)=.311, p<2.2e-16; Fig. 4a). This structure-function correlation was 

higher when using the CE cosine similarity instead of the structural edges (ρ(7782, 12114, 19898)= 

.345,.137,.282; all p’s p<2.2e-16; for the direct, indirect and all edges respectively; Fig. 4b). Similar 

results were found in DS2 (ρ(5032)= 0.287, p<2.2e-16; ρ(5032, 21992, 27026)=.389,.256,.340; all p’s 

p<2.2e-16; see SI 4 and SI Fig. 4a,b).  

Next, we explored the contribution of individual edges to the CE-based structure-function mapping. Such 

estimation could be done on each unique edge since the CE cosine matrix is dense compared to the sparse 

raw structural connectivity matrix. We computed the structure-function correlation before minus after the 

removal of individual nodes. The result, the Δ correlation, informs us about the sign and relative 

magnitude of the contribution of each edge to the overall correlation (Gluth & Meiran, 2019; Fig. 3a, SI 

Fig. 2a). To test whether the Δ correlation could be solely attributed to the functional or the CE cosine 

edge values, we reported its correlation to the latter two. We compared the Δ correlation for direct versus 

indirect edges and for edges within the 7 canonical resting-states networks (Yeo et al., 2011) compared to 

between (see SI 4 for each of the networks). We additionally tested Δ correlation relation to Euclidian 

distance among node. DS1: A significant, weak correlation was found between the Δ correlation and the 

CE cosine (ρ(19898)=0.242, p p<2.2e-16) and the functional connectivity (ρ(19898)=0.167, p<2.2e-16) 

values. The Δ correlation was significantly larger for direct compared to indirect edges (t(19898)= 20.044, 

p<2.2e-16), and for edges within, compared to between canonical networks (t(19898)= 27.818, p<2.2e-

16). Additionally, we found a significant interaction between the two factors (F(3,19896)= 1018.535, 

p<2.2e-16) such that, within compared to between networks’ edges were larger for direct edges 

(t(19898)= 39.943, p<2.2e-16) and a smaller, opposite effect was found for indirect edges (t(19898)= -
16.586, p=1.0e-08; Fig. 3c). A small correlation was found between the Euclidian distance and Δ 

correlation (r(19898)=0.057, p<1.2e-15). Similar results were found in DS2 (r(27026)=0.107, p=<2.2e-

16, r(27026)=0.097, p<2.2e-16; t(27026)=26.392, p<2.2e-16; t(27026)=16.793, p<2.2e-16; 

F(3,27024)=762.826, p<2.2e-16; t(27026)=28.650, p<2.2e-16; t(27026)=-8.132, p =4.4e-16; 

r(27026)=0.115, p<2.2e-16; see SI 4, SI Fig. 2c and SI Fig. 3b). These results suggest that structure-

function correspondence is largely driven by direct, within network edges.   
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Fig. 3. The contribution of individual edges to the CE-based structure-function mapping in DS1. Individual edges are 

assessed based on the difference in the measured structure-function correlation after removing each of the edges. (a) All 

edges are depicted in a matrix form. Nodes are ordered according to their affiliation to the 7 canonical resting-state 

networks (Yeo et al., 2011) separately for the left and right hemispheres. Edges with positive contribution to the overall 

correlation (blue) are those whose elimination results in lower correlation, while edges with negative contribution (red) 

have the opposite effect. (c) The distribution of Δ correlation for the edges is depicted for all 4 combinations of direct 

versus indirect and within versus between the 7 networks. 

 

3.2.2 Predicting group-level functional from structural connectivity with deep learning 

The improvement in structure to function mapping using the CE cosine similarity was obtained without 

attempting to optimize this measure to match functional connectivity. In previous work (Rosenthal et al., 

2018), this mapping was further improved using a deep learning model in which CEs were utilized as 

features to predict the functional edges. Specifically, the element-wise multiplication of pairs of nodes 

embeddings was used as input, and the predicted label was the observed functional connectivity among 

the two. We implemented a 4-layer, fully connected neural network, and the prediction was evaluated 

using cross-validation (see Method section). DS1: The Spearman’s rank correlation coefficient between 

the predicted and observed functional connectivity values were ρ(7782)=.641,  ρ(12114)=.527 and 

ρ(19898)=.599, for the direct, indirect and all edges respectively, all p’s p<2.2e-16 (see Fig. 4c). Similar 

results were found in DS2 (ρ(5032)=.542,  ρ(21992)=.488 and ρ(27026)=.527; all p’s p<2.2e-16; see SI 5 

and SI Fig. 4c). 

3.2.3 Individual-level structure to function mapping 

Next, we tested whether the CE framework could be similarly utilized to map structural to functional 

connectivity within individuals. Structure-function correspondence was evaluated using Spearman’s rank 

correlation in each subject. We report this correlation using the structural connectivity values for direct 

edges and then again using the CE cosine similarity measure for direct and indirect edges. DS1: A 

significant correlation between the direct structural edges and their corresponding functional connectivity 

edges was found for all subjects (ρ=.197 ±.031, all p’s<2.2e-16; Fig. 3d). Similar matching to the CE 

cosine similarities values of direct edges revealed a significantly higher correlation (t(180) = 16.7, 

p<2.2e-16). The mean and standard deviation across subjects was ρ=.228 ±.048, ρ=.066 ±.035, ρ=.185 
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±.037 for the direct, indirect and all edges, respectively. We found similar results in DS2 (ρ=.152 ±.028, 

all p’s<2.2e-16; t(144) = 34.4, p<2.2e-16; ρ=.245 ±.040, ρ=.102 ±.035, ρ=.181 ±.344; see SI 6 and SI Fig. 

4d) 

Finally, as in the group-level, we trained a deep learning neural network for predicting functional 

connectivity values from aligned CE, this time within individuals. DS1: A significant increase in the 

observed correlation for the direct edges was evident both compared to the structural edges (t(180) = 66.0, 

p<2.2e-16) and the CE cosine similarity measures (t(180) = 53.4, p<2.2e-16; SI Fig. 2d). The mean and 

standard deviation of the predicted, compared to the observed FC correlation was ρ=.397 ±.051, ρ=.253 

±.059, ρ=.337 ±.051, all p’s<2.2e-16, for the direct, indirect and all edges respectively. The same results 

were also obtained in DS2 (t(144) = 52.8, p<2.2e-16; t(144) = 34.5, p<2.2e-16; ρ=.312 ±.043, ρ=.210 

±.051, ρ=.265 ±.046, all p’s<2.2e-16; see SI 6 and SI Fig. 4d) 
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Fig. 4. Correspondence between structural-functional connectivity at the group and individual levels in DS1. (a,b,c) 

Scatter plots and marginal univariate distributions of functional compared to structural-based edges at the group level. 

The structure-based edges are the entries of the streamline density matrix (a), the CE cosine similarities (b) and the deep 

learning based predicted functional edges. Direct edges are presented in dark blue and indirect edges in gray. The 

Spearman’s rank correlations and the corresponding p values for the group-level direct edges are depicted in the bottom 

right corner of each scatter plot. The correlations for the indirect edges were .137, .51 for the CE cosine similarities and 

the deep learning based predicted functional edges respectively. (d) Individual-level structure-function Spearman’s 

correlation values for direct edges of all three structure-based connectivity measures. Each line represents the correlation 

values of a single subject (n = 181). A significant increase in correlation was found for the CE cosine similarities compared 

to the structural edges and for the CE-based predicted functional edges compare to the CE cosine similarities.  
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3.2.4 Parameters of the random walk and their relation to structure to function    

The use of random walks to learn embeddings of brain nodes is strongly related to diffusive models of 

communication in the brain (Avena-Koenigsberger et al., 2018). Here we examine how such a diffusive 

process, as captured by the node2vec embedding algorithm, can model the relation between structural 

connectivity and functional connectivity. We adjusted the parameters of the random walk to be more 

globally or locally biased and measured the observed correlation between the CE cosine matrix and the 

functional connectivity. The parameters of the random walk were shifted from locally biased (p = 10-3, q 

=4.096) through unbiased (p = 1, q =1) to globally biased (p = 103, q =0.244) random walks in 20 equal-

spaced steps on a logarithmic scale. All results are present for the direct, indirect and all edges, 

respectively. DS1: Shifting from most locally biased (ρ=0.128±0.128, ρ=0.007±0.007, ρ=0.061±0.061) to 

the unbiased random walk (ρ=0.253±0.253, 0.082±0.082, 0.200±0.200) we observed a significant 

increase in structure to function mapping (t(11.5)=-17.033, -7.987, -18.184; all p’s<3.25e-08). Moving to 

the most globally biased random walk (ρ= 0.245±0.245, 0.068±0.068, 0.192±0.192) revealed a smaller 

but significant decrease in structure to function mapping (t(11.5)= -4.651, -5.564, -6.137; all p’s<1.01e-

04; Fig. 5). In DS2, we found a similar increase when shifting from the most local to an unbiased random 

walk, but no significant difference moving to the most globally biased random walk (ρ= 0.202±0.202, 

0.002±0.002, 0.049±0.049; ρ= 0.267±0.267, 0.122±0.122, 0.202±0.202; t(11.5)= -12.207, -20.914, -

28.666; all p’s<8.76e-12; ρ= 0.262±0.262, 0.119±0.119, 0.200±0.200; t(11.5)= -2.789, -1.402, -1.267; 

p=0.010, 0.174, 0.217; see SI 7 and SI Fig. 5). 

 

Fig. 5. Effect of random walk parameters on structure-function correspondence in DS1. Testing the effect of random 

walks parameters on the Spearman’s rank correlation between direct (blue) or indirect edges (gray) to their 

corresponding functional connectivity edges. The random walk parameters were shifted from local (p = 10-3, q =4.096) 

through an unbiased (p = 1, q =1) to global (p = 103, q =0.244) random walk in 20 equal bins on a logarithmic scale. Error 

bar represents the standard deviation across subjects (N = 25). 
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3.2.5 Age-related changes in individual-level structure-function correspondence 

Previous work reported age-related changes in structure-function coupling, but these were quantified at 

the whole connectome (Betzel et al., 2014) or the nodal (Zimmermann et al., 2016) levels. Here we 

examine whether the CE framework could be utilized to explore these alterations by testing the relation of 

aging to structure-function correlation. Importantly, the analysis was conducted both at the network level 

and at the edge-level by applying our edgewise contribution score (section 3.2.1) for each subject. DS1: A 

significant Pearson correlation was found between subjects’ age and structure-function correlation when 

using the structural edges (r(179)=-.406, p=1.4e-8) and the CE cosine similarity r(179)=-.487, p=3.6e-12; 

Fig. 6a). The observed increase in the correlation for the CE cosine similarity was significant (t=2.621, 

p=0.009). Next, we aimed to identify edges whose contribution to the structure-function correlation 

increases or decreases with age. We computed the edgewise contribution score for all subjects and 

correlated each edge with age (Fig. 6b). Using network contingency analysis, we revealed significant 

widespread age-related alteration in the structure-function contribution score (Fig. 6c). Examining edges 

within the 7 canonical functional networks (Yeo et al., 2011), we found a general decrease with age 

within hemispheres (t’s=6.94, 5.58, 3.02, 1.66; p’s = 5.9e-12, 2.82e-08, 0.002, 0.097; for |r| threshold of 

.25, .3, .35, .4 respectively) and increase between hemispheres (t’s=6.34, 6.04, 3.54, 1.73; p’s = 3.03e-10, 

1.87e-09, 4.14e-04, 0.084; for |r| threshold of .25, .3, .35, .4). A mixed pattern was found between 

functional networks. Similar results were obtained in DS2: (r(144)=-.240, p=.003; r(144)=-.533, p=5.3e-

12; t=4.9, p=1.4e-5;  t’s= 3.83, 2.48, 2.09, 1.19; p’s = 1.3e-4, 0.013, 0.037, 0.233; t’s=14.7, 12.9, 11.1, 

9.04; all p’s<2.2e-16; see SI 8, SI Fig. 6 and SI Fig. 8).  

 

 

Fig. 6. Age-related changes in individual-level structure-function correspondence in DS1. (a) A regression plot for age and 

the measured connectome-level structure-function correlation. The values of each subject are presented both for the 

structural edges (SC, gray) and the CE cosine edges (CE, yellow). The observed correlation to age is indicated on the 

bottom. The difference in the structure-function correspondence to age is significantly larger for the CE cosine 

connectivity measure. (b) The correlation of age to the edgewise contribution score of structure-function correspondence 

depicted in matrix form. Positive edges are ones that increase the overall correlation with age (blue) and negative edges 

are ones that decrease the overall correlation with age (red). (c) The result of the network contingency analysis for |r| > 

0.25 (see SI Fig. 7 for all thresholds) in matrix form. Colored cells had a larger number of edges correlated with age than 

expected by chance. The cells’ background color is determined by the ratio between edges that are positively (blue) or 

negatively (red) correlated with age. 

 

3.3 Modeling individual differences in age and intelligence using CE 
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Producing individual-level CE requires learning a compact vectorized representation of brain nodes and 

aligning the representations obtained from different individuals to the same latent space. We wanted to 

examine whether these transformations preserve variance associated with individual differences and 

whether representing connectomes with CE improves our ability to estimate those individual differences. 

Specifically, we used CE for out-of-sample prediction of age and intelligence in two separate datasets. In 

the previous section we focused on age-related individual differences in structural-functional 

correspondence. Here, age was directly predicted from CE.  

3.3.1 Capturing individual differences with CE 

To predict age and intelligence we used a linear regression with CE and the CE cosine matrix as input. 

First, within the training set, we used 5-fold CV to predict each of the two outcomes using each node as 

an input. Then, individual nodes’ predictions were combined both by fitting a second-level model or by 

taking their mean, and testing on the left-out test set. The performance of the models was quantified as the 

correlation between the observed and predicted age or intelligence. DS1: For age, the mean observed-

predicted correlation across all nodes was r=.465(±.078) for CE and r=0.467(±0.057) for the CE cosine 

matrix. Similarly, for intelligence r=.093(±.070) for CE, and r=0.083(±0.066) for the CE cosine matrix. 

The connectome-level model, validated on the left-out test set, revealed a significant correlation of the 

observed-predicted age (CE: r(188)=0.770, 0.760 , cosine CE: r(188)=0.826, 0.750; for the second-level 

model and the mean respectively; all p’s<2.2e-16) and intelligence (CE: r(188)=0.379, 0.265, cosine CE: 

r(188)=0.337, 0.200; for the second-level model and the mean respectively, all p’s<0.008; see Fig.7). 

Applying the same analysis to DS2 yielded similar results (r=.453(±.078), r=0.367(±0.056); 

r=.240(±.077), r=0.138(±0.060); r(199)=0.801, 0.753, r(199)=0.836, 0.777; all p’s<2.2e-16; 

r(199)=0.578, 0.360, r(199)=0.565, 0.409; all p’s<3.5e-07; see SI 9.1 and SI Fig. 9). In both datasets all 

results were reproduced for age prediction after controlling for gender. Controlling for age and gender in 

intelligence prediction reproduced all results in DS1, while the observed effects were reduced in DS2, 

such that a small, yet significant effect was found for the ensemble model only for the CE cosine matrix 

as input (see SI 9.3).  

3.3.2 Predictive accuracy of CE compared to structural and functional connectivity 

Next, we examined whether predictive accuracy gained with CE would be superior compared to using 

only structural or functional connectivity as input. We repeated the same steps for the two additional 

inputs and compared the resulting performance to CE across all nodes using a paired t-test. DS1: Using 

both CE and the CE cosine matrix resulted in significantly better performance than functional and 

structural connectivity for age (all t’s(199) > 17.1, p’s <2.2e-16) and intelligence (all t’s (199) > 6.91, all 

p’s <6.6e-11). The structural connectivity connectome-level model, validated on the left-out test set, 

resulted in nonsignificant correlation for both age and intelligence (all r’s(188) < 0.084, p’s >0.267). 

Contrarily, functional connectivity resulted in significant correlation when taking the mean of the nodal 

predictions (age: r(188)=0.822 , p’s <2.2e-16; intelligence: r(188)=0.341, p=3.7e-06) but not for the 

second-level model (all r’s(188) < 0.000; see Fig.7). Applying the same analysis to DS2 yielded similar 

results (all t’s(232) > 4.36, all p’s <2.0e-05; all t’s (232) > 2.53, all p’s <0.012, except for cosine 

embedding and functional connectivity (t(232) =-0.947p: 0.345); all r’s(137) < 0.005, p’s >0.415; 

r(137)=0.854 , p’s <2.2e-16; r(137)=0.546, p=4.4e-12; all r’s(137) < 0.039; see SI 9.2 and SI Fig. 9). In 

both datasets all results were reproduced for age prediction after controlling for gender. Controlling for 

age and gender for intelligence prediction reproduced all results in DS1 but not in DS2 (see SI 9.4). This 

might result from a smaller sample size of individuals who had both structure and functional data in DS2 

(425 compared to 601 subjects). 
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Fig. 7. Comparing predictive accuracy of CE, CE cosine similarity matrix, structural and functional connectivity as input 

within DS1. Correlation between the observed and predicted age (a) and intelligence (b) with CE (blue), CE cosine matrix 

(blue-gray), structural (brown) and functional (yellow) connectivity. On the left panel of each subplot, dots represent the 

predictive accuracy of each node within each of the 7 resting state networks (Yeo et al., 2011). Nodes are grouped by their 

resting state network affiliation. The right panel depicts the predictive accuracy of a model combining all individual nodes 

by taking their mean (plus symbol) or aggregates them using a second-level linear model (diamond symbol). The dashed 

line represents the FDR-corrected significance level for single nodal prediction. 

 

4. Discussion 

Studies of the human connectome have added to our understanding of the organizing principles of neural 

processing and communication in the brain. However, the relation between observed individual 

differences in connectome topology and individual differences in function and behavior is still poorly 

understood. In the current work, we leverage the CE framework for modeling individual differences by 

aligning embeddings of different individuals to a common space. We empirically evaluated our alignment 

scheme and found a large increase in node’s similarity across subjects, indicating successful alignment of 

individual connectome embeddings. We then demonstrated two contributions of applying the CE 

framework at the individual subject level. The first is the improvement in subject-level mapping of 

structural to functional connectivity while preserving age-related variance associated with this structure-
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function correspondence. The second contribution is the successful use of aligned CE in predicting 

demographic and behavioral variables. CE resulted in significantly improved prediction of age and 

intelligence compared to structural or functional connectivity alone, suggesting that CE not only preserves 

variability related to demographics and behavior, but also accentuates this variability such that it is more 

accessible for prediction-based models.  

4.1 CE alignment  

Enabling the mutual alignment of CEs is a necessary step to utilize machine learning techniques for 

subsequent tasks such as prediction of functional connectivity or the presence of a neurological condition. 

Here we consider two problems that may be aided by proper CE alignment. The first is to find an optimal 

one-to-one mapping between nodes taken from one connectome to another based on their topological 

attributes. Such mapping could be used, for example, to find homologous brain structures among different 

species. The second involves aligning vectorized representations of connectomes in the same latent space 

to allow their comparison. Here, the mapping of corresponding nodes across connectomes is known a 

priori and we are interested in the subtle variations in these vectorized representations that arise due to 

differences in the sampled random walks. The goal is to remove variability related to the stochasticity in 

the CE fitting process and the different latent spaces, and preserve variability related to variations in the 

underlining network topology. While the first problem has been previously addressed in applications such 

as translation among languages (Smith et al., 2017), to the best of our knowledge, the second has not been 

addressed before. We suggest that our CE alignment method could additionally be used in linguistic tasks 

such as authorship attribution (Kocher & Savoy, 2018) or examining differences in word semantics 

among different cultures (Karimi et al., 2015). Notably, our method is computationally efficient as it does 

not require the co-learning of all embeddings when encountering a new sample (Wolf et al., 2014) making 

it more desirable for clinical applications.  

4.2 Mapping Structural to functional connectivity  

The observed correlation between group-level structural and functional connectivity is typically moderate 

(r = 0.3-0.5; Suárez et al., 2020). In part, moderate correlations may reflect limits on acquisition and 

reconstruction, as well as the fact that the same structural backbone supports a large and dynamic 

repertoire of functional interactions (Deco et al., 2013; Fukushima et al., 2018). Nevertheless, considering 

high-level structural interactions among nodes might explain a larger portion of the functional 

connectivity variance. In the current work, we demonstrate that using a deep learning model, functional 

connectivity could be predicted from CE, while substantially improving structure-function mapping at the 

group-level (DS1: ρ=0.64, DS2: ρ=0.54). The observed structure-function correlation at the individual 

subject level is often more modest than group-level estimates (r = 0.02-0.25; Straathof et al., 2019) 

possibly due to noise associated with the acquisition of the different imaging modalities, under-sampling 

of resting-state dynamics in short scans (Birn et al., 2013), and variation in functional boundaries among 

individuals (Gordon et al., 2017). Applying the CE approach to similar mapping at the individual-level 

resulted in significant improvements of structure-function correlations (DS1: ρ=0.397, DS2: ρ=0.312). 

Additionally, CE produced an edge-wise similarity measure even for pairs of nodes for which no 

connecting tracts were found. This allows a more comprehensive estimate of edge-wise contribution to 

structure-function correspondence. Our results suggest that a specific subset of edges (direct edges within 

canonical resting-state networks) drive the observed structure-function correlation. Finally, we showed 

that CE preserved and even enhanced age-related individual differences in structure-function mapping.  

4.3 CE as a model of communication linking structure to function  
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CE may advance our understanding of the nature of communication in the brain. Communication or 

information flow in brain networks could be seen as the complete set of dynamic causal influences among 

pairs of neuronal elements (Avena-Koenigsberger et al., 2018). According to this view, communication is 

constrained by the structural connectivity scaffold and gives rise to the observed co-fluctuations among 

pairs of brain regions (functional connectivity), and hence it offers a link between the two. Models of 

communication processes among brain regions range from diffusive flow of information, as in random 

walks, to routing mechanisms, such as schemes based on shortest paths. CE, fitted based on a set of 

random walks, can be viewed as a generative model of diffusive communication around nodes. Their 

success implies that diffusive models might better capture the observed functional connectivity (Goni et 

al., 2014). Further manipulation of the specific random walk parameters used to fit the CE model, suggest 

that an unbiased, or a slightly locally biased random walk best accounts for the observed functional 

connectivity. In future work the sampled walks could be generated based on different mechanisms (e.g. 

shortest paths) and their relation of corresponding embeddings to static or dynamic connectivity could be 

tested. 

4.4 Prediction of individual differences using aligned CE 

Cross-subject alignment, whether conducted based on anatomy (Frost & Goebel, 2012) or function 

(Haxby et al., 2020), is a critical step for highlighting individual differences in brain mapping. Here we 

consider the characterization of individual differences as an ideal test case for the CE alignment approach. 

Indeed, we found that aligned CE, as well as CE cosine similarity matrices show a robust increase in 

prediction accuracy compared to structural connectivity for age and intelligence both at the individual 

node and the whole connectome levels. This observed increase in predictive accuracy could be attributed 

to the sparsity and dimensionality of the structural connectivity matrix, and its inability to capture high-

order topological relations. These might explain how despite a growing trend in studies focusing on 

individual differences (Sui et al., 2020), fewer studies so far have applied a predictive modelling on 

structural connectivity data as compared to other modalities, such as functional connectivity 

(Arbabshirani et al., 2017). Our CE framework addresses these issues by learning node representations 

that are low dimensional and preserves nodes’ topological context, rather than its mere direct connections. 

When depicted in the form of a cosine similarity matrix it captures all pair-wise relations among nodes 

resulting in a dense matrix representation. In addition to this advantage in representing structural 

connectivity, CE can be viewed as a model of brain communication. Thus, it represents a functional 

aspect of brain connectivity in addition to structure. This might explain the advantage at nodal-level or the 

similarity for the connectome-level model of CE compared to functional connectivity in predictive 

accuracy. Note that functional connectivity exhibits comparable results only for one of the connectome 

level models (nodal mean). Thus, the CE framework might hold promise to advance the application of 

connectome mapping to such predictive models. Future work can utilize the CE predictive framework to 

study connectome alterations in neurodevelopmental conditions. Furthermore, we can explore the effect 

of “lesioning” of the network by for example, zeroing out connections or entire nodes before the 

embedding process. Then, the effect of these “lesions” on the predicted outcome in such prediction 

models could be tested (Rosenthal et al., 2018) 

4.5 Conclusions 

Our findings suggest that learned connectome representations and their mutual alignment are a powerful 

tool for conducting individual-level mapping of structural connectivity to function and behavior. We 

suggest two complementary views on CE. The first, is an improved structural connectivity representation, 

allowing to quantify structural relations that are missing from the network reconstruction. The second, as 
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a proxy for diffusive communication on the structural backbone, hence incorporating aspects of structure 

(the structural graph) as well as function (the diffusive process). The advancements made here in the CE 

framework support current efforts in neuroscience to better understand and address individual differences.  

5. Data availability 

The unprocessed data is openly available online at 

http://fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html for DS1and available upon online access 

request https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/ for DS2. A python package 

implementation of CE framework (https://github.com/GidLev/cepy) and set of interactive notebooks 

reproducing the main results of the paper (https://github.com/GidLev/cepy/tree/master/examples) were 

made available online.     
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