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Abstract

The success of a eusocial colony depends on twomain castes: queens that reproduce and

sterile workers that help them. This division of labour is vulnerable to sel�sh genetic el-

ements that enforce the development of their carriers into queens. Several factors, e.g.

intra-colonial relatedness, can in�uence the spread of such sel�sh elements. Here we

investigate a common yet understudied ecological setting: where hybrid larvae can de-

velop into workers. Using mathematical modelling, we show that the coevolution of hy-

bridization with caste determination readily triggers an evolutionary arms race between

larvae that increasingly develop into queens, and queens that increasingly hybridize to

produce workers. Even where hybridization reduces �tness, this race can lead to the

loss of developmental plasticity and genetically hard-wired caste determination. Over-

all, our results help understand the repeated evolution towards complex reproductive

systems (e.g. social hybridogenesis) and the special forms of parasitism (e.g. inquilin-

ism) observed in many eusocial insects.
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1 Introduction

Eusociality is characterized by a striking division of reproductive labour between two castes: queens

and workers (Crespi and Yanega, 1995). Queens monopolize reproduction, while typically sterile

workers specialize on other colony tasks such as foraging and tending to the brood. The sterility

of workers seemed so inconsistent with natural selection that Darwin referred to eusociality as his

“one special di�culty” (Darwin, 1859, ch. 7). This apparent paradox was resolved in the 1960’s with

W. D. Hamilton’s theory of kin selection (Hamilton, 1964). Hamilton demonstrated that natural

selection can favour eusociality when workers preferentially help relatives (who can transmit the

same genetic material). In addition to laying the theoretical basis for the evolution of eusociality,

Hamilton’s work led to the insight that caste determination should be plastic to allow identical gene

copies to be in workers and in the queen they help (Seger, 1981). In line with this notion, the devel-

opmental fate of female larvae in many eusocial insects depends on environmental factors (Trible

and Kronauer, 2017), such as food quantity and quality (Brian, 1956; Brian, 1973), temperature and

seasonality (Brian, 1974; Schwander et al., 2008) or signals emitted by adults of the colony (Penick

and Liebig, 2012; Libbrecht et al., 2013). Probably themost iconic example of such plasticity is found

in honeybees where queens arise only from larvae reared in royal cells and fed with royal jelly. For

long, this andmany other empirical �ndings strengthened the idea that caste determination is under

strict environmental control and largely free from genetic e�ects.

More recently however, substantial genetic variation for caste determination has been described

across a number of eusocial species (Winter and Buschinger, 1986; Moritz et al., 2005; Hartfelder

et al., 2006; Linksvayer, 2006; Schwander and Keller, 2008; Smith et al., 2008; Frohschammer and

Heinze, 2009; Schwander et al., 2010). This variation is thought to derive from sel�sh genetic ele-

ments, coined “royal cheats”, which bias the development of their carrier towards the queen caste

(Moritz et al., 2005; Hughes and Boomsma, 2008; Schwander et al., 2010). The segregation of such

cheats should depend on a balance between: (1) direct bene�ts from increased representation in the

reproductive caste; and (2) indirect costs due to reduced worker production and colony productivity

(Hamilton, 1964). As highlighted by abundant theory, several factors can in�uence these bene�ts

and costs and thus tip the balance for or against the evolution of royal cheats. For instance, low

relatedness between larvae due to polyandry (when queens mate with multiple males) or polyg-

yny (when colonies have multiple queens) increases competition between genetic lineages within

colonies and thereby favours royal cheating (e.g. Reuter and Keller, 2001). Conversely, selection
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against cheats is bolstered by low dispersal abilities and high within-group relatedness (e.g. Hamil-

ton, 1964; Lehmann et al., 2008; Boomsma, 2009), bivoltinism and asymetrical sex-ratio (e.g. Trivers

and Hare, 1976; Seger, 1983; Alpedrinha et al., 2014; González-Forero, 2015; Quiñones and Pen,

2017), coercion (i.e. policing, Wenseleers et al., 2004; Dobata, 2012), queen longevity and compe-

tition between queens (e.g. Queller, 1994; Bourke and Chan, 1999; Avila and Fromhage, 2015), or

where workers reproduce following queen death (Field and Toyoizumi, 2020).

One intriguing factor that has been proposed to in�uence the cost of royal cheating is sperm par-

asitism, a behavior consisting in queens using the sperm of another species or lineage to produce

hybrid workers (Linksvayer, 2006; Anderson et al., 2008). This behavior, which is common in euso-

cial insects and especially in ants (Umphrey, 2006; Feldhaar and Foitzik, 2008), results in hybrid

larvae that rarely, if ever, develop as fertile queens (presumably due to genetic incompatibilities

between parental lineages, Feldhaar and Foitzik, 2008; Trible and Kronauer, 2017). Such hybrids

should therefore be impervious to genetic caste-biasing e�ects and thus provide a reliable source

of workers. In principle, this alternative supply of workers reduces the indirect cost of royal cheats

and hence favours their evolution. But beyond these broadbrush predictions, the e�ect of sperm

parasitism on the segregation of royal cheats remains poorly understood. In particular, it is unclear

whether sperm parasitism, by allowing the invasion of royal cheats, can lead to a situation where

regular larvae completely lose their ability to develop as workers (Anderson et al., 2008). This is rel-

evant because sperm parasitism is associated with extreme forms of genetic caste determination in

multiple ant species. In these systems, non-hybrid (or intra-lineage) females develop exclusively into

queens while workers emerge only from hybrid (or inter-lineage) eggs (Helms Cahan et al., 2002;

Helms Cahan and Vinson, 2003; Fournier et al., 2005; Anderson et al., 2006; Ohkawara et al., 2006;

Pearcy et al., 2011; Romiguier et al., 2017; Lacy et al., 2019; Kuhn et al., 2020). If empirical work has

begun elucidating the genetics of these unorthodox systems, their evolution and connection to royal

cheats are still debated (Schwander et al., 2010).

Here, we develop a mathematical model to explore the evolution of genetic caste determination

via royal cheats when queens can hybridize to produce workers. We use this model to investigate

whether sperm parasitism can lead to a complete loss of plasticity in caste determination. In partic-

ular, we assess the e�ects of key factors on the evolutionary dynamics of caste determination, such

as polyandry and queen parthenogenesis (when queens have the ability to produce daughters asex-

ually), as well as their interactions with potential costs and bene�ts of hybridization, for instance

owing to hybrid incompatibilities or hybrid vigor.
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2 The model

We consider a large population of annual eusocial haplodiploids with the following life-cycle (�g. 1).

First, virgin queens mate with a �xed numberm ∈ {1, 2, …} of males. Each of these mates can either

be an allo- (with probability �) or a con-speci�c male (with complementary probability 1−�). Once

mated, queens found monogynous colonies (i.e. one queen per colony) and lay a large number of

eggs. A proportion f of these eggs are diploid (and develop into females) and (1−f) are haploid (and

develop into males). Assuming random egg fertilization, a queen therefore produces on average f�

hybrid and f(1 − �) non-hybrid females. We assume that a hybrid female can only develop as a

worker, while a non-hybrid female can either develop as a worker (with probability !) or as a queen

(with complementary probability 1−!). Overall, a colony thus consists of f� hybrid and f(1 − �)!

non-hybrid sterileworkers, aswell asf(1−�)(1−!) virgin queens and (1−f)males that are available

for reproduction at the next generation.

If only virgin queens andmales can reproduce, their reproductive success depends on the workforce

of their colony of origin. Speci�cally, we assume that the probability for a sexual to reach the mating

pool of the next generation increases linearly with the total number of workers in the colony, com-

bining hybrid and non-hybrid workers (we show later that our results do not change qualitatively

when the increase is non-linear). We nonetheless allow for di�erential contribution to the work-

load between hybrid and non-hybrid workers, with the contribution of hybrid workers weighted by

a parameter e ≥ 0 (so that the e�ective workforce of a colony is ef� + f(1 − �)!). When e = 1,

hybrid workers have the same working e�ciency as non-hybrid workers. By contrast, when e < 1,

hybrid workers are less e�cient for instance due to outbreeding depression. This can also re�ect

other potential costs associated with hybridization, such as the production of sterile or non-viable

hybrid queens (Feldhaar and Foitzik, 2008). Conversely, when e > 1 hybrid workers outperform

regular workers, due for example to hybrid vigor (Umphrey, 2006).
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3 Results

3.1 Hybridization and sperm parasitism, even costly, can lead to the �xation of

royal cheats and the complete loss of intra-speci�c workers

We �rst investigate the evolution of caste determination by allowing the probability ! that a larva

develops as a worker to vary. We assume that this probability is under individual genetic control (i.e.

the future caste of a female larva depends only on its own genotype) and that it evolves via random

mutations with weak additive phenotypic e�ects (Appendix A for details on our methods). Muta-

tional e�ects are unbiased so a new mutation is equally likely to increase or decrease the tendency

! of becoming a worker. Those mutations that decrease ! can be considered as more sel�sh as they

increase the likelihood that their carriers develop into queens. We call these "royal cheats" (follow-

ing Hughes and Boomsma, 2008). As a baseline, we consider the case where queens mate with a

large number of males (i.e. m → ∞) and where hybridization is �xed at a given level (e.g. � is the

proportion of allo-speci�c males in the pool of mates from which females choose randomly).

Our analyses (Appendix B.1.1) reveal that the probability for a larva to develop as a worker evolves

towards a unique and stable equilibrium,

!∗ = 1
3 − e

2�
3(1 − �)

. (1)

To interpret this equation (1), consider �rst the case where hybridization is costless (e = 1). Eq. (1)

then tells that in the absence of hybridization (� = 0), a larva will develop into a worker with a prob-

ability of 1∕3 at equilibrium (in line with previous models that ignore hybridization, e.g. Reuter and

Keller, 2001, Appendix B.1.4 for connection). But as hybridization increases (� > 0), royal cheat-

ing is increasingly favored and larvae become increasingly likely to develop as queens rather than

workers (i.e. !∗ < 1∕3, �g. 2A). In fact past a threshold of hybridization (� ≥ 1∕3), the population

evolves towards a complete loss of non-hybrid workers via the �xation of increasingly sel�sh royal

cheats alleles (! → 0). In this case, non-hybrid females eventually all develop into queens that rely

on sperm parasitism to produce workers.

Eq. (1) also shows that the performance of hybrid workers relative to non-hybrids, e, modulates the

e�ect of hybridization on the evolution of caste determination (�g. 2B). As a result, royal cheating

and worker-loss evolution are facilitated when hybrids outperform regular workers (e > 1) but hin-
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dered otherwise (e < 1). Nevertheless, even where hybridization is extremely costly (0 < e ≪ 1),

there exists a threshold of hybridization above which complete worker-loss evolves (�g. 2C).

3.2 Worker-loss readily emerges from the coevolution of genetic caste determina-

tion and sperm parasitism, driven by intra-colonial con�ict

The above analysis indicates that intraspeci�c worker-loss can evolve when queens have a su�-

ciently high tendency to hybridize. This raises the question of whether such tendency to hybridize

is also subject to selection. To answer this question, we allow the probability � that a queen’s mate

is allospeci�c to coevolve with caste determination (!). We assume that this probability � is under

individual queen control (i.e. it depends only on a queen’s genotype) and like caste determination,

evolves via rare mutations with weak additive phenotypic e�ects (Appendix A for details).

We �nd that depending on the e�ciency e of hybrid workers, the coupled evolutionary dynamics

of hybridization � and caste determination ! lead to an evolutionary arms race with one of two

contrasted outcomes (Appendix B.1.2 for analysis). When e is small (e ≤ 1∕4, �g. 3A gray region), the

population evolves hybridization avoidance (� → 0) while the probability ! to develop as a worker

stabilises for its baseline equilibrium (!∗ = 1∕3, �g. 3B). By contrast, when hybrid workers are at

least half as e�cient as regular workers (e ≥ 1∕2, �g. 3A, dark green region), intraspeci�c worker-

loss evolves (! → 0) and hybridization stabilizes at an intermediate equilibrium (�∗ = 2∕3, �g. 3D).

When hybrid worker e�ciency is intermediate (1∕4 < e < 1∕2, �g. 3A, light green region), the

population evolves either hybridization avoidance or intra-speci�c worker-loss depending on initial

conditions (�g. 3C), with worker-loss favoured by high initial tendency � of queens to hybridize.

In sum, provided four hybrid workers are at least as good as one regular worker (e > 1∕4), the

coevolution of genetic caste determination and hybridization can lead to worker-loss in our model.

To better understand the forces at play in the emergence of worker-loss, we further used a kin-

selection approach to decompose the invasion �tness of mutant alleles into the sum of: (1) their

direct �tness e�ects on the reproductive success of the individuals that express them; and (2) of

their indirect �tness e�ects on other related individuals that can also transmit them (Taylor and

Frank, 1996, Appendix B.1.3 for details). Starting with a population at the baseline equilibrium in

absence of hybridization (! = 1∕3, � = 0), we tracked these di�erent �tness e�ects along a typical

evolutionary trajectory that leads toworker-loss (black arrowheads, �g. 3D) for alleles that in�uence

the tendency of a larva to develop as a worker (�g. 3E) and of a queen to hybridize (�g. 3F).
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Our kin selection analysis reveals that alleles which increase hybridization in queens are selected

because they allow queens to increase the number of sexuals produced by their colony (especially

via males, blue curve, �g. 3F). This is because the baseline tendency ! to develop as a worker that

evolves is optimal from the point of view of a gene in a larvae, but sub-optimal from the point of view

of a gene in a queen who would bene�t from a larger workforce. Hybridization by queens evolves to

rectify this and align colony composition with the interests of the queen. Simultaneously, as queens

evolve greater hybridization and augment their workforce with hybrids, genes in non-hybrids larva

have an increasing interest for their carriers to develop as queens rather thanworkers (�g. 3E). These

two selective processes via queens and larvae fuel one another in an evolutionary arms race whose

endpoint is complete intra-speci�cworker-loss. Our decomposition of �tness e�ects thus shows that

the loss of non-hybrid workers evolves in our model due to within-colony con�icts over colony com-

position. In fact, our results suggests that worker-loss emerges because hybridization allows queens

to control the production of workers in their colony, while non-hybrid larvae lose their tendency to

develop as workers to promote their own reproduction via the �xation of royal cheats.

3.3 Worker-loss is impaired by low polyandry but facilitated by asexual reproduc-

tion

So far, we have assumed that queens mate with a large, e�ectively in�nite, number of males. By

increasing relatedness within the brood, low polyandry (2 ≤ m ≪ ∞) and monandry (m = 1) me-

diate within-colony con�icts and therefore should be relevant to the evolutionary arms race leading

to worker-loss (Anderson et al., 2008; Schwander et al., 2010). To test this, we investigated the e�ect

of mate numberm on the coevolution of ! and � (Appendix B.2.1 for details).

We �nd that as the numberm of mates decreases, the conditions for intra-speci�c worker-loss emer-

gence becomemore restrictive. Speci�cally, the threshold of hybrid worker e�ciency e above which

worker-loss always evolves increases as polyandry decreases (asm → 1, �g. 4A, dark green region).

In addition, when the number of mates is low (m ≤ 4), evolutionary dynamics do not necessarily

lead to either complete worker-loss or hybridization avoidance. For intermediate values of e (�g. 4A,

blue region) the population actually converges to an intermediate state where queens partially hy-

bridize (0 < �∗ < 1) and larvae retain developmental plasticity (0 < !∗ < 1, �g. 4B, Appendix B.2.1

and �g. S1 for analysis). Under monandry (m = 1) the evolution towards such intermediate state

always happens when hybrid workers outperform regular workers (e > 1, �g. 4A, blue region).
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In the special case of monandry and overperforming hybrid workers (m = 1 and e > 1), our math-

ematical analysis further shows that partial hybridization and larval plasticity is not evolutionary

stable (Appendix B.2.1, �gs. S1-S2). Rather, the population experiences disruptive selection which

should favour the emergence of polymorphism. To test this, we performed individual based sim-

ulations under conditions predicted to lead to polymorphism (�g. 4C). These show the emergence

and long-term coexistence of two types of queens: one which hybridizes with low probability (and

reproduces via both males and queens); and another which mates almost exclusively with allospe-

ci�c males and thus reproduces mostly via males (because m = 1, these queens only produce hy-

brid workers and males). Beyond this special case, the evolution of worker-loss is impeded by low

polyandry and impossible under monandry in our model. This is because with a low number of

mates, a queen runs the risk of being fertilized by only one type of males. Under complete worker-

loss (when the population is �xed for! = 0), a queenmated to only conspeci�cmales produces only

larvae destined to be queens but no workers to ensure their survival and thus has zero �tness.

Our �nding that monandry inhibits the emergence of worker-loss contrasts with the observation

that several ant species, notably of the genus Cataglyphis, lack non-hybrid workers and rely on

sperm parasitism for workers in spite of beingmostlymonandrous (Kuhn et al., 2020). One potential

mechanism that could have allowed such evolution is thelytokous parthenogenetic reproduction by

queens, whereby queens can produce daughters clonally. This reproduction mode, which is com-

mon in eusocialHymenoptera (Rabeling andKronauer, 2013) and in particular inCataglyphis (Kuhn

et al., 2020), could allow queens fertilized exclusively by allospeci�c males to nevertheless produce

queens via parthenogenesis. To investigate how thelytokous parthenogenesis in�uences the evolu-

tion of caste determination, we extend ourmodel so that a fraction c of the female progeny of queens

is produced parthenogenetically (Appendix B.2.2 for details). We assume that larvae produced in

such a way are equivalent to non-hybrid larvae: they develop into workers with a probability ! de-

termined by their own genotype (which in this case is the same as their mother’s genotype) and if

they develop into workers, they have the same working e�ciency as non-hybrid workers (i.e. there

is no direct cost or bene�t to parthenogenesis).

The co-evolutionary dynamics of caste determination and hybridization with parthenogenesis are

in general too complicated to be tractable. We could nonetheless gain insights into worker-loss evo-

lution by performing an invasion analysis, asking (1) when is worker-loss (! = 0) evolutionary

stable (so that a population where intra-speci�c workers have been lost cannot be invaded by a

genetic mutant with developmental plasticity)? And (2) when can hybridization evolve when ab-
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sent in the population (i.e. when is � = 0 evolutionary unstable)? When these two conditions are

met, evolution will tend to favour the emergence and maintenance of worker-loss (as in �g. 3D for

e.g.). We thus studied when conditions (1) and (2) above are both true in terms of parthenogenesis

c, as well as hybrid workers e�ciency e and mate number m. This revealed that parthenogenesis

has a non-monotonic relationship with worker-loss evolution (�g. 5A & 5B). As parthenogenesis

increases from zero, worker-loss evolution is initially favoured, especially under monandry (as ex-

pected; �g. 5C for e.g.). But past a threshold of parthenogenesis, the conditions leading to worker-

loss become increasingly stringent until such evolution becomes impossible. This is because as

parthenogenesis increases, the relatedness among a queen and larvae of the same colony also in-

creases. The con�ict between them, which fuels the evolution of worker-loss, therefore abates until

it is no longer advantageous for a larva to preferentially develop as a queen.

We additionally computed the level of hybridization favoured by selection when the population has

evolved worker-loss (and this is an evolutionarily stable state). We �nd that hybridization increases

as queens mate with fewer males and as parthenogenesis increases (�g. 5D), so much so that se-

lection can lead to complete hybridization (� = 1, e.g. �g. 5C). As a result, there exists a range

of intermediate values of parthenogenesis for which worker-loss evolves in association with a com-

plete loss of intra-speci�cmatings, i.e. queens nevermate withmales of their own species or lineage.

These males are nevertheless still being produced in our model (as the primary sex ratio is such that

f < 1).

4 Discussion

In sum, our analyses indicate that worker-loss readily evolves when queens can hybridize with a

lineage of males by whom fertilization leads to the production of workers. This evolution in our

model occurs through a sequence of substitutions of alleles that are increasingly sel�sh and bias the

development of their carrier towards the queen caste, i.e. “royal cheats”. Hybridization, or sperm

parasitism, allows royal cheats to �x in the population by providing away for colonies to compensate

the workforce lost to these sel�sh genetic elements. In fact, when queens are capable of recognising

genetic di�erences among males and when royal cheats are present in the population, selection

favours hybridization by queens to regain control over caste allocation in their colony. This is turn

promotes greater cheating by larvae, which favours greater hybridization by queens and so on. This

evolutionary arms race, fuelled by intra-colonial con�icts, eventually leads to complete intra-speci�c
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worker-loss: a state where larvae have lost their developmental plasticity and develop as workers or

queens depending only on whether they are the product of hybridization or not, respectively.

4.1 Model limitations

Of course, our analyses are based on several idealized assumptions. In particular, we assumed that

the probability for larvae to develop as workers is under complete larval genetic control. Typically

the developmental fate of female larvae also depends on various environmental factors created by

adult colony members, such as food quality and quantity (Brian, 1956; Trible and Kronauer, 2017),

or mechanical (Penick and Liebig, 2012) and chemical (Schwander et al., 2008; Penick et al., 2012)

stimuli. The conclusions of our study apply as long as these environmental e�ects are held constant

(or evolve more slowly than genetic caste determination). In this case, worker-loss would emerge

via royal cheats that modify larval developmental reaction norm to environmental e�ects in such a

way that their carriers aremore likely to develop as queens (Hughes and Boomsma, 2008; Wolf et al.,

2018). We also assumed that caste determination and hybridization evolve via rare mutations with

weak additive e�ects at a single locus. These assumptions, which are typical to adaptive dynam-

ics and kin selection approaches, have been extensively discussed elsewhere (Frank, 1998; Rousset,

2004; Geritz and Gyllenberg, 2005; Dercole and Rinaldi, 2008). In particular, all our results extend

to the case where traits are determined by many genes, provided genetic variance in the popula-

tion remains small (Charlesworth, 1990; Iwasa et al., 1991; Abrams et al., 1993). Where mutations

have large e�ects, we expect more complex evolutionary dynamics, such as genetic polymorphism,

which can be straightforwardly investigated with the recurrence equations we derived (eq. A-4 in

Appendix). Another important assumption wemade is that hybrid larvae do not develop into fertile

queens, for instance owing to hybrid incompatibilities (Trible and Kronauer, 2017). If fertile hybrid

queens are produced regularly, evolution towards worker-loss like in our model is less likely to hap-

pen as hybrids no longer make a reliable source of workers. In ants at least, the idea that hybrid

queens are rarely fertile is supported by the contrast between high frequency of inter-speci�c mat-

ing on one hand, and weak genetic signals of inter-speci�c gene �ow on the other (Umphrey, 2006;

Feldhaar and Foitzik, 2008). Finally, we focused in the main text on the case where colony produc-

tivity increases linearly with workers (i.e. the probability that a sexual survives until reproduction

increases linearly with the density of workers). More realistically, the gain in productivity brought

by one additional worker is likely to decrease with increasing workforce (Nonacs and Tobin, 1992;

Reuter and Keller, 2001). Such diminishing returns tend to favor cheating because the indirect ben-

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.12.426359doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426359
http://creativecommons.org/licenses/by-nc-nd/4.0/


e�t of developing into a worker gets smaller as colony size increases (e.g. Reuter and Keller, 2001;

Field and Toyoizumi, 2020). In line with this, we �nd that worker-loss evolves even more easily

under diminishing compared to linear returns (Appendix B.2.3 and �g. S3).

4.2 An adaptive path to unorthodox reproductive systems?

Our result that spermparasitism favours the emergence ofworker-loss via the �xation of royal cheats

is relevant to unorthodox reproductive systems found in ants. Of particular interest is social hybrido-

genesis, whereby females produced through regular intra-lineage mating or thelytokous partheno-

genesis develop into queens, while workers emerge from eggs fertilised by allospeci�cmales (Helms

Cahan et al., 2002; Helms Cahan and Vinson, 2003; Anderson et al., 2006; Romiguier et al., 2017;

Lacy et al., 2019; Kuhn et al., 2020). Such striking system was �rst described just two decades ago

in Pogonomyrmex harvester ants (Helms Cahan et al., 2002), and has since been found in a number

of other distantly related species (Helms Cahan and Vinson, 2003; Fournier et al., 2005; Ohkawara

et al., 2006; Pearcy et al., 2011; Romiguier et al., 2017; Lacy et al., 2019; Kuhn et al., 2020). If these

observations suggest that social hybridogenesis has evolved independentlymultiple times, the evolu-

tionary origins of this complex system remain poorly understood (Anderson et al., 2008; Schwander

et al., 2010). Here we have shown that social hybridogenesis can readily result from queen-larvae

con�icts within colonies. As any non-clonal eusocial species experiences such con�icts, the evo-

lutionary path to hybridogenesis taken in our model may help explain the multiple convergence

towards this reproduction system. Furthermore, because this path to social hybridogenesis does not

depend on changes in the sympatric species whose sperm is parasitized, our model is relevant to

both cases of asymmetrical (where the sympatric species produces workers through regular sex, as

in Solenopsis xyloni for e.g.; Helms Cahan and Vinson, 2003) and symmetrical social hybridogenesis

(where the sympatric species also producesworkers via hybridization, as inPogonomyrmex harvester

ants for e.g.; Anderson et al., 2006).

Ourmodel can also be useful to understand the evolution of unorthodox systems of reproduction and

genetic caste determination other than social hybridogenesis, such as those found in Wasmannia

auropunctata (Fournier et al., 2005), Vollenhovia emeyri (Ohkawara et al., 2006) or Paratrechina

longicornis (Pearcy et al., 2011). In these species, queens are produced via parthenogenesis and

workers via sperm parasitism, but males constitute a genetically independent lineage maintained

via male clonality. When queens are able to produce daughters parthenogenetically in our model,
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evolution can lead to a state where worker-loss is coupled with a complete absence of intra-lineage

mating (i.e. full hybridization, �g. 5C-D). In this state, males only contribute to the production of

sterile workers and thus represent a genetic dead-end. As suggested by other authors (Fournier et al.,

2005; Schwander and Keller, 2012), male clonality may have evolved from this state to allow genetic

replication of the male line. Our model can therefore account for the �rst step of a scenario where

male clonality has evolved as a counter-adaptation to female parthenogenesis. To investigate more

explicitly this second step, it would be interesting to extend our model to consider male evolution.

Our formal approach is especially useful in a context where hybrid vigour in workers has often been

raised to explain the evolutionary origin of social hybridogenesis and other hybridization-dependent

systems (Julian and Cahan, 2006; Umphrey, 2006; Anderson et al., 2008; Feldhaar and Foitzik, 2008;

Schwander et al., 2010). According to this argument, selection favoured hybridization because hy-

brid workers are more e�cient, more resilient, or better suited to exploit marginal habitats than

regular workers. But in spite of much e�ort, empirical evidence supporting hybrid vigor in work-

ers is still lacking (Robertson and Ross, 1990; Julian and Cahan, 2006; Feldhaar and Foitzik, 2008,

but see James et al., 2002). Further challenging this view, we have shown here that hybrid vigor is

not necessary to the evolution of hybridization-dependent reproductive systems. In fact, our results

demonstrate that these systems can easily evolve even when hybridization is costly due to pre- and

post-zygotic barriers (i.e. when e < 1 for e.g. because hybridization leads to an ine�cient work-

force due to hybrid incompatibilities in workers; or increased e�orts in mate-�nding and mating,

Maroja et al., 2014; or the production of non-viable or infertile hybrid queens, Umphrey, 2006; Feld-

haar and Foitzik, 2008). In contrast to previous suggestions (Anderson et al., 2008), our model thus

indicates that hybridization-dependent reproductive systems can emerge among species that have

already substantially diverged, and can be maintained even with further accumulation of hybrid

incompatibilities.

4.3 Factors promoting the evolution of intra-speci�c worker-loss

In addition to showing that hybrid vigor is not necessary to the emergence of intra-speci�c worker-

loss, our model highlights several factors that can facilitate such evolution. The �rst of these is

polyandry, which favors sperm parasitism and worker-loss by minimizing the risks associated with

hybridization. Interestingly, even though polyandry is generally rare in social insects (Strassmann,

2001; Hughes et al., 2008), meaningful exceptions are found in Pogonomyrmex (Rheindt et al., 2004)
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andMessor (Norman et al., 2016) harvester ants, two taxa where social hybridogenesis has evolved

multiple times (Anderson et al., 2006; Romiguier et al., 2017). For strictly or nearly monandrous

species, our model shows that worker-loss can evolve when queens have the ability to reproduce via

thelytokous parthenogenesis as it allows inter-speci�cally mated queens to nevertheless produce

daughter queens. This supports the notion that thelytoky has been important for the convergent

evolution of social hybridogenesis in the (mostly) monandrous Cataglyphis ants (Kuhn et al., 2020).

Although not considered in our study, another factor that can minimize the risks associated with

hybridization in monandrous species is polygyny, whereby related queens form multi-queen nests.

Such social organization allows both intra- and inter-speci�cally mated queens to be part of the

same colony, which can then produce both queens and workers. This may have played a role in

the evolution of social hybridogenesis in the polygynous Solenopsis species with this reproductive

system (Helms Cahan and Vinson, 2003; Lacy et al., 2019).

More importantly, the evolution of worker-loss in our model depends on queens hybridizing often

enough. This readily happens when the propensity of queens to mate with allo- vs. con-speci�c

males evolves (�g. 3). In this case, sperm parasitism, worker-loss and social hybridogenesis emerge

even in species that initially do not hybridize. Such evolution of hybridization is especially likely to

occur where queens are able to recognize di�erences among males and choose their mates accord-

ingly. There is however currently little evidence for such direct mate or sperm choice in eusocial

insects (Strassmann, 2001; Schwander et al., 2006; Umphrey, 2006; Feldhaar and Foitzik, 2008).

Alternatively, queens may be able to modulate the degree of hybridization via more indirect mech-

anisms, such as mating �ight synchronization (Kaspari et al., 2001). And even under completely

randommating (Schwander et al., 2006), hybridization can reach su�cient levels for worker-loss to

evolve (�g. 2). This could occurwhere allo-speci�cmales are abundant, for instance because phenol-

ogy is shared with an ecologically dominant species (Klein et al., 2017). Whether it occurs randomly

or not, hybridization requires pre-zygotic barriers to be su�ciently low. Various mechanisms, such

as secondary contacts or high dispersal ability, are known to lower these barriers (Aguiar et al.,

2009). In particular, it has been proposed that the typically low phenotypic variation among males

of di�erent ant species facilitates hybridization in this taxa (Feldhaar and Foitzik, 2008). With these

considerations in mind, it is noteworthy that all known cases of social hybridogenesis have been

found in ants that live in dry climates (Helms Cahan et al., 2002; Helms Cahan and Vinson, 2003;

Romiguier et al., 2017; Lacy et al., 2019; Kuhn et al., 2020), where the synchronicity of mating �ights

between species is highest due to shared dependence upon punctual climatic events (Hölldobler and
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Wilson, 1990; Feldhaar and Foitzik, 2008).

At a broader level, our results suggest that worker-loss can readily evolve when a source of workers

that is impervious to royal cheats can be exploited by queens. Besides sperm parasitism, other forms

of parasitism can provide such a source of workers and have been associated to worker-loss (Nonacs

and Tobin, 1992). In inquiline ants such as Teleutomyrmex schneideri for instance, queens do not

themselves produce workers but rather in�ltrate the colony of a host and trick host workers into

caring for their progeny (Hölldobler and Wilson, 1990; Buschinger, 2009). Like in our model, such

social parasitism could be the endpoint of an arms race between queens and larvae of the same

lineage, whereby increasingly sel�sh cheats reduce colony workforce leading queens to increasingly

rely on host workers.

4.4 Conclusions

Intra-colonial con�icts are inevitably part of the social lives of non-clonal organisms (Ratnieks et

al., 2006). Here we have shown that such genetic con�icts readily lead to an association between

inter-speci�c sperm parasitism and intra-speci�c worker-loss via the �xation of royal cheats. This

association is especially relevant to the evolution of reproductive systems that like social hybridoge-

nesis rely on hybridization. Beyond these unorthodox systems and sperm parasitism, the �xation of

royal cheats and loss of intra-speci�c workers may be connected to other forms of antagonistic inter-

speci�c relationships such as social parasitism. More broadly, our model illustrates how the unique

genetic con�icts that are inherent to eusocial life can lead to evolutionary arms races (Schwander

and Keller, 2012), with implications for elaborate reproductive systems and novel ecological inter-

actions between species.
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Figure 1: The life cycle of an annual eusocial with hybridization and sperm para-
sitism. At each generation, the life-cycle begins with virgin queens mating withmmales,
each ofwhich has a probability � to be allospeci�c and 1−� to be conspeci�c. Aftermating,
a queen founds a colony and starts producing eggs. Hybrid female eggs (with allospeci�c
paternal origin) all develop into workers. Regular female eggs (with conspeci�c paternal
origin) develop into workers with probability ! and into queens otherwise. The variable �
thus captures the tendency of queens to hybridize and parasitize sperm while ! controls
caste determination. In particular, genotypes leading their carriers to express lower values
of ! are more sel�sh and can be considered as "royal cheats".
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Figure 2: The �xation of royal cheats and evolution of intra-speci�c worker-loss.
A Evolution of the probability ! that a female larva develops into a worker in a simulated
population when queens mate with a large number of males (polyandry,m → ∞) and the
proportion of allospeci�cmales � is �xed (top � = 0; middle � = 0.2, bottom � = 0.4; other
parameters: e = 1, Appendix A.3 for details on simulations). Plain lines (and surrounding
grey areas) show the population average! (and its standard deviation). Dashed lines show
the predicted equilibrium (from eq. 1). B Equilibrium of ! as a function of hybridization �
and the e�ciency of hybrid workers e (from eq. 1). C Parameter combinations leading to
the evolution of completeworker-loss (i.e. ! → 0, in green, corresponding to � ≥ 1∕(1+2e)
which is found by substituting eq. 1 into !∗ ≤ 0).
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Figure 3: The coevolution of caste determination and sperm parasitism. A. Evolu-
tionary equilibria (for � in black and ! in white) as a function of hybrid worker e�ciency
e (eq. B-6 in Appendix B.1.2 for details). These equilibria however are evolutionary repel-
lors (eq. B-7 in Appendix B.1.2). As a result, three types of coevolutionary dynamics are
possible depending on e as illustrated in panels B, C&D (from eq. B-5). These panels show
examples of phenotypic trajectories when worker-loss: B never evolves (e = 0.1); C can
evolve depending on initial conditions (e = 0.4); D always evolves (e = 0.7). Black �lled
circles indicate the two evolutionary end-points: hybridization avoidance with develop-
mental plasticity (! = 1∕3 and � = 0 in B-C) or worker-loss with hybridization (! = 0
and � = 2∕3 in C-D). Empty circle in C shows the internal unstable equilibrium (eq. B-6).
Thick grey arrow heads in D represent the trajectory of a population starting from! = 1∕3
and � = 0 and evolving to worker-loss. E: Fitness e�ects of caste determination ! in a mu-
tant larva via itself (in orange), queens (red) and males (blue) along the trajectory leading
to worker-loss shown in panel D (total selection in black, Appendix B.1.3 for derivation).
We see that negative �tness e�ects via self (orange line) lead to a total selection e�ect that
is negative (black line). This indicates that mutant larvae with increasingly small values
of ! are selected because these values increase larvae’s direct �tness (by increasing the
probability that they develop into queens). F: Fitness e�ects of hybridization � in a mu-
tant queen, via its sons (blue) and daughter queens (red) along the trajectory leading to
worker-loss shown in panel D (total selection in black). Positive total selection (in black)
is mostly due to an increase of �tness via males (in blue). This says that mutant queens
with increasingly large values of � are selected because this increases their reproduction,
especially via males.
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Figure 4: The e�ects of monandry and low polyandry. A: Outcome of selection as a
function of mate numberm and hybrid worker e�ciency e. Over the dashed line, worker-
loss is a stable equilibrium (i.e. a population with traits ! = 0 and � = 2∕3 cannot be
invaded, eq. B-16 in Appendix B.2.1). Over the plain line, hybridization can invade when
rare (i.e. � = 0 is unstable, eq. B-18 in Appendix B.2.1). Below both lines (gray region),
plasticity in caste determination is maintained (as in �g. 3B). Over both lines (dark green
region), hybridization and worker-loss evolve (as in �g. 3D). In the light green region,
worker-loss evolve for some initial conditions (as in �g. 3C). In the blue region, there exists
an internal attractor equilibrium (i.e. the population converges towards a phenotype 0 <
�∗ < 1 and 0 < !∗ < 1) that is either uninvadable (for 2 ≤ m ≤ 4, panel B for e.g.) or
invadable leading to polymorphism (for m = 1, panel C for e.g.). B: Evolution towards
an uninvadable phenotype in a simulated population (when e = 1 and m = 2). Each dot
represents the value of � of one of 20 haplotypes randomly sampled every 100 generation
in a simulated population of 10000 queens (Appendix A.3 for details on simulations). The
colour of each dot gives the value of! of the associated haplotype (legend). The horizontal
dashed line represents the predicted equilibrium (from �g. S1). The grey line represents
the mean value of � across the simulation. C: Evolution towards an invadable phenotype
and the emergence of polymorphism in a simulated population (when e = 1.5 andm = 1,
other parameters and �gure legend: same as B).
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Figure 5: The in�uence of thelytokous parthenogenesis. A & B Invasion analysis as
a function of parthenogenesis c and hybridworker e�ciency e (withm = 1 in A andm = 2
in B). In the region over the plain line, hybridization can invade when rare (i.e. � = 0 is
unstable, eq. B-23). In the region over the dashed line (in A) or framed by the dotted and
dashed lines (inB), worker-loss is a stable equilibrium (i.e. a population at equilibrium for
� and with ! = 0 cannot be invaded, Appendix B.2.2, eqs. B-25 and B-26 for details). In
the dark green region, selection thus favours both the evolution of hybridization and the
maintenance ofworker-loss (e.g. panel C). In the light green region, worker-loss can evolve
only for some initial conditions (as in �g. 3C).C Phenotypic trajectories leading to worker-
loss (when e = 0.9, c = 0.4 andm = 1). Arrows show the direction of evolution favoured
by selection. Black �lled circles indicate the evolutionary end-point. The black line shows
the average trait values of a simulated population starting at (! = 1∕2, � = 0). In this
example, selection leads to a state where worker-loss (! = 0) is coupled with complete
hybridization (� = 1). D Level of hybridization � favoured by selection when worker-
loss has evolved (! = 0) as a function of parthenogenesis c. This shows that worker-loss
is always associated to complete hybridization (� = 1) under monandry (m = 1) and if
c ≥ (m − 1)∕(3m − 1) under polyandry (m > 1) (Appendix B.2.2, eq. B-24, for details).
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Appendices

A Methods

Here we describe our methods to investigate the evolutionary dynamics of: (1) the probability ! for

a non-hybrid larvae to develop as a worker; and (2) the propensity � for queens to hybridize. These

methods are organised as follows. First in section A.1, we present a population genetics model that

describes the change in allele frequencies at a biallelic locus that determines the value of ! in larvae

and of � in queens. Second (in section A.2.1), we obtain the invasion �tness of amutant allele coding

for deviant trait values in a population otherwise monomorphic for a resident allele. Then, we use

this invasion �tness in section A.2 as a platform to infer the long-term adaptive dynamics of both

traits (i.e. their gradual evolution under the input of rare mutations with weak phenotypic e�ects).

Speci�cally, we derive the joint evolutionary equilibria of ! and � (i.e. singular values), as well as

their properties (i.e. convergence and evolutionary stability, Dercole and Rinaldi, 2008 for textbook

treatment). Finally in section A.3, we describe our individual-based simulations. A Mathematica

notebook reproducing our analyses and �gures is provided as a supplement here: https://zenodo.

org/record/4434257.

A.1 Short term evolution: population genetics

A.1.1 Set-up

We consider a single locus with two alleles, a and b, that a�ect the expression of both ! and � in

their carrier. Speci�cally, the probability for a larva with genotype v ∈ {aa, ab, bb} to develop as

a worker is !v, while each mate of a queen with genotype v ∈ {aa, ab, bb} is allospeci�c with a

probability �v. To track the segregation of alleles a and b in the population, we let p♀aa(t), p
♀
bb(t), and

p♀ab(t) respectively denote the frequency of queens with genotype aa, bb and ab before mating at

generation t (with p♀aa(t) + p♀bb(t) + p♀ab(t) = 1). Similarly, p♂a (t) and p
♂
b (t) respectively denote the

frequency of conspeci�c males with haploid genotype a and b before mating at generation t (with

p♂a (t) + p♂b (t) = 1).
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A.1.2 Recurrence equations for the evolution of genotype frequencies

Our �rst goal is to develop recurrence equations for the frequencies of each genotype in males and

females (i.e. express p♂u (t + 1) and p♀v (t + 1) in terms of p♂u (t) and p
♀
v (t) for u ∈ {a, b} and v ∈

{aa, ab, bb}). By de�nition, these frequencies can be written as

p♂u (t + 1) =
n♂u (t + 1)

n♂a (t + 1) + n♂b (t + 1)

p♀v (t + 1) =
n♀v (t + 1)

n♀aa(t + 1) + n♀ab(t + 1) + n♀bb(t + 1)
,

(A-1)

where n♂u (t + 1) is the density of males of genotype u ∈ {a, b} at generation t + 1, and n♀v (t + 1) the

density of queens of genotype v ∈ {aa, ab, bb} at generation t + 1 in the mating pool. Under our

assumption that the probability for a sexual to reach the mating pool increases with the workforce

of a colony (section 2 in main text), the densities of males and females of each genotype can be

expressed as:

n♂v (t + 1) = x♂aa v(t)naa(t)p
♀
aa(t) + x♂ab vnab(t)p

♀
ab(t) + x♂bb vnbb(t)p

♀
bb(t)

n♀v (t + 1) = x♀aa v(t)naa(t)p
♀
aa(t) + x♀ab v(t)nab(t)p

♀
ab(t) + x♀bb v(t)nbb(t)p

♀
bb(t),

(A-2a)

where x♂u v(t) is the number of males with genotype v ∈ {a, b}, and x♀u v(t) the number of queens

with genotype v ∈ {aa, ab, bb}, produced by a colony founded by a queen of genotype u ∈

{aa, ab, bb} at generation t. Following Reuter and Keller (2001), we assume that these numbers are

proportional to the energy invested into the production of sexuals. So instead of densities, x♂u v(t)

can be viewed as the investment into the production of males (of genotype v ∈ {a, b}) and x♀u v(t)

into the production of queens (of genotype v ∈ {aa, ab, bb}) by a colony whose queen has genotype

u ∈ {aa, ab, bb}. Finally, nu(t) is the e�ective workforce of a colony whose queen has genotype

u ∈ {aa, ab, bb} at generation t. This workforce is given by the sum of all types of workers present

in a colony, including hybrids (with the latter weighted by their e�ciency e), i.e.

nu(t) =
(
xu aa(t) + xu ab(t) + xu bb(t) + exu ℎyb(t)

)�
(A-2b)

where xu v(t) is the investment into the production of workers of genotype v ∈ {aa, ab, bb, ℎyb}

(with ℎyb denoting hybrid genotype) made by a colony whose queen has genotype u ∈ {aa, ab, bb}

at generation t. The parameter � > 0 determines the e�ect of the workforce on the probability for a
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sexual to reach the mating pool. When � = 1, investment in workers a�ects the survival of queens

and males linearly (i.e. one extra unit of workforce always increases survival by the same amount).

By contrast when � < 1, investment in workers show diminishing returns. Conversely when � > 1,

investment in workers show increasing returns. For most of our analyses, we assume linear e�ects

of the workforce (� = 1). We relax this assumption in section B.2.3.

We specify the investments into males, x♂u v(t), queens, x
♀
u v(t), and workers, xu v(t), in terms of

model parameters in Table S1. For the sake of completeness, we do so for a model that encompasses

all the e�ects explored sequentially in the main text, i.e. we allow for both traits ! and � to coevolve;

for a �nite numberm of mates for each queen; and for a fraction c of a queen’s brood to be produced

via parthenogenesis. To read Table S1, note that the di�erent investments made by a colony with a

queen of type u ∈ {aa, ab, bb} (i.e. x♂u v(t), x
♀
u v(t), and xu v(t)) depend on the types of males she has

mated with. To capture this, we letMu,v be the random number of males of genotype v ∈ {a, b, ℎ}

(where ℎ denotes allospeci�c type) that a queen of genotype u ∈ {aa, ab, bb} mates with. Assum-

ing that each mate is independent from one another, these random variables follow a multinomial

distribution with parameters,

Mu = (Mu,a,Mu,b,Mu,ℎ) ∼ Multinomial
(
m, (1 − �u)p

♂
a (t), (1 − �u)p

♂
b (t), �u

)
, (A-3)

where m is the total number of mates; (1 − �u)p
♂
v (t) is the probability that in one mating event a

queen of type umates with a conspeci�cmale of type v ∈ {a, b} (which requires that this queen does

not hybridize, with probability (1 − �u), and encounters a male of type v, with probability given by

its frequency, p♂v (t)); and �u is the probability that in one mating event a queen of type umates with

an allospeci�c male.

To get to the recurrence equations tracking the frequency of males and queens of each genotype,

we �rst substitute the entries of Table S1 into eq. (A-2) (with � = 1). Doing so we obtain polyno-

mials for the densities n♂v (t + 1) (for v ∈ {a, b}) and n♀v (t + 1) (for v ∈ {aa, ab, bb}) in terms of

the random variables Mu,a, Mu,b, and Mu,ℎ (with u ∈ {aa, ab, bb}). We marginalise (i.e. take the

expectation of) these polynomials over the joint probability mass function ofMu,a, Mu,b, andMu,ℎ

for each u ∈ {aa, ab, bb}, which is given by eq. (A-3). Finally, the so-obtained densities of di�erent

types of individuals (eq. A-2) are substituted into eq. (A-1). From this operation and using the fact
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that p♂a (t) = 1 − p♂b (t) and p
♀
aa(t) = 1 − p♀bb(t) − p♀ab(t), we obtain a recurrence equation,

⎛
⎜
⎜
⎜
⎝

p♂b (t + 1)

p♀ab(t + 1)

p♀bb(t + 1)

⎞
⎟
⎟
⎟
⎠

= F

⎛
⎜
⎜
⎜
⎝

p♂b (t)

p♀ab(t)

p♀bb(t)

⎞
⎟
⎟
⎟
⎠

, (A-4)

characterised by amappingF ∶ [0, 1]3 → [0, 1]3. This recurrence is too complicated to be presented

here for the general case but can straightforwardly be iterated numerically to track allelic frequency

changes for given parameter values (see Mathematica notebook for e.g.).

A.2 Long-term evolution: adaptive dynamics

To gain more analytical insights, we use the recurrence eq. (A-4) to study the long term adaptive

dynamics of both traits under the assumption that traits evolve via mutations that are rare and with

weak additive phenotypic e�ects.

A.2.1 Invasion �tness of rare additive allele

An adaptive dynamics model is typically based on the invasion �tness of a mutant allele in a popu-

lation that is otherwise �xed for a resident allele (i.e. the asymptotic growth rate of a mutant allele).

To obtain this invasion �tness, we �rst introduce some notation. We denote the resident allele by

a vector z = (!, �) where ! is probability that a larva homozygote for the resident allele develops

into a worker, and � is the probability that a mate of queen homozygote for the resident allele is

allo-speci�c. Similarly, the mutant allele is described by a vector ζ = (! + �!, � + ��) whose �rst

entry gives the probability that a larva homozygote for the mutant allele develops into a worker, and

whose second entry is the probability that a mate of a queen homozygote for the mutant allele is

allo-speci�c (�! and �� thus denote the mutant e�ect on trait values). Assuming additive genetic

e�ects on phenotypes, a heterozygote then expresses phenotype (! + �!∕2, � + ��∕2).

To use the recurrence equations developed in the previous section, we arbitrarily set allele a as the

resident and b as the mutant. The allele speci�c trait values (appearing in table S1 and eq. A-3) are
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then replaced by:

!aa = !

!ab = ! + 1
2�!

!bb = ! + �!

�aa = �

�ab = � + 1
2��

�bb = � + ��.

(A-5)

Next, we use the fact that the mutant is rare so that its frequency in the population is of the order

of a small parameter denoted 0 < � ≪ 1. As a rare allele can only be found in heterozygous form

in a large panmictic population, the initial dynamics of a mutant allele b can be described through

linear approximations of p♂b (t+1) and p
♀
ab(t+1) at a near-zero frequency of b (e.g. Brännström et al.,

2013). In other words, eq. (A-4) can be linearised to

⎛
⎜
⎝

p♂b (t + 1)

p♀ab(t + 1)

⎞
⎟
⎠
= A(ζ, z)

⎛
⎜
⎝

p♂b (t)

p♀ab(t)

⎞
⎟
⎠
+ O(�2), (A-6)

whereA(ζ, z) is a 2 × 2matrix that depends on mutant and resident phenotypes, ζ and z, and � is a

small parameter of the order of the frequency of the mutant b in males and queens.

The invasion�tness of themutant phenotype, whichwewrite asW(ζ, z), is then given by the leading

eigenvalue of A(ζ, z) (e.g. Caswell, 2000), i.e.

W(ζ, z) = �max
(
A(ζ, z)

)
, (A-7)

where �max(M) gives the leading eigenvalue of a matrixM. In a large population,W(ζ, z) tells the

fate of the mutant allele. IfW(ζ, z) ≤ 1, then the mutant allele is purged by selection and vanishes

with probability one. Otherwise ifW(ζ, z) > 1, the mutant has a non zero probability of invading

the population (e.g. Brännström et al., 2013).

A.2.2 Directional selection

Whenmutations are rarewithweakphenotypic e�ects, the population�rst evolves under directional

selection whereby an advantageous mutation �xes before a new mutation arises so that the popula-

tion “jumps” from one monomorphic state to another (Dercole and Rinaldi, 2008). To study these

dynamics, we use the selection gradient, s(z), which is a vector pointing in the direction favoured by

selection at every point z ∈ [0, 1]2 of the phenotypic space (Phillips and Arnold, 1989). This vector
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is given by the marginal e�ect of each trait on invasion �tness, i.e.

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎝

)W(ζ, z)
)�!

|||||ζ=z
)W(ζ, z)
)��

|||||ζ=z

⎞
⎟
⎟
⎟
⎠

, (A-8)

where s!(z) and s�(z) give the direction of selection on ! and � respectively.

Singular strategies. A singular strategy, z∗ = (!∗, �∗), is such that all selection gradients are

equal to zero,

s(z∗) = 0. (A-9)

A singular strategy therefore represents a potential equilibrium of adaptive dynamics (Brännström

et al., 2013).

Jacobian matrix and convergence stability. Whether the population evolves towards or away

from a singular strategy z∗ depends on the Jacobian matrix,

J(z∗) =

⎛
⎜
⎜
⎜
⎝

)s!(z)
)!

|||||z=z∗
)s!(z)
)�

|||||z=z∗

)s�(z)
)!

|||||z=z∗
)s�(z)
)�

|||||z=z∗

⎞
⎟
⎟
⎟
⎠

. (A-10)

Speci�cally, a singular strategy is said to be (strongly) convergence stablewhen the symmetric part of

the Jacobian matrix, (J(z∗) + J(z∗)T)∕2, is negative-de�nite (or equivalently has negative eigenval-

ues, Leimar, 2009). In this case, the population evolves towards z∗, independently from the genetic

correlations between both traits (i.e. independently from the statistical distribution of mutational

e�ects on both traits). Otherwise, the population evolves away from z∗.

A.2.3 Stabilising/disruptive selection.

Once the population is at an equilibrium for directional selection (i.e. a convergence stable phe-

notype), it either remains monomorphic under stabilising selection (when the equilibrium is evo-

lutionary stable or uninvadable, Parker and Maynard Smith, 1990) or becomes polymorphic due

to disruptive selection (when the equilibrium is not evolutionary stable or invadable, Geritz et al.,
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1998). When two traits are coevolving, this depends on the Hessian matrix (Phillips and Arnold,

1989; Leimar, 2009; Geritz et al., 2016),

H(z∗) =
⎛
⎜
⎝

ℎ!!(z∗) ℎ!�(z∗)

ℎ!�(z∗) ℎ��(z∗)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎝

)2W(ζ, z)
)�2!

|||||ζ=z=z∗
)2W(ζ, z)
)�!��

|||||ζ=z=z∗

)2W(ζ, z)
)�!��

|||||ζ=z=z∗
)2W(ζ, z)

)�2�

|||||ζ=z=z∗

⎞
⎟
⎟
⎟
⎠

. (A-11)

An equilibrium z∗ is uninvadable if H(z∗) is negative-de�nite. Otherwise, selection is disruptive

and the population may experience evolutionary branching, whereby it splits among two diverging

morphs (Geritz et al., 1998; Leimar, 2009; Geritz et al., 2016).

A.3 Individual-based simulations

To complement our mathematical analysis, we also performed individual based simulations (an

R script implementing these is provided as a supplement here: https://zenodo.org/record/

4434257). These simulations track a population of Nq = 10000 diploid queens (with f = 0.5,

see �gure legends for other parameters). Each queen is characterized by its genotype: a pair of hap-

lotypes, each of which is given by the values of ! and � they code for (so four genotypic values in

total). Simulations are initialized by setting both haplotypes of all Nq queens to the same arbitrary

values (i.e. we start with a monomorphic population). Each generation of a simulation consists of

the following steps:

1. Mating. First, queens mate. Tomodel this process, we �rst compute the propensity �i of each

queen i ∈ {1, 2, … ,Nq} to hybridize as the mean of the two relevant alleles it is carrying. Then,

each queen i ismatedwith a numbermi of conspeci�c haploidmales. This numbermi is drawn

from a binomial distributionwithm trials and success probability (1−�i) (in linewith eq. A-3).

At the �rst generation, all males carry the same genetic values for ! and � as queens (i.e. the

initial trait values). In subsequent generations,males are sampled (with replacement) as single

haplotypes from the 2i haplotypes present in the laying queens of the previous generation.

Following eq. (A-2a), the probability to sample a given haplotype isweighted by the investment

in workers within its colony of origin (as the investment in workers increases the probability

for males to reach the mating pool).

2. Colony development. Each queen i settles to form a colony. We characterise each colony in
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two steps. First, a list is constructed that contains the 2mi non-hybrid diploid female genotypes

produced within each colony (i.e. the combinations of the alleles of a queen and of its con-

speci�c mates). If thelytokous parthenogenesis is included (c > 0), the genotype of the queen

itself is added to this list. Second, the investment in workers within each colony is calculated

following equations in table S1 and eq. (A-2b). These calculations use the genetic value ex-

pressed by each of the 2mi +1 non-hybrid genotype within the female progeny (characterised

in the �rst step), as well as the proportion of the brood produced sexually and asexually (the

parameter c), the proportion of conspeci�c and allospeci�c males the queen has mated with

(i.e. mi∕m and 1 − mi∕m), and the e�ciency of hybrid workers (the parameter e).

3. Next-generation queens. To generate the next generation of queens,Nq new diploid female

genotypes are sampled (with replacement) from all non-hybrid genotypes produced within

each colony. Following table S1, the probability to sample a given genotype is weighted by

its own genetic value of (1 − !) and by the investment in workers within its colony of origin

(as the investment in workers increases the probability for queens to reach the mating pool).

Finally, each genotypic value independently mutates with probability 10−2. Mutation e�ects

are drawn independently fromanormal distributionwithmean 0 and standard deviation 10−2.

Mutated genetic values are capped between 0 and 1 to ensure that traits remain within their

domain of de�nition.
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B Analyses

Here, we present the derivations of our results summarised in the main text. These derivations are

organised in the same order as they appear in the main text. As a supplement, we also provide a

Mathematica (Wolfram Research, 2020) notebook that allows to follow our analyses.

B.1 Baseline model

We �rst explore the baseline case where females mate with a large (e�ectively in�nite) number of

mates and there is no parthenogenesis (i.e. whenm → ∞ and c = 0).

B.1.1 Independent evolution of genetic caste determination

As presented in the main text, we initially assume that hybridization � is �xed and only caste deter-

mination ! evolves. Using eq. (A-8) with m → ∞ and c = 0, we �nd that the selection gradient on

genetic caste determination is,

s!(z) =
1
6 (

1 − �
�e + (1 − �)!

− 2
1 − !) . (B-1)

Accordingly, there is a unique singular strategy !∗ for caste determination when hybridization � is

�xed (i.e. !∗ such that s!((!∗, �)) = 0),

!∗ = 1
3 − e

2�
3(1 − �)

, (B-2)

which is eq. 1 of the main text.

It is straightforward to show that with hybridization �xed, the singular strategy (eq. B-2) is conver-

gence stable,
)s!(z)
)!

|||||!=!∗
= −

9(1 − �)2

4(1 + �(e − 1))2
< 0 (B-3)

(eq. A-10 for a single trait withm → ∞ and c = 0), as well as uninvadable,

)2W(ζ, z)
)�2!

|||||!=!∗
= −

3(1 − �)2

4(1 + �(e − 1))2
< 0 (B-4)
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(eq. A-11 for a single trait with m → ∞ and c = 0). Therefore, when hybridization is �xed, our

analyses show that genetic caste determination will gradually evolve to the singular value eq. (B-2)

and remain monomorphic for this value (which is what we observe when we simulate this scenario,

�g. 2A).

B.1.2 Co-evolution of genetic caste determination and hybridization

An unstable singularity. When both caste determination ! and hybridization � evolve, their

trajectories under directional selection are given by the selection gradient vector,

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎜
⎝

1
6 (

1 − �
�e + (1 − �)!

− 2
1 − !)

1
1 − � (

e
3 [�e + (1 − �)!]

− 1
2)

⎞
⎟
⎟
⎟
⎟
⎠

(B-5)

(from eq. A-8 withm → ∞ and c = 0). Solving the above for z∗ = (!∗, �∗) such that s(z∗) = (0, 0)

yields a single singular strategy in two dimensional trait space,

z∗ =
⎛
⎜
⎝

!∗

�∗
⎞
⎟
⎠
=

⎛
⎜
⎜
⎝

e + e − 1
3

2 + 1
e − 1

⎞
⎟
⎟
⎠

, (B-6)

which is plotted in �g. 3A against e. However, when we look at the symmetric part of the Jacobian

matrix of the system eq. (B-5) at this singular value (i.e. substitute eqs. B-5 and B-6 into eq. A-10),

1
2
(
J(z∗) + J(z∗)T

)
=

⎛
⎜
⎜
⎜
⎝

− 9
16(e − 1)2

− 9
16e

− 9
16e −

(e − 1)2

4e2

⎞
⎟
⎟
⎟
⎠

, (B-7)

we see that this matrix is not negative-de�nite. Indeed, a 2×2 symmetric matrix is negative-de�nite

only if the square of its o�-diagonal is less than the product of its diagonal element (Bhatia, 2013),

so here if

( 9
16e)

2
< 9
16(e − 1)2

×
(e − 1)2

4e2
= 1
4

9
16e2

, (B-8)

which is always false. Since the symmetric part of the Jacobian matrix eq. (B-7) is not negative-

de�nite, the singular value eq. (B-6) is not (strongly) convergence stable and thus an evolutionary
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repellor (Leimar, 2009).

Our result that evolutionary trajectories will be repelled away from the singular value eq. (B-6) tells

us that adaptive dynamics will eventually get to the boundary of the trait space. This trait space

consists of the square [0, 1] × [0, 1] (as both traits must be between zero and one). Two edges of this

square (when ! = 1 or � = 1) cannot be accessed by evolutionary dynamics as either of these trait

values lead to zero �tness (as a population monomorphic for ! = 1 or � = 1 produces no queen in

our baseline model). We can therefore focus on dynamics along the edges � = 0 or ! = 0 of the trait

space, which respectively correspond to the case of hybridization avoidance and worker-loss.

Convergence to hybridization avoidance. Evolutionary dynamics will settle somewhere on the

edge where hybridization is absent in the population (� = 0) only if: (1) selection on hybridization

maintains it at zero (i.e. s�(z) ≤ 0 when � = 0); and (2) selection on caste determination settles for

an equilibrium !∗ (i.e. s!(z) = 0 for some !∗ when � = 0). From eq. (B-5), these two conditions

are true when e ≤ 1∕2 and the equilibrium for caste determination is simply !∗ = 1∕3 (in line with

eq. B-2). As established in eq. (B-3), this equilibrium is convergence and evolutionary stable when

� is �xed.

Convergence to worker-loss. Similarly, for adaptive dynamics to converge somewhere on the

edge where workers are no longer produced from regular sex (! = 0), these two conditions are

necessary: (1) selection on caste determination maintains ! = 0 (i.e. s!(z) ≤ 0 when ! = 0); and

(2) selection on hybridization favours an equilibrium �∗ (i.e. s�(z) = 0 for some �∗ when ! = 0).

Substituting eq. (B-5) into these conditions, they reduce to e ≥ 1∕4 and �∗ = 2∕3. In addition, we

see from eq. (B-5) that when ! = 0,

)s�(z)
)�

|||||�=2∕3
= −94 < 0, (B-9)

and we further �nd that
)2W(ζ, z)

)�2�

|||||�=2∕3
= −34 < 0. (B-10)

This tells us that the populationwill converge towards and remainmonomorphic for �∗ = 2∕3when

! = 0 is �xed.
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Three phase portraits. Put together, the above observations allow us to deduce that depending

on the parameter e, there are three possible types of phase portraits for the adaptive dynamics of both

traits (�g. 3B-D). When e ≤ 1∕4, the singular value eq. (B-6) is outside of the trait space (or on its

boundary when e = 1∕4) and the point (! = 1∕3; � = 0) is an evolutionary stable attractor, meaning

that the population will converge towards hybridization avoidance (�g. 3B). When e ≥ 1∕2, the

singular value eq. (B-6) is also outside of the trait space (or on its boundary when e = 1∕2) and the

point (! = 0; � = 2∕3) is an evolutionary stable attractor, meaning that the population will converge

towards worker-loss (�g. 3D). Finally when 1∕4 < e < 1∕2, the singular value eq. (B-6) is a repellor

that lies within the trait space (i.e. 0 < !∗ < 1 and 0 < �∗ < 1) and both points (! = 1∕3; � = 0) and

(! = 0; � = 2∕3) are evolutionary stable attractors. In this case evolutionary dynamics will depend

on initial values (�g. 3C).

B.1.3 Decomposition of directional selection in terms of inclusive �tness e�ects

The kin selection approach. In this section, we use the so-called "kin selection" or "inclusive

�tness" approach to obtain the selection gradient eq. (B-5) (Taylor and Frank, 1996). This approach,

which is based on invasion analyses of alleles in class-structured populations, gives the same quan-

titative result about directional selection than other common methods in theoretical evolutionary

biology such as adaptive dynamics, population or quantitative genetics (assuming genetic variance

for traits is small, e.g. Taylor and Frank, 1996; Rousset, 2004; Lehmann et al., 2016). But one partic-

ular advantage of a kin selection approach is that it immediately decomposes directional selection

on mutant alleles into the sum of: (1) their direct �tness e�ects on the reproductive success of the

individuals that express them; and (2) of their indirect �tness e�ects on other related individuals

that can also transmit them. This decomposition allows to delineate the various forces at play in the

evolution of social behaviours (Hamilton, 1964). Here, we use it to better understand the evolution

towards worker-loss (and obtain �g. 3E-F).

We follow Taylor and Frank (1996)’s general method. Consider a population with mean trait values

! and �. In this population, consider a focal colony that is home to a mutant allele that codes for

deviant trait values �∙ in queens and !∙ in larvae that carry this allele. Let !0 denote the mean trait

value expressed by all larvae within this focal colony. Using this notation, the expected number of

successful (i.e. that mate) males that are produced by the focal colony and that carry the mutant
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allele is given by,

w♂ =
(1 − f)

[
f ((1 − �∙)!0 + �∙e)

]

(1 − f)
[
f ((1 − �)! + �e)

] , (B-11)

where the numerator and denominator are the total number of males produced by the focal and a

random colony, respectively. For the focal colony (the numerator), (1 − f) is the probability that

an egg is haploid (i.e. male) while the term in square brackets is the colony’s investment in workers

(which in ourmodel is also the probability that a sexual reachesmaturity). The denominator follows

the same logic for an average colony in the population.

Similarly, the expected number of successful queens that are produced by the focal colony that carry

the mutant allele is,

w♀ =
f(1 − �∙)(1 − !∙)

[
f ((1 − �∙)!0 + �∙e)

]

f(1 − �)(1 − !)
[
f ((1 − �)! + �e)

] , (B-12)

where f(1−�∙)(1−!∙) is the density of queens produced in the focal colony and the term in square

brackets is the probability that a queen survives till mating (i.e. the colony’s investment in workers).

Fitness e�ects within a mutant colony. With the above notation, the selection gradient vector

can then be computed as,

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠
∝

⎛
⎜
⎜
⎝

v♀
)w♀

)!∙
+ v♂

)w♂

)!0
rlm + v♀

)w♂

)!0
rlf

v♂
)w♂

)�∙
rqm + v♀

)w♂

)�∙
rqf

⎞
⎟
⎟
⎠

, (B-13)

where all derivatives are evaluated at!∙ = !0 = ! and �∙ = �0 = �; rlm is the relatedness of a female

larva to a brother; rlf is the relatedness of a female larva to a sister; rqm is the relatedness of a queen to

its sons; rqf is the relatedness of a queen to its daughters; v♂ is the reproductive value ofmales and v♀

is the reproductive value of queens (all these relatedness coe�cients and reproductive values are for

amonomorphic population, Taylor and Frank, 1996). Plugging eqs. (B-11) and (B-12) into eq. (B-13)

with relatedness coe�cients and reproductive values corresponding to a haplodiploid system with

in�nite matings (i.e. rlm = 1∕2, rlf = 1∕4, rqm = 1, rqf = 1∕2, v♂ = 1∕2, v♀ = 1), we obtain

expressions equivalent to eq. (B-5). But in contrast to eq. (B-5), the selection gradients in eq. (B-13)

are expressed as a sum of �tness e�ects of a mutant allele via a given category of individual. More

speci�cally, the gradient s!(z) in eq. (B-13) is decomposed as the �tness e�ects of an allele coding for

a mutant value of! in larvae: on the larvae that express this allele (v♀
)w♀

)!∙
, yellow line in �g. 3E), on
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their brothers (v♂
)w♂

)!0
rlm, blue line in �g. 3E), and on their sisters (i.e. queens, v♀

)w♂

)!0
rlf , red line in

�g. 3E) that can also transmit the allele. Similarly, the gradient s�(z) in eq. (B-13) is composed of the

�tness e�ects of an allele coding for a mutant value of � in queens: via their sons (v♂
)w♂

)�∙
rqm, blue

line in �g. 3F) and daughters (i.e. queens, v♀
)w♂

)�∙
rqf , red line in �g. 3F). To construct panels E and

F of �g. 3, we evaluated these �ve terms outlined above at every step of an evolutionary trajectory

from the baseline equilibrium in absence of hybridization (! = 1∕3, � = 0) to complete worker-loss

(! = 0, � = 2∕3). The evolutionary trajectory was obtained by iteration, starting from the baseline

equilibrium and taking steps of size 0.001 (in units of trait space) in the direction of the selection

gradient (eq. B-5).

B.1.4 Correspondence with Reuter and Keller (2001)

Here we connect our results to those of Reuter and Keller (2001), who used a kin selection approach

to study the evolution of caste determination when under full queen, full larval, or mixed control

(in the absence of hybridization). Our model corresponds to the case of full larval control (eq. 3 of

Reuter and Keller, 2001). Our selection gradient s!(z), shown in eq. (B-1) with � = 0, reduces to

eq. 3 of Reuter and Keller (2001) when we assume linear e�ects of investment in workers on colony

productivity. More speci�cally, if we set their term ∆c = �s∕(�w)×1∕f (their notation in their eq. 3,

where ∆c corresponds to the gain in sexual production brought by one additional worker) to

∆c =
1 − fw
w , (B-14)

and assume that the population is monogynous and highly polyandrous with balanced sex-ratio (i.e.

in their notation, f = 1∕2; gf = 1∕4; gm = 1∕2; vf = 2; vm = 1), then we �nd that eq. 3 of Reuter

and Keller (2001) is proportional to our selection gradient s!(z) (eq. B-1) with � = 0. In line with

this, both yield the convergence stable equilibrium w∗ = 1∕3.

B.2 Extensions

We now consider several extensions to our baseline model.
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B.2.1 E�ect of �nite matings

First, we relax our assumption that queens mate with an in�nite number of mates (i.e. m < ∞).

Selection gradient. Working from eq. (A-8) with c = 0, we �nd that the selection gradient vector

on caste determination ! and hybridization � under �nite matings reads as,

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

1
6 (

1 − �
�e + (1 − �)!

− 2
1 − ! +

3e� + 2(1 − �)!
2[�e + (1 − �)!][�e(m − 1) + (1 − �)!m + �!]

)

1
1 − � (

e
3 [�e + (1 − �)!]

− 1
2) +

!
6� (

1
�e + (1 − �)!

− m
�e(m − 1) + (1 − �)!m + �!

)

⎞
⎟
⎟
⎟
⎟
⎠

.

(B-15)

These gradients are complicated but we can extract relevant information by starting our analysis

on the two boundaries of the trait space along which evolutionary dynamics may end up (! = 0

or � = 0). Using eq. (B-15), we ask �rst when is worker-loss (! = 0) stable? And second when is

hybridization avoidance (� = 0) stable?

Stability of worker-loss. Worker-loss is stable only if: (1) selection maintains ! at zero (i.e.

s!(z) ≤ 0when! = 0); and (2) selection on hybridization settles for an equilibrium �∗ (i.e. s�(z) = 0

for some �∗ when ! = 0). From eq. (B-15), these two conditions reduce to

e ≥ 1
4 +

9
8(m − 1)

(B-16)

(region above dashed line in �g. 4A) and

�∗ = 2∕3. (B-17)

Note that condition (B-16) becomes impossible as m → 1. This indicates that worker-loss cannot

evolve under monandry in this model. Form > 1, it is straightforward to show that when condition

(B-16) is true, the strategy � = 2∕3 is both convergence and evolutionary stable when! = 0 (eqs. B-9

and B-10 for e.g. of the type of argument used).
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Stability of hybridization avoidance. Conversely, hybridization avoidance is stable only if: (1)

selection on hybridization maintains � at zero (i.e. s�(z) ≤ 0when � = 0); and (2) selection on caste

determination in absence of hybridization settles for an equilibrium !∗ (i.e. s!(z) = 0 for some !∗

when � = 0). From eq. (B-15), these two conditions reduce to

e ≤ 1
2 +

1
2

5m − 1
6m2 −m − 1

(B-18)

(region below plain line in �g. 4A) and

!∗ = 1
3 +

2
3(1 + 3m)

. (B-19)

Again, it is straightforward to show that when condition (B-18) holds, the strategy given by eq. (B-19)

is both convergence and evolutionary stable when � = 0 (eqs. B-3 and B-4 for e.g. of argument).

Together, conditions (B-16) and (B-18) split the parameter space into 4 areas where both, none, or

only one of the conditions are met (�g. 4A). Where condition (B-18) is met but (B-16) is not (grey

region of �g. 4A), hybridization cannot evolve when rare and worker-loss cannot bemaintained. We

therefore focus on the three remaining cases where worker loss can emerge. Doing so, we �nd that

there are four possible types of evolutionary dynamics.

Type 1: Evolution towards worker-loss. Where condition (B-16) is met but (B-18) is not (dark

green region of �g. 4A), selection favours the emergence of hybridization and maintenance of

worker-loss. In addition, it can be shown that under these conditions, there exists no singular

strategy within the trait space (i.e., there exists no z∗ = (!∗, �∗) such that 0 < !∗, �∗ < 1 and

s(z∗) = (0, 0), e.g. using the function Reduce[] in Mathematica, see notebook). This means that the

phase portrait of evolutionary dynamics is qualitatively the same as in �g. 3D: worker-loss always

evolves.

Type 2: Evolution towards worker-loss or hybridization avoidance depending on initial

conditions. Where conditions (B-16) and (B-18) are met simultaneously, both worker-loss and

hybridization avoidance are stable so either strategy is maintained when common (when m ≥ 5,

light green region of �g. 4A). Under these conditions, we �nd that there exists a singular strategy

within the trait space (top row, columnsm = 5 andm = 6 in �g. S1 for numerical values, see Math-

ematica notebook for analytical expression). When we compute numerically the leading eigenvalue
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of the system’s Jacobian matrix, we �nd that it is positive (�g. S1, second row, columns m = 5 and

m = 6, full line), revealing that the singularity is an evolutionary repellor. Therefore the phase por-

trait of evolutionary dynamics is qualitatively the same as in �g. 3C: depending on initial conditions,

evolutionary dynamics will lead to worker-loss or hybridization avoidance.

Type 3: Convergence stable and uninvadable intermediate strategy. Where neither condi-

tion (B-16) nor (B-18) are met, neither worker-loss nor hybridization avoidance are stable (when

m ≤ 4, blue region of �g. 4A). In this case, a singular strategy within the trait space also exists

(0 < !∗, �∗ < 1; �g. S1, top row, columns m ∈ {1, 2, 3, 4} for numerical values; Mathematica

notebook for analytical expression). But now, this intermediate strategy is convergence stable as

indicated by a negative leading eigenvalue of the Jacobian matrix (�g. S1, second row, columns

m ∈ {1, 2, 3, 4}, full line). Whenm ∈ {2, 3, 4}, this intermediate strategy is also uninvadable as shown

by a negative leading eigenvalue of the Hessian matrix (�g. S1, second row, columns m ∈ {2, 3, 4},

dashed line). Thus, when the number of mates is between two and four (m ∈ {2, 3, 4}) and neither

conditions (B-16) and (B-18) are met, the population converges and remains monomorphic for an

intermediate strategy 0 < !∗, �∗ < 1.

Type 4: Emergence of polymorphism under monandry. When neither condition (B-16) nor

(B-18) aremet andm = 1, the convergence stable intermediate strategy is invadable (i.e., theHessian

has a positive leading eigenvalue; �g. S1, second row, columnm = 1, dashed line). This means that

once the population has converged to this intermediate strategy, it experiences frequency-dependent

disruptive selection leading to polymorphism (Geritz et al., 1998; Geritz andGyllenberg, 2005; Geritz

et al., 2016). Inspection of the entries of the Hessian matrix reveals that

ℎ!�(z∗)2 − ℎ!!(z∗)ℎ��(z∗) > 0 (B-20)

(�g. S2A, black line) and that ℎ!!(z∗) ≤ 0 and ℎ��(z∗) ≤ 0 (�g. S2A, green and grey lines). This says

that disruptive selection in our model is due to correlational selection between caste determination

and hybridization (i.e. the selection that associates caste determination and hybridization, Phillips

andArnold, 1989) and only occurs because both traits are coevolving (i.e. if either trait evolves while

the other is �xed, the population remains monomorphic, e.g. Mullon et al., 2018). We also �nd that

ℎ!�(z∗) > 0 (B-21)
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Figure S1: Properties of the internal singular strategy under monoandry and low
polyandry. Each column describes the unique internal singular strategy for a speci�c
value of m. Top row: value of the singular strategy (!∗ in green, �∗ in black) within the
range of e for which an internal strategy exists (range given by eqs. B-16 and B-18; Math-
ematica notebook for value of singular strategy). Bottom row: leading eigenvalues of the
Jacobian (full line; for convergence stability) and Hessian (dashed line; for evolutionary
stability) matrices at the singular strategy (Mathematica notebook for calculations).

(�g. S2A, blue line), which tells us that correlational selection is positive (i.e. selection favours a

positive correlation between caste determination and hybridization within individuals, Phillips and

Arnold, 1989). This is con�rmed by individual based simulations, in which we observe the emer-

gence of a polymorphism characterised by a positive correlation between ! and � within haplotypes

(�g. 4C and �g. S2B-D).

B.2.2 E�ect of thelytokous parthenogenesis

When we allow for a fraction c of a queens brood to be produce parthenogenetically, the selection

gradient (obtained from eq. A-8) is too complicated to be displayed or for singular strategies to be

found analytically. We therefore go through an invasion analysis similar to above (Appendix B.1.2

and B.2.1) and again ask: (1) under which conditions and values of ! is hybridization avoidance

(� = 0) stable? and (2) under which conditions and values of � is worker-loss (! = 0) stable?
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Figure S2: Polymorphism under monandry is due to positive correlational selec-
tion. A.Characteristics of theHessianmatrix at the internal singular strategy as a function
of e form = 1 (�rst column of �g. S1 for singular value): quadratic selection coe�cient on
! (ℎ!!(z∗), in green) and on � ℎ��(z∗), in grey); correlational selection (ℎ!�(z∗), in blue)
and its relative strength (ℎ!�(z∗)2 − ℎ!!(z∗)ℎ��(z∗), in black, Mathematica notebook for
calculations). B. Correlation between genetic values of each trait within haplotypes in
a simulated population (in gray, 4000 haplotypes sampled every 100 generations to com-
pute Pearson’s correlation coe�cient, same replicate as �g. 4C; cumulative mean in black
dashed). C & D Distribution of genetic values of all haplotypes after 1000 generations
(panel C) and after 100000 generations (panel D, same replicate as panel B and �g. 4C).

Stability of hybridization avoidance. Hybridization avoidance is stable if selection on caste de-

termination settles for an equilibrium !∗ in the absence of hybridization (i.e. s!(z) = 0 for some !∗

when � = 0), and if selection on hybridization at this equilibriummaintains � at zero (i.e. s�(z) ≤ 0

when � = 0 and ! = !∗). These two conditions respectively reduce to,

!∗ = 1 + c
3 + c (1 +

2(1 − c)2

(c + 1) [(1 − c)2 + (c + 3)m]
) , (B-22)

and

e ≤
3(1 + c)
2(3 + c)

+
(1 − c)(3 − c)

2(5 − c)(c + 2m − 1)
+

4(3 − c)(1 − c)2

(5 − c)(3 + c) [(1 − c)2 + (c + 3)m]
. (B-23)

Condition eq. (B-23) corresponds to the area of the graph below the plain line in �g. 5A-B, where

hybridization avoidance is stable. Conversely, the area above the plain line in �g. 5A-B (in blue) is

where avoidance is not stable and thus where hybridization evolves.
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Stability of worker-loss. Similarly, worker-loss is stable if selection on hybridization settles for

an equilibrium �∗ in the absence of developmental plasticity (i.e. s�(z) = 0 for some 0 < �∗ < 1

when ! = 0). We �nd that this equilibrium reads as

�∗ = 2
3

1
1 − c

(
1 − c

1 − m

)
(B-24)

(�g. 5D). The equilibrium eq. (B-24) is between 0 and 1 (0 < �∗ < 1) and selection at this equilibrium

maintains worker-loss (i.e. s!(z) ≤ 0 when ! = 0 and � = �∗) when

e ≥ 1
4 +

3c
4 +

3[3 − c(12 − c)]
8(c + m − 1)

−
9(3 − c)(1 − c)c
8(c + m − 1)2

and c < m − 1
3m − 1. (B-25)

Note that condition eq. (B-25) is only possible when m ≥ 2. It therefore does not appear in �g. 5A

(which is for the casem = 1) but corresponds to the area above the dotted line in �g. 5B (which has

m = 2).

Worker-loss coupled with complete hybridization. In principle, it is also possible with

parthenogenesis for a population to evolve worker-loss (! = 0) with complete hybridization (� = 1)

(as parthenogenesis allows to produce queens in the absence of intra-speci�cmatings). We therefore

further need to determine whether worker-loss can also be stable in the case where � = 1 (rather

than for some 0 < �∗ < 1). We �nd that selection underworker-loss (! = 0) and complete hybridiza-

tion (� = 1) maintains both worker-loss and complete hybridization (i.e. s!(z) ≤ 0 and s�(z) ≥ 0

where z = (!, �) = (0, 1)) when

e ≥ c
1 − c and c ≥ m − 1

3m − 1. (B-26)

Condition eq. (B-26) corresponds to the area above the dashed line in �g. 5A-B. While condition

eq. (B-25) can only be met only under polyandry (m > 1), condition eq. (B-26) can be met for any

number of matesm. This means that the evolution of worker-loss under monandry and thelytokous

parthenogenesis is always associated with complete hybridization in our model.

B.2.3 E�ect of non-linear workforce productivity

Our analyses so far have assumed a linear e�ect of worker density on colony �tness (� = 1 in eq. A-

2b). Here we investigate how non-linear e�ects of the density of workers on the pre-mating survival
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of virgin queens and males in�uence our results. We restrict our exploration to the case where

queens mate with an in�nite number of males and do not reproduce via parthenogenesis for sim-

plicity (m → ∞ and c = 0). With � in eq (A-2b) as a variable, we �nd from eq. (A-8) that the selection

gradient vector now reads as,

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎜
⎝

1
6 (

�(1 − �)
�e + (1 − �)!

− 2
1 − !)

1
1 − � (

�e
3 [�e + (1 − �)!]

− 1 + 2�
6 )

⎞
⎟
⎟
⎟
⎟
⎠

. (B-27)

Solving for both of these gradients to vanish simultaneously, we �nd that there exists a unique sin-

gular strategy,
⎧

⎨
⎩

!∗ = e + e − 1
3

�∗ = 1 + 3e
(e − 1)(1 + 2�)

(B-28)

(�g. S3). The symmetric part of the Jacobianmatrix (eq. A-10) of the system eq. (B-27) at this singular

value eq. (B-28) reads as

1
2
(
J(z∗) + J(z∗)T

)
=

⎛
⎜
⎜
⎜
⎝

−
3(2 + �)

16(e − 1)2�
−
(1 + 2�)2

16e�

−
(1 + 2�)2

16e� −
(e − 1)2(1 + 2�)3

108e2�

⎞
⎟
⎟
⎟
⎠

. (B-29)

It is straightforward to show that this matrix eq. (B-29) is not negative-de�nite. The singular strategy

eq. (B-28) is therefore a repellor, just as under linear e�ects (� = 1, eq. B-7). This indicates that

as illustrated in �g. 3, the co-evolution of caste determination and hybridization under non-linear

e�ects also lead to either hybridization avoidance orworker-loss depending onparameters and initial

conditions.

We can gain further insights into the in�uence of non-linear e�ects by determining when the sin-

gular strategy eq. (B-28) is within the trait space (i.e., when 0 < !∗, �∗ < 1). We �nd that this is the

case when
1
4 < e < 1 + 2�

4 + 2� (B-30)

(light green region in �g. S3). This means that the threshold value for worker e�ciency e above

which worker-loss can evolve is 1/4 (as under linear e�ects � = 1). Condition (B-30) further shows

that the threshold for e above which worker-loss always evolves (i.e. independently from initial
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conditions, �g. 3D for e.g.) increases with � (dark green region in �g. S3). In other words, the evolu-

tion of worker loss is facilitated under diminishing (� < 1, �g. S3A) and impaired under increasing

returns (� > 1, �g. S3C).

Figure S3: Non-linear e�ects of investment in workers. Singular values for � (in
black) and ! (in white) as a function of hybrid worker e�ciency e (given by eq. B-28).
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