1	Genes encoding teleost orthologs of human haplo-insufficient
2	and monoallelic genes remain in duplicate more frequently than
3	the whole genome
4 5	Floriane Picolo ¹ , Anna Grandchamp ¹ , Benoît Piégu ¹ , Reiner A. Veitia ^{2,3,4} , Philippe Monget ¹
6	
7	Correspondance
8 9 10 11 12 13	 ¹ PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France ² Université de Paris, F-75006, Paris, France. ³ Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France. ⁴ Université Paris-Saclay, Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Fontenay aux Roses, France.
14	Classification
15	Biological sciences, Evolution
16	
17	Corresponding author
18	philippe.monget@inrae.fr
19 20 21 22 23 24 25	Study Funding The present study was supported by a fellowship from the French Ministry of Research and by the Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE).
26	Keywords
27	Haploinsufficient genes, monoallelic genes, phylogeny, whole-genome-duplication, duplicat,
28	singleton

30

31 Abstract

32 Gene dosage is important is an important issue both in cell and evolutionary biology. Most genes 33 are present in two copies in eukaryotic cells. The first outstanding exception is monoallelic gene 34 expression (MA) that concerns genes localized on the X chromosome or in regions undergoing 35 parental imprinting in eutherians, and many other genes scattered throughout the genome. The 36 second exception concerns haploinsufficiency (HI), responsible for the fact that a single func-37 tional copy of a gene in a diploid organism is insufficient to ensure a normal biological function. 38 One of the most important mechanisms ensuring functional innovation during evolution is Whole 39 genome duplication (WGD). In addition to the two WGDs that have occurred in vertebrate ge-40 nomes, the teleost genomes underwent an additional WGD, after their divergence from tetrapod. 41 In the present work, we have studied on 57 teleost species whether the orthologs of human MA 42 or HI genes remain more frequently in duplicates or returned more frequently in singleton than the rest of the genome. Our results show that the teleost orthologs of HI human genes remained 43 44 more frequently in duplicate than the rest of the genome in all the teleost species studied. No 45 signal was observed for the orthologs of genes localized on the human X chromosome or sub-46 jected to parental imprinting. Surprisingly, the teleost orthologs of the other human MA genes remained in duplicate more frequently than the rest of the genome for most teleost species. These 47 results suggest that the teleost orthologs of MA and HI human genes also undergo selective pres-48 sures either related to absolute protein amounts and/or of dosage balance issues. However, these 49 50 constraints seem to be different for MA genes in teleost in comparison with human genomes.

51 Introduction

52 Gene dosage effects are an important phenomenon in cell biology that has evolutionary conse-53 quences. Indeed, in eukaryote cells, most genes are present in two copies that are transcribed and 54 produce functional proteins. However, there are exceptions. The first outstanding exception is 55 the case of monoallelic gene expression (MA). This is so for the majority of genes that are present on the X chromosome of eutherian mammals, genes that present a parental imprinting in 56 57 eutherians, and genes encoding immunoglobulins and olfactory receptors (Chess et al., 2016). 58 Monoallelic expression of genes is under an epigenetic control that is not well understood. For 59 these genes, dysregulation of the mechanism(s) underlying monoallelic expression can lead to expression of both alleles, and to overexpression of the corresponding protein, and thus to severe 60 pathologies (Horsthemke 2010). The second exception concerns haploinsufficiency. Haploinsuf-61 ficiency is a biological phenomenon responsible for the fact that a single functional copy of a 62 63 gene in a diploid organism is insufficient to ensure a normal biological function. Haploinsufficiency is detected more frequently in essential genes than in nonessential genes in yeast (Ohnuki 64 & Ohya, 2018). Two non-mutually exclusive theories have been proposed to explain the cause of 65 haploinsufficiency: the "insufficient amounts" hypothesis and the gene dosage balance hypothe-66 67 sis (GDBH). The "insufficient amounts" hypothesis states that haploinsufficiency is the consequence of a reduced protein amount due to the loss of function of one allele, this amount being 68 69 insufficient to ensure its biological function (Deutschbauer et al., 2005). This hypothesis does not 70 explain why haploinsufficiency persisted over evolutionary time. The GDBH suggests that the

71 phenotype caused by changes of protein level in a biological process is due to stoichiometric

72 imbalances of protein complexes involved in cellular functions (Veitia, 2002; Papp et al., 2003).

73 This hypothesis predicts that haplo-insufficient genes confer a biological defect when the amount

74 of proteins is halved (such as A in a complex A-B-A) but also in excess in particular cases (such

as B in the same complex (Veitia, 2002). In contrast to the "insufficient amounts" hypothesis,

this hypothesis proposes an elegant explanation of the conservation of haploinsufficiency duringevolution.

78

79 One of the most important mechanism ensuring functional innovation during evolution is gene 80 duplication or the duplication of entire genome (Ohno et al., 1964; Hideki & Kondrashov, 2010). Whole genome duplication (WGD) events have been observed in all taxonomic groups: bacteria 81 82 (Kuroda et al, 2001), unicellular eukaryotes (Manolis et al., 2004) and in plants (Adams et al, 83 2005). In vertebrates, there have been two rounds of duplication of the ancestral deuterostome genome (Mable et al., 2011). One of the striking features that characterize the teleost genomes is 84 that they underwent an additional WGD, also called the teleost-specific genome duplication 85 (TGD), after divergence from tetrapods (Glasauer & Neuhauss, 2014). This specific WGD event 86 87 provided important additional genetic material, which strongly contributed to the radiation of 88 teleost fishes (Ravi et al., 2008). Teleosts constitute a monophyletic group of ray finned fishes, and is the widest and most diverse group of vertebrates (Robinson-Rechavi et al., 2001; Taylor et 89 al., 2003; Taylor & Raes, 2014; Christoffels et al., 2004). The high diversity of fish species com-90 91 bined with a recent complete duplication makes Clupeocephala a group of great interest for the study of complete genome duplication in the animal kingdom. 92

93

Unlike single-gene duplication events, a WGD provides all at once a large number of new genet-94 ic material, promoting an increased inter- and intra-specific diversity (Van de Peer et al, 2009, 95 96 2017). Interestingly, after WGD, all genes do not remain in duplicate with the same probability. 97 Most models predict a rapid return of part of the duplicates to a singleton state (Maere et al, 98 2005), the extra-copies being rapidly pseudogenized (Sankoff et al, 2010). In particular for the 99 rainbow trout, whose genome has duplicated one more time than that of the teleost about 100 my 100 ago, it is estimated that about 48% of the genome remaind in duplicate, when the remaining 52% of the genome quickly returned to a singleton state (Berthelot et al, 2014). 101

Understanding the rules explaining why certain genes remain in duplicate when others return to 102 singleton is a challenging issue. It has been shown that certain families of genes are more likely 103 104 to remain as duplicates in all taxonomic groups studied. This is the case for transcription factors, 105 protein kinases, enzymes and transporters (Conant et al., 2008). Recently, we showed that this is also the case for genes encoding membrane receptors and their ligands (Grandchamp et al., 106 107 2019). The first explanation that has been put forward to explain the fact that genes are more 108 often kept in duplicate is that these molecules are involved in key functions common to all organisms. Their quantitative increase would favor these key functions because of an increase in 109 the number of molecules produced (selection for an absolute dosage increase), and/or because of 110 a compensation of a potential loss of function mutation of one of both copies. Another explana-111 112 tion is based on the respect of gene dosage balance. This is particularly so for proteins whose 113 function is heavily dependent on interactions with partners.

114

115 In the present work, we have studied on 57 teleost species whether the orthologs of human genes

116 known to present a monoallelic (MA) expression or to be haplo-insufficient (HI) in human re-

117 main more frequently in duplicates or returned more frequently in singleton than the whole ge-

118 nome in fish species or not.

119 Results and Discussion

120 There is a mean number of 13882 human genes on 22836 (60.8%) that possess at least one

- 121 ortholog in at least one teleost genome. Among them, an average of 9854 (range from 3530 to 122 10868) have returned in singleton, an average of 3135 (range from 2323 to 7066) remained in
- 122 10000) have retained in singleton, an average of 5155 (range from 2525 to 7000) remained 122 duplicate and an average of 802 (range from 227 to 4772) that are in triplicate or more series
- duplicate, and an average of 893 (range from 337 to 4772) that are in triplicate or more copies.
- 124 Concerning the 312 human HI genes, 299 (95.8%) possessed at least one ortholog in at least one 125 teleost genome. Among them, an average of 172 (range from 47 to 199 depending on the studied
- 126 species) have returned in singleton, an average of 85 (range from 68 to 122 depending on the
- species) remained in duplicate, and an average of 19 (range from 3 to 140) that are in triplicate or
- more copies. A total of 285 genes remained in duplicate (or more) in at least one species among
- the 57 teleost species studied. In comparison with the whole genome, this higher percentage of genes returned to singleton and remained in duplicate or more is significantly different for 55
- species out of 57 (Chi Square analysis, p-value range from 0.058 to 4.2E-6), and for the 57 spe-
- cies studied (according to a hypergeometric test, p-value range from 0.034 to 8.5E-6). Moreover,
- in comparison with the whole genome as well, the higher percentage of genes that are in tripli-
- 134 cate or more copies is significantly higher in the genomes of Rainbow trout, Brown trout, Atlan-
- tic salmon, Huchen, and Common Carp (p-value range from 1.3E-8 to 8.1E-4) but not in the ge-
- 136 nome of the other teleosts. These results suggest that the teleost orthologs of HI human genes are
- 137 also subjected to selective pressures either related to absolute protein amounts and/or of dosage
- 138 balance issues. This suggests that HI genes in humans undergo similar constraints in in teleosts.

Among the 285 genes that remained in duplicate in at least one teleost species, 76 genes re-139 mained in duplicate or more in at least 80% (45) of species. These genes encode more (from 3 to 140 141 38 more times) transcription factors than the whole genome: bHLH transcription factor binding 142 (GO:0043425); RNA polymerase II activating transcription factor binding (GO:0001102); acti-143 vating transcription factor binding (GO:0033613); transcription factor binding (GO:0008134); 144 DNA-binding transcription factor binding (GO:0140297); DNA-binding transcription factor activity, RNA polymerase II-specific (GO:0000981); DNA-binding transcription factor activity 145 146 (GO:0003700). This enrichment of GO is completely in accordance with the GO of HI genes 147 previously reported (Veitia, 2002). There was no particularly representative GO among the genes in triplicate in the genome of teleost species. These results are compatible with both direct insuf-148 149 ficiency of a transcription factor as well as with balance issues (as they are often multi-subunited 150 complexes). Threshold effects can also be at play because of the strongly nonlinear relationships 151 (sigmoidal or S-shaped) produced by the cooperative binding of a transcription factor to a cis 152 regulatory sequence and the transcriptional response. Thus, depending on the concentration of 153 transcription factor a halved dosage may not be sufficient to cross the threshold required for a

- 154 normal transcriptional response (Veitia, 2002).
- 155 Concerning the 206 X human chromosome genes, 176 (82,6%) possessed at least one ortholog in
- at least one teleost genome. Among them, an average of 116 (range from 32 to 132 depending on
- the studied species) have returned in singleton, an average of 35 (range from 23 to 79 depending

158 on the species) remained in duplicate, and an average of 7 (range from 0 to 54) that are in triplicate or more copies. Concerning the 90 genetic imprinting genes, 51 (56,7%) possessed at least 159 one ortholog in at least one teleost genome. Among them, an average of 35 (range from 12 to 41 160 161 depending on the studied species) have returned in singleton, an average of 8 (range from 3 to 23 depending on the species) remained in duplicate, and an average of 3 (range from 0 to 20) that 162 are in triplicate or more copies. So the teleost orthologs of human genes subjected to genetic im-163 164 printing or located on X human chromosome returned to singleton or remained in duplicate (or 165 remain present as triplicates or more copies), in the same proportions than the whole genome.

166

167 Concerning the 580 human MA genes that are not localized on the X chromosome and that are not subjected to parental imprinting, 469 (80,9%) had at least one ortholog in at least one teleost 168 169 genome. Among them, an average of 265 (range from 87 to 296) have returned to singleton, an 170 average of 118 (range from 87 to 193) remained in duplicate, and an average of 26 (range from 4 to 160) that were found in triplicate or more copies. A total of 437 genes remained in duplicate in 171 at least one species among the 57 teleost species studied. In comparison with the whole genome, 172 173 the difference of percentage of genes remained in duplicate or more is significantly higher for 47 174 species on 57 (Chi Square analysis, p-value range from 0.055 to 6.5E-4), and for 50 species on 175 57 (hypergeometric test, p-value range from 0.044 to 6.2E-4). Moreover, in comparison with the whole genome as well, the difference of percentage of genes that are in triplicate or more copies 176 is significantly higher in the genomes of Rainbow trout, Brown trout, Atlantic salmon, Huchen, 177 178 and Common Carp (p-value range from 0,056 to 5.3E-3), not in the genome of the other teleosts. We found this result surprising. Indeed, one would have hypothesized that the teleost orthologs 179 of MA human genes returned more frequently to singleton than the whole genome. This suggests 180 181 that the phenomenon that the regulation -of epigenetic mechanism- of monoallelic expression is 182 not likely to occur for these genes in teleosts. Morever, this suggests that the constraints to ex-183 press only one allele in the human does not exist for these genes in teleost. Unlike the HI genes, 184 there is no particularly representative GO among the MA genes.

- 185
- 186

187 Material and methods

188 We studied 57 species of fish:

189 Amazon molly (Poecilia formosa), Atlantic herring (Clupea harengus), Atlantic salmon (Salmo salar), Ballan wrasse (Labrus bergylta), Barramundi perch (Lates calcarifer), Blue tilapia (Oreo-190 191 chromis aureus), Blunt-snouted clingfish (Gouania willdenowi), Brown trout (Salmo trutta), Burton's mouthbrooder (Haplochromis burtoni), Channel bull blenny (Cottoperca gobio), Channel 192 193 catfish (Ictalurus punctatus), Climbing perch (Anabas testudineus) Cod (Gadus morhua), Com-194 mon carp (Cyprinus carpio common carp genome), Denticle herring (Denticeps clupeoides), 195 Eastern happy (Astatotilapia calliptera), Electric eel (Electrophorus electricus), European seabass (Dicentrarchus labrax), Fugu (Takifugu rubripes), Gilthead seabream (Sparus aurata), Greater 196 amberjack (Seriola dumerili), Guppy (Poecilia reticulata), Huchen (Hucho hucho), Indian glassy 197 198 fish (Parambassis ranga), Indian medaka (Oryzias melastigma), Japanese medaka HdrR (Oryzias 199 latipes ASM223467v1), Japanese medaka HNI (Oryzias latipes ASM223471v1), Japanese meda-200 ka HSOK (Oryzias latipes ASM223469v1), Jewelled blenny (Salarias fasciatus), Large yellow 201 croaker (Larimichthys crocea), Live sharksucker (Echeneis naucrates), Lyretail cichlid (Neo-

202 lamprologus brichardi), Makobe Island cichlid (Pundamilia nyererei), Mexican tetra (Astyanax 203 mexicanus Astyanax mexicanus-2.0), Midas cichlid (Amphilophus citrinellus), Mummichog 204 (Fundulus heteroclitus), Nile tilapia (Oreochromis niloticus), Northern pike (Esox lucius), Or-205 biculate cardinalfish (Sphaeramia orbicularis), Pachon cavefish (Astyanax mexicanus Astyanax mexicanus-1.0.2), Pinecone soldierfish (Myripristis murdian), Rainbow trout (Oncorhyn-206 207 chus mykiss), Red-bellied piranha (Pygocentrus nattereri), Sailfin molly (Poecilia latipinna), 208 Sheepshead minnow (Cyprinodon variegatus), Shortfin molly (Poecilia mexicana), Siamese 209 fighting fish (Betta splendens), Stickleback (Gasterosteus aculeatus), Swamp eel (Monopterus 210 albus), Tetraodon (Tetraodon nigroviridis), Tiger tail seahorse (Hippocampus comes), Tongue 211 sole (Cynoglossus semilaevis), Turbot (Scophthalmus maximus), Yellowtail amberjack (Seriola lalandi dorsalis), Zebra mbuna (Maylandia zebra), Zebrafish (Danio rerio), Zig-zag eel (Masta-212 213 cembelus armatus).

214

These fish species diverged after complete TGD. The human genes were retrieved from EN-SEMBL. The ortholog copy for each gene was established in every one of the 57 fish species.

- 217 Then, in each species, the fate (singleton vs duplicate) of the entirety of the human gene
- orthologs was studied. Moreover, a total of 312 human genes known to be haploinsufficient were
- 219 recovered from Clingene (<u>https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/</u>), 580 human
- 220 genes known to be monoallelic (Nag et al., 2015), 206 X human chromosome genes was recov-
- ered for GeneImprint (<u>http://www.geneimprint.com/site/genes-by-species</u>) and 90 genetic im-
- printing genes (Carrel & Willard, 2005) and the fate of their fish orthologs was recovered. A list
- of human genes (GRCh38.p13) was generated using BioMart from Ensembl Genes 101. The set of human genes encoding a protein (protein coding) is selected from the gene type filter. The
- selected attributes in the homologous category are the different species of teleostens listed in
- ENSEMBL. Only stable gene IDs were selected. A list of 22836 human genes encoding a protein
- is listed.

228 We got between 12,918 (Tetraodon) and 14,626 (Brown trout) orthologous genes by fish species

- (average: 13,882). This does not represent the entire genome of each fish, but allowed us to makestrong statistics. Moreover, we compared the global evolution of the whole human genome that
- had orthologs in fishes with the specific evolution of human MA and HI genes in fish species.
- We studied whether these fish orthologs of MA and HI genes remained as a duplicate copy, or
- had return to singleton in the same proportion as whole human ortholog genes.

Both Chi Square test statistical analysis and hypergeometric analysis with Benjamini-Hochberg correction were used to test the hypothesis that teleost genes that are orthologs of human MA and HI genes remained more in duplicate than the whole genome. All the statistical tests conducted in our study were performed in R. Moreover, the Panther DataBase (<u>http://www.pantherdb.org/</u>) was used to study the gene ontology of teleost genes that are orthologs to human HI genes, and Fisher test with Benjamini-Hochberg correction was used to classify genes according to the family.

241

242 Acknowledgements

243 This work was supported by INRAE institute and by a thesis scholarship funded by the Universi-

244 ty of Tours (France). Thanks also to Alexandra Louis and Hugues Roest Crollius for helpful dis-

245	cussion and technical assistance.
246	
247	
248	
249	References
250 251	Adams KL & Wendel JF 2005 Polyploidy and Genome Evolution in Plants. <i>Current opinion</i> <i>in plant biology</i> 8: 135–141
252 253	Berthelot, Camille et al. "The Rainbow Trout Genome Provides Novel Insights into Evolution after Whole-Genome Duplication in Vertebrates." <i>Nature communications</i> 5 (2014): 3657.
254 255	Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. <i>Nature</i> . 2005 Mar 17;434(7031):400-4.
256 257	Chess A 2016 Monoallelic Gene Expression in Mammals. <i>Annual Review of Genetics</i> 50: 317-327.
258 259 260	Christoffels, Alan et al. "Fugu Genome Analysis Provides Evidence for a Whole-Genome Duplication Early during the Evolution of Ray-Finned Fishes." <i>Molecular biology and evolution</i> 21.6 (2004): 1146–1151.
261 262	Conant, Gavin C., and Kenneth H. Wolfe. "Turning a Hobby into a Job: How Duplicated Genes Find New Functions." <i>Nature Reviews Genetics</i> 9.12 (2008): 938.
263 264 265	Deutschbauer AM, Jaramillo DF, Proctor M, Umm J, Hillenmeyer ME, Davis RW, Nislow C, Giaever G 2005 Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. <i>Genetics</i> 169: 1915-1925
266 267 268	Glasauer, Stella MK, and Stephan CF Neuhauss. "Whole-Genome Duplication in Teleost Fishes and Its Evolutionary Consequences." <i>Molecular genetics and genomics</i> 289.6 (2014): 1045–1060.
269 270 271	Grandchamp A, Piégu B, Monget P 2019 Genes Encoding Teleost Fish Ligands and Associat- ed Receptors Remained in Duplicate More Frequently than the Rest of the Genome. <i>Genome Biol Evol</i> 11:1451-1462
272 273	Horsthemke B 2010 Mechanisms of imprint dysregulation American Journal of Medical Genetics. Part C Sem Med Genet 153C: 321-328
274 275	Innan, Hideki, and Fyodor Kondrashov. "The Evolution of Gene Duplications: Classifying and Distinguishing between Models." <i>Nature Reviews Genetics</i> 11.2 (2010): 97.
276 277	Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. 2001 Whole Genome Sequencing of Meticillin-Resistant Staphylococcus Aureus. <i>The Lancet</i> 357: 1225–1240.
278 279	Mable, BK, Alexandrou MA, Taylor MI 2011 "Genome Duplication in Amphibians and Fish: An Extended Synthesis." <i>Journal of Zoology</i> 284.3 (2011): 151–182.
280	Maere, Steven et al. "Modeling Gene and Genome Duplications in Eukaryotes." Proceedings

281 282	of the National Academy of Sciences of the United States of America 102.15 (2005): 5454–5459.
283 284	Manolis K, Birren BW, Lander ES 2004 Proof and Evolutionary Analysis of Ancient Genome Duplication in the Yeast Saccharomyces Cerevisiae. <i>Nature</i> 428: 617-624.
285 286 287	Nag A, Vigneau S, Savova V, Zwemer LM, Gimelbrant A 2015 Chromatin Signature Identi- fies Monoallelic Gene Expression Across Mammalian Cell Types. G3: Genes, Genomes, Genetics 5: 1713-1720
288 289	Ohno, Susumu, Ulrich Wolf, and Niels B. Atkin. "Evolution from Fish to Mammals by Gene Duplication." <i>Hereditas</i> 59.1 (1968): 169–187.
290 291	Ohnuki S & Ohya Y 2018 High-dimensional single-cell phenotyping reveals extensive hap- loinsufficiency <i>PloS Biology</i> 16: e2005130
292 293	Papp B, Pal C, Hurst LD 2003 Dosage Sensitivity and the Evolution of Gene Families in Yeast. <i>Nature</i> 424: 194-197
294 295	Ravi, Vydianathan, and Byrappa Venkatesh. "Rapidly Evolving Fish Genomes and Teleost Diversity." <i>Current opinion in genetics & development</i> 18.6 (2008): 544–550.
296 297 298	Robinson-Rechavi, Marc et al. "An Ancestral Whole-Genome Duplication May Not Have Been Responsible for the Abundance of Duplicated Fish Genes." <i>Current Biology</i> 11.12 (2001): R458–R459.
299 300	Sankoff, David, Chunfang Zheng, and Qian Zhu. "The Collapse of Gene Complement Fol- lowing Whole Genome Duplication." <i>BMC genomics</i> 11.1 (2010): 313.
301 302	Taylor, John S. et al. "Genome Duplication, a Trait Shared by 22,000 Species of Ray-Finned Fish." <i>Genome research</i> 13.3 (2003): 382–390.
303 304	Taylor, John S., and Jeroen Raes. "Duplication and Divergence: The Evolution of New Genes and Old Ideas." Annu. Rev. Genet. 38 (2004): 615–643.
305 306	Van de Peer Yves, Steven Maere, and Axel Meyer. "The Evolutionary Significance of Ancient Genome Duplications." <i>Nature Reviews Genetics</i> 10.10 (2009): 725.
307 308	Van de Peer, Yves, Eshchar Mizrachi, and Kathleen Marchal. "The Evolutionary Significance of Polyploidy." <i>Nature Reviews Genetics</i> 18.7 (2017): 411.
309	Veitia R 2002 Exploring the etiology of haploinsufficiency. BioEssays 24: 175-184
310	
311	
312	
313	
314	

2	1	5
5	Т	5

316

317

318 Legend figures

Figure 1 – Barplot of the global distribution of the genes in each category. Teleost orthologs of human genes localized on the X chromosome, of human haplo-insufficient (HI) genes, of human genes of monoallelic expression (MA, except genes that present a parental imprinting and localized on the X chromosome), of human genes that present a parental imprinting. Right: Teleost orthologs of human genes of the whole genome.

324 The yellow bars correspond to the genes that remained in duplicate; the blue bars correspond to

the genes returned in singleton. The grey bars correspond to the genes in triplicate or more. The results are presented as mean \pm SEM. * indicates a significant difference compared with the

327 whole genome (p < 0.05).

328

329 Suppl Data 1 - Table of statistic tests for each species of teleost and for each category.

Each category (HI, MA, X Chromosome, Parental imprinting) have the same construction. By

column (category HI for example): (A) Species; (B) Total number of teleost genes returned in

332 singleton. (C) Total number of teleost genes remained in duplicate; (D) Total number of teleost

333 genes in triplicate or more copies; (E) Total number of teleost genes with a human ortholog; (F)

Number of teleost orthologs of HI human genes returned in singleton; (G) Number of teleost

orthologs of HI human genes remained in duplicate; (G) Number of teleost orthologs of HI hu-

man genes in triplicate or more copies; (I) Total number of teleost orthologs to human HI gene;(J) Chi2 value of the repartition of HI orthologs in singleton, in duplicate or more copies in com-

parison with the whole genome; (K) P-value of Chi2 test; (L) Chi2 False Discovery Rate (FDR)

by Benjamini Hochberg (BH) procedure. (M) P-value of hypergeometric test between singleton

and duplicate/more copies. (N) Hypergeometric FDR by BH procedure. (O) P-value of hyperge-

341 ometric test between triplicate or more copies and in duplicate or less copies. (P) Hypergeometric

FDR by BH procedure.

The same organization of columns is used for the other categories (MA, X chromosome, imprinted genes).

345 Concerning for HI and MA categories, the chi2 test is significant for 55/57 and 47/57 species,

respectively, and the hypergeometric test is significant for 57/57 and 50/57 species, respectively,

i.e. these orthologs remain more frequently in duplicate than the whole genome. For comparison

348 between triplicate (or more copies) and duplicate (or less copies), the hypergeometric test is sig-

349 nificant for 5/57 (salmonids and carp) and 3/57 species respectively (salmonid and carp as well).

		Gen	ome		
Species	Number of single copy	Number of duplicate	Number of triplicate or more	Total number of	Number of parental imprinting teleost orthologs
•	genes	copy genes	copy genes	genes	returned in singleton
Amazon molly	10313	2909	712	13934	40
Atlantic herring	10198	2818	624	13640	36
Atlantic salmon	3919	6418	4147	14484	15
Ballan wrasse	9759	3130	1027	13916	35
Barramundi perch	10123	3089	836	14048	40
Blue tilapia	10480	2910	651	14041	38
Blunt-snouted clingfish	10139	2552	549	13240	33
Brown trout	3744	7066	3816	14626	14
Burton's mouthbrooder	10678	2836	514	14028	37
Channel bull blenny	10109	2678	517	13304	39
Channel catfish	10868	2672	590	14130	35
Climbing perch	10638	2979	540	14157	40
Cod	10411	2323	379	13113	35
Common carp	3530	5699	4772	14001	12
Denticle herring	9916	3182	798	13896	34
Eastern happy	10464	2865	713	14042	40
Electric eel	10526	2973	513	14012	36
European seabass	10503	2861	442	13806	37
Fugu	10133	2549	576	13258	31
Gilthead seabream	10711	2870	495	14076	38
Greater amberjack	10750	2957	552	14259	35
Guppy	10623	2662	509	13794	36
Huchen	3797	6234	4510	14541	12
Indian glassy fish	10440	2833	556	13829	40
Indian medaka	10589	2798	531	13918	38
Japanese medaka HdrR	10699	2557	474	13730	38
Japanese medaka HNI	10528	2432	426	13386	39
Japanese medaka HSOK	10609	2563	455	13627	37
Jewelled blenny	9907	2882	881	13670	35
Large yellow croaker	10645	2916	464	14025	40
Live sharksucker	10656	2761	422	13839	36
Lyretail cichlid	10331	2816	640	13787	38
Makobe Island cichlid	10552	2881	537	13970	37
Mexican tetra	10464	3139	621	14224	37
Midas cichlid	10441	2761	595	13797	36
Mummichog	10489	2813	553	13855	38
Nile tilapia	10588	2803	574	13965	36
Northern pike	10447	3354	462	14263	37
Orbiculate cardinalfish	10081	2994	797	13872	36
Pachon cavefish	10333	2844	497	13674	34
Pinecone soldierfish	10486	3042	553	14081	41
Rainbow trout	4274	6304	3445	14023	16
Red-bellied piranha	10767	3201	589	14557	38
Sailfin molly	10238	2843	780	13861	37
Sheepshead minnow	10388	2800	597	13785	39
Shortfin molly	10174	2962	780	13916	39
Siamese fighting fish	10663	2637	432	13732	38

Stickleback	10384	2474	337	13195	34
Swamp eel	10771	2672	512	13955	36
Tetraodon	9699	2576	643	12918	32
Tiger tail seahorse	10485	2519	512	13516	38
Tongue sole	10473	2615	555	13643	35
Turbot	10755	2757	340	13852	37
Yellowtail amberjack	10347	3084	735	14166	38
Zebra mbuna	10262	3037	831	14130	39
Zebrafish	10601	2942	552	14095	38
Zig-zag eel	10768	2867	431	14066	38
MAXIMAL	10868	7066	4772	14626	41
MINIMAL	3530	2323	337	12918	12
MEAN	9853.78947	3135.2807	892.82456	13881.89474	34.96491

Number of parental imprinting teleost orthologs Number of parental imprinting teleost orthologs Total number of parental imprinting genes Chi2 test 7 1 48 2.16781931651791 5 2 43 1.82790798273002 20 12 47 0.561884391366698 7 3 45 1.2570826509669 5 3 48 3.02984136731787 8 1 447 0.958289002886 22 11 47 0.433033913803445 9 1 447 0.433033913803445 9 1 477 0.43202846258449 7 0 47 2.478786571492 6 0 441 0.8936274789101 23 14 49 0.004313723202833932 10 4 48 0.00431372320839832 7 0 47 2.77440861277988 6 2 44 1.058549667334.3 5 3 45 0.934107006146681	Parental impr	inting genes		с
7 1 48 2.16781931651791 5 2 43 1.82790798273002 20 12 47 0.5618439136698 7 3 45 1.25708265096669 5 3 48 3.02984136731787 8 1 47 0.958283980028986 7 2 42 0.0930015339869288 22 11 47 0.43303913803445 9 1 47 0.175350903859632 8 0 47 1.25991609315485 10 3 48 0.43202846258449 7 0 47 2.4787865671492 6 0 41 0.89362774798101 23 14 49 0.001357232028393 10 4 48 0.00648137825067259 7 0 47 2.7744086127798 6 2 44 1.05585496619677 9 1 45 0.138175058156103 7	Number of parental imprinting teleost orthologs remained in	Number of parental imprinting teleost orthologs remained in	Total number of parental imprinting genes	Chi2 test
5 2 43 1.8279078923002 20 12 47 0.561884391366698 7 3 45 1.25708265096669 5 3 48 3.0284136731787 8 1 47 0.95628398602886 22 11 47 0.433033913803445 9 1 47 0.433033913806328 8 0 47 1.25991609315485 10 3 48 0.43202846258449 7 0 47 2.49787865671492 6 0 41 0.89362774788101 23 14 49 0.013572320288383 10 4 48 0.00648137825067259 7 0 47 2.7474086127798 6 2 44 1.05585496673543 5 3 45 0.934107006146881 11 2 44 0.871895653983832 7 1 46 1.073201856196734 5	7	1	48	2.16781931651791
20 12 47 0.561884391366698 7 3 45 1.25708265096669 5 3 48 3.02984136731787 8 1 47 0.956283980028896 7 2 42 0.093001533869288 22 11 47 0.43303913803445 9 1 47 0.175350903859632 8 0 47 1.25991609315485 10 3 48 0.432028462558449 7 0 47 2.4978786671432 6 0 41 0.89362774788101 23 14 49 0.0135723028893 10 4 48 0.006467543 5 3 45 0.934107006146681 11 2 44 0.871895653983832 7 1 46 0.000820767112382734 5 3 45 0.138175058166103 7 3 46 0.0405421597713641 15	5	2	43	1.82790798273002
7 3 45 1.25708265096669 5 3 48 3.02984136731787 8 1 47 0.958283980028986 7 2 42 0.0930015339869288 22 11 47 0.43303391803445 9 1 47 0.43303391803445 9 1 47 0.175350903859632 8 0 47 1.25991609315485 10 3 48 0.4320284665674492 6 0 47 2.49787865671492 6 0 47 2.49787865671492 6 0 47 2.7744086127798101 23 14 49 0.013572320283893 10 4 48 0.00648137825067259 7 0 47 2.77440861277986 6 2 44 0.87189565383832 7 1 46 0.040542159713641 15 20 47 0.00820767112382734 5	20	12	47	0.561884391366698
5 3 48 3.0298438673787 8 1 47 0.9582839802889 7 2 42 0.093001533986928 22 11 47 0.433033913803445 9 1 47 0.433033913803445 9 1 47 0.433033913803445 9 1 47 0.432028462558449 7 0 47 2.49787865671492 6 0 41 0.89362774798101 23 14 49 0.0157232028383393 10 4 48 0.00648137825067259 7 0 47 2.7744086127798 6 2 44 1.05585496673543 5 3 45 0.934107006146681 11 2 44 0.8718956561393 7 1 46 1.073201856193 7 3 46 0.0405421597713641 15 20 47 0.587584628055566 3	7	3	45	1.25708265096669
8 1 47 0.958283980028896 7 2 42 0.093001533869282 22 11 47 0.433033913803445 9 1 47 0.175350903859632 8 0 47 1.25991609315485 10 3 48 0.432028462558449 7 0 47 2.49787865671492 6 0 41 0.89362774798101 23 14 49 0.013573202838833 10 4 48 0.00648137825067259 7 0 47 2.77440861277986 6 2 44 1.0558540673543 5 3 45 0.93410706146681 11 2 44 0.87189565398332 7 1 46 1.073201856196103 7 3 46 0.0405421597713641 15 20 47 0.082076711232734 5 3 48 1.5946349246533 5 <td>5</td> <td>3</td> <td>48</td> <td>3.02984136731787</td>	5	3	48	3.02984136731787
7 2 42 0.0930015339869288 22 11 47 0.43303391303445 9 1 47 0.175350903859632 8 0 47 1.25991609315485 10 3 48 0.432028462558449 7 0 47 2.49787865671492 6 0 41 0.89362774798101 23 14 49 0.013572320288393 10 4 48 0.00648137825067299 7 0 47 2.7744086127798 6 2 44 1.05585496673543 5 3 45 0.934107006146681 11 2 44 0.87189565398332 7 1 46 1.07320185616703 9 1 45 0.1381750581566103 7 3 46 0.0405421597713641 15 20 47 0.05875462055566 3 5 46 0.58679384563407 3 <td>8</td> <td>1</td> <td>47</td> <td>0.958283980028896</td>	8	1	47	0.958283980028896
22 11 47 0.433033913803445 9 1 47 0.175350903859632 8 0 47 1.25991609315485 10 3 48 0.432028462558449 7 0 47 2.49787865671492 6 0 41 0.8932774798101 23 14 49 0.013572320283893 10 4 48 0.00648137825067259 7 0 47 2.7744086127798 6 2 44 0.5585496673543 5 3 45 0.934107006146881 11 2 44 0.871895653983832 7 1 46 1.07320185619677 9 1 45 0.138175058156103 7 3 46 0.0405421597713641 15 20 47 0.00820767112382734 5 3 48 1.59463492246533 5 4 47 0.587584628055566 3 </td <td>7</td> <td>2</td> <td>42</td> <td>0.0930015339869288</td>	7	2	42	0.0930015339869288
9 1 47 0.175350903859632 8 0 47 1.25991609315485 10 3 48 0.432028462558449 7 0 47 2.49787686571492 6 0 41 0.89362774798101 23 14 49 0.0135723202883893 10 4 48 0.0064817825067259 7 0 47 2.77440861277998 6 2 44 1.05585496673543 5 3 45 0.934107006146681 11 2 44 0.871895653983832 7 1 46 1.07320185619677 9 1 45 0.138175058156103 7 3 46 0.0405421597713641 15 20 47 0.082076711282734 5 3 48 1.59463492246533 5 4 47 0.58784628055566 3 5 46 0.58784628055566 3	22	11	47	0.433033913803445
8 0 47 1.25991609315485 10 3 48 0.432028462558449 7 0 47 2.49787865671492 6 0 41 0.89362774798101 23 14 49 0.0135723202883893 10 4 48 0.00648137825067259 7 0 47 2.7744086127799 6 2 44 1.05585496673543 5 3 445 0.934107006146681 11 2 44 0.871895653983832 7 1 46 1.07320185619677 9 1 45 0.138175058156103 7 3 46 0.0405421597713641 15 20 47 0.00820767112382734 5 3 48 1.59463492246533 5 4 47 0.687584628055666 3 5 46 0.634860547020917 7 0 47 2.177722505823 6 <td>9</td> <td>1</td> <td>47</td> <td>0.175350903859632</td>	9	1	47	0.175350903859632
10 3 48 0.432028462558449 7 0 47 2.49787865671492 6 0 41 0.89362774798101 23 14 49 0.0135723202883893 10 4 48 0.00648137825067259 7 0 47 2.77440861277998 6 2 44 1.05585496673543 5 3 45 0.934107006146681 11 2 44 0.871895653983832 7 1 46 1.07320185619677 9 1 45 0.13175058156103 7 3 46 0.0405421597713641 15 20 47 0.00820767112382734 5 3 48 1.59463492246533 5 4 47 0.587584628055666 3 5 46 0.638460547020917 7 0 47 2.1777225095823 6 2 46 1.44287002784328 6 <td>8</td> <td>0</td> <td>47</td> <td>1.25991609315485</td>	8	0	47	1.25991609315485
70472.4978786567149260410.893627747981012314490.013572320288393104480.0064813782506725970472.7744086127799862441.0558549667354353450.934107006146681112440.87189565398383271461.0732018561967791450.13817505815610373460.04054215977136411520470.082076711238273453481.5946349224653354470.58758462805556635460.58679384563407333451.7225258220406244450.63486054702091770472.1777222509582362440.57681519451076562440.57681519451076562461.442870025259472450.45710393916711681470.676589161381741100460.14122883554772430.28578312270242652483.025737761357391480.67458032455105391480.67458032455105391480.67458032455105381461.0293742625661781461.029374262566	10	3	48	0.432028462558449
6 0 41 0.8362774798101 23 14 49 0.0135723202883893 10 4 48 0.0064137825067259 7 0 47 2.774086137825067259 6 2 44 1.05585496673543 5 3 45 0.934107006146681 11 2 44 0.871895653983832 7 1 46 1.073201856196173 9 1 45 0.138175058156103 7 3 46 0.0405421597713641 15 20 47 0.00820767112382734 5 3 48 1.59463492246533 5 4 47 0.587584628055566 3 5 46 0.58679384563407 3 3 45 1.7252582204062 4 4 45 0.498274781581108 6 4 45 0.638460547020917 7 0 47 2.17772225095823 6	7	0	47	2 49787865671492
23 14 49 0.01357232028383 10 4 48 0.00648137825067259 7 0 47 2.7744086127798 6 2 44 1.05585496673543 5 3 45 0.934107006146681 11 2 44 0.871895653983832 7 1 46 1.07320185619677 9 1 45 0.138175058156103 7 3 46 0.0405421597713641 15 20 47 0.0820767112382734 5 3 48 1.59463492246533 5 4 47 0.58758462805566 3 3 45 1.72252582204062 4 4 45 0.498274781581108 6 4 45 0.498274781581108 6 2 44 45 7 0 47 2.1777225095823 6 2 46 1.44287002784328 8 2 <td>6</td> <td>0</td> <td>41</td> <td>0 89362774798101</td>	6	0	41	0 89362774798101
10 4 48 0.00648137825067259 7 0 47 2.77440861277998 6 2 44 1.05585496673543 5 3 45 0.934107006146681 11 2 44 0.871895653983832 7 1 46 1.07320185619677 9 1 45 0.138175058156103 7 3 46 0.0405421597713641 15 20 47 0.00820767112382734 5 3 48 1.5946349246533 5 4 47 0.587584628055566 3 5 46 0.58673384563407 3 3 45 1.72252582204062 4 4 45 0.498274781581108 6 4 45 0.634860547020917 7 0 47 2.17772225095823 6 2 44 0.576815194510765 6 2 46 1.44287002784328 8	23	14	49	0.0135723202883893
10401010010070472.7744086127799862441.0558549667354353450.934107006146681112440.8718956398383271461.0732018561967791450.13817505815610373460.04054215977136411520470.0082076711238273453481.5946349224653354470.5875846280556635460.58679384563407333451.7225258220406244450.49827478158110864450.63486054702091770472.177722509582362440.57681519451076562440.57681519451076562440.57681519451076562450.4571039316711681470.676589161381741100460.14971102161818281461.2132646550308783470.3644312288554772483.025737768135731910450.54742382151595391480.67458032455108381461.0293742625661781461.0293742625661781461.0293742625661781481.61775914165671	10	4	40	0.00648137825067259
1 0 41 1.11 <td>7</td> <td>ب ۱</td> <td>40</td> <td>2 77//0861277998</td>	7	ب ۱	40	2 77//0861277998
0 2 44 1.0530543007354007343007 5 3 45 0.934107006146681 11 2 44 0.871895653983832 7 1 46 1.07320185619677 9 1 45 0.138175058156103 7 3 46 0.0405421597713641 15 20 47 0.00820767112382734 5 3 48 1.59463492246533 5 4 47 0.587584628055566 3 5 46 0.58679384563407 3 3 45 1.72252582204062 4 4 45 0.634860547020917 7 0 47 2.17772225095823 6 2 44 0.576815194510765 6 2 44 1.44287002784328 8 2 47 0.258819801348492 6 3 46 1.11609210522594 7 2 45 0.457103939167116 8	6	2	47	1 05585406673543
3343 0.334107000140001 11244 0.87189563983832 7146 1.073201856196777 9145 0.138175058156103 7346 0.0405421597713641 152047 0.00820767112382734 5348 1.59463492246533 5447 0.587584628055566 3546 0.58679384563407 33345 1.72252582204062 4445 0.498274781581108 6445 0.634860547020917 7047 2.1777222509823 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 0.149711021618182 8347 0.32643122885547 7243 0.28573776813573 9148 0.674580324551083 8146 1.02937426256617 8047 1.47014183202537 8148 1.61775914165671 8047 1.47014183202537 8146 0.651559243263345	5	2	44	0.03/1070061/6681
11 2 44 0.871893033632 7 1 46 1.07320185619677 9 1 45 0.138175058156103 7 3 46 0.0405421597713641 15 20 47 0.00820767112382734 5 3 48 1.59463492246533 5 4 47 0.587584628055566 3 5 46 0.58679384563407 3 3 5 1.72252582204062 4 4 45 0.498274781581108 6 4 45 0.634860547020917 7 0 47 2.1777225095823 6 2 44 0.576815194510765 6 2 44 0.576815194510765 6 2 46 1.44287002784328 8 2 47 0.258819801348492 6 3 46 1.11609210522594 7 2 45 0.457103939167116 8	11	<u></u> ວ	40	0.934107000140001
7 1 460 1.07320183619677 9 1 455 0.138175058156103 7 3 46 0.0405421597713641 15 20 47 0.00820767112382734 5 3 48 1.59463492246533 5 4 47 0.587584628055566 3 5 46 0.58679384563407 3 3 5 46 0.58679384563407 3 3 3 45 1.72252582204062 4 4 45 0.498274781581108 6 4 45 0.634860547020917 7 0 47 2.1777225095823 6 2 44 0.576815194510765 6 2 44 0.576815194510765 6 2 44 0.576815194510765 6 2 44 0.576815194510765 6 2 46 1.44287002784328 8 2 47 0.258819801348492	11	<u> </u>	44	0.071095055965652
9145 0.138175058156103 7346 0.0405421597713641 152047 0.00820767112382734 5348 1.59463492246533 5447 0.587584628055566 3546 0.58679384563407 3345 1.72252582204062 4445 0.498274781581108 6445 0.634860547020917 7047 2.17772225095823 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 0.149711021618182 8347 0.36443122885547 7243 0.285783122702426 5248 3.02573776813573 9148 0.6745803245510833 8146 1.02937426256617 8146 1.02937426256617 8146 1.02937426256617 8148 1.61775914165671 8146 0.651559243263343	1	1	40	1.07320185619677
7346 0.040542159773641 152047 0.00820767112382734 5348 1.59463492246533 5447 0.587584628055566 3546 0.58679384563407 33345 1.72252582204062 4445 0.498274781581108 6445 0.634860547020917 7047 2.17772225095823 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 0.149711021618182 8347 0.36443122885547 7243 0.285783122702426 5248 3.02573776813573 9148 0.674580324551083 8146 1.02937426256617 8146 1.02937426256617 8148 1.61775914165671 8148 1.61775914165671 8148 1.61775914165671 7146 0.65159243263343	9	1	45	0.138175058156103
152047 0.00820767112382734 5348 1.59463492246533 5447 0.587584628055566 3546 0.58679384563407 3345 1.72252582204062 4445 0.634860547020917 6445 0.634860547020917 7047 2.17772225095823 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 0.149711021618182 8347 0.364431228865547 7243 0.285783122702426 5248 3.02573776813573 9148 0.674580324551083 8146 1.02937426256617 8146 1.029374262556617 8146 1.029374262556617 8148 1.61775914166571 8148 1.61775914166571	1	3	46	0.0405421597713641
5348 1.59463492246533 5447 0.587584628055566 3546 0.58679384563407 3345 1.7225282204062 4445 0.498274781581108 6445 0.634860547020917 7047 2.17772225095823 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 1.21326465503087 8347 0.364431228885547 7243 0.285783122702426 5248 3.02573776813573 191045 0.547423821515953 9148 0.674580324551083 8146 1.02937426256617 8148 1.61775914165671 7146 0.651559243263343	15	20	47	0.00820767112382734
5447 0.587584628055566 3546 0.58679384563407 3345 1.7225282204062 4445 0.498274781581108 6445 0.634860547020917 7047 2.17772225095823 6244 0.576815194510765 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 1.21326465503087 8347 0.364431228885547 7243 0.285783122702426 5248 3.02573776813573 191045 0.547423821515953 9148 0.674580324551083 8146 1.02937426256617 8148 1.61775914165671 7146 0.651559243263343	5	3	48	1.59463492246533
3546 0.58679384563407 3345 1.72252582204062 4445 0.498274781581108 6445 0.634860547020917 7047 2.17772225095823 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 0.149711021618182 8347 0.364431228885547 7243 0.285783122702426 5248 3.02573776813573 9148 0.674580324551083 8146 1.02937426256617 8047 1.47014183202537 8148 1.61775914165671 7146 0.651559243263343	5	4	47	0.587584628055566
3345 1.72252582204062 4445 0.498274781581108 6445 0.634860547020917 7047 2.17772225095823 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 0.149711021618182 8347 0.364431228885547 7243 0.285783122702426 5248 3.02573776813573 9148 0.674580324551083 8146 1.02937426256617 8047 1.47014183202537 8148 1.61775914165671 7146 0.651559243263343	3	5	46	0.58679384563407
4445 0.498274781581108 6445 0.634860547020917 7047 2.17772225095823 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 0.149711021618182 8146 1.21326465503087 8347 0.364431228885547 7243 0.285783122702426 5248 3.02573776813573 191045 0.547423821515953 9148 0.674580324551083 8146 1.02937426256617 8047 1.47014183202537 8148 1.61775914165671 7146 0.651559243263343	3	3	45	1.72252582204062
6 4 45 0.634860547020917 70 47 2.17772225095823 6 2 44 0.576815194510765 6 2 46 1.44287002784328 8 2 47 0.258819801348492 6 3 46 1.11609210522594 7 2 45 0.457103939167116 8 1 47 0.676589161381741 10 0 46 0.149711021618182 8 1 46 1.21326465503087 8 3 47 0.364431228885547 7 2 43 0.285783122702426 5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	4	4	45	0.498274781581108
7047 2.17772225095823 6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 0.149711021618182 8146 1.21326465503087 8347 0.364431228885547 7243 0.285783122702426 5248 3.02573776813573 9148 0.674580324551083 8146 1.02937426256617 8047 1.47014183202537 8148 1.61775914165671 7146 0.651559243263343	6	4	45	0.634860547020917
6244 0.576815194510765 6246 1.44287002784328 8247 0.258819801348492 6346 1.11609210522594 7245 0.457103939167116 8147 0.676589161381741 10046 0.149711021618182 8146 1.21326465503087 8347 0.364431228885547 7243 0.285783122702426 5248 3.02573776813573 9148 0.674580324551083 8146 1.02937426256617 8047 1.47014183202537 8148 1.61775914165671 7146 0.651559243263343	7	0	47	2.17772225095823
6 2 46 1.44287002784328 8 2 47 0.258819801348492 6 3 46 1.11609210522594 7 2 45 0.457103939167116 8 1 47 0.676589161381741 10 0 46 0.149711021618182 8 1 46 1.21326465503087 8 3 47 0.364431228885547 7 2 43 0.285783122702426 5 2 48 3.02573776813573 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 8 1 48 1.61775914165671 7 1 46 0.651559243263343	6	2	44	0.576815194510765
8 2 47 0.258819801348492 6 3 46 1.11609210522594 7 2 45 0.457103939167116 8 1 47 0.676589161381741 10 0 46 0.149711021618182 8 1 46 1.21326465503087 8 3 47 0.364431228885547 7 2 43 0.285783122702426 5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 8 1 48 1.61775914165671 7 1 46 0.651559243263343	6	2	46	1.44287002784328
6 3 46 1.11609210522594 7 2 45 0.457103939167116 8 1 47 0.676589161381741 10 0 46 0.149711021618182 8 1 46 1.21326465503087 8 3 47 0.364431228885547 7 2 43 0.285783122702426 5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	8	2	47	0.258819801348492
7 2 45 0.457103939167116 8 1 47 0.676589161381741 10 0 46 0.149711021618182 8 1 46 1.21326465503087 8 3 47 0.364431228885547 7 2 43 0.285783122702426 5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	6	3	46	1.11609210522594
8 1 47 0.676589161381741 10 0 46 0.149711021618182 8 1 46 1.21326465503087 8 3 47 0.364431228885547 7 2 43 0.285783122702426 5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	7	2	45	0.457103939167116
10 0 46 0.149711021618182 8 1 46 1.21326465503087 8 3 47 0.364431228885547 7 2 43 0.285783122702426 5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	8	1	47	0.676589161381741
8 1 46 1.21326465503087 8 3 47 0.364431228885547 7 2 43 0.285783122702426 5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	10	0	46	0.149711021618182
8 3 47 0.364431228885547 7 2 43 0.285783122702426 5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	8	1	46	1.21326465503087
7 2 43 0.285783122702426 5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	8	3	47	0.364431228885547
5 2 48 3.02573776813573 19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	7	2	43	0.285783122702426
19 10 45 0.547423821515953 9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	5	2	48	3.02573776813573
9 1 48 0.674580324551083 8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	19	10	45	0.547423821515953
8 1 46 1.02937426256617 8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	9	1	48	0.674580324551083
8 0 47 1.47014183202537 8 1 48 1.61775914165671 7 1 46 0.651559243263343	8		46	1.02937426256617
8 1 48 1.61775914165671 7 1 46 0.651559243263343	8	0	Δ7	1.47014183202537
7 1 46 0.651559243263343	8	1	48	1.61775914165671
	7	1	46	0.651559243263343

6	0	40	0.948025644493705
6	1	43	1.04345241940465
5	2	39	1.01268132801778
7	2	47	0.290012781977809
7	2	44	0.190759310728167
7	0	44	1.05406939973635
7	2	47	1.45588817316256
8	0	47	2.53398985695549
8	0	46	1.35021591208845
7	1	46	0.939691575718443
23	20	49	3.02984
3	0	39	0.00648
8.07018	2.73684	45.77193	0.99444

mparison between sin	gleton. duplicate. triplio	cate and more copies	
Chi2 test p-value	Chi2 test FDR (Benjamini-Hochberg procedure)	Hypergeometric test p-value	Hypergeometric test FDR (Benjamini- Hochberg procedure)
0.140925948344524	0.644340954762652	0.955257133221294	0.977568316880199
0.176374844100671	0.644340954762652	0.943090901659366	0.977568316880199
0.453501987548966	0.654605433377509	0.821149626567003	0.977568316880199
0.262204028175485	0.644340954762652	0.903912791062508	0.977568316880199
0.0817460083949506	0.644340954762652	0.976652019033423	0.977568316880199
0.32761960678852	0.644340954762652	0.87696317803767	0.977568316880199
0.760395453111118	0.817783789194976	0.677908793033684	0.977568316880199
0 51050399575099	0.661971167959833	0 798201872937035	0 977568316880199
0 675399424699246	0 769955344157141	0 715742341253019	0.977568316880199
0 261666973605296	0 644340954762652	0.906801386400846	0.977568316880199
0.510995287547941	0.661971167959833	0.305130226439542	0 977568316880199
0 113999761623482	0 644340954762652	0 966445334353108	0 977568316880199
0.344496112381048	0.644340954762652	0.876163779905064	0.977568316880199
0 907256047031207	0.935834023177937	0.529996518795498	0.977568316880199
0.007200017001207	0.935834023177937	0.52246887814117	0.977568316880190
0.0957820280380141	0 644340954762652	0 972841898421625	0.977568316880199
0 304162478404626	0.644340954762652	0.888929778844751	0.977568316880190
0.333797991174305	0.644340954762652	0.876050192897145	0.977568316880190
0.350/310/5572671	0.644340954762652	0.2201/18002183205	0.077568316880100
0.300223340604318	0.644340954762652	0.220440502100200	0.077568316880100
0.300223340034310	0.044340334702032	0.090404090090040	0.977568316880100
0.8/0/2/253853623	0.88711//0017882/	0.636/183//382686	0.977568316880100
0.040424200000020	0.007114430170024	0.000410044002000	0.977568316880100
0.327013432327137	0.5555554025177557	0.040000407110704	0.977568316880100
0.200000100001101	0.65/605/33377500	0.32340440270731	0.977568316880100
0.443661603667878	0.654605433377509	0.020070011102013	0.977568316880100
0.445001005007070	0.034003433377303	0.027044517040005	0.977568316880100
0.10000240002402	0.661071167050833	0.303371071000001	0.977568316880100
0.40020010000241	0.65/605/33377500	0.0100001210400	0.977568316880100
0.420070070070202	0.644340954762652	0.052407004410107	0.077568316880100
0.140021000014000	0.65/605/33377500	0.300302340323234	0.977568316880100
0.229675471658379	0.644340954762652	0.020001001117002	0.977568316880190
0.610032128750204	0.725/181002800075	0.7/63/21/2838567	0.077568316880100
0.29076148354252	0.644340954762652	0.892966671281818	0.977568316880190
0.20070140004202	0.661971167959833	0.800323737955721	0.977568316880190
0.430300370300033	0.65/605/33377500	0.000020707500721	0.977568316880100
0.69881166945096	0.77838107559659	0.704868334360213	0.977568316880190
0.270686527802615	0.644340954762652	0.901511023165936	0.977568316880190
0.546055484693868	0.691670280612232	0 775733066107286	0.977568316880199
0 592935564166668	0 719092067180853	0 757192802973317	0.977568316880190
0.0819530397653641	0 644340954762652	0.977568316880199	0.977568316880190
0.459372233949129	0.654605433377509	0.817877385042016	0.977568316880190
0.411459240677466	0.654605433377509	0.838292761124089	0.977568316880190
0.31030568070788	0.644340954762652	0.884573287417485	0.977568316880199
0.225323317138451	0.644340954762652	0.921880265759968	0.977568316880199
0.203404526576614	0.644340954762652	0.92939124460366	0.977568316880199
0.419555760475738	0.654605433377509	0.83793982459297	0.977568316880199

0.330222362168513	0.644340954762652	0.882391184023231	0.977568316880199
0.307019887699219	0.644340954762652	0.88966933324267	0.977568316880199
0.314261331664772	0.644340954762652	0.886970449014357	0.977568316880199
0.590212339400406	0.719092067180853	0.757409644833045	0.977568316880199
0.6622853998245	0.769955344157141	0.724148168991361	0.977568316880199
0.304571725611271	0.644340954762652	0.890643225663272	0.977568316880199
0.227585490213454	0.644340954762652	0.91949956334093	0.977568316880199
0.111418169974796	0.644340954762652	0.966160463046428	0.977568316880199
0.245240374315873	0.644340954762652	0.91368190937084	0.977568316880199
0.332357173110182	0.644340954762652	0.876576965710438	0.977568316880199
0.93583	0.93583	0.97757	0.97757
0.08175	0.64434	0.22045	0.97757
0.39979	0.68383	0.81934	0.97757

Comparison betweer copies and dupli or	n tripli or more r less copies
Hypergeometric test p-value	Hypergeometric test FDR (Benjamini- Hochberg procedure)
0.919697883721407	1
0.591671556911165	1
0.731618535243889	1
0.655280844788823	1
0.55040331717341	1
0.89300832429622	1
0.524685862083034	1
0.714964489765281	1
0.82750852910998	1
1	1
0.324438851863797	1
1	1
1	1
0.832830330656687	1
0.296585625240612	1
1	1
0.482545496528408	1
0.173894245758489	1
0.575679270258282	1
0.807846579527661	1
0.831273389308077	1
0.240387740607254	1
0.0626763623704843	1
0.303860354974478	1
0.103473462396853	1
0.020560745644604	1
0.171765715980766	1
0.0624317485962584	1
0.329504317689732	1
1	1
0.389906623547002	1
0.636665677356488	1
0.544224894048767	1
0.325558848240955	1
0.583885952588294	1
0.853047315048397	1
1	1
0.780655009805815	1
0.511810362172052	1
0.466686896846573	1
0.567497718467925	1
0.69752313275528	1
0.862731684825785	1
0.930658132592561	1
1	1
0.937562813354077	1
0.770725733121052	1

1	1
1	0.800068676788555
1	0.584939098783418
1	0.536228923097732
1	0.53943407032701
1	1
1	0.708496608567602
1	1
1	1
1	0.761616606692177
1	1
1	0.02056
1	0.64594