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Abstract

Despite advances in the neuroscience of visual consciousness over the last decades, we still lack
a framework for understanding the scope of unconscious processing and how it relates to conscious
experience. Previous research observed brain signatures of unconscious contents in visual cortex,
but these have not been identified in a reliable manner, with low trial numbers and signal detec-
tion theoretic constraints not allowing to decisively discard conscious perception. Critically, the
extent to which unconscious content is represented in high-level processing stages along the ventral
visual stream and linked prefrontal areas remains unknown. Using a within-subject, high-precision,
highly-sampled fMRI approach, we show that unconscious contents, even those associated with null
sensitivity, can be reliably decoded from multivoxel patterns that are highly distributed along the
ventral visual pathway and also involving prefrontal substrates. Notably, the neural representation in
these areas generalised across conscious and unconscious visual processing states, placing constraints
on prior findings that fronto-parietal substrates support the representation of conscious contents and
suggesting revisions to models of consciousness such as the neuronal global workspace. We then
provide a computational model simulation of visual information processing/representation in the ab-
sence of perceptual sensitivity by using feedforward convolutional neural networks trained to perform
a similar visual task to the human observers. The work provides a novel framework for pinpointing
the neural representation of unconscious knowledge across different task domains.
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Introduction
The neuroscience of consciousness aims to explain the neurobiological basis of subjective experience -
the personal stream of perceptions, thoughts and beliefs that make our inner world. Understanding the
distinction between conscious and unconscious information processing remains a key unresolved issue.
This is paramount for developing a comprehensive neuroscientific account of consciousness and its role
in cognition and behaviour. Influential neurocognitive models of visual consciousness such as the global
neuronal workspace model propose that conscious awareness is associated with sustained activity in
large-scale association networks involving fronto-parietal cortex, making information globally accessible
to systems involved in working memory, report and behavioural control (Dehaene, 2014). Unconscious
visual processing, on the other hand, is thought to be transient and operate locally in domain-specific
systems -i.e. supporting low-level perceptual analysis (V. A. F. Lamme, 2020). Recent studies have
however confronted this view with intriguing data suggesting that unconscious information processing
is implicated in higher-order operations associated with cognitive control (Van Gaal & Lamme, 2012),
memory-guided behaviour across both short- and long-term delays (Soto, Mäntylä, & Silvanto, 2011;
Trübutschek et al., 2017; Rosenthal, Andrews, Antoniades, Kennard, & Soto, 2016; Chong, Husain, &
Rosenthal, 2014; Wuethrich, Hannula, Mast, & Henke, 2018), and also language computations (Hassin,
2013); however, follow-up work did not support this view (Rabagliati, Robertson, & Carmel, 2018),
and even the evidence for unconscious semantic priming has been recently called into question (Kouider
& Dehaene, 2007; Stein, Utz, & van Opstal, 2020). The limits and scope of unconscious information
processing remain to be determined.

This controversy is likely to originate from the lack of a sound framework to isolate unconscious
information processing (Soto, Sheikh, & Rosenthal, 2019). Studies often rely only on subjective measures
of (un)awareness (Overgaard, Timmermans, Sandberg, & Cleeremans, 2010) to pinpoint the neural
markers of unconscious processing, but these measures are sensitive to criterion biases for deciding
to report the presence or absence of awareness (Peters & Lau, 2015), hence making it impossible to
determine whether “subjectively invisibility” is truly associated with unconscious processing. Previous
studies reported brain signatures of unconscious contents in visual cortex (Sterzer, Haynes, & Rees, 2008;
Haynes & Rees, 2005; Jiang, Zhou, & He, 2007; Dehaene, Naccache, Cohen, Bihan, et al., 2001), but
these signatures have not been identified in a reliable manner (Fang & He, 2005; Hesselmann, Hebart,
& Malach, 2011; Ludwig & Hesselmann, 2015; Ludwig, Kathmann, Sterzer, & Hesselmann, 2015). In
these studies using objective measures of (un)awareness, perceptual sensitivity tests are collected off-
line, outside the original task context, and typically employ a low number of trials per participant to
conclusively exclude conscious awareness and meet the null sensitivity requirement (Macmillan, 1986;
Newell & Shanks, 2014). The standard, current approach to study unconscious information processing
is therefore limited.

Here we present the a high-precision, highly-sampled, within-subject approach to pinpoint the neural
representation of unconscious contents, even those associated with null perceptual sensitivity, by leverag-
ing the power of machine learning and biologically plausible computational models of visual processing.
Critically, the extent to which unconscious content is represented in high-level processing stages along
the ventral visual stream and linked prefrontal areas (Kravitz, Saleem, Baker, Ungerleider, & Mishkin,
2013) remains unknown. Previous functional MRI studies indicate the role of conscious awareness in this
regard; object categories of visible stimuli are represented in ventral-temporal cortex (Haxby et al., 2001;
Naselaris, Kay, Nishimoto, & Gallant, 2011; Kriegeskorte, 2011) and parieto-frontal cortex is involved
in the representation of conscious perceptual content (Ester, Sprague, & Serences, 2015; Christophel,
Hebart, & Haynes, 2012; Kapoor et al., 2020). Here we used a high-precision fMRI paradigm to contrast
these views. We further asked the extent to which the representation of unconscious content maps onto
the representations of the conscious counterparts. This issue remains unsolved (Sterzer et al., 2008;
Schurger, Pereira, Treisman, & Cohen, 2010), yet it has ramifications for models of consciousness such
as the neuronal global workspace (Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006).

Subsequently, we used deep feedforward convolutional neural network models (FCNNs) (Hinton,
Vinyals, & Dean, 2015; LeCun & Bengio, 1995; McFee, Salamon, & Bello, 2018) to provide a represen-
tational level (Marr, 1982) simulation of visual representations/processing in the absence of perceptual
sensitivity. FCNNs were used given their excellent performance in image classification (Hinton et al.,
2015; Kriegeskorte & Douglas, 2018; Kietzmann, McClure, & Kriegeskorte, 2019) and given the known
similarities between the representational spaces during object recognition in FCNNs and high-level brain
regions in ventral visual cortex (Yamins & DiCarlo, 2016; Kriegeskorte, 2015). FCNNs performed the
same task given to the human participants using the same images corrupted by different levels of noise.

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.12.426428doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426428
http://creativecommons.org/licenses/by-nc-nd/4.0/


We asked whether, similar to the brain, the semantic category of the stimulus could be decoded by
analysing the activity state of the hidden layer of the FCNN network, despite the network itself had no
perceptual sensitivity at identifying the image class.

Results
Observers (N = 7) performed six fMRI sessions across 6 days leading to a total of 1728 trials per subject,
allowing us to pinpoint meaningful and reliable neural patterns of conscious and unconscious content
within each observer. Observers were presented with gray-scaled images of animate and inanimate
objects with a random-phase noise background (Moreno-Martínez & Montoro, 2012). The images were
presented briefly, preceded and followed by a dynamic mask composed of several frames of gaussian noise.
On each trial of the fMRI experiment, participants were required to discriminate the image category and
to indicate their subjective awareness (i.e. (i) no experience/just guessing (ii) brief glimpse (iii) clear
experience with a confident response). Figure 1 illustrates an example of a trial. The duration of the
images was based on an adaptive staircase that was running throughout the experiment, and which,
based on pilot testing, was devised to obtain a high proportion of unconscious trials (see Methods).

Figure 1: Example of the sequence of events within an experimental trial. Observers were asked to
discriminate the category of the masked image (living vs. non-living) and then rate their visual awareness
on a trial by trial basis. Example of a trial with a masked image of a cat.

Behavioral performance
We assessed whether observers’ performance at discriminating the image category from chance in each
of the awareness conditions by using signal detection theoretic measure to index perceptual accuracy,
namely, A’ (Zhang & Mueller, 2005). Permutation tests were performed to estimate the empirical chance
level within each observer (see Methods). All observers displayed above chance perceptual sensitivity
in both glimpse and visible trials (highest p < 0.00001, permuted p-values). Four of the seven subjects
showed null perceptual sensitivity (0.16 < p < 0.64) in those trials in which participants reported a lack
of awareness of the images. Discrimination performance in two additional participants deviated from
chance (p values < 0.02, 0.03) but only one observer clearly showed above chance performance in the
unaware trials (p < 0.00036). Figure 2 illustrates the distribution of A’ values alongside the chance
distribution for each participant.

FMRI Decoding results
We then used a linear support vector machine with out-of-sample generalization to decode the categories
of out-of-sample target images in the unconscious and the conscious trials. Trials in which observers
reported a glimpse were a minority and accordingly, we elected to focus on the critical unconscious and
conscious trials. The classifier was fed with multi-voxel patterns of BOLD responses in a set of 12 a
priori regions of interest comprising the ventral visual pathway and higher-order association cortex (see
below and Figure S2). Permutation tests were run within each subject to estimate the reliability of the
decoding at the single subject level (see Methods)

In the unconscious trials, the image class was significantly decoded from activity patterns in visual
cortex, including high-level areas in the ventral visual cortex and even in prefrontal regions. Specifically,
activity patterns in the fusiform cortex allowed for decoding of unconscious contents reliably within
each of the four observers showing null perceptual sensitivity, and moreover the unconscious content
could be decoded from prefrontal areas in middle and inferior gyrus in these observers (observers 1 -
4). Figure 3 illustrates the decoding results. A similar pattern was observed in the participants whose
perceptual sensitivity deviated from chance (observers 5 - 7). Yet, there were no apparent differences
between the pattern of decoding performance among the observers that were at chance vs. those showing
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Figure 2: Behavioral performance. Distribution of within-observer A’ scores with mean, first and third
quartile, and the corresponding empirical chance distributions for each observer and awareness state. *
p < 0.05, ** p < 0.01, *** p < 0.001.

above chance discrimination performance on the trials rated as unaware, even for the observer whose
perceptual sensitivity was clearly above chance (observer 7). Further inspection of the distribution of
decoding accuracies of the observers that were at chance and that deviated from chance did not reveal
any advantage for the observers whose sensitivity was above chance in the trials rated as unaware (see
Supplementary Information).

In the conscious trials, the level of decoding accuracy was highly reliable in all subjects tested, across
all visual ROIs in the ventral visual pathway, its linked higher-order regions in the inferior frontal cortex
(Kravitz et al., 2013), and also inferior and superior parietal cortex. Due to the online adaptive staircase
that was running throughout the experiment to achieve null sensitivity on the unconscious trials, the
signal to noise ratio of the image was higher in the conscious trials. Note that if stimulus properties were
kept constant throughout the experiment it would have been impossible to obtain trials associated with
null perceptual sensitivity alongside the conscious trials. Then, using transfer learning we investigated
whether the multivoxel brain representation of perceptual contents in the visible, conscious trials was
similar to those of the unconscious trials. Accordingly, we trained the classifier in the conscious trials
and then performed out-of-sample cross-validation in the unconscious trials. The fact that conscious and
unconscious stimulus differed in signal strength actually makes this generalization test stronger.

The results showed that a decoder trained in the conscious trials using multivoxel patterns in fusiform
gyrus, lateral occipital cortex, and precuneus generalised well to predict the target image in the uncon-
scious trials, remarkably, in all subjects. Also, a decoder trained in the conscious trials with BOLD
activity patterns in inferior parietal lobe, inferior temporal lobe, lingual gyrus, middle frontal gyrus, and
superior parietal gyrus generalised to the unconscious trials in 6 out of 7 subjects. There was some vari-
ability across observers in the generalization from conscious to unconscious representations in prefrontal
areas, but this was successful in all observers in either the middle/inferior prefrontal cortex, except for
one the participants showing null perceptual sensitivity in the unconscious trials. Across all observers,
we observed that multivoxel patterns in the inferior frontal cortex, and also in pericalcarine cortex, gen-
eralised from conscious to unconscious in 5 of them. Taken together this pattern of results indicates the
presence of invariant multivariate patterns in both the visual areas and the frontal regions for the same
item categories in both conscious and unconscious conditions.
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Figure 3: Decoding accuracy for out-of-sample images for each observer across the unconscious and
conscious trials. *:p < 0.05, **:p < 0.01, ***:p < 0.001, after multiple comparison correction for the
number of ROIs tested for each observer. Error bars represent the standard error of the mean.

Feedforward convolutional neural network (FCNN) model simulations
Then, we sought to provide a representational model simulation using artificial FCNNs (Fukushima,
1980; LeCun & Bengio, 1995; McFee et al., 2018; Hinton et al., 2015)). The goal was to simulate
the observation of informative neural representations despite null perceptual sensitivity. FCNNs were
trained to perform a similar visual task to the human observers using the same images across different
levels of gaussian noise. FCNNs are known to be excellent in image classification (Hinton et al., 2015;
Kriegeskorte & Douglas, 2018; Kietzmann, McClure, & Kriegeskorte, 2019). We expected the level of
classification accuracy of the FCNN network to drop with increasing levels of noise in the image.
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84,000 FCNN model simulations were performed, resulting from combining 5 pre-trained FCNN
configurations, 7 hidden layer units, 4 dropout rates, 6 hidden layer activation functions, 2 output layer
activation functions, and 50 noise levels (see Methods). Because we were interested in those poorly
performing FCNNs, we only attempted to decode the stimulus category from the hidden layer in those
cases in which the FCNN ROC-AUC classification performance was lower than 0.55. We observed that
61,086 of the FCNN models showed a ROC-AUC score below 0.55 under conditions of increasing noise
in the image.

Informative hidden layer representations in the FCNN models
Then, we asked whether, despite the FCNN failing to classify the image, the semantic category of the
stimulus could still be decoded by analysing the activities of the hidden layer of the network. To test this,
a linear SVM was applied to the hidden layer representation for decoding the image class across different
levels of noise, even when the FCNN model classification performance was at chance (see Methods).
Previous studies modeled visual recognition using FCNN (Khaligh-Razavi & Kriegeskorte, 2014; Güçlü
& van Gerven, 2015), demonstrating that the last hidden layer of FCNNs has representational spaces
that are similar to those in high-level regions in ventral visual cortex (Khaligh-Razavi & Kriegeskorte,
2014; Güçlü & van Gerven, 2015; Kriegeskorte et al., 2008). Therefore, we focused our analyses on the
very last hidden layer of the FCNN in the current study, also considering limitations in computational
resources due to the large number of simulations (see Methods).

Figure 4a shows the classification performance of the FCNN models (black) and also the decoding
accuracy SVM applied to the hidden layer representation of the FCNN (blue) as a function of the level of
noise and the different factors. When the level of noise was low, FCNN models could classify the category
of the images very well reaching ROC-AUC scores higher than 0.9 but performance dropped with the level
of gaussian noise. The observed logarithmic downward trend could be due to the exponential sampling
of noise levels (see Methods).

Figure 4: The black dots illustrate the classification performance of the FCNN models, as a function of
noise level, type of pre-trained model configuration (column) and activation functions (row). The blue
dots illustrate the classification performance of the linear SVMs applied to the hidden layer of the FCNN
model when the FCNN classification performance was lower than 0.55.

aHigh definition figure: https://tinyurl.com/y6dhls7c
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Figure 5: Image classification performance of the linear SVMs applied to the FCNN hidden layers
when a given FCNN failed to discriminate the living v.s. nonliving categories, as a function of the noise
level. The superimposed subplot depicts the proportion of times in which the linear SVM was able to
decode the FCNN hidden layers as a function of low and high noise levels. The blue bar represents the
proportion of linear SVMs being able to decode the FCNN hidden layers, while the orange bar represents
the proportion of linear SVMs decoding the FCNN hidden layers at chance level.

Remarkably, when the FCNN models failed to classify the noisy images (p > 0.05; N = 32,435),
we observed that the hidden layer representation of these FCNN models contained information that
allowed a linear SVM classifier to decode the image category above chance levels reliably in 12,777 of
the simulations (p < 0.05, one sample permutation test). Figure 5 illustrates the decoding results based
on the hidden layer representation when the FCNN was at chance.

It is noted that even when the noise level was relatively low, some FCNN models such as AlexNet
and ResNet did not perform well in the image classification task. Inspection of these models indicated
poor performance in the validation phase of the training (prior to testing), which suggests that particular
combinations of hidden layer units, activation function, and dropout rate in AlexNet and ResNet impeded
learning the classes properly.

When the noise level was relatively low and the FCNN models failed to discriminate the noisy images
(N = 7,841), 75.39% of the linear SVMs could decode the FCNN hidden layers and the difference in
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decoding performance between SVM and FCNN was significantly greater than zero (p < 0.001, one
sample permutation test).

Remarkably, even when the noise level was higher and the FCNN classified the images at chance level,
27.91% of the linear SVMs could decode the image category from the FCNN hidden layers. Crucially, the
comparison of SVM decoding from the hidden layer and the FCNN classification performance including
those 24,584 cases in which the FCNN was at chance again showed a significant difference (permutation p
< 0.05), demonstrating that the hidden layer of the FCNN contained informative representations despite
the FCNN classification performance was at chance.

MobileNet produced more informative hidden representations that could be decoded by the SVMs
compared to other candidate model configurations. It was observed that the classification performance
of ResNet models trained with different hidden units, dropout rates, etc did not fall to chance level until
the noise level was relatively high (closer to the dashed line) and the proportion of SVMs being able to
decode FCNN hidden layers was higher compared to other model configurations (50.62% v.s. 46.92%
for MobileNet, 35.51% for AlexNet, 31.35% for DenseNet, and 30.22% for VGGNet). Additionally, we
observed that even when the noise level was high, the MobileNet models provided a higher proportion of
hidden representations that were decodable by the linear SVMs (34.77% v.s. 29.53% for ResNet, 27.84%
for DenseNet, 26.35% for AlexNet, and 21.62% for VGGNet, see Figure 5).

Then, we sought to further understand the influence of the components of the FCNN architecture
(i.e. dropout rate, number of hidden units) on decoding performance. We used a random forest classifier
to compute the feature importance of the different FCNN components for predicting whether or not the
SVM decoded the image class based on the hidden layer representation. The classification performance
was estimated by random shuffle stratified cross-validation with 100 folds (80/20 splitting). In each fold,
a random forest classifier was fit to predict whether or not the hidden representation was decodable on
the training set, and then the feature importance was estimated by a permutation procedure on the test
set (Fisher, Rudin, & Dominici, 2018; Altmann, Toloşi, Sander, & Lengauer, 2010). Briefly, for a given
component (i.e. hidden layer activation function), the order of instances was shuffled while the order
of the instances of other components was not changed, in order to create a corrupted version of the
data. The dropped classification performance indicated how important a particular feature was. Figure
6 shows that the noise level in the image was the best indicator of whether a hidden representation was
decodable, followed by model architecture, followed by the number of hidden units, and by the type of
hidden activation and output activation functions. The least important feature was the dropout rate.
A one-way ANOVA assessed the contribution of the noise level, model architecture, number of hidden
units, type of hidden activation function, type of output activation function, and dropout rate, on the
feature importance. There were significant differences between the components of the network models
tested (F(5, 594) = 2215.57, p < 0.001). Post-hoc t tests showed that all the pairwise comparisons were
reliable (lowest p < 0.015, Bonferroni corrected for multiple comparisons).

Figure 6: Feature importance of FCNN components that were manipulated in computational modeling.
Feature importance was measured in arbitrary units. The number of hidden layer units, noise levels, and
pre-trained configurations influenced the decoding performance of the image class based on the hidden
layer of the FCNN when its classification performance was at chance.
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Discussion
We tested a high-precision, within-subject framework to provide a representational account of the scope
of information processing for unseen items, even those associated with null perceptual sensitivity (Soto
et al., 2019) in both brains and deep artificial neural networks. Isolating the brain representation of
unconscious contents has been difficult to achieve in systematic and reliable fashion in previous work,
with low numbers of trials and signal detection theoretic constraints (Macmillan, 1986) not allowing to
decisively discard conscious perception (Fang & He, 2005; Hesselmann et al., 2011; Gayet et al., 2020;
Ludwig et al., 2015), and, critically, when unconscious content could be decoded, this was restricted
to visual cortex - see also (Ludwig & Hesselmann, 2015). The current results demonstrate that when
human participants and FCNNs models fail to recognise the image content, there remain informative
representations of the unseen items in a hidden state of the network during high-level stages of information
processing. These hidden representations allow for classification of the semantic category of unseen
perceptual contents. Notably, the fMRI results from our high-precision, highly-sampled, within-subject
approach showed that unconscious contents can be reliably decoded from multivoxel patterns that are
highly distributed along the ventral visual pathway and also involving prefrontal substrates in middle
and inferior gyrus. High-precision fMRI decoding paradigms can thus provide a richer information-based
approach (Kriegeskorte, Goebel, & Bandettini, 2006) to reveal meaningful feature representations of
unconscious content, and that otherwise would be missed.

The current findings have implications for models proposing that unconscious information processing
is local and restricted to sensory cortex (V. A. F. Lamme, 2020). For instance, according to the neural
global workspace model (Dehaene & Naccache, 2001), distributed activity patterns in fronto-parietal
cortex are a marker of conscious access (Dehaene & Changeux, 2004). Both the middle frontal gyrus and
inferior frontal areas have been implicated in the coding of visible items during working memory tasks
(Ester et al., 2015) and also in binocular rivalry paradigms used to track moment-to-moment changes in
the contents of consciousness (Kapoor et al., 2020). The inferior frontal cortex forms part of the ventral
visual pathway that links extrastriate, and inferior temporal areas that is crucial for object recognition
(Kravitz et al., 2013). Remarkably, the fMRI decoding results demonstrated the overlap between the
neural representation of conscious and unconscious contents in these areas, with a decoder trained in
the conscious trials generalising to predict unconscious contents. Visual consciousness may be associated
with neural representations that are more stable across different presentations of the events (Schurger et
al., 2010), but our data indicates that the underlying representational patterns in terms of perceptual
content are to a significant extent invariant and generalised across awareness states, despite the non-
linear dynamic changes in the intensity of the neural response that occur in fronto-parietal cortex during
conscious processing (Dehaene & Changeux, 2004; Dehaene, Naccache, Cohen, Le Bihan, et al., 2001;
Haynes, Driver, & Rees, 2005; Beck, Rees, Frith, & Lavie, 2001; Pessoa & Ungerleider, 2004; Kranczioch,
Debener, Schwarzbach, Goebel, & Engel, 2005). Previous studies using lowly sampled fMRI designs could
not reveal evidence consistent with this view (Sterzer et al., 2008; Schurger et al., 2010). The current
observation that unconscious content is represented in high-order visual processing stages including the
prefrontal cortex and that it does so in a similar way to the conscious counterparts points to revisions
to the neuronal global workspace model (Dehaene, 2014).

The generalization of the feature representations across visibility states is also supported by the
deep neural network model simulations. FCNNs initially trained with clear visible images, subsequently
produced informative feature representations in the hidden layer when they were exposed to noisy images.
Prior work showed that FCNNs are a good computational model of the ventral visual pathway (Khaligh-
Razavi & Kriegeskorte, 2014; Güçlü & van Gerven, 2015; Yamins, Hong, Cadieu, & DiCarlo, 2013;
Yamins & DiCarlo, 2016; Kriegeskorte, 2015). FCNNs performed well the perceptual identification task
with clear images, also in keeping with prior studies (Geirhos et al., 2017; Wichmann et al., 2017;
Geirhos et al., 2018; Ghodrati, Farzmahdi, Rajaei, Ebrahimpour, & Khaligh-Razavi, 2014). FCNNs are
sensitive to image perturbations (Kubilius et al., 2019) and accordingly, FCNNs classification performance
dropped as the noise level increased and eventually fell to chance levels. Crucially, in these conditions,
the hidden representation of the FCNN contained informative representations of the target class despite
the classification accuracy was at chance.

Neurocognitive theories of consciousness propose that unconscious processing reflects feed-forward
processing only, while local recurrent connections in sensory cortex are critical for bringing unconscious
content into conscious awareness (V. A. Lamme & Roelfsema, 2000). Visual signals that are embedded in
noise and visually masked, are more likely to trigger feedforward processing only (Fahrenfort, Scholte, &
Lamme, 2007). The neural network models used in our computer simulations of the visual task were all
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feedforward (DiCarlo, Zoccolan, & Rust, 2012; Yamins & DiCarlo, 2016), which may lack the capacity
to preserve visual features across higher-order layers, so that any useful information might be left to
local processes operating within each layer (Nayebi et al., 2018). Therefore, in the presence of image
perturbations (i.e. added gaussian noise) the last readout layer of the FCNN may not fully exploit
the information from previous layers to guide the perceptual decision. Likewise, in the human brain,
unconscious feedforward processing may be able to produce information-rich representations in higher-
order regions of the ventral visual pathway and even prefrontal cortex, but without feed-back connections
those representations are unable to guide behaviour and lead to conscious sensation. Recurrent feedback
is thought to be critical for conscious experience (Bullier, 2001; V. A. Lamme & Roelfsema, 2000;
Pascual-Leone & Walsh, 2001), though importantly, recent evidence indicates that long-range feedback
connections from prefrontal cortex, rather than local feedback loops in visual cortex are more critical for
visual consciousness (L. Huang et al., 2020). The role of recurrent processing in unconscious information
processing, however, remains unclear (M. A. Cohen & Dennett, 2011; Soto & Silvanto, 2014), and there
is suggestive evidence of a link between recurrency and unconscious processing too (Melloni et al., 2007;
Koivisto, Mäntylä, & Silvanto, 2010; M. X. Cohen, Van Gaal, Ridderinkhof, & Lamme, 2009). Recent
modeling work indicates that recurrent neural networks (RNNs) that incorporate feedback connections
provide better representations than FCNN models in object recognition tasks at different levels of image
noise (Zwickel, Wachtler, & Eckhorn, 2007; Spoerer, McClure, & Kriegeskorte, 2017), which are better at
explaining brain activity compared to FCNN models (Shi, Wen, Zhang, Han, & Liu, 2018; Nayebi et al.,
2018; Kietzmann, Spoerer, et al., 2019; Spoerer et al., 2017). It will be relevant for future modeling work
to investigate whether the addition of recurrent connections to the FCNN model can improve the read-out
of the hidden representations by the decision layer and hence improve classification performance of noisy
images, or whether recurrent connections improve the informativeness of the hidden layer representation
despite the FCNN classification performance remains at chance level with noisy images. We conclude that
unconscious information processing in visual domain, including processing without sensitivity, can lead
to meaningful but hidden representational states that are ubiquitous in brains and biologically plausible
models based on deep artificial neural networks. The work thus provides a framework for testing novel
hypotheses regarding the scope of unconscious processes across different task domains.

Methods

Participants
Following informed consent, seven participants (mean = 29 years; SD = 2; 6 males) took part in return
of monetary compensation. All of them had normal or corrected-to-normal vision and no history of
psychiatric or neurological conditions. The study conformed to the Declaration of Helsinki and was
approved by the BCBL Research Ethics Board.

Experimental procedure and stimuli
Subjects (N = 7) were presented with images of animate and inanimate objects (Moreno-Martínez
& Montoro, 2012). We selected 96 unique items (48 animate and 48 inanimate, i.e. cat, boat) for
the experiment. These images could also be grouped by 10 subcategories (i.e. animal, vehicle) and 2
categories (i.e. living v.s. nonliving). The experiment was an event-related design. On each day, subjects
carried out nine blocks of 32 trials each. Each block was composed of 16 animate and 16 inanimate items.
Subjects performed six fMRI sessions of around 1 hour in separate days. There were hence 288 trials per
day and 1728 trials in total per observer. The probe images were gray-scaled and presented in different
orientations. The images were previously augmented using Tensorflow-Keras (Chollet et al., 2018). A
random-phase noise background generated from the images was added to the target image before the
experiment to facilitate masking.

The experiment was programmed using Psychopy v1.83.04 (Peirce, 2007). The experiment was carried
out on a monitor with a refresh rate of 100 Hz. A fixation point appeared for 500 ms, followed by a
blank screen for 500 ms. Twenty frames of gaussian noise masks were then presented and followed by
the probe image, which was followed by another twenty frames of gaussian noise masks. Then, there was
a jittered blank period (1500 - 3500 ms) with a pseudo-exponential distribution in 500 ms steps (sixteen
1500 ms, eight 2000 ms, four 2500 ms, two 3000 ms, and two 3500 ms), selected randomly and without
replacement on each block of 32 trials. Following the jittered blank period, participants were required (i)
to identify the category of the image (ii) to rate the state of visual awareness associated with the image.
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There was a 1500 ms deadline for each response. For the categorization decision task, two choices were
presented on the screen - living (V) and nonliving (nV) - i.e. "V nV" or "nV V" with the left-right order
of the choices randomly selected for each trial. Subjects pressed "1" (left) or "2" (right) to indicate the
probe condition. For the awareness decision task, there were 3 choices: (i) "I did not see anything that
allowed me to categorize the item, I was completely guessing"; henceforth, the unconscious trials, (ii)
partially unconscious ("I saw a brief glimpse but I am not confident of the response"), and (iii) conscious
("I saw the object clearly or almost clearly and I am confident of the categorization decision"). The
inter-trial interval then followed with a jittered blank period of 6000 - 8000 ms with a pseudo-exponential
distribution in 500 ms steps. The asynchrony between probe images across successive trials therefore
ranged between 11.5 and 15.5 seconds.

The duration of the probe image was based on an adaptive staircase that was running throughout
the trials. Specifically, based on pilot tests, we elected to use an staircase to get a high proportion of
unconscious trials while ensuring that perceptual sensitivity was not different from chance level. If the
observer reported "glimpse", the number of 10 ms frames of stimulus presentation was reduced by one
frame for the next trial, unless it was already only one frame of presentation; if the observer reported
"conscious", the number of frames of presentation would be reduced by two or three frames for the next
trial, unless it was less than two to three frames, in which case it would be reduced by one frame; if the
observer reported "unconscious", the number of frames increased by one or two frames, randomly, for
the next trial. Examples of probe images were shown in Figure S1.

Supplementary Figure 1: Examples of the images used in the fMRI experiment.

Analysis of behavioral performance
We assessed whether the level of discrimination accuracy of the image departed from chance level in
each of the awareness conditions. The metric to measure accuracy was A’, based on the area under
the receiver operating curve (ROC-AUC) (Zhang & Mueller, 2005). A response was defined as a "true
positive" (TP) when "living" was both responded and presented. A response was defined as a "false
positive" (FP) when "living" was responded while "nonliving" was presented. A response was defined
as a "false negative" (FN) when "nonliving" was responded while "living" was presented. A response
was defined as a "true negative" (TN) when "nonliving" was both responded and presented. Thus, a
hit rate (H) was the ratio between TP and the sum of TP and FN, and a false alarm rate (F) was the
ratio between FP and the sum of FP and TN. A’ was computed with different regularization based on 3
different conditions: 1) F <= 0.5 and H >= 0.5, 2) H >= F and H <= 0.5, 3) anything that were not
the first two conditions. We first calculated A’ associated with the individual behavioral performance
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within each of the different states of awareness (henceforth called the experimental A’ ). Then, we applied
permutation tests to estimate the empirical chance level. We bootstrapped trials for a given awareness
state with replacement (Horowitz, 2001); the order of the responses was shuffled while the order of the
correct answers remained the same to estimate the empirical chance level. We calculated the A’ based
on the shuffled responses and correct answers to estimate the chance level of the behavioral performance,
and we called this the chance level A’ .

This procedure was repeated 10,000 times to estimate the distribution of the empirical chance level A’
for each awareness state and each observer. The probability of empirical chance level A’ being greater or
equal to the experimental A’ was the statistical significance level (one-tailed p-value, (Ojala & Garriga,
2010)). Hence, we determined whether the A’ of each individual was above chance across the different
awareness states (Bonferroni corrected for multiple tests).

fMRI acquisition and preprocessing
A 3-Tesla SIEMENS’s Magnetom Prisma-fit scanner and a 64-channel head coil was used. In each
fMRI session, a multiband gradient-echo echo-planar imaging sequence with an acceleration factor of
6, resolution of 2.4 x 2.4 x2.4 mm3, TR of 850 ms, TE of 35 ms, and bandwidth of 2582 Hz/Px was
used to obtain 585 3D volumes of the whole brain (66 slices; FOV = 210mm). For each observer, one
high-resolution T1-weighted structural image was also collected. The visual stimuli were projected on
an MRI-compatible out-of-bore screen using a projector placed in the room adjacent to the MRI-room.
A small mirror, mounted on the head coil, reflected the screen for presentation to the subjects. The
head coil was also equipped with a microphone that enabled the subjects to communicate with the
experimenters in between the scanning blocks.

The first 10 volumes of each block were discarded to ensure steady state magnetization; to remove
non-brain tissue, brain extraction tool (BET, (Smith, 2002)) was used; volume realignment was per-
formed using MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002); minimal spatial smoothing was
performed using a gaussian kernel with FWHM of 3 mm. Next, Independent component analysis based
automatic removal of motion artifacts (ICA-AROMA) was used to remove motion-induced signal vari-
ations (Pruim et al., 2015) and this was followed by a high-pass filter with a cutoff of 60 sec. The
scans were aligned to a reference volume of the first session. All the processing of the fMRI scans were
performed within the FSL (FMRIB Software Library; v6.0, (Jenkinson, Beckmann, Behrens, Woolrich,
& Smith, 2012)) framework and were executed using NiPype Python library (Gorgolewski et al., 2011).
Details of the NiPype preprocessing pipeline can be found in https://tinyurl.com/up2txma.

For each observer, the relevant time points or scans of the preprocessed fMRI data of each run were
labeled with attributes such as (i.e. cat, boat), category (i.e. animal, vehicle), and condition (i.e. living
vs. nonliving) using the behavioral data files generated by Psychopy (v1.84, (Peirce, 2007)). Next, data
from all sessions were stacked and each voxel’s time series was block-wise z-scored (normalized) and
linear detrended. Finally, to account for the hemodynamic lag, examples were created for each trial by
averaging the 3 or 4 volumes between the interval of 4 s and 7 sec after image onset.

Supplementary Figure 2: The figure shows the selected regions of interest. Twelve bilateral ROIs were
extracted, comprising the lingual gyrus, pericalcarine cortex, lateral occipital, fusiform, parahippocampal
cortex, precuneus, inferior temporal lobe, inferior and superior parietal lobe, superior frontal, middle
frontal gyrus, and inferior frontal gyrus.

For a given awareness state, examples of BOLD activity patterns were collected for each of the 12
regions of interest (ROIs). There were 12 ROIs for each hemisphere (see Figure S2). The ROIs included
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the lingual gyrus, pericalcarine cortex, lateral occipital cortex, fusiform gyrus, parahippocampal gyrus,
inferior temporal lobe, inferior parietal lobe, precuneus, superior parietal gyrus, superior frontal gyrus,
middle frontal gyrus, and inferior frontal gyrus (comprising pars opercularis gyrus, pars triangularis
gyrus, and pars orbitalis gyrus). Automatic segmentation of the high-resolution structural scan was done
with FreeSurfer’s automated algorithm recon-all (v6.0.0). The resulting masks were transformed to
functional space using 7 degrees of freedom linear registrations implemented in FSL FLIRT (Jenkinson
et al., 2002) and binarized. All further analyses were performed in native BOLD space within each
observer.

Multivariate pattern analysis: decoding within each awareness state
Multivariate pattern analysis (MVPA) was conducted using Scikit-learn (Pedregosa et al., 2011) and
Nilearn (Abraham et al., 2014). A linear support vector machine (SVM) classifier. SVM has limited
complexity, hence reducing the probability of over-fitting (model performs well in training data but bad
in testing data) and it has been shown to perform well with fMRI data (Pereira & Botvinick, 2011;
Lewis-Peacock & Norman, 2014). We used an SVM with L1 regularization, nested with invariant voxels
removal and feature scaling between 0 and 1 as preprocessing steps. The nested preprocessing steps were
fit in the training set and applied to the testing set. Note that these preprocessing steps are different
from the detrending and z-scoring of the BOLD signals and represent conventional machine learning
practices (Bruha, 2000).

During cross-validation, trials corresponding to one living (i.e. cat) and one non-living (i.e. boat)
item for a given awareness state (i.e. unconscious) were left-out as the test set and the rest was used to
fit the machine learning pipeline. With 96 unique items, 2256 cross-validation folds could be performed
in principle. However, because the awareness states were randomly sampled for each unique item (i.e.
cat), the proportion of examples for training and testing were not equal among different folds. Some
subjects had less than 96 unique items for one or more than one of the awareness states. Thus, less than
2256 folds of cross-validations were performed in these cases.

To get an empirical chance level of the decoding, the same cross-validation procedures were repeated
by replacing the linear SVM classifier with a "dummy classifier" as implemented in Scikit-learn, which
makes predictions based on the distribution of the classes of the training set randomly without learning
the relevant multivariate patterns. The same preprocessing steps were kept in the pipeline.

The mean difference between the true decoding scores and the chance level decoding scores was
computed as the experimental score. To estimate the null distribution of the performance differences,
we performed permutation tests. First, we concatenate the true decoding scores and the chance level
decoding scores and then shuffle the concatenated vector. Second, we split the concatenated vector into
a new ’decoding scores’ vector and a new ’chance level decoding scores’ vector. The mean differences
between these two vectors were computed. This procedure was repeated 10,000 times to estimate the
null distribution of the performance differences. The probability that the experimental score was greater
or equal to the null distribution was the statistical significant level (one-tailed p-value, corrected for the
number of ROIs using Bonferroni).

Multivariate pattern analysis: generalization across awareness states
Here the classifier was trained from data in a particular awareness state (the ’source’; e.g. on conscious
trials) and then tested on a different awareness state (the ’target’; e.g. on unconscious trials) on top of
the cross-validation procedure described above. Similar to the decoding analysis within each awareness
state, instances corresponding to one living and one non-living item in both ’source’ and ’target’ were
left out, but only the left-out instances in the ’target’ were used as the test set. The rest of the instances
in ’source’ were used as the training set to fit the machine learning pipeline (preprocessing + SVM) as
described above. The performance of the fitted pipeline was estimated by comparing the predicted labels
and the true labels using ROC-AUC for the test set.

To get an empirical chance level of the decoding, a similar procedure to that described above with
a ’dummy classifier’ was used here. Similar permutation test procedures were used to estimate the
empirical null distribution of the difference between the experimental and chance level ROC-AUC and
the estimation was repeated 10,000 times. The probability that the experimental score was greater or
equal to the null distribution was the statistical significant level (one-tailed p-value).
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Computational model simulation
Different FCNN models (i.e. AlexNet, VGGNet, ResNet, MobileNet, and DenseNet) implemented in
Pytorch V1.0 (?, ?), learned to perform the same visual discrimination task as the human observers. The
FCNNs were trained with clear images and then tested under different levels of noise in the image. The
goal here was to emulate the pattern observed in the fMRI study (i.e. decoding of the noisy image in
the absence of perceptual sensitivity) using a FCNN. To control for the initialization state of the FCNN
models, we fine-tuned some of the popular FCNN pre-trained models, such as AlexNet (Krizhevsky,
Sutskever, & Hinton, 2012), VGGNet (Simonyan & Zisserman, 2015), ResNet (He, Zhang, Ren, & Sun,
2016), MobileNet (Howard et al., 2017), and DenseNet (G. Huang, Liu, Van Der Maaten, & Weinberger,
2017), which were pre-trained using the ImageNet dataset (Deng et al., 2009) and then were adapted
to our experiment using a transfer learning (fine-tuning) procedure (Yosinski, Clune, Bengio, & Lipson,
2014). After fine-tuning the FCNN models on the clear images used in the experiment, the models were
tested on images with different noise levels.

As shown in Figure S3, pretrained FCNN models using ImageNet (Deng et al., 2009) were stripped of
the original fully-connected layer while weights and biases of the convolutional layers were frozen and not
updated further (Yosinski et al., 2014). An adaptive pooling (McFee et al., 2018) operation was applied
to the last convolutional layer so that the output of this layer became a one-dimensional vector, and a
new fully-connected layer took the weighted sum of these outputs (i.e. the ‘hidden layer’). The number
of artificial units used in the hidden layer could be any positive integer, but for simplicity, we took 300
as an example and we explored how the number of units (i.e. 2, 5, 10, 20, 50, 100, and 300) influenced
the pattern of results. The number of hidden layer units determined the number of new weights, wi, for
training. The outputs of the hidden layer were passed to an activation function (Specht, 1990), which
could be linear (i.e. identical function) or nonlinear (i.e. rectified function). A dropout was applied to
the hidden layer during training but not during testing. Different dropout rates were explored (i.e. 0,
0.25, 0.5, and 0.75), where zero dropout rate meant no dropout was applied. The dropout operation was
varied to investigate how feature representations could be affected by a simple regularization.

Supplementary Figure 3: A simplified scheme of fine-tuning a pre-trained feedforward convolutional
neural network model. The task is to classify the living vs. non-living category of the images (without
noise) used in the fMRI experiment. The blue architecture was frozen and the weights were not updated,
while weights of the red architectures were updated during training.

A new fully-connected layer, namely, the classification layer, took the outputs processed by the
activation function of the hidden layer to compose the classification layer. The number of artificial units
used in the classification layer depended on the activation function applied to the outputs of the layer. If
the activation function was sigmoid (formula 1), one unit was used, while if the activation was a softmax
function (formula 2), two units were used. Under subscripts ’i’ denotes the ith output of a given artificial
unit.

ψ(xi) =
1

1 + e−xi
(1)

ψ(xi) =
exi∑
exi

(2)

The re-organized FCNN was trained on the gray-scaled and augmented (flipped or rotated) experi-
mental images and validated on images that were also gray-scaled but different degrees of augmentation.
The loss function was binary cross-entropy. The optimizer was Adam (Kingma & Ba, 2014) with a
learning rate of 1e-4 without decay. The validation performance was used to determine when to stop
training, and the validation performance was estimated every 10 training epochs. The FCNN model was
trained until the loss did not decrease for five validation estimations.

As noted, after training, the weights and biases of the FCNN model were frozen to prevent the model
changing during the test phase. During the test phase, gaussian noise was added to the images to reduce
the FCNN classification performance. Similar augmentations as in the validation set were fed to the
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testing image sets. The noise added to the images was sampled from a gaussian distribution centered at
zero and different variance (σ). The level of noise was defined by setting up the variance at the beginning
of each test phase.

The noise levels ranged from 0 to 1000 in steps of 50 following a logarithmic trend. For a given noise
level, 20 sessions of 96 images with a batch size of 8 were fed to the FCNN model, and both the outputs
of the hidden layer and the classification layer were recorded. The outputs of the classification layer
were used to determine the "perceptual sensitivity" of the FCNN model, and the outputs of the hidden
layer were used to perform subsequent decoding analyses with a linear SVM classifier, in keeping with
the fMRI analysis.

To determine the significance level of the FCNN model performance, the order of the true labels
in each session was shuffled while the order of the predicted labels remained the same. The permuted
performance was calculated for the 20 sessions. This procedure was repeated 10,000 times to estimate
the empirical chance level of the FCNN model. The significance level was the probability that the
performance of the FCNN model was greater or equal to the chance level performances (one-tailed test
against 0.05). If the p-value is greater or equal to 0.05, we considered that FCNN performance was not
different from the empirical chance level.

We then assessed, for a given noise in the image, whether the hidden layer of the FCNN (i.e. following
the last convolutional layers), contained information that allowed decoding of the category of the image
(living vs non-living). A linear SVM used the information contained in the FCNN hidden layer to decode
the image class across different levels of noise, even when the FCNN model classification performance
was at chance. The outputs and the labels of the hidden layer from the 20 sessions were concatenated. A
random shuffle stratified cross-validation procedure was used in the decoding experiments with 50 folds to
estimate the decoding performance of the SVM. The statistical significance of the decoding performance
was estimated by a different permutation procedure to the FCNN, which here involved fitting the SVM
model and testing the fitted SVM with 50-fold cross-validation in each iteration of permutation, and it
was computational costly (https://scikit-learn.org/stable/modules/generated/sklearn.model
_selection.permutation_test_score.html). On each permutation iteration, the order of the labels
was shuffled while the order of the outputs of the hidden layer remained unchanged before fitting the
SVM model (Ojala & Garriga, 2010). The permutation iteration was repeated 100 times to estimate
the empirical chance level. The significance level was the probability of the true decoding score greater
or equal to the chance level. Because we were interested in those poorly performing FCNNs, we only
attempted to decode the stimulus category from the hidden layer in those cases in which the FCNN
classification performance was lower than 0.55 ROC-AUC .

Supplementary Information
Across the different ROIs, we pooled the decoding accuracy of the four participants that displayed null
perceptual sensitivity on trials rated as unaware and likewise for those participants that displayed above
chance sensitivity. The Figure S4 illustrates these data. There are no apparent and consistent differences
across the different ROIs.

Supplementary Figure 4: Distribution of decoding accuracies across the participants whose perceptual
sensitsupportiivity was at chance and those who deviated from chance.
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